1
|
Caulfield ME, Vander Werp MJ, Stancati JA, Collier TJ, Sortwell CE, Sandoval IM, Kordower JH, Manfredsson FP, Steece-Collier K. Advancing age and sex modulate antidyskinetic efficacy of striatal Ca V1.3 gene therapy in a rat model of Parkinson's disease. Neurobiol Aging 2025; 149:54-66. [PMID: 40010015 PMCID: PMC12007665 DOI: 10.1016/j.neurobiolaging.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
We previously demonstrated that viral vector-mediated striatal CaV1.3 calcium channel downregulation in young adult (3mo) male parkinsonian rats provides uniform, robust protection against levodopa-induced dyskinesias (LID). Acknowledging the association of PD with aging and incidence in male and female sexes, we have expanded our studies to include rats of advancing age of both sexes. The current study directly contrasts age and sex, determining their impact on efficacy of intrastriatal AAV-CaV1.3-shRNA to prevent LID induction, removing the variable of levodopa-priming. Considering both sexes together, late-middle-aged ('aged'; 15mo) parkinsonian rats receiving AAV-CaV1.3-shRNA developed significantly less severe LID compared control AAV-scramble(SCR)-shRNA rats, however therapeutic benefit was significantly less robust than observed in young males. When considered separately, females showed significantly less therapeutic benefit than males. Furthermore, aged non-cycling/proestrous-negative female rats were refractory to LID induction, regardless of vector. This study provides novel insight into the impact of age and sex on the variable antidyskinetic responses of CaV1.3-targeted gene therapy, highlighting the importance of including clinically relevant age and sex populations in PD studies.
Collapse
Affiliation(s)
- Margaret E Caulfield
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503, USA
| | - Molly J Vander Werp
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503, USA
| | - Jennifer A Stancati
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503, USA
| | - Timothy J Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503, USA
| | - Ivette M Sandoval
- Parkinson's Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center (NDRC), College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503, USA.
| |
Collapse
|
2
|
Flannery JC, Tirrell PS, Baumgartner NE, Daniel JM. Neuroestrogens, the hippocampus, and female cognitive aging. Horm Behav 2025; 170:105710. [PMID: 40036999 DOI: 10.1016/j.yhbeh.2025.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/30/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Research conducted over the last several decades implicates ovarian estrogens as important modulators of hippocampal function. More recently however, the importance of estrogens synthesized in the brain de novo for hippocampal function has been recognized. These brain-derived neuroestrogens act in the hippocampus to regulate dendritic spine dynamics and synaptic plasticity as well as hippocampus-dependent memory. The current report provides an overview of research conducted in model systems elucidating the actions of neuroestrogens in the hippocampus and the subsequent consequences for cognition. We highlight the relationship between ovarian estrogens and brain-derived estrogens and discuss implications for female cognitive aging of the putative decline in hippocampal levels of neuroestrogens following loss of ovarian function. Finally, we propose a model of menopause in which a short-term period of midlife estradiol treatment changes the trajectory of hippocampal neuroestrogen production long-term, resulting in sustained interactions of neuroestrogens, insulin-like growth factor-1, and estrogen receptor signaling in the hippocampus, interactions that support successful brain and cognitive aging.
Collapse
Affiliation(s)
- Jill C Flannery
- Brain Institute, Tulane University, New Orleans, LA 70118, United States of America; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States of America
| | - Parker S Tirrell
- Brain Institute, Tulane University, New Orleans, LA 70118, United States of America; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States of America
| | - Nina E Baumgartner
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, United States of America
| | - Jill M Daniel
- Brain Institute, Tulane University, New Orleans, LA 70118, United States of America; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States of America; Department of Psychology, Tulane University, New Orleans, LA, 70118, United States of America.
| |
Collapse
|
3
|
de Assis GG, de Sousa MBC, Murawska-Ciałowicz E. Sex Steroids and Brain-Derived Neurotrophic Factor Interactions in the Nervous System: A Comprehensive Review of Scientific Data. Int J Mol Sci 2025; 26:2532. [PMID: 40141172 PMCID: PMC11942429 DOI: 10.3390/ijms26062532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Sex steroids and the neurotrophin brain-derived neurotrophic factor (BDNF) participate in neural tissue formation, phenotypic differentiation, and neuroplasticity. These processes are essential for the health and maintenance of the central nervous system. AIM The aim of our review is to elucidate the interaction mechanisms between BDNF and sex steroids in neuronal function. METHOD A series of searches were performed using Mesh terms for androgen/receptors, estrogen/receptors, and BDNF/receptors, and a collection of the scientific data available on PubMed up to February 2025 about mechanical interactions between BDNF and sex steroids was included in this literature review. DISCUSSION This review discussed the influence of sex steroids on the formation and/or maintenance of neural circuits via different mechanisms, including the regulation of BDNF expression and signaling. Estrogens exert a time- and region-specific effect on BDNF synthesis. The nuclear estrogen receptor can directly regulate BDNF expression, independently of the presence of estrogen, in neuronal cells, whereas progesterone and testosterone upregulate BDNF expression via their specific nuclear receptors. In addition, testosterone has a positive effect on BDNF release by glial cells, which lack androgen receptors.
Collapse
Affiliation(s)
- Gilmara Gomes de Assis
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347 Viana do Castelo, Portugal
| | | | - Eugenia Murawska-Ciałowicz
- Department of Physiology and Biomechanics, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland;
| |
Collapse
|
4
|
Kritzer MF, Adler A, Locklear M. Androgen effects on mesoprefrontal dopamine systems in the adult male brain. Neuroscience 2025; 568:519-534. [PMID: 38977069 DOI: 10.1016/j.neuroscience.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Epidemiological data show that males are more often and/or more severely affected by symptoms of prefrontal cortical dysfunction in schizophrenia, Parkinson's disease and other disorders in which dopamine circuits associated with the prefrontal cortex are dysregulated. This review focuses on research showing that these dopamine circuits are powerfully regulated by androgens. It begins with a brief overview of the sex differences that distinguish prefrontal function in health and prefrontal dysfunction or decline in aging and/or neuropsychiatric disease. This review article then spotlights data from human subjects and animal models that specifically identify androgens as potent modulators of prefrontal cortical operations and of closely related, functionally critical measures of prefrontal dopamine level or tone. Candidate mechanisms by which androgens dynamically control mesoprefrontal dopamine systems and impact prefrontal states of hypo- and hyper-dopaminergia in aging and disease are then considered. This is followed by discussion of a working model that identifies a key locus for androgen modulation of mesoprefrontal dopamine systems as residing within the prefrontal cortex itself. The last sections of this review critically consider the ways in which the organization and regulation of mesoprefrontal dopamine circuits differ in the adult male and female brain, and highlights gaps where more research is needed.
Collapse
Affiliation(s)
- Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, United States.
| | - Alexander Adler
- Department of Oncology and Immuno-Oncology, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States
| | | |
Collapse
|
5
|
Van Zandt M, Pittenger C. Sexual dimorphism in histamine regulation of striatal dopamine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.20.595049. [PMID: 38826392 PMCID: PMC11142073 DOI: 10.1101/2024.05.20.595049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Dopamine modulation of the basal ganglia differs in males and females and is implicated in numerous neuropsychiatric conditions, including some, like Tourette Syndrome (TS) and attention deficit hyperactivity disorder (ADHD), that have marked sex differences in prevalence. Genetic studies in TS and subsequent work in animals suggest that a loss of histamine may contribute to dysregulation of dopamine. Motivated by this, we characterized the modulation of striatal dopamine by histamine, using microdialysis, targeted pharmacology, and shRNA knockdown of histamine receptors. Intracerebroventricular (ICV) histamine reduced striatal dopamine in male mice, replicating previous work. In contrast, and unexpectedly, ICV histamine increased striatal dopamine in females. ICV or targeted infusion of agonists revealed that the effect in males depends on H2R receptors in the substantia nigra pars compacta (SNc). Knockdown of H2R in SNc GABAergic neurons abrogated the effect, identifying these cells as a key locus of histamine's regulation of dopamine in males. In females, however, H2R had no discernible role; instead, H3R agonists in the striatum increased striatal dopamine. Strikingly, the effect of histamine on dopamine in females was modulated by the estrous cycle, appearing only in estrus/proestrus, when estrogen levels are high. These findings confirm the regulation of striatal dopamine by histamine but identify marked sexual dimorphism in and estrous modulation of this effect. These findings may shed light on the mechanistic underpinnings of sex differences in the striatal circuitry, and in several neuropsychiatric conditions.
Collapse
Affiliation(s)
- Meghan Van Zandt
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA, 06519
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA, 06519
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA, 06519
- Department of Psychology, Yale School of Arts and Sciences, New Haven, USA, 06519
- Center for Brain and Mind Health, Yale University School of Medicine, New Haven, USA, 06519
- Wu-Tsai Institute, Yale University, New Haven, CT, USA, 06519
| |
Collapse
|
6
|
Zhai M, Cao S, Liang H, Xie Y, Zhao Z. A New Function of the DRD1 Gene: GnRH Secretion Regulation in Sheep Hypothalamic Neurons. Genes (Basel) 2025; 16:273. [PMID: 40149425 PMCID: PMC11942299 DOI: 10.3390/genes16030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Dopamine (DA) is an important neurotransmitter that is widely present in the central nervous system. DA plays a crucial regulatory role in mammalian emotion, endocrine function, and reproduction through the activation of dopamine receptors. We compared the transcriptomes of hypothalamic tissues from Kazakh sheep during the nonbreeding season of anoestrus and during the nutrient-induced nonbreeding season of oestrus. Our research findings suggest that the dopamine receptor D1 (DRD1) gene may be a candidate gene for the regulation of sheep oestrus. However, the underlying mechanism through which DRD1 regulates sheep oestrus is still poorly understood. METHODS In the present study, the expression of DRD1 mRNA in the hypothalamus of oestrous Kazakh sheep was significantly greater than that in the anoestrous phase. Immunohistochemical staining revealed that DRD1 was more widely expressed in hypothalamic tissue and was more highly expressed during oestrus than during anoestrus. Hypothalamic neuron experiments further indicated that DRD1 affects the expression of GnRH through dopamine synapses and calcium signalling pathways. RESULTS moreover, the overexpression of the DRD1 gene promoted the secretion of GnRH, while knocking down the DRD1 gene reduced the secretion of GnRH. CONCLUSIONS The present study revealed that the DRD1 gene plays a crucial regulatory role in the secretion of the hormone GnRH in the hypothalamus of Kazakh sheep.
Collapse
Affiliation(s)
- Manjun Zhai
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shaoqi Cao
- Xinjiang Uygur Autonomous Region Animal Husbandry General Station, Urumqi 830001, China; (S.C.); (H.L.)
| | - Huihui Liang
- Xinjiang Uygur Autonomous Region Animal Husbandry General Station, Urumqi 830001, China; (S.C.); (H.L.)
| | - Yifan Xie
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (Y.X.); (Z.Z.)
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (Y.X.); (Z.Z.)
| |
Collapse
|
7
|
Mu E, Chiu L, Kulkarni J. Using estrogen and progesterone to treat premenstrual dysphoric disorder, postnatal depression and menopausal depression. Front Pharmacol 2025; 16:1528544. [PMID: 40051565 PMCID: PMC11882533 DOI: 10.3389/fphar.2025.1528544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Female gonadal hormones, particularly estrogen and progesterone, are not only central to reproductive health but also play a crucial role in regulating mood, cognition, and overall brain health. These hormones have a significant impact on the central nervous system, influencing key processes such as neurotransmission, neuroplasticity, and brain development. Increasing evidence shows that hormonal fluctuations contribute to the onset and progression of mental health disorders that disproportionately affect women, particularly premenstrual dysphoric disorder (PMDD), postnatal depression (PND), and menopausal depression. This paper explores the current evidence regarding the neurobiological effects of female hormones on the brain and discusses the therapeutic approaches in conditions such as PMDD, PND, and menopausal depression.
Collapse
Affiliation(s)
- Eveline Mu
- Department of Psychiatry, HER Centre Australia, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | | | | |
Collapse
|
8
|
Vigil JJ, Tiemeier E, Orfila JE, Chalmers NE, Chang VN, Mitchell D, Veitch I, Falk M, Dietz RM, Herson PS, Quillinan N. Endogenous recovery of hippocampal function following global cerebral ischemia in juvenile female mice is influenced by neuroinflammation and circulating sex hormones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635301. [PMID: 39975306 PMCID: PMC11838352 DOI: 10.1101/2025.01.28.635301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cardiac arrest-induced global cerebral ischemia (GCI) in childhood often results in learning and memory deficits. We previously demonstrated in a murine cardiac arrest and cardiopulmonary resuscitation (CA/CPR) mouse model that a cellular mechanism of learning and memory, long-term potentiation (LTP), is acutely impaired in the hippocampus of juvenile males, correlating with deficits in memory tasks. However, little is known regarding plasticity impairments in juvenile females. We performed CA/CPR in juvenile (P21-25) female mice and used slice electrophysiology and hippocampal dependent behavior to assess hippocampal function. LTP was and contextual fear were impaired 7-days after GCI and endogenously recovered by 30-days. LTP remained impaired at 30 days in ovariectomized females, suggesting the surge in gonadal sex hormones during puberty mediates endogenous recovery. Unlike juvenile males, recovery of LTP in juvenile females was not associated with BDNF expression. NanoString transcriptional analysis revealed a potential role of neuroinflammatory processes, and specifically Cd68 pathways, in LTP impairment and hormone-dependent recovery. We were able to restore LTP in ovariectomized females with chronic and acute PPT administration, implicating estrogen receptor alpha in recovery mechanisms. This study supports a mechanism of endogenous LTP recovery after GCI in juvenile female mice which differs mechanistically from juvenile males and does not occur in adults of either sex.
Collapse
|
9
|
Aten S, Ramirez-Plascencia O, Blake C, Holder G, Fishbein E, Vieth A, Zarghani-Shiraz A, Keister E, Howe S, Appo A, Palmer B, Mahoney CE. A time for sex: circadian regulation of mammalian sexual and reproductive function. Front Neurosci 2025; 18:1516767. [PMID: 39834701 PMCID: PMC11743455 DOI: 10.3389/fnins.2024.1516767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The circadian clock regulates physiological and biochemical processes in nearly every species. Sexual and reproductive behaviors are two processes controlled by the circadian timing system. Evidence supporting the importance of proper clock function on fertility comes from several lines of work demonstrating that misalignment of biological rhythms or disrupted function of the body's master clock, such as occurs from repeated shift work or chronic jet lag, negatively impacts reproduction by interfering with both male and female fertility. Along these lines, dysregulation of clock genes leads to impairments in fertility within mammals, and disruption of circadian clock timing negatively impacts sex hormone levels and semen quality in males, and it leads to ovulatory deficiencies in females. Here, we review the current understanding of the circadian modulation of both male and female reproductive hormones-from animal models to humans. Further, we discuss neural circuits within the hypothalamus that may regulate circadian changes in mammalian sexual behavior and reproduction, and we explore how knowledge of such circuits in animal models may help to improve human sexual function, fertility, and reproduction.
Collapse
Affiliation(s)
- Sydney Aten
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Oscar Ramirez-Plascencia
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chiara Blake
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Gabriel Holder
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Emma Fishbein
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Biology, School of Arts and Sciences, Tufts University, Medford, MA, United States
| | - Adam Vieth
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Arman Zarghani-Shiraz
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Boston University, Boston, MA, United States
| | - Evan Keister
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Shivani Howe
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Ashley Appo
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Beatrice Palmer
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Carrie E. Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Maure-Blesa L, Rodríguez-Baz I, Carmona-Iragui M, Fortea J. What Can We Learn About Alzheimer's Disease from People with Down Syndrome? Curr Top Behav Neurosci 2025; 69:197-226. [PMID: 39509049 DOI: 10.1007/7854_2024_546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Down syndrome (DS) is the most frequent cause of intellectual disability of genetic origin, estimated to affect about 1 in 700 babies born worldwide (CDC 2023). In Europe and the United States, current estimates indicate a population prevalence of 5.6 and 6.7 per 10,000 individuals, respectively, which translates to more than 200,000 people in the United States, more than 400,000 people in Europe, and approximately six million worldwide. Advances in healthcare and the treatment of accompanying conditions have significantly prolonged the lifespan of those with DS over the past 50 years. Consequently, there is a pressing need to address the challenges associated with ageing among this population, with Alzheimer's disease (AD) being the primary concern. In this chapter, we will review the significance of studying this population to understand AD biology, the insights gained on AD in DS (DSAD), and how this knowledge can help us understand the AD not only in DS but also in the general population. We will conclude by exploring the objectives that remain to be accomplished.
Collapse
Affiliation(s)
- Lucia Maure-Blesa
- Sant Pau Memory Unit, Department of Neurology, Facultad de Medicina, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Iñigo Rodríguez-Baz
- Sant Pau Memory Unit, Department of Neurology, Facultad de Medicina, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Facultad de Medicina, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Facultad de Medicina, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain.
| |
Collapse
|
11
|
Du R, Liang T, Lu G. Modulation of empathic abilities by the interplay between estrogen receptors and arginine vasopressin. Neurosci Res 2025; 210:11-18. [PMID: 39245211 DOI: 10.1016/j.neures.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/05/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
This review examines the complex interactions between estrogen receptors α and β (ERα and ERβ) and arginine vasopressin (AVP), delving into their significant roles in modulating empathy, a critical psychological component in human social dynamics. Empathy, integrating affective and cognitive elements, is anchored in neural regions like the amygdala and prefrontal cortex. ERα and ERβ, pivotal in estrogen regulation, influence neurotransmitter dynamics and neural network activities, crucial for empathic development. AVP, key in regulating water balance, blood pressure, and social behaviors, interplays with these receptors, profoundly impacting empathic responses. The study highlights that ERα predominantly enhances empathy, especially affective empathy, by stimulating AVP synthesis and release. In contrast, ERβ may diminish empathy in certain contexts by suppressing AVP expression and activity. The intricate interplay, homeostatic balance, and mutual conversion between ERα and ERβ in AVP regulation are identified as challenging yet crucial areas for future research. These findings provide essential insights into the neurobiological underpinnings of empathy, offering new avenues for therapeutic interventions in social cognitive disorders and emotional dysregulation.
Collapse
Affiliation(s)
- Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Ting Liang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Guofang Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
12
|
Rothwell ES, Viechweg SS, Prokai L, Mong JA, Lacreuse A. Oral administration of ethinyl estradiol and the brain-selective estrogen prodrug DHED in a female common marmoset model of menopause: Effects on cognition, thermoregulation, and sleep. Horm Behav 2025; 167:105670. [PMID: 39721460 DOI: 10.1016/j.yhbeh.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/15/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
Menopausal symptoms of sleep disturbances, cognitive deficits, and hot flashes are understudied, in part due to the lack of animal models in which they co-occur. Common marmosets (Callithrix jacchus) are valuable nonhuman primates for studying these symptoms, and we examined changes in cognition (reversal learning), sleep (48 h/wk of sleep recorded by telemetry), and thermoregulation (nose temperature in response to mild external warming) in middle-aged, surgically-induced menopausal marmosets studied at baseline, during 3-week phases of ethinyl estradiol (EE2, 4 μg/kg/day, p.o.) treatment and after EE2 withdrawal. We also assessed a brain-selective hormonal therapy devoid of estrogenic effects in peripheral tissues on the same measures (cognition, sleep, thermoregulation) after treatment with the estrogen prodrug 10β,17β-dihydroxyestra-1,4-dien-3-one (DHED, 100 μg/kg/day, p.o) and DHED withdrawal. Reversal learning performance was improved with EE2 or DHED treatment relative to phases without hormone administration, as indicated by a faster reversal of the stimulus/reward contingencies. Both EE2 and DHED increased non-REM sleep and reduced nighttime awakenings relative to baseline, but to the detriment of REM sleep which was highest at baseline. Nasal temperature in response to mild external warming was highest, and overnight core body temperature lowest, in the DHED treatment phase compared to both the EE2 and baseline phases. These results suggest that low dose estradiol, delivered either peripherally or centrally via DHED, benefits selective aspects of cognition and sleep in a marmoset menopause model. DHED appears a promising therapeutic candidate for alleviating the cognitive and sleep disruptions associated with estrogen deficiency in primates.
Collapse
Affiliation(s)
- Emily S Rothwell
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Shaun S Viechweg
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, MD, United States of America
| | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, The University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, MD, United States of America
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States of America
| |
Collapse
|
13
|
Moon DU, Kim H, Jung JH, Han K, Jeon HJ. Association of age at menopause and suicide risk in postmenopausal women: a nationwide cohort study. Front Psychiatry 2024; 15:1442991. [PMID: 39742331 PMCID: PMC11686360 DOI: 10.3389/fpsyt.2024.1442991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Early age at menopause has been linked to various adverse health outcomes, but its association with suicide risk remains underexplored. This study aims to assess the relationship between age at menopause and suicide risk among postmenopausal women. Methods This retrospective cohort study analyzed data from the Korean National Health Insurance System (NHIS), covering 1,315,795 postmenopausal women aged 30 years and above, from 2009 to 2021. Menopausal age was classified as primary ovarian insufficiency (under 40 years), early menopause (40-44 years), average menopause (45-49 and 50-54 years), and late menopause (55 years and older). Suicide incidence was identified using ICD-10 codes for primary cause of death. Multivariable Cox proportional hazards models were utilized to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Results Across the 12-year follow-up, there were 2,986 suicides. Women with primary ovarian insufficiency exhibited the highest suicide risk (HR, 1.43; 95% CI, 1.14-1.78, p < 0.001), followed by those with early menopause (HR, 1.31; 95% CI, 1.15-1.50, p < 0.001), and those with menopause between 45 and 49 (HR, 1.13; 95% CI, 1.04-1.23, p < 0.001) compared to the reference group undergoing menopause at age of 50-54. Discussion Early onset of menopause, particularly primary ovarian insufficiency, is associated with a significantly elevated risk of suicide. These findings underscore the need for targeted interventions and support for women experiencing early menopause. This study highlights the importance of monitoring mental health in postmenopausal women and suggests further research to explore the underlying mechanisms linking early menopause to increased suicide risk.
Collapse
Affiliation(s)
- Daa Un Moon
- Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Psychiatric University Hospital Charité at St. Hedwig Hospital, Berlin, Germany
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyewon Kim
- Department of Psychiatry, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jin-Hyung Jung
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Department of Medical Device Management and Research, and Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Qi Z, Zhai Y, Han Y, Li K, Wang T, Li P, Li J, Zhou X, Zhao X, Song W. Genetic Evidence for Estrogenic Effects of Benzophenone-2 on Zebrafish Neurodevelopment and Its Signaling Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21433-21449. [PMID: 39579127 DOI: 10.1021/acs.est.4c06892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Estrogens play a crucial role in regulating various biological responses during the early stages of neurodevelopment. Benzophenone-2 (BP2), a widely used organic ultraviolet (UV) filter, has been proven as an estrogenic compound, whereas the estrogenic effects of BP2 on neurodevelopment remain largely unknown. Here, we investigated the neurodevelopmental toxicity of BP2 by exposing zebrafish embryos from 2 to 120 h postfertilization (hpf) at environmentally relevant concentrations. We demonstrated that early life exposure to BP2 induced multiple concentration-dependent impairments in the nervous system, including hypoactivity, abnormal brain morphology, impaired neurocyte proliferation, shortened axon, and increased neurocyte apoptosis. Moreover, metabolomic profiling revealed a decrease in dopamine (DA) and its metabolites in BP2-treated larvae. Using E2 treatment and morpholino knockdown assays, we provided strong genetic evidence that the BP2-induced behavioral disorders were associated with estrogen-dependent signaling, especially estrogen receptors 2a and 2b (esr2). Subsequently, transcriptomic profiling indicated that the activation of esr2 further inhibited the expression of LIM homeobox transcription factor 1 β a (lmx1ba), which is vital for normal neurodevelopment. Consistently, the overexpression of lmx1ba and inhibition of esr2 obviously alleviated BP2-caused neurotoxicity, uncovering a seminal role of esr2 and lmx1ba in BP2-induced neurodevelopmental toxicity. Our findings provide the first evidence in fish that BP2 can induce neurodevelopmental deficits and brain dysfunction and offer novel insights into the mechanisms of toxicity of BP2 as well as other emerging benzophenones.
Collapse
Affiliation(s)
- Zhipeng Qi
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, Center for Medical Statistics and Data Analysis, Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Yue Zhai
- School of Nursing, Jilin University, Changchun 130021, China
| | - Yi Han
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, Center for Medical Statistics and Data Analysis, Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Keying Li
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, Center for Medical Statistics and Data Analysis, Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Tianchen Wang
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, Center for Medical Statistics and Data Analysis, Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng Li
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, Center for Medical Statistics and Data Analysis, Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Jianan Li
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, Center for Medical Statistics and Data Analysis, Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaomai Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Xinying Zhao
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, Center for Medical Statistics and Data Analysis, Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Weiyi Song
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, Center for Medical Statistics and Data Analysis, Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
15
|
Hu Q, Wang J, Liang J, Xiu M, Zhang S, Wu F. Gonadal hormone abnormalities in young patients with first-episode schizophrenia. Int J Neuropsychopharmacol 2024; 27:pyae063. [PMID: 39657134 DOI: 10.1093/ijnp/pyae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Gonadal hormones have been reported to be involved in the molecular mechanisms of schizophrenia (SCH). However, only a few studies have examined the gonadal hormone dysfunctions in first-episode schizophrenia (FES) patients, in particular in young patients with SCH. This study was designed to investigate the sex differences in gonadal hormones in young and antipsychotic-naïve FES patients. METHODS One hundred and sixty-two patients with SCH and 74 healthy controls were recruited, and blood gonadal hormones, including estradiol (E2), follicular-stimulating hormone (FSH), progesterone (PROG), luteinizing hormone (LH), and testosterone (TESTO), were measured in young FES patients and controls. RESULTS We found that both male and female young FES patients showed gonadal hormone disturbances at the onset of psychosis. Male patients exhibited a significantly higher rate of abnormal E2 (25.6% vs 3.9%), while female patients had higher rates of abnormal FSH (0% vs 5.3%), PROG (0% vs 21.1%), LH (3.5% vs 17.1%), and TESTO (3.5% vs 13.2%) (all P < .05). Multivariate logistic regression analysis further identified that specific gonadal hormone indices, including E2, LH, and TESTO, were factors associated with sex differences in young FES patients, after controlling for age, smoking status, and body mass index. CONCLUSIONS Our study reveals an overall gonadal hormone imbalance in young antipsychotic-naïve FES patients, highlighting sex differences at the onset of psychosis. Our study provides a foundation for further research into the role of gonadal hormones in the pathophysiology of SCH and the potential for personalized medicine approaches based on hormonal balance. Future studies were warranted to explore these differences and their implications for clinical practice to improve the treatment outcomes for individuals suffering from SCH.
Collapse
Affiliation(s)
- Qiang Hu
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| | | | - Jing Liang
- Qingdao Mental Health Center, Qingdao, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shuangli Zhang
- Department of Psychiatry, The Third Hospital of Quzhou, Quzhou, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Schmalenberger KM, Mulligan EM, Barone JC, Nagpal A, Divine MM, Maki PM, Eisenlohr-Moul TA. Effects of acute estradiol administration on perimenstrual worsening of working memory, verbal fluency, and inhibition in patients with suicidal ideation: A randomized, crossover clinical trial. Psychiatry Res 2024; 342:116188. [PMID: 39299148 DOI: 10.1016/j.psychres.2024.116188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Accumulating evidence indicates that most female patients with suicidal ideation (SI) experience a dimensional worsening of depressive symptoms and SI in the perimenstrual phase of the menstrual cycle. Experimental trials demonstrate that acute perimenstrual administration of estradiol (E2; with or without progesterone/P4), can prevent these recurring episodes of increased risk. In this archival sample drawn from one of these clinical trials, we examined whether these beneficial E2 effects extend to specific types of cognition. For a double-blind, placebo-controlled experiment, we recruited transdiagnostic psychiatric outpatients with natural menstrual cycles who experienced past-month SI (N(per-protocol sample)=23; N(intent-to-treat sample)=44). In each of two counterbalanced conditions (perimenstrual administration of 0.1mg/d transdermal E2 vs. placebo), participants completed three cognitive tasks in three menstrual cycle phases (mid-luteal, perimenstrual, mid-follicular). Multilevel models revealed a significant interaction of condition and phase: E2 administration prevented mid-luteal-to-perimenstrual drops in working memory (p=.006) and verbal fluency (p=.005) observed under placebo. No effects were found for inhibitory control. In conclusion, we find perimenstrual declines in working memory and verbal fluency in patients with SI, which can be prevented by administering E2. This study contributes to our understanding of the hormone-brain pathways involved in the cyclical worsening of suicidality.
Collapse
Affiliation(s)
- Katja M Schmalenberger
- Department of Psychiatry, University of Illinois at Chicago, 1747 W. Roosevelt Rd., Chicago, IL 60612, USA.
| | - Elizabeth M Mulligan
- Department of Psychiatry, University of Illinois at Chicago, 1747 W. Roosevelt Rd., Chicago, IL 60612, USA.
| | - Jordan C Barone
- Department of Psychiatry, University of Illinois at Chicago, 1747 W. Roosevelt Rd., Chicago, IL 60612, USA.
| | - Anisha Nagpal
- Department of Psychiatry, University of Illinois at Chicago, 1747 W. Roosevelt Rd., Chicago, IL 60612, USA.
| | - Madeline M Divine
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.
| | - Pauline M Maki
- Department of Psychiatry, University of Illinois at Chicago, 1747 W. Roosevelt Rd., Chicago, IL 60612, USA; Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA; Department of Obstetrics & Gynecology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Tory A Eisenlohr-Moul
- Department of Psychiatry, University of Illinois at Chicago, 1747 W. Roosevelt Rd., Chicago, IL 60612, USA; Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
17
|
Huwart SJP, Fayt C, Gangarossa G, Luquet S, Cani PD, Everard A. TLR4-dependent neuroinflammation mediates LPS-driven food-reward alterations during high-fat exposure. J Neuroinflammation 2024; 21:305. [PMID: 39580436 PMCID: PMC11585241 DOI: 10.1186/s12974-024-03297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Obesity has become a global pandemic, marked by significant shifts in both the homeostatic and hedonic/reward aspects of food consumption. While the precise causes are still under investigation, recent studies have identified the role of gut microbes in dysregulating the reward system within the context of obesity. Unravelling these gut-brain connections is crucial for developing effective interventions against eating and metabolic disorders, particularly in the context of obesity. This study explores the causal role of LPS, as a key relay of microbiota component-induced neuroinflammation in the dysregulation of the reward system following exposure to high-fat diet (HFD). METHODS Through a series of behavioural paradigms related to food-reward events and the use of pharmacological agents targeting the dopamine circuit, we investigated the mechanisms associated with the development of reward dysregulation during HFD-feeding in male mice. A Toll-like receptor 4 (TLR4) full knockout model and intraventricular lipopolysaccharide (LPS) diffusion at low doses, which mimics the obesity-associated neuroinflammatory phenotype, were used to investigate the causal roles of gut microbiota-derived components in neuroinflammation and reward dysregulation. RESULTS Our study revealed that short term exposure to HFD (24 h) tended to affect food-seeking behaviour, and this effect became significant after 1 week of HFD. Moreover, we found that deletion of TLR4 induced a partial protection against HFD-induced neuroinflammation and reward dysregulation. Finally, chronic brain diffusion of LPS recapitulated, at least in part, HFD-induced molecular and behavioural dysfunctions within the reward system. CONCLUSIONS These findings highlight a link between the neuroinflammatory processes triggered by the gut microbiota components LPS and the dysregulation of the reward system during HFD-induced obesity through the TLR4 pathway, thus paving the way for future therapeutic approaches.
Collapse
Affiliation(s)
- Sabrina J P Huwart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, Brussels, B-1200, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium
| | - Clémence Fayt
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, Brussels, B-1200, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, F-75013, France
- Institut Universitaire de France (IUF), Paris, France
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, F-75013, France
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, Brussels, B-1200, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, Brussels, B-1200, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium.
| |
Collapse
|
18
|
Lacasse JM, Heller C, Kheloui S, Ismail N, Raval AP, Schuh KM, Tronson NC, Leuner B. Beyond Birth Control: The Neuroscience of Hormonal Contraceptives. J Neurosci 2024; 44:e1235242024. [PMID: 39358019 PMCID: PMC11450536 DOI: 10.1523/jneurosci.1235-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
Hormonal contraceptives (HCs) are one of the most highly prescribed classes of drugs in the world used for both contraceptive and noncontraceptive purposes. Despite their prevalent use, the impact of HCs on the brain remains inadequately explored. This review synthesizes recent findings on the neuroscience of HCs, with a focus on human structural neuroimaging as well as translational, nonhuman animal studies investigating the cellular, molecular, and behavioral effects of HCs. Additionally, we consider data linking HCs to mood disorders and dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and stress response as a potential mediator. The review also addresses the unique sensitivity of the adolescent brain to HCs, noting significant changes in brain structure and function when HCs are used during this developmental period. Finally, we discuss potential effects of HCs in combination with smoking-derived nicotine on outcomes of ischemic brain damage. Methodological challenges, such as the variability in HC formulations and user-specific factors, are acknowledged, emphasizing the need for precise and individualized research approaches. Overall, this review underscores the necessity for continued interdisciplinary research to elucidate the neurobiological mechanisms of HCs, aiming to optimize their use and improve women's health.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Department of Psychology, Brock University, St Catharines, Ontario L2S 3A1, Canada
- Centre for Neuroscience, Brock University, St Catharines, Ontario L2S 3A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada
| | - Carina Heller
- Department of Clinical Psychology, Friedrich Schiller University Jena, Jena 07743, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany
- German Center for Mental Health (DZPG), Partner Site Jena-Magdeburg-Halle, Jena 07743, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Partner Site Jena-Magdeburg-Halle, Jena 07743, Germany
| | - Sarah Kheloui
- NISE Lab, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Lab, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida 33136
| | - Kristen M Schuh
- Psychology Department, University of Michigan, Ann Arbor, Michigan 48109
| | - Natalie C Tronson
- Psychology Department, University of Michigan, Ann Arbor, Michigan 48109
| | - Benedetta Leuner
- Department of Psychology, The Ohio State University, Columbus, Ohio 43210
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
19
|
Yang JL, Hodara E, Sriprasert I, Shoupe D, Stanczyk FZ. Estrogen deficiency in the menopause and the role of hormone therapy: integrating the findings of basic science research with clinical trials. Menopause 2024; 31:926-939. [PMID: 39081162 DOI: 10.1097/gme.0000000000002407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
ABSTRACT Menopause, defined by the cessation of menstrual cycles after 12 months of amenorrhea not due to other causes, is associated with significant hormonal changes, primarily a decrease in estrogen, androgen, and progesterone levels. This review delves into the effects of estrogen deficiency during the perimenopausal transition and postmenopause, integrating the findings of basic science with clinical trials. Here, we first outline the variation in endogenous estrogens before and after menopause, exploring both genomic and nongenomic actions of estrogen and its estrogen receptors throughout the body. Next, we detail the spectrum of menopausal symptoms, from acute vasomotor, urogenital, and psychological issues during perimenopause to chronic reproductive, cardiovascular, neurological, skeletal, dermatologic, immune, and digestive changes postmenopause. Finally, we evaluate the role of hormone therapy in alleviating these symptoms, weighing its benefits against known risks. Publicizing these findings and an accurate representation of the risks and benefits of estrogen replacement to our aging patients is fundamental to improving their care, quality, and even quantity of life.
Collapse
Affiliation(s)
- Jane L Yang
- From the Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Emmanuelle Hodara
- From the Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | | | - Frank Z Stanczyk
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
20
|
Zsarnovszky A, Alymbaeva D, Jocsak G, Szabo C, Mária Schilling-Tóth B, Sandor Kiss D. Endocrine disrupting effects on morphological synaptic plasticity. Front Neuroendocrinol 2024; 75:101157. [PMID: 39393417 DOI: 10.1016/j.yfrne.2024.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Neural regulation of the homeostasis depends on healthy synaptic function. Adaptation of synaptic functions to physiological needs manifests in various forms of synaptic plasticity (SP), regulated by the normal hormonal regulatory circuits. During the past several decades, the hormonal regulation of animal and human organisms have become targets of thousands of chemicals that have the potential to act as agonists or antagonists of the endogenous hormones. As the action mechanism of these endocrine disrupting chemicals (EDCs) came into the focus of research, a growing number of studies suggest that one of the regulatory avenues of hormones, the morphological form of SP, may well be a neural mechanism affected by EDCs. The present review discusses known and potential effects of some of the best known EDCs on morphological synaptic plasticity (MSP). We highlight molecular mechanisms altered by EDCs and indicate the growing need for more research in this area of neuroendocrinology.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary; Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary.
| | - Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Csaba Szabo
- Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | | | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| |
Collapse
|
21
|
Olson KL, Ingebretson AE, Vogiatzoglou E, Mermelstein PG, Lemos JC. Cholinergic interneurons in the nucleus accumbens are a site of cellular convergence for corticotropin-releasing factor and estrogen regulation in male and female mice. Eur J Neurosci 2024; 60:4937-4953. [PMID: 39080914 DOI: 10.1111/ejn.16477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Cholinergic interneurons (ChIs) act as master regulators of striatal output, finely tuning neurotransmission to control motivated behaviours. ChIs are a cellular target of many peptide and hormonal neuromodulators, including corticotropin-releasing factor, opioids, insulin and leptin, which can influence an animal's behaviour by signalling stress, pleasure, pain and nutritional status. However, little is known about how sex hormones via estrogen receptors influence the function of these other neuromodulators. Here, we performed in situ hybridisation on mouse striatal tissue to characterise the effect of sex and sex hormones on choline acetyltransferase (Chat), estrogen receptor alpha (Esr1) and corticotropin-releasing factor type 1 receptor (Crhr1) expression. Although we did not detect sex differences in ChAT protein levels in the dorsal striatum or nucleus accumbens, we found that female mice have more Chat mRNA-expressing neurons than males in both the dorsal striatum and nucleus accumbens. At the population level, we observed a sexually dimorphic distribution of Esr1- and Crhr1-expressing ChIs in the ventral striatum that was negatively correlated in intact females, which was abolished by ovariectomy and not present in males. Only in the NAc did we find a significant population of ChIs that co-express Crhr1 and Esr1 in females and to a lesser extent in males. At the cellular level, Crhr1 and Esr1 transcript levels were negatively correlated only during the estrus phase in females, indicating that changes in sex hormone levels can modulate the interaction between Crhr1 and Esr1 mRNA levels.
Collapse
Affiliation(s)
- Kendra L Olson
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna E Ingebretson
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eleftheria Vogiatzoglou
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia C Lemos
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
22
|
Derntl B, Eber CH, Kogler L, Rehbein E, Sundstöm-Poromaa I, Morawetz C. Estradiol modulates changes in effective connectivity in emotion regulation networks. Psychoneuroendocrinology 2024; 167:107103. [PMID: 38924828 DOI: 10.1016/j.psyneuen.2024.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Hormonal changes in ovarian hormones like estradiol (E2) during the menstrual cycle affect emotional processes, including emotion recognition, memory, and regulation. So far, the neural underpinnings of the effect of E2 on emotional experience have been investigated using task-based functional magnetic resonance imaging (fMRI) and functional connectivity. In the present study, we examined whether the intrinsic network dynamics at rest (i.e., directed effective connectivity) related to emotion regulation are (1) modulated by E2 levels and (2) linked to behavioral emotion regulation ability. Hence, 29 naturally cycling women participated in two resting-state fMRI scans in their early follicular phase after being administered a placebo or an E2 valerate, respectively. Emotion regulation ability was assessed using a standard emotion regulation task in which participants were asked to down-regulate their emotions in response to negative images. The regions of two functionally predefined neural networks related to emotional down-regulation and reactivity were used to investigate effective connectivity at rest using spectral dynamic causal modelling. We found that E2, compared to placebo, resulted in changes in effective connectivity in both networks. In the regulation network, prefrontal regions showed distinct connectivity in the E2 compared to the placebo condition, while mixed results evolved in the emotional reactivity network. Stepwise regressions revealed that in the E2 condition a connection from the parietal to the prefrontal cortex predicted regulation ability. Our results demonstrate that E2 levels influence effective connectivity in networks underlying emotion regulation and emotional reactivity. Thus, E2 and its potential modification via hormonal administration may play a supporting role in the treatment of mental disorders that show a dysregulation of emotions.
Collapse
Affiliation(s)
- Birgit Derntl
- Department of Psychiatry and Psychotherapy, Women's Mental Health & Brain Function, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Partner site Tübingen, Germany.
| | - Corinna H Eber
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Lydia Kogler
- Department of Psychiatry and Psychotherapy, Women's Mental Health & Brain Function, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Partner site Tübingen, Germany
| | - Elisa Rehbein
- Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | | | - Carmen Morawetz
- Department of Psychology, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
23
|
Acevedo-Huergo T, Sánchez-Yépez J, Mendoza-Trejo MS, Hernández-Plata I, Giordano M, Rodríguez VM. Hypoactivity and neurochemical alterations in the basal ganglia of female Sprague-Dawley rats after repeated exposure to atrazine. FRONTIERS IN TOXICOLOGY 2024; 6:1416708. [PMID: 39161789 PMCID: PMC11330890 DOI: 10.3389/ftox.2024.1416708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
The herbicide atrazine (ATR) has been one of the most widely used herbicides worldwide. However, due to its indiscriminate use, it has been considered an environmental contaminant. Several studies have classified ATR as an endocrine disruptor, and it has been found to have neurotoxic effects on behavior, along with alterations in the dopaminergic, GABAergic, and glutamatergic systems in the basal ganglia of male rodents. These findings suggest that these neurotransmitter systems are targets of this herbicide. However, there are no studies evaluating the neurotoxicity of ATR in female rodents. Our study aimed to assess the effects of repeated IP injections of 100 mg ATR/kg or a vehicle every other day for 2 weeks (six injections) on the locomotor activity, content of monoamines, GABA, glutamate, and glutamine in the striatum, nucleus accumbens, ventral midbrain, and prefrontal cortex, and tyrosine hydroxylase (TH) protein levels in striatum and nucleus accumbens of female rats. Repeated 100 mg ATR/kg injections immediately decreased all the locomotor activity parameters evaluated, and such hypoactivity persisted for at least 48 h after the last ATR administration. The ATR administration increased dopamine and DOPAC content in the nucleus accumbens and the dopamine and DOPAC and serotonin and 5-HIAA content in the ventral midbrain. In contrast, the TH protein levels in the striatum and nucleus accumbens were similar between groups. Meanwhile, GABA, glutamine, and glutamate levels remained unaltered in all brain regions evaluated. The observed behavioral alterations could be associated with the monoamine changes presented by the rats. These data reveal that the nucleus accumbens and ventral midbrain are susceptible to repeated ATR exposure in female rats.
Collapse
Affiliation(s)
| | | | | | | | | | - Verónica Mireya Rodríguez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
24
|
Khunphet P, Kumarnsit E, Issuriya A, Cheaha D. Estrogen deficiency affects synchronized neural connectivity in the olfactory bulb-nucleus accumbens circuit: A local field potential study in ovariectomized mouse model. Horm Behav 2024; 164:105587. [PMID: 38905819 DOI: 10.1016/j.yhbeh.2024.105587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Estrogen plays a crucial role in regulating various brain functions, including cognitive, emotional, and social behaviors. Menopausal women face a decline in estrogen levels, which has been linked to several physical and mental health issues. However, the impact of estrogen on the olfactory bulb-nucleus accumbens (OB-NAc) circuit, which is essential for regulating emotions and cognitive behaviors, remains poorly understood. To test the hypothesis that estrogen deficiency affects signal processing, we recorded local field potentials (LFPs) using intracranial electrodes implanted in four-week-old ovariectomized (OVX) mice during an open-field test (OFT). The results showed a decrease in locomotor activity and increase in anxiety-like behaviors in OVX mice. Furthermore, we found a decrease in high-gamma power in the OB. We analyzed coherence and inter-region phase-amplitude coupling (ir-PAC) to explore the connectivity between the OB and NAc. We observed a decrease in low-gamma and high-gamma coherence in OVX mice. Additionally, we found that the direction of connectivity from the NAc to the OB was disrupted in OVX mice. In summary, our study provides evidence that estrogen deficiency is linked to synchronized neural connectivity changes in the OB-NAc circuit. These findings have implications for our understanding of the roles played by the OB-NAc neural circuit and estrogen in the regulation of general exploratory behavior and anxiety-like behavior.
Collapse
Affiliation(s)
- Pakavarin Khunphet
- Biology Program, Division of Biological Sciences, Faculty of Science, Prince of Songkla University (PSU), Hatyai, Songkhla, 90110, Thailand; Biosignal Research Center for Health, Faculty of Science, Prince of Songkla University (PSU), Hatyai, Songkhla, 90110, Thailand
| | - Ekkasit Kumarnsit
- Physiology Program, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University (PSU), Hatyai, Songkhla, 90110, Thailand; Biosignal Research Center for Health, Faculty of Science, Prince of Songkla University (PSU), Hatyai, Songkhla, 90110, Thailand
| | - Acharaporn Issuriya
- Physiology Program, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University (PSU), Hatyai, Songkhla, 90110, Thailand; Biosignal Research Center for Health, Faculty of Science, Prince of Songkla University (PSU), Hatyai, Songkhla, 90110, Thailand
| | - Dania Cheaha
- Biology Program, Division of Biological Sciences, Faculty of Science, Prince of Songkla University (PSU), Hatyai, Songkhla, 90110, Thailand; Biosignal Research Center for Health, Faculty of Science, Prince of Songkla University (PSU), Hatyai, Songkhla, 90110, Thailand.
| |
Collapse
|
25
|
Kaimal A, Hooversmith JM, Mansi MHA, Holmes PV, MohanKumar PS, MohanKumar SMJ. Prenatal Exposure to Bisphenol A and/or Diethylhexyl Phthalate Impacts Brain Monoamine Levels in Rat Offspring. J Xenobiot 2024; 14:1036-1050. [PMID: 39189173 PMCID: PMC11348251 DOI: 10.3390/jox14030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
This study examines the sex-specific effects of gestational exposure (days 6-21) to endocrine-disrupting chemicals such as bisphenol A (BPA), diethylhexyl phthalate (DEHP), or their combination on brain monoamine levels that play an important role in regulating behavior. Pregnant Sprague-Dawley rats were orally administered saline, low doses (5 µg/kg BW/day) of BPA or DEHP, and their combination or a high dose (7.5 mg/kg BW/day) of DEHP alone or in combination with BPA during pregnancy. The offspring were subjected to a behavioral test and sacrificed in adulthood, and the brains were analyzed for neurotransmitter levels. In the paraventricular nucleus, there was a marked reduction in dopamine levels (p < 0.01) in male offspring from the BPA, DEHP, and B + D (HD) groups, which correlated well with their shock probe defensive burying times. Neurotransmitter changes in all brain regions examined were significant in female offspring, with DEHP (HD) females being affected the most, followed by the B + D groups. BPA and/or DEHP (LD) increased monoamine turnover in a region-specific manner in male offspring (p < 0.05). Overall, prenatal exposure to BPA, DEHP, or their combination alters monoamine levels in a brain region-specific, sex-specific, and dose-dependent manner, which could have implications for their behavioral and neuroendocrine effects.
Collapse
Affiliation(s)
- Amrita Kaimal
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA 30602, USA
| | - Jessica M Hooversmith
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA 30602, USA
| | - Maryam H Al Mansi
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Philip V Holmes
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA 30602, USA
| | - Puliyur S MohanKumar
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Sheba M J MohanKumar
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
26
|
Shay D, Welly R, Mao J, Kinkade J, Brown JK, Rosenfeld CS, Vieira-Potter VJ. Knockdown of Esr1 from DRD1-Rich Brain Regions Affects Adipose Tissue Metabolism: Potential Crosstalk between Nucleus Accumbens and Adipose Tissue. Int J Mol Sci 2024; 25:6130. [PMID: 38892320 PMCID: PMC11172510 DOI: 10.3390/ijms25116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Declining estrogen (E2) leads to physical inactivity and adipose tissue (AT) dysfunction. Mechanisms are not fully understood, but E2's effects on dopamine (DA) activity in the nucleus accumbens (NAc) brain region may mediate changes in mood and voluntary physical activity (PA). Our prior work revealed that loss of E2 robustly affected NAc DA-related gene expression, and the pattern correlated with sedentary behavior and visceral fat. The current study used a new transgenic mouse model (D1ERKO) to determine whether the abolishment of E2 receptor alpha (ERα) signaling within DA-rich brain regions affects PA and AT metabolism. Adult male and female wild-type (WT) and D1ERKO (KD) mice were assessed for body composition, energy intake (EE), spontaneous PA (SPA), and energy expenditure (EE); underwent glucose tolerance testing; and were assessed for blood biochemistry. Perigonadal white AT (PGAT), brown AT (BAT), and NAc brain regions were assessed for genes and proteins associated with DA, E2 signaling, and metabolism; AT sections were also assessed for uncoupling protein (UCP1). KD mice had greater lean mass and EE (genotype effects) and a visible change in BAT phenotype characterized by increased UCP1 staining and lipid depletion, an effect seen only among females. Female KD had higher NAc Oprm1 transcript levels and greater PGAT UCP1. This group tended to have improved glucose tolerance (p = 0.07). NAc suppression of Esr1 does not appear to affect PA, yet it may directly affect metabolism. This work may lead to novel targets to improve metabolic dysfunction following E2 loss, possibly by targeting the NAc.
Collapse
Affiliation(s)
- Dusti Shay
- Department of Nutrition and Exercise Physiology, Division of Food, Nutrition and Exercise Sciences, CAFNR, University of Missouri, Columbia, MO 65211, USA; (D.S.)
| | - Rebecca Welly
- Department of Nutrition and Exercise Physiology, Division of Food, Nutrition and Exercise Sciences, CAFNR, University of Missouri, Columbia, MO 65211, USA; (D.S.)
| | - Jiude Mao
- Biomedical Sciences, University of Missouri, E102 Veterinary Medicine Building, Columbia, MO 65211, USA (C.S.R.)
| | - Jessica Kinkade
- Biomedical Sciences, University of Missouri, E102 Veterinary Medicine Building, Columbia, MO 65211, USA (C.S.R.)
| | - Joshua K. Brown
- Department of Nutrition and Exercise Physiology, Division of Food, Nutrition and Exercise Sciences, CAFNR, University of Missouri, Columbia, MO 65211, USA; (D.S.)
| | - Cheryl S. Rosenfeld
- Biomedical Sciences, University of Missouri, E102 Veterinary Medicine Building, Columbia, MO 65211, USA (C.S.R.)
- MU Institute of Data Science and Informatics, University of Missouri, E102 Veterinary Medicine Building, Columbia, MO 65211, USA
- Genetics Area Program, University of Missouri, E102 Veterinary Medicine Building, Columbia, MO 65211, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, E102 Veterinary Medicine Building, Columbia, MO 65211, USA
| | - Victoria J. Vieira-Potter
- Department of Nutrition and Exercise Physiology, Division of Food, Nutrition and Exercise Sciences, CAFNR, University of Missouri, Columbia, MO 65211, USA; (D.S.)
| |
Collapse
|
27
|
Wang Z, Zhao Y, You X, Liang J. Relationship Between the Parietal Cortex and Task Switching: Transcranial Direct Current Stimulation Combined with an Event-related Potential Study. Neuroscience 2024; 546:41-52. [PMID: 38548166 DOI: 10.1016/j.neuroscience.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Task switching refers to a set of cognitive processes involved in shifting attention from one task to another. In recent years, researchers have applied transcranial direct current stimulation (tDCS) to investigate the causal relationship between the parietal cortex and task switching. However, results from available studies are highly inconsistent. This may be due to the unclear understanding of the underlying mechanisms. Therefore, the current study utilized event-related potential (ERP) analysis to investigate the modulatory effects of tDCS on task-switching processes. Twenty-four subjects were recruited to perform both predictable and unpredictable parity/magnitude tasks under anodal (RA) and sham conditions. The results showed no significant changes in behavioral performance. However, marked tDCS-induced ERP changes were observed. Specifically, for the predictable task switching, compared with the sham condition, the target-N2 component occurred significantly earlier for switch trials than repeat trials under the RA condition in males, while no difference was found in females. For unpredictable task switching, under the sham condition, the P2 peak was significantly larger for switch trials compared with repeat trials, whereas this difference was not observed under the RA condition. These results indicated the causal relationship between the right parietal cortex and exogenous adjustment processes involved in task switching. Moreover, anodal tDCS over the right parietal cortex may lead to the manifestation of gender differences.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Electronic Engineering, Xidian University, Xi'an 710071, China; School of Psychology, Shaanxi Normal University, Xi'an 710062, China.
| | - Yi Zhao
- School of Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Xuqun You
- School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Jimin Liang
- School of Electronic Engineering, Xidian University, Xi'an 710071, China.
| |
Collapse
|
28
|
Olson K, Ingebretson AE, Vogiatzoglou E, Mermelstein PG, Lemos JC. Cholinergic interneurons in the nucleus accumbens are a site of cellular convergence for corticotropin release factor and estrogen regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.13.589360. [PMID: 38659848 PMCID: PMC11042197 DOI: 10.1101/2024.04.13.589360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cholinergic interneurons (ChIs) act as master regulators of striatal output, finely tuning neurotransmission to control motivated behaviors. ChIs are a cellular target of many peptide and hormonal neuromodulators, including corticotropin releasing factor, opioids, insulin and leptin, which can influence an animal's behavior by signaling stress, pleasure, pain and nutritional status. However, little is known about how sex hormones via estrogen receptors influence the function of these other neuromodulators. Here, we performed in situ hybridization on mouse striatal tissue to characterize the effect of sex and sex hormones on choline acetyltransferase ( Chat ), estrogen receptor alpha ( Esr1 ), and corticotropin releasing factor type 1 receptor ( Crhr1 ) expression. Although we did not detect sex differences in ChAT protein levels in the striatum, we found that female mice have more Chat mRNA-expressing neurons than males. At the population level, we observed a sexually dimorphic distribution of Esr1 - and Crhr1 -expressing ChIs in the ventral striatum that demonstrates an antagonistic correlational relationship, which is abolished by ovariectomy. Only in the NAc did we find a significant population of ChIs that co-express Crhr1 and Esr1 . At the cellular level, Crhr1 and Esr1 transcript levels were negatively correlated only during estrus, indicating that changes in sex hormones levels can modulate the interaction between Crhr1 and Esr1 mRNA levels. Together, these data provide evidence for the unique expression and interaction of Esr1 and Crhr1 in ventral striatal ChIs, warranting further investigation into how these transcriptomic patterns might underlie important functions for ChIs at the intersection of stress and reproductive behaviors.
Collapse
|
29
|
Smith AC, Smilek D. On the relation between oral contraceptive use and self-control. Front Endocrinol (Lausanne) 2024; 15:1335384. [PMID: 38628592 PMCID: PMC11018928 DOI: 10.3389/fendo.2024.1335384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
In two studies we examined the relation between oral contraceptive (OC) use and self-reported levels of self-control in undergraduate women using OCs (Study 1: OC group N = 399, Study 2: OC group N = 288) and naturally cycling women not using any form of hormonal contraceptives (Study 1: Non-OC group N = 964, Study 2: Non-OC group N = 997). We assessed the self-overriding aspect of self-control using the Brief Self-Control Scale (BSCS) and strategies for self-regulation using the Regulatory Mode Scale (RMS), which separately measures the tendency to assess one's progress towards a goal (assessment), and the tendency to engage in activities that move one towards an end goal (locomotion). In Study 1, we found no significant differences between OC and non-OC groups in their levels of self-overriding or self-regulatory assessment. However, we found that those in the OC group reported significantly greater levels of self-regulatory locomotion compared to those in the non-OC group, even after controlling for depression symptoms and the semester of data collection. The findings from Study 2 replicated the findings from Study 1 in a different sample of participants, with the exception that OC use was also related to higher levels of assessment in Study 2. These results indicate that OC use is related to increases in self-regulatory actions in service of goal pursuit and perhaps the tendency to evaluate progress towards goals.
Collapse
Affiliation(s)
- Alyssa C. Smith
- Department of Psychology University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
30
|
Barendse MEA, Swartz JR, Taylor SL, Fine JR, Shirtcliff EA, Yoon L, McMillan SJ, Tully LM, Guyer AE. Sex and pubertal variation in reward-related behavior and neural activation in early adolescents. Dev Cogn Neurosci 2024; 66:101358. [PMID: 38401329 PMCID: PMC10904160 DOI: 10.1016/j.dcn.2024.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/01/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024] Open
Abstract
This study aimed to characterize the role of sex and pubertal markers in reward motivation behavior and neural processing in early adolescence. We used baseline and two-year follow-up data from the Adolescent Brain and Cognitive DevelopmentSM study (15844 observations; 52% from boys; age 9-13). Pubertal development was measured with parent-reported Pubertal Development Scale, and DHEA, testosterone, and estradiol levels. Reward motivation behavior and neural processing at anticipation and feedback stages were assessed with the Monetary Incentive Delay task. Boys had higher reward motivation than girls, demonstrating greater accuracy difference between reward and neutral trials and higher task earnings. Girls had lower neural activation during reward feedback than boys in the nucleus accumbens, caudate, rostral anterior cingulate, medial orbitofrontal cortex, superior frontal gyrus and posterior cingulate. Pubertal stage and testosterone levels were positively associated with reward motivation behavior, although these associations changed when controlling for age. There were no significant associations between pubertal development and neural activation during reward anticipation and feedback. Sex differences in reward-related processing exist in early adolescence, signaling the need to understand their impact on typical and atypical functioning as it unfolds into adulthood.
Collapse
Affiliation(s)
- M E A Barendse
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA; Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - J R Swartz
- Department of Human Ecology, UC Davis, CA, USA
| | - S L Taylor
- Division of Biostatistics, Department of Public Health Sciences, UC Davis, CA, USA
| | - J R Fine
- Division of Biostatistics, Department of Public Health Sciences, UC Davis, CA, USA
| | | | - L Yoon
- Center for Mind and Brain, UC Davis, CA, USA
| | - S J McMillan
- Department of Human Ecology, UC Davis, CA, USA; Center for Mind and Brain, UC Davis, CA, USA
| | - L M Tully
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA
| | - A E Guyer
- Department of Human Ecology, UC Davis, CA, USA; Center for Mind and Brain, UC Davis, CA, USA.
| |
Collapse
|
31
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. Role of estrogen in sex differences in memory, emotion and neuropsychiatric disorders. Mol Biol Rep 2024; 51:415. [PMID: 38472517 DOI: 10.1007/s11033-024-09374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Estrogen regulates a wide range of neuronal functions in the brain, such as dendritic spine formation, remodeling of synaptic plasticity, cognition, neurotransmission, and neurodevelopment. Estrogen interacts with intracellular estrogen receptors (ERs) and membrane-bound ERs to produce its effect via genomic and non-genomic pathways. Any alterations in these pathways affect the number, size, and shape of dendritic spines in neurons associated with psychiatric diseases. Increasing evidence suggests that estrogen fluctuation causes changes in dendritic spine density, morphology, and synapse numbers of excitatory and inhibitory neurons differently in males and females. In this review, we discuss the role of estrogen hormone in rodents and humans based on sex differences. First, we explain estrogen role in learning and memory and show that a high estrogen level alleviates the deficits in learning and memory. Secondly, we point out that estrogen produces a striking difference in emotional memories in men and women, which leads them to display sex-specific differences in underlying neuronal signaling. Lastly, we discuss that fluctuations in estrogen levels in men and women are related to neuropsychiatric disorders, including schizophrenia, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BPD), major depressive disorder (MDD), substance use disorder (SUD), and anxiety disorders.
Collapse
Affiliation(s)
- Javed Iqbal
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China
| | - Geng-Di Huang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China.
- Clinical College of Mental Health, Shenzhen University Health Science Center, Shenzhen, China.
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China.
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China.
- Clinical College of Mental Health, Shenzhen University Health Science Center, Shenzhen, China.
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
32
|
Klyne DM, Hilliard BA, Harris MY, Amin M, Hall M, Besomi M, Mustafa S, Farrell SF, Rawashdeh O, Han FY, Hodges PW, Frara N, Barbe MF. Poor sleep versus exercise: A duel to decide whether pain resolves or persists after injury. Brain Behav Immun Health 2024; 35:100714. [PMID: 38111687 PMCID: PMC10727927 DOI: 10.1016/j.bbih.2023.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
Poor sleep is thought to enhance pain via increasing peripheral and/or central sensitization. Aerobic exercise, conversely, relives pain via reducing sensitization, among other mechanisms. This raises two clinical questions: (1) does poor sleep contribute to the transition from acute-to-persistent pain, and (2) can exercise protect against this transition? This study tested these questions and explored underlying mechanisms in a controlled injury model. Twenty-nine adult female Sprague-Dawley rats performed an intensive lever-pulling task for 4 weeks to induce symptoms consistent with clinical acute-onset overuse injury. Rats were then divided into three groups and exposed for 4 weeks to either: voluntary exercise via access to a running wheel, sleep disturbance, or both. Pain-related behaviours (forepaw mechanical sensitivity, reflexive grip strength), systemic levels of brain derived neurotrophic factor (BDNF), estradiol and corticosterone, and white blood cells (WBC) were assessed pre-injury, post-injury and post-intervention. Mechanical sensitivity increased post-injury and remained elevated with sleep disturbance alone, but decreased to pre-injury levels with exercise both with and without sleep disturbance. Reflexive grip strength decreased post-injury but recovered post-intervention-more with exercise than sleep disturbance. BDNF increased with sleep disturbance alone, remained at pre-injury levels with exercise regardless of sleep, and correlated with mechanical sensitivity. WBCs and estradiol increased with exercise alone and together with sleep disturbance, respectively. Corticosterone was not impacted by injury/intervention. Findings provide preliminary evidence for a role of poor sleep in the transition from acute-to-persistent pain, and the potential for aerobic exercise to counter these effects. BDNF might have a role in these relationships.
Collapse
Affiliation(s)
- David M. Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Brendan A. Hilliard
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine of Temple University, Philadelphia, 19140, USA
| | - Michele Y. Harris
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine of Temple University, Philadelphia, 19140, USA
| | - Mamta Amin
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine of Temple University, Philadelphia, 19140, USA
| | - Michelle Hall
- Centre for Health, Exercise and Sports Medicine, School of Health Sciences, The University of Melbourne, Melbourne, 3010, Australia
| | - Manuela Besomi
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Sanam Mustafa
- School of Biomedicine, The University of Adelaide, Adelaide, 5005, Australia
| | - Scott F. Farrell
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence in Better Health Outcomes for Compensable Injury, The University of Queensland, Brisbane, 4029, Australia
| | - Oliver Rawashdeh
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Felicity Y. Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Paul W. Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Nagat Frara
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine of Temple University, Philadelphia, 19140, USA
| | - Mary F. Barbe
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine of Temple University, Philadelphia, 19140, USA
| |
Collapse
|
33
|
Proaño SB, Miller CK, Krentzel AA, Dorris DM, Meitzen J. Sex steroid hormones, the estrous cycle, and rapid modulation of glutamatergic synapse properties in the striatal brain regions with a focus on 17β-estradiol and the nucleus accumbens. Steroids 2024; 201:109344. [PMID: 37979822 PMCID: PMC10842710 DOI: 10.1016/j.steroids.2023.109344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
The striatal brain regions encompassing the nucleus accumbens core (NAcc), shell (NAcs) and caudate-putamen (CPu) regulate cognitive functions including motivated behaviors, habit, learning, and sensorimotor action, among others. Sex steroid hormone sensitivity and sex differences have been documented in all of these functions in both normative and pathological contexts, including anxiety, depression and addiction. The neurotransmitter glutamate has been implicated in regulating these behaviors as well as striatal physiology, and there are likewise documented sex differences in glutamate action upon the striatal output neurons, the medium spiny neurons (MSNs). Here we review the available data regarding the role of steroid sex hormones such as 17β-estradiol (estradiol), progesterone, and testosterone in rapidly modulating MSN glutamatergic synapse properties, presented in the context of the estrous cycle as appropriate. Estradiol action upon glutamatergic synapse properties in female NAcc MSNs is most comprehensively discussed. In the female NAcc, MSNs exhibit development period-specific sex differences and estrous cycle variations in glutamatergic synapse properties as shown by multiple analyses, including that of miniature excitatory postsynaptic currents (mEPSCs). Estrous cycle-differences in NAcc MSN mEPSCs can be mimicked by acute exposure to estradiol or an ERα agonist. The available evidence, or lack thereof, is also discussed concerning estrogen action upon MSN glutamatergic synapse in the other striatal regions as well as the underexplored roles of progesterone and testosterone. We conclude that there is strong evidence regarding estradiol action upon glutamatergic synapse function in female NAcs MSNs and call for more research regarding other hormones and striatal regions.
Collapse
Affiliation(s)
- Stephanie B Proaño
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Christiana K Miller
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Amanda A Krentzel
- Office of Research and Innovation, North Carolina State University, Raleigh, NC, USA
| | - David M Dorris
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - John Meitzen
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
34
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Diaz JC, Dunaway K, Zuniga C, Sheil E, Sadeghian K, Auger AP, Baldo BA. Delayed estrogen actions diminish food consumption without changing food approach, motor activity, or hypothalamic activation elicited by corticostriatal µ-opioid signaling. Neuropsychopharmacology 2023; 48:1952-1962. [PMID: 37640922 PMCID: PMC10584984 DOI: 10.1038/s41386-023-01711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/01/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Mu-opioid receptor (μ-OR) signaling in forebrain sites including nucleus accumbens (Acb) and ventromedial prefrontal cortex (vmPFC) modulates reward-driven feeding and may play a role in the pathophysiology of disordered eating. In preclinical models, intra-Acb or intra-vmPFC μ-OR stimulation causes overeating and vigorous responding for food rewards. These effects have been studied mainly in male animals, despite demonstrated sex differences and estrogen modulation of central reward systems. Hence, the present study investigated sex differences and estrogen modulation of intra-Acb and intra-vmPFC μ-OR-driven feeding behaviors. First, the dose-related effects of intra-Acb and intra-vmPFC infusions of the μ-OR-selective agonist, DAMGO, were compared among intact female, ovariectomized (OVX) female, and intact male rats. The DAMGO feeding dose-effect function was flattened in intact females relative to the robust, dose-dependent effects observed in OVX females and intact males. Thus, in intact females, intra-Acb DAMGO failed to elevate food intake relative to vehicle, while intra-vmPFC DAMGO elevated food intake, but to a smaller degree compared to males and OVX females. Next, to explore the possible role of estrogen in mediating the diminished DAMGO response observed in intact females, OVX rats were given intra-Acb or intra-vmPFC infusions of DAMGO either immediately after a subcutaneous injection of 17-beta-estradiol 3-benzoate (EB; 5 μg/0.1 mL) or 24 h after EB injection. Intra-Acb DAMGO effects were not changed at the immediate post-EB time point. At the delayed post-EB timepoint, significant lordosis was noted and the duration of intra-Acb DAMGO-driven feeding bouts was significantly reduced, with no change in the number of bouts initiated, locomotor hyperactivity, or Fos immunoreactivity in hypothalamic feeding and arousal systems. Similarly, EB failed to alter the motor-activational effects of intra-vmPFC DAMGO while reducing feeding. These findings indicate that delayed, presumably genomically mediated estrogen actions modulate the μ-OR-generated motivational state by reducing consummatory activity while sparing goal-approach and general arousal/activity. The results additionally suggest that EB regulation of consummatory activity occurs outside of forebrain-μ-OR control of hypothalamic systems.
Collapse
Affiliation(s)
- Julio C Diaz
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kate Dunaway
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- College of Letters and Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Carla Zuniga
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth Sheil
- College of Letters and Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Ken Sadeghian
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Anthony P Auger
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian A Baldo
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
36
|
Kraemer RR, Kraemer BR. The effects of peripheral hormone responses to exercise on adult hippocampal neurogenesis. Front Endocrinol (Lausanne) 2023; 14:1202349. [PMID: 38084331 PMCID: PMC10710532 DOI: 10.3389/fendo.2023.1202349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Over the last decade, a considerable amount of new data have revealed the beneficial effects of exercise on hippocampal neurogenesis and the maintenance or improvement of cognitive function. Investigations with animal models, as well as human studies, have yielded novel understanding of the mechanisms through which endocrine signaling can stimulate neurogenesis, as well as the effects of exercise on acute and/or chronic levels of these circulating hormones. Considering the effects of aging on the decline of specific endocrine factors that affect brain health, insights in this area of research are particularly important. In this review, we discuss how different forms of exercise influence the peripheral production of specific endocrine factors, with particular emphasis on brain-derived neurotrophic factor, growth hormone, insulin-like growth factor-1, ghrelin, estrogen, testosterone, irisin, vascular endothelial growth factor, erythropoietin, and cortisol. We also describe mechanisms through which these endocrine responses to exercise induce cellular changes that increase hippocampal neurogenesis and improve cognitive function.
Collapse
Affiliation(s)
- Robert R. Kraemer
- Department of Kinesiology and Health Studies, Southeastern Louisiana University, Hammond, LA, United States
| | - Bradley R. Kraemer
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, United States
| |
Collapse
|
37
|
Mattova S, Simko P, Urbanska N, Kiskova T. Bioactive Compounds and Their Influence on Postnatal Neurogenesis. Int J Mol Sci 2023; 24:16614. [PMID: 38068936 PMCID: PMC10706651 DOI: 10.3390/ijms242316614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Since postnatal neurogenesis was revealed to have significant implications for cognition and neurological health, researchers have been increasingly exploring the impact of natural compounds on this process, aiming to uncover strategies for enhancing brain plasticity. This review provides an overview of postnatal neurogenesis, neurogenic zones, and disorders characterized by suppressed neurogenesis and neurogenesis-stimulating bioactive compounds. Examining recent studies, this review underscores the multifaceted effects of natural compounds on postnatal neurogenesis. In essence, understanding the interplay between postnatal neurogenesis and natural compounds could bring novel insights into brain health interventions. Exploiting the therapeutic abilities of these compounds may unlock innovative approaches to enhance cognitive function, mitigate neurodegenerative diseases, and promote overall brain well-being.
Collapse
Affiliation(s)
| | | | | | - Terezia Kiskova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (S.M.); (P.S.); (N.U.)
| |
Collapse
|
38
|
Brown A, Gervais NJ, Rieck J, Almey A, Gravelsins L, Reuben R, Karkaby L, Rajah MN, Grady C, Einstein G. Women's Brain Health: Midlife Ovarian Removal Affects Associative Memory. Mol Neurobiol 2023; 60:6145-6159. [PMID: 37423941 PMCID: PMC10533588 DOI: 10.1007/s12035-023-03424-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/04/2023] [Indexed: 07/11/2023]
Abstract
Women with early bilateral salpingo-oophorectomy (BSO; removal of ovaries and fallopian tubes) have greater Alzheimer's disease (AD) risk than women in spontaneous/natural menopause (SM), but early biomarkers of this risk are not well-characterized. Considering associative memory deficits may presage preclinical AD, we wondered if one of the earliest changes might be in associative memory and whether younger women with BSO had changes similar to those observed in SM. Women with BSO (with and without 17β-estradiol replacement therapy (ERT)), their age-matched premenopausal controls (AMC), and older women in SM completed a functional magnetic resonance imaging face-name associative memory task shown to predict early AD. Brain activation during encoding was compared between groups: AMC (n=25), BSO no ERT (BSO; n=15), BSO+ERT (n=16), and SM without hormone therapy (n=16). Region-of-interest analyses revealed AMC did not contribute to functional group differences. BSO+ERT had higher hippocampal activation than BSO and SM. This hippocampal activation correlated positively with urinary metabolite levels of 17β-estradiol. Multivariate partial least squares analyses showed BSO+ERT had a different network-level activation pattern than BSO and SM. Thus, despite being approximately 10 years younger, women with BSO without ERT had similar brain function to those with SM, suggesting early 17β-estradiol loss may lead to an altered functional brain phenotype which could influence late-life AD risk, making face-name encoding a potential biomarker for midlife women with increased AD risk. Despite similarities in activation, BSO and SM groups showed opposite within-hippocampus connectivity, suggesting menopause type is an important consideration when assessing brain function.
Collapse
Affiliation(s)
- Alana Brown
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| | - Nicole J Gervais
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
| | - Jenny Rieck
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
| | - Anne Almey
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Laura Gravelsins
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Rebekah Reuben
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Laurice Karkaby
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - M Natasha Rajah
- Departments of Psychiatry and Douglas Research Centre, McGill University, Montreal, H4H 1R3, Canada
| | - Cheryl Grady
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
- Psychiatry, University of Toronto, Toronto, M5T 1R8, Canada
| | - Gillian Einstein
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
- Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
39
|
Santos-Toscano R, Arevalo MA, Garcia-Segura LM, Grassi D, Lagunas N. Interaction of gonadal hormones, dopaminergic system, and epigenetic regulation in the generation of sex differences in substance use disorders: A systematic review. Front Neuroendocrinol 2023; 71:101085. [PMID: 37543184 DOI: 10.1016/j.yfrne.2023.101085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Substance use disorder (SUD) is a chronic condition characterized by pathological drug-taking and seeking behaviors. Remarkably different between males and females, suggesting that drug addiction is a sexually differentiated disorder. The neurobiological bases of sex differences in SUD include sex-specific reward system activation, influenced by interactions between gonadal hormone level changes, dopaminergic reward circuits, and epigenetic modifications of key reward system genes. This systematic review, adhering to PICOS and PRISMA-P 2015 guidelines, highlights the sex-dependent roles of estrogens, progesterone, and testosterone in SUD. In particular, estradiol elevates and progesterone reduces dopaminergic activity in SUD females, whilst testosterone and progesterone augment SUD behavior in males. Finally, SUD is associated with a sex-specific increase in the rate of opioid and monoaminergic gene methylation. The study reveals the need for detailed research on gonadal hormone levels, dopaminergic or reward system activity, and epigenetic landscapes in both sexes for efficient SUD therapy development.
Collapse
Affiliation(s)
- Raquel Santos-Toscano
- School of Medicine, University of Central Lancashire, 135A Adelphi St, Preston PR1 7BH, United Kingdom
| | - Maria Angeles Arevalo
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Miguel Garcia-Segura
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniela Grassi
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, 28029 Madrid, Spain.
| | - Natalia Lagunas
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Ciudad Universitaria, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
40
|
Seib DR, Tobiansky DJ, Meitzen J, Floresco SB, Soma KK. Neurosteroids and the mesocorticolimbic system. Neurosci Biobehav Rev 2023; 153:105356. [PMID: 37567491 PMCID: PMC11915106 DOI: 10.1016/j.neubiorev.2023.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The mesocorticolimbic system coordinates executive functions, such as working memory and behavioral flexibility. This circuit includes dopaminergic projections from the ventral tegmental area to the nucleus accumbens and medial prefrontal cortex. In this review, we summarize evidence that cells in multiple nodes of the mesocorticolimbic system produce neurosteroids (steroids synthesized in the nervous system) and express steroid receptors. Here, we focus on neuroandrogens (androgens synthesized in the nervous system), neuroestrogens (estrogens synthesized in the nervous system), and androgen and estrogen receptors. We also summarize how (neuro)androgens and (neuro)estrogens affect dopamine signaling in the mesocorticolimbic system and regulate executive functions. Taken together, the data suggest that steroids produced in the gonads and locally in the brain modulate higher-order cognition and executive functions.
Collapse
Affiliation(s)
- Désirée R Seib
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Daniel J Tobiansky
- Department of Biology and Neuroscience Program, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - John Meitzen
- Department of Biological Sciences and Center for Human Health and the Environment, NC State University, Raleigh, NC, USA
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Kheloui S, Jacmin-Park S, Larocque O, Kerr P, Rossi M, Cartier L, Juster RP. Sex/gender differences in cognitive abilities. Neurosci Biobehav Rev 2023; 152:105333. [PMID: 37517542 DOI: 10.1016/j.neubiorev.2023.105333] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Sex/gender differences in cognitive sciences are riddled by conflicting perspectives. At the center of debates are clinical, social, and political perspectives. Front and center, evolutionary and biological perspectives have often focused on 'nature' arguments, while feminist and constructivist views have often focused on 'nurture arguments regarding cognitive sex differences. In the current narrative review, we provide a comprehensive overview regarding the origins and historical advancement of these debates while providing a summary of the results in the field of sexually polymorphic cognition. In so doing, we attempt to highlight the importance of using transdisciplinary perspectives which help bridge disciplines together to provide a refined understanding the specific factors that drive sex differences a gender diversity in cognitive abilities. To summarize, biological sex (e.g., birth-assigned sex, sex hormones), socio-cultural gender (gender identity, gender roles), and sexual orientation each uniquely shape the cognitive abilities reviewed. To date, however, few studies integrate these sex and gender factors together to better understand individual differences in cognitive functioning. This has potential benefits if a broader understanding of sex and gender factors are systematically measured when researching and treating numerous conditions where cognition is altered.
Collapse
Affiliation(s)
- Sarah Kheloui
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Silke Jacmin-Park
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Ophélie Larocque
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Philippe Kerr
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Mathias Rossi
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Louis Cartier
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Robert-Paul Juster
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada.
| |
Collapse
|
42
|
Reed MB, Handschuh PA, Klöbl M, Konadu ME, Kaufmann U, Hahn A, Kranz GS, Spies M, Lanzenberger R. The influence of sex steroid treatment on insular connectivity in gender dysphoria. Psychoneuroendocrinology 2023; 155:106336. [PMID: 37499299 DOI: 10.1016/j.psyneuen.2023.106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Sex-specific differences in brain connectivity were found in various neuroimaging studies, though little is known about sex steroid effects on insular functioning. Based on well-characterized sex differences in emotion regulation, interoception and higher-level cognition, gender-dysphoric individuals receiving gender-affirming hormone therapy represent an interesting cohort to investigate how sex hormones might influence insular connectivity and related brain functions. METHODS To analyze the potential effect of sex steroids on insular connectivity at rest, 11 transgender women, 14 transgender men, 20 cisgender women, and 11 cisgender men were recruited. All participants underwent two magnetic resonance imaging sessions involving resting-state acquisitions separated by a median time period of 4.5 months and also completed the Bermond-Vorst alexithymia questionnaire at the initial and final examination. Between scans, transgender subjects received gender-affirming hormone therapy. RESULTS A seed based functional connectivity analysis revealed a significant 2-way interaction effect of group-by-time between right insula, cingulum, left middle frontal gyrus and left angular gyrus. Post-hoc tests demonstrated an increase in connectivity for transgender women when compared to cisgender men. Furthermore, spectral dynamic causal modelling showed reduced effective connectivity from the posterior cingulum and left angular gyrus to the left middle frontal gyrus as well as from the right insula to the left middle frontal gyrus. Alexithymia changes were found after gender-affirming hormone therapy for transgender women in both fantasizing and identifying. CONCLUSION These findings suggest a considerable influence of estrogen administration and androgen suppression on brain networks implicated in interoception, own-body perception and higher-level cognition.
Collapse
Affiliation(s)
- Murray B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Patricia A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Melisande E Konadu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Ulrike Kaufmann
- Department of Obstetrics and Gynecology, Medical University of Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, China
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| |
Collapse
|
43
|
Knouse MC, Deutschmann AU, Nenov MN, Wimmer ME, Briand LA. Sex differences in pre- and post-synaptic glutamate signaling in the nucleus accumbens core. Biol Sex Differ 2023; 14:52. [PMID: 37596655 PMCID: PMC10439632 DOI: 10.1186/s13293-023-00537-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Glutamate signaling within the nucleus accumbens underlies motivated behavior and is involved in psychiatric disease. Although behavioral sex differences in these processes are well-established, the neural mechanisms driving these differences are largely unexplored. In these studies, we examine potential sex differences in synaptic plasticity and excitatory transmission within the nucleus accumbens core. Further understanding of baseline sex differences in reward circuitry will shed light on potential mechanisms driving behavioral differences in motivated behavior and psychiatric disease. METHODS Behaviorally naïve adult male and female Long-Evans rats, C57Bl/6J mice, and constitutive PKMζ knockout mice were killed and tissue containing the nucleus accumbens core was collected for ex vivo slice electrophysiology experiments. Electrophysiology recordings examined baseline sex differences in synaptic plasticity and transmission within this region and the potential role of PKMζ in long-term depression. RESULTS Within the nucleus accumbens core, both female mice and rats exhibit higher AMPA/NMDA ratios compared to male animals. Further, female mice have a larger readily releasable pool of glutamate and lower release probability compared to male mice. No significant sex differences were detected in spontaneous excitatory postsynaptic current amplitude or frequency. Finally, the threshold for induction of long-term depression was lower for male animals than females, an effect that appears to be mediated, in part, by PKMζ. CONCLUSIONS We conclude that there are baseline sex differences in synaptic plasticity and excitatory transmission in the nucleus accumbens core. Our data suggest there are sex differences at multiple levels in this region that should be considered in the development of pharmacotherapies to treat psychiatric illnesses such as depression and substance use disorder.
Collapse
Affiliation(s)
- Melissa C Knouse
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA, 19122, USA
| | - Andre U Deutschmann
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA, 19122, USA
| | - Miroslav N Nenov
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA, 19122, USA
| | - Mathieu E Wimmer
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA, 19122, USA
| | - Lisa A Briand
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA, 19122, USA.
- Neuroscience Program, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
44
|
Barreto GE. Repurposing of Tibolone in Alzheimer's Disease. Biomolecules 2023; 13:1115. [PMID: 37509151 PMCID: PMC10377087 DOI: 10.3390/biom13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterised by the accumulation of amyloid-beta and tau in the brain, leading to the progressive loss of memory and cognition. The causes of its pathogenesis are still not fully understood, but some risk factors, such as age, genetics, and hormones, may play a crucial role. Studies show that postmenopausal women have a higher risk of developing AD, possibly due to the decrease in hormone levels, especially oestrogen, which may be directly related to a reduction in the activity of oestrogen receptors, especially beta (ERβ), which favours a more hostile cellular environment, leading to mitochondrial dysfunction, mainly affecting key processes related to transport, metabolism, and oxidative phosphorylation. Given the influence of hormones on biological processes at the mitochondrial level, hormone therapies are of clinical interest to reduce the risk or delay the onset of symptoms associated with AD. One drug with such potential is tibolone, which is used in clinics to treat menopause-related symptoms. It can reduce amyloid burden and have benefits on mitochondrial integrity and dynamics. Many of its protective effects are mediated through steroid receptors and may also be related to neuroglobin, whose elevated levels have been shown to protect against neurological diseases. Its importance has increased exponentially due to its implication in the pathogenesis of AD. In this review, we discuss recent advances in tibolone, focusing on its mitochondrial-protective effects, and highlight how valuable this compound could be as a therapeutic alternative to mitigate the molecular pathways characteristic of AD.
Collapse
Affiliation(s)
- George E Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
45
|
Sato K, Takayama KI, Inoue S. Expression and function of estrogen receptors and estrogen-related receptors in the brain and their association with Alzheimer's disease. Front Endocrinol (Lausanne) 2023; 14:1220150. [PMID: 37469978 PMCID: PMC10352578 DOI: 10.3389/fendo.2023.1220150] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
While estrogens are well known for their pivotal role in the female reproductive system, they also play a crucial function in regulating physiological processes associated with learning and memory in the brain. Moreover, they have neuroprotective effects in the pathogenesis of Alzheimer's disease (AD). Importantly, AD has a higher incidence in older and postmenopausal women than in men, and estrogen treatment might reduce the risk of AD in these women. In general, estrogens bind to and activate estrogen receptors (ERs)-mediated transcriptional machineries, and also stimulate signal transduction through membrane ERs (mERs). Estrogen-related receptors (ERRs), which share homologous sequences with ERs but lack estrogen-binding capabilities, are widely and highly expressed in the human brain and have also been implicated in AD pathogenesis. In this review, we primarily provide a summary of ER and ERR expression patterns in the human brain. In addition, we summarize recent studies on their role in learning and memory. We then review and discuss research that has elucidated the functions and importance of ERs and ERRs in AD pathogenesis, including their role in Aβ clearance and the reduction of phosphorylated tau levels. Elucidation of the mechanisms underlying ER- and ERR-mediated transcriptional machineries and their functions in healthy and diseased brains would provide new perspectives for the diagnosis and treatment of AD. Furthermore, exploring the potential role of estrogens and their receptors, ERs, in AD will facilitate a better understanding of the sex differences observed in AD, and lead to novel sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
- Integrated Research Initiative for Living Well with Dementia (IRIDE), TMIG, Tokyo, Japan
| | - Ken-ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
| |
Collapse
|
46
|
Beeson ALS, Meitzen J. Estrous cycle impacts on dendritic spine plasticity in rat nucleus accumbens core and shell and caudate-putamen. J Comp Neurol 2023; 531:759-774. [PMID: 36756791 PMCID: PMC10994586 DOI: 10.1002/cne.25460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
An important factor that can modulate neuron properties is sex-specific hormone fluctuations, including the human menstrual cycle and rat estrous cycle in adult females. Considering the striatal brain regions, the nucleus accumbens (NAc) core, NAc shell, and caudate-putamen (CPu), the estrous cycle has previously been shown to impact relevant behaviors and disorders, neuromodulator action, and medium spiny neuron (MSN) electrophysiology. Whether the estrous cycle impacts MSN dendritic spine attributes has not yet been examined, even though MSN spines and glutamatergic synapse properties are sensitive to exogenously applied estradiol. Thus, we hypothesized that MSN dendritic spine attributes would differ by estrous cycle phase. To test this hypothesis, brains from adult male rats and female rats in diestrus, proestrus AM, proestrus PM, and estrus were processed for Rapid Golgi-Cox staining. MSN dendritic spine density, size, and type were analyzed in the NAc core, NAc shell, and CPu. Overall spine size differed across estrous cycle phases in female NAc core and NAc shell, and spine length differed across estrous cycle phase in NAc shell and CPu. Consistent with previous work, dendritic spine density was increased in the NAc core compared to the NAc shell and CPu, independent of sex and estrous cycle. Spine attributes in all striatal regions did not differ by sex when estrous cycle was disregarded. These results indicate, for the first time, that estrous cycle phase impacts dendritic spine plasticity in striatal regions, providing a neuroanatomical avenue by which sex-specific hormone fluctuations can impact striatal function and disorders.
Collapse
Affiliation(s)
- Anna LS Beeson
- Department of Biological Sciences, NC State University, Raleigh, USA
- Graduate Program in Biology, NC State University, Raleigh, USA
| | - John Meitzen
- Department of Biological Sciences, NC State University, Raleigh, USA
- Comparative Medicine Institute, NC State University, Raleigh, USA
- Center for Human Health and the Environment, NC State University, Raleigh, USA
| |
Collapse
|
47
|
Dothard MI, Allard SM, Gilbert JA. The effects of hormone replacement therapy on the microbiomes of postmenopausal women. Climacteric 2023; 26:182-192. [PMID: 37051868 DOI: 10.1080/13697137.2023.2173568] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The sex steroid hormone estrogen plays a number of regulatory roles in female development. During menopause, estrogen synthesis in the ovaries decreases, which results in adverse physiological remodeling and increased risk of disease. Reduced bone density, changes in the community composition profiles of the gut and vaginal microbiome, mood swings and changes in the vaginal environment are to be expected during this time. To alleviate these changes, postmenopausal women can be prescribed hormone replacement therapy (HRT) through the use of exogenous estradiol, often in conjunction with progestin treatment, which re-induces estrogenic action throughout the body. The microbiome and estrogen have a bidirectional, regulatory relationship in the gut, while in the vaginal environment estrogen works indirectly on the microbiome through restoring the vaginal tissue environment that leads to microbial homeostasis. This review discusses what is known about how the gut and vaginal microbiomes of postmenopausal women are responding to HRT, and the potential future of microbe-based therapeutics for symptoms of menopause.
Collapse
Affiliation(s)
- M I Dothard
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - S M Allard
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - J A Gilbert
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
48
|
Oveisgharan S, Yang J, Yu L, Burba D, Bang W, Tasaki S, Grodstein F, Wang Y, Zhao J, De Jager PL, Schneider JA, Bennett DA. Estrogen Receptor Genes, Cognitive Decline, and Alzheimer Disease. Neurology 2023; 100:e1474-e1487. [PMID: 36697247 PMCID: PMC10104608 DOI: 10.1212/wnl.0000000000206833] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Lifetime risk of Alzheimer disease (AD) dementia is twofold higher in women compared with men, and low estrogen levels in postmenopause have been suggested as a possible contributor. We examined 3 ER (GPER1, ER2, and ER1) variants in association with AD traits as an indirect method to test the association between estrogen and AD in women. Although the study focus was on women, in a comparison, we separately examined ER molecular variants in men. METHODS Participants were followed for an average of 10 years in one of the 2 longitudinal clinical pathologic studies of aging. Global cognition was assessed using a composite score derived from 19 neuropsychological tests' scores. Postmortem pathologic assessment included examination of 3 AD (amyloid-β and tau tangles determined by immunohistochemistry, and a global AD pathology score derived from diffuse and neurotic plaques and neurofibrillary tangle count) and 8 non-AD pathology indices. ER molecular genomic variants included genotyping and examining ER DNA methylation and RNA expression in brain regions including the dorsolateral prefrontal cortex (DLPFC) that are major players in cognition and often have AD pathology. RESULTS The mean age of women (N = 1711) at baseline was 78.0 (SD = 7.7) years. In women, GPER1 molecular variants had the most consistent associations with AD traits. GPER1 DNA methylation was associated with cognitive decline, tau tangle density, and global AD pathology score. GPER1 RNA expression in DLPFC was related to cognitive decline and tau tangle density. Other associations included associations of ER2 and ER1 sequence variants and DNA methylation with cognition. RNA expressions in DLPFC of genes involved in signaling mechanisms of activated ERs were also associated with cognitive decline and tau tangle density in women. In men (N = 651, average age at baseline: 77.4 [SD = 7.3]), there were less robust associations between ER molecular genomic variants and AD cognitive and pathologic traits. No consistent association was seen between ER molecular genomic variations and non-AD pathologies in either of the sexes. DISCUSSION ER DNA methylation and RNA expression, and to some extent ER polymorphisms, were associated with AD cognitive and pathologic traits in women, and to a lesser extent in men.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL.
| | - Jingyun Yang
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Lei Yu
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Dominika Burba
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Woojeong Bang
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Shinya Tasaki
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Fran Grodstein
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Yanling Wang
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Jinying Zhao
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Philip Lawrence De Jager
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Julie A Schneider
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| |
Collapse
|
49
|
Iulita MF, Bejanin A, Vilaplana E, Carmona-Iragui M, Benejam B, Videla L, Barroeta I, Fernández S, Altuna M, Pegueroles J, Montal V, Valldeneu S, Giménez S, González-Ortiz S, Torres S, El Bounasri El Bennadi S, Padilla C, Rozalem Aranha M, Estellés T, Illán-Gala I, Belbin O, Valle-Tamayo N, Camacho V, Blessing E, Osorio RS, Videla S, Lehmann S, Holland AJ, Zetterberg H, Blennow K, Alcolea D, Clarimón J, Zaman SH, Blesa R, Lleó A, Fortea J. Association of biological sex with clinical outcomes and biomarkers of Alzheimer's disease in adults with Down syndrome. Brain Commun 2023; 5:fcad074. [PMID: 37056479 PMCID: PMC10088472 DOI: 10.1093/braincomms/fcad074] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/07/2022] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
The study of sex differences in Alzheimer's disease is increasingly recognized as a key priority in research and clinical development. People with Down syndrome represent the largest population with a genetic link to Alzheimer's disease (>90% in the 7th decade). Yet, sex differences in Alzheimer's disease manifestations have not been fully investigated in these individuals, who are key candidates for preventive clinical trials. In this double-centre, cross-sectional study of 628 adults with Down syndrome [46% female, 44.4 (34.6; 50.7) years], we compared Alzheimer's disease prevalence, as well as cognitive outcomes and AT(N) biomarkers across age and sex. Participants were recruited from a population-based health plan in Barcelona, Spain, and from a convenience sample recruited via services for people with intellectual disabilities in England and Scotland. They underwent assessment with the Cambridge Cognitive Examination for Older Adults with Down Syndrome, modified cued recall test and determinations of brain amyloidosis (CSF amyloid-β 42 / 40 and amyloid-PET), tau pathology (CSF and plasma phosphorylated-tau181) and neurodegeneration biomarkers (CSF and plasma neurofilament light, total-tau, fluorodeoxyglucose-PET and MRI). We used within-group locally estimated scatterplot smoothing models to compare the trajectory of biomarker changes with age in females versus males, as well as by apolipoprotein ɛ4 carriership. Our work revealed similar prevalence, age at diagnosis and Cambridge Cognitive Examination for Older Adults with Down Syndrome scores by sex, but males showed lower modified cued recall test scores from age 45 compared with females. AT(N) biomarkers were comparable in males and females. When considering apolipoprotein ɛ4, female ɛ4 carriers showed a 3-year earlier age at diagnosis compared with female non-carriers (50.5 versus 53.2 years, P = 0.01). This difference was not seen in males (52.2 versus 52.5 years, P = 0.76). Our exploratory analyses considering sex, apolipoprotein ɛ4 and biomarkers showed that female ɛ4 carriers tended to exhibit lower CSF amyloid-β 42/amyloid-β 40 ratios and lower hippocampal volume compared with females without this allele, in line with the clinical difference. This work showed that biological sex did not influence clinical and biomarker profiles of Alzheimer's disease in adults with Down syndrome. Consideration of apolipoprotein ɛ4 haplotype, particularly in females, may be important for clinical research and clinical trials that consider this population. Accounting for, reporting and publishing sex-stratified data, even when no sex differences are found, is central to helping advance precision medicine.
Collapse
Affiliation(s)
- M Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
- Women’s Brain Project, Guntershausen 8357, Switzerland
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Eduard Vilaplana
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona 08029, Spain
| | - Bessy Benejam
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona 08029, Spain
| | - Laura Videla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona 08029, Spain
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Susana Fernández
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona 08029, Spain
| | - Miren Altuna
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Victor Montal
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Silvia Valldeneu
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Sandra Giménez
- Multidisciplinary Sleep Unit, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain
| | | | - Soraya Torres
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Shaimaa El Bounasri El Bennadi
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Concepcion Padilla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Mateus Rozalem Aranha
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Teresa Estellés
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Olivia Belbin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Natalia Valle-Tamayo
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Valle Camacho
- Nuclear Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain
| | - Esther Blessing
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ricardo S Osorio
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sebastian Videla
- Clinical Research Support Unit, Bellvitge Biomedical Research Institute (IDIBELL), Department of Clinical Pharmacology, University of Barcelona, Barcelona 08908, Spain
| | - Sylvain Lehmann
- Institute for Neurosciences of Montpellier, Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, CHU de Montpellier, INSERM, Montpellier 34295, France
| | - Anthony J Holland
- Department of Psychiatry, Cambridge Intellectual and Developmental Disabilities Research Group, University of Cambridge, Douglas House, Cambridge CB2 8AH, United Kingdom
- Cambridgeshire & Peterborough NHS Foundation Trust, Fulbourn Hospital, Cambridge CB21 5EF, United Kingdom
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Möndal 40530, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 40530, Sweden
- UK Dementia Research Institute, University College London, London WC1E 6BT, United Kingdom
- Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1E 6BT, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong 1512-1518, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Möndal 40530, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 40530, Sweden
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Jordi Clarimón
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Shahid H Zaman
- Department of Psychiatry, Cambridge Intellectual and Developmental Disabilities Research Group, University of Cambridge, Douglas House, Cambridge CB2 8AH, United Kingdom
- Cambridgeshire & Peterborough NHS Foundation Trust, Fulbourn Hospital, Cambridge CB21 5EF, United Kingdom
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona 08029, Spain
| |
Collapse
|
50
|
Ehtezazi T, Rahman K, Davies R, Leach AG. The Pathological Effects of Circulating Hydrophobic Bile Acids in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:173-211. [PMID: 36994114 PMCID: PMC10041467 DOI: 10.3233/adr-220071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Recent clinical studies have revealed that the serum levels of toxic hydrophobic bile acids (deoxy cholic acid, lithocholic acid [LCA], and glycoursodeoxycholic acid) are significantly higher in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) when compared to control subjects. The elevated serum bile acids may be the result of hepatic peroxisomal dysfunction. Circulating hydrophobic bile acids are able to disrupt the blood-brain barrier and promote the formation of amyloid-β plaques through enhancing the oxidation of docosahexaenoic acid. Hydrophobic bile acid may find their ways into the neurons via the apical sodium-dependent bile acid transporter. It has been shown that hydrophobic bile acids impose their pathological effects by activating farnesoid X receptor and suppressing bile acid synthesis in the brain, blocking NMDA receptors, lowering brain oxysterol levels, and interfering with 17β-estradiol actions such as LCA by binding to E2 receptors (molecular modelling data exclusive to this paper). Hydrophobic bile acids may interfere with the sonic hedgehog signaling through alteration of cell membrane rafts and reducing brain 24(S)-hydroxycholesterol. This article will 1) analyze the pathological roles of circulating hydrophobic bile acids in the brain, 2) propose therapeutic approaches, and 3) conclude that consideration be given to reducing/monitoring toxic bile acid levels in patients with AD or aMCI, prior/in combination with other treatments.
Collapse
Affiliation(s)
- Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rhys Davies
- The Walton Centre, NHS Foundation Trust, Liverpool, UK
| | - Andrew G Leach
- School of Pharmacy, University of Manchester, Manchester, UK
| |
Collapse
|