1
|
M AL, B L, DE O. Repeated non-contact exposure to pups inhibits infanticidal and facilitates paternal behavior in virgin adult male mice (C57BL6). Physiol Behav 2025; 295:114885. [PMID: 40120966 DOI: 10.1016/j.physbeh.2025.114885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Pup-naïve virgin adult male C57BL6 mice are mainly infanticidal when exposed to pups for the first time. The processes underlying pup-directed aggression and the transition toward parental care are poorly understood. Social isolation has been shown to inhibit infanticidal behavior in some strain of mice. However, it is unclear if highly infanticidal male CB57BL6 mice can sensitize after repeated exposures to pups. The aim of this study was to determine whether repeated non-contact exposure to pups (to prevent immediate attack), with or without movement restriction and social isolation, can inhibit infanticidal behavior in male mice. We also investigated whether pup-directed aggression was associated with male-male aggression in a resident-intruder test. We found that repeated non-contact exposure to pups, in socially isolated males or in males with movement restraint, significantly reduced the incidence of aggression towards pups and increased the incidence of parental behavior. Social isolation or movement restraint alone had no significant effect. Finally, the frequency of pup-directed aggression was not associated with the levels of male-male aggression. This study shows that the experience of being exposed to newborns without contact with them can inhibit the highly driven impulsive-like attacking behavior towards pups and facilitate parental behavior. Our results suggest that aggressive behavior towards pups can be blocked in naïve male mice and that this behavior differs from male-male aggression.
Collapse
Affiliation(s)
- Alsina-Llanes M
- Unidad Académica Fisiología, Facultad de Medicina, UdelaR, Uruguay.
| | - Lenzi B
- Unidad Académica Fisiología, Facultad de Medicina, UdelaR, Uruguay.
| | - Olazábal DE
- Unidad Académica Fisiología, Facultad de Medicina, UdelaR, Uruguay.
| |
Collapse
|
2
|
Acosta MC, Hussein M, Saltzman W. Effects of acute inhibition of dopamine β-hydroxylase on neural responses to pups in adult virgin male California mice (Peromyscus californicus). Behav Brain Res 2024; 471:115116. [PMID: 38897419 DOI: 10.1016/j.bbr.2024.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/09/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The neural mechanisms underlying paternal care in biparental mammals are not well understood. The California mouse (Peromyscus californicus) is a biparental rodent in which virtually all fathers are attracted to pups, while virgin males vary widely in their behavior toward unrelated infants, ranging from attacking to avoiding to huddling and grooming pups. We previously showed that pharmacologically inhibiting the synthesis of the neurotransmitter norepinephrine (NE) with the dopamine β-hydroxylase inhibitor nepicastat reduced the propensity of virgin male and female California mice to interact with pups. The current study tested the hypothesis that nepicastat would reduce pup-induced c-Fos immunoreactivity, a cellular marker of neural activity, in the medial preoptic area (MPOA), medial amygdala (MeA), basolateral amygdala (BLA), and bed nucleus of the stria terminalis (BNST), brain regions implicated in the control of parental behavior and/or anxiety. Virgin males were injected with nepicastat (75 mg/kg, i.p.) or vehicle 2 hours prior to exposure to either an unrelated pup or novel object for 60 minutes (n = 4-6 mice per group). Immediately following the 60-minute stimulus exposure, mice were euthanized and their brains were collected for c-Fos immunohistochemistry. Nepicastat reduced c-Fos expression in the MeA and MPOA of pup-exposed virgin males compared to vehicle-injected controls. In contrast, nepicastat did not alter c-Fos expression in any of the above brain regions following exposure to a novel object. Overall, these results suggest that the noradrenergic system might influence MeA and MPOA function to promote behavioral interactions with pups in virgin males.
Collapse
Affiliation(s)
- Melina C Acosta
- Graduate Program in Neuroscience, University of California, Riverside, CA 92521, USA; Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Manal Hussein
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Wendy Saltzman
- Graduate Program in Neuroscience, University of California, Riverside, CA 92521, USA; Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
3
|
Shaikh N, Asif PY, Saltzman W. Inhibition of alloparental behavior by acute stress in virgin male California mice (Peromyscus californicus). Behav Processes 2024; 220:105060. [PMID: 38909665 DOI: 10.1016/j.beproc.2024.105060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
In many biparental mammals, such as California mice (Peromyscus californicus), fathers display affiliative behavior toward unfamiliar infants whereas reproductively naïve adult males show highly variable responses. Sources of this variability are not well understood, but evidence suggests that stress can either enhance or inhibit alloparental care. We evaluated immediate and delayed effects of acute stress on pup-directed behavior in adult virgin male California mice. Mice underwent three 10-minute tests with unfamiliar pups at 48-hour intervals. Stressed mice (N=22) received a subcutaneous oil injection immediately before tests 1 and 2, whereas controls (N=22) were left undisturbed. In controls, but not stressed mice, latency to approach the pup decreased and duration of alloparental behavior increased across the three tests. At each time point, stressed males were less likely than controls to perform alloparental behavior. Controls spent significantly more time performing alloparental behavior than stressed mice in tests 1 and 2 but not in test 3. Pup-directed aggression did not differ between the groups at any time point. These findings suggest that acute stress can both inhibit alloparental behavior in the short term and prevent the increase in alloparental behavior that typically occurs with repeated exposure to pups in virgin male California mice.
Collapse
Affiliation(s)
- Nabeel Shaikh
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Parihan Y Asif
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
4
|
Wilson KM, Arquilla AM, Hussein M, Rosales-Torres KM, Chan MG, Saltzman W. Effects of reproductive status on behavioral and neural responses to isolated pup stimuli in female California mice. Behav Brain Res 2024; 457:114727. [PMID: 37871656 DOI: 10.1016/j.bbr.2023.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
The transition to motherhood in mammals is marked by changes in females' perception of and responsiveness to sensory stimuli from infants. Our understanding of maternally induced sensory plasticity relies most heavily on studies in uniparental, promiscuous house mice and rats, which may not be representative of rodent species with different life histories. We exposed biparental, monogamous California mouse (Peromyscus californicus) mothers and ovariectomized virgin females to one of four acoustic and olfactory stimulus combinations (Control: clean cotton and white noise; Call: clean cotton and pup vocalizations; Odor: pup-scented cotton and white noise; Call + Odor: pup-scented cotton and pup vocalizations) and quantified females' behavior and Fos expression in select brain regions. Behavior did not differ between mothers and ovariectomized virgins. Among mothers, however, those exposed to the Control condition took the longest to sniff the odor stimulus, and mothers exposed to the Odor condition were quicker to sniff the odor ball compared to those in the Call condition. Behavior did not differ among ovariectomized virgins exposed to the different conditions. Fos expression differed across conditions only in the anterior hypothalamic nucleus (AHN), which responds to aversive stimuli: among mothers, the Control condition elicited the highest AHN Fos and Call + Odor elicited the lowest. Among ovariectomized virgin females, Call elicited the lowest Fos in the AHN. Thus, reproductive status in California mice alters females' behavioral responses to stimuli from pups, especially odors, and results in the inhibition of defense circuitry in response to pup stimuli.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Biology, Pomona College, Claremont, CA, USA; Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA.
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Manal Hussein
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Kelsey M Rosales-Torres
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - May G Chan
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
5
|
Abstract
Fathers have been an important source of child endurance and prosperity since the dawn of civilization, promoting adaptation to social rules, defining cultural meaning systems, teaching daily living skills, and providing the material background against which children developed; still, the recent reformulation in the role of the father requires theory-building. Paternal caregiving is rare in mammals, occurring in 3-5% of species, expresses in multiple formats, and involves flexible neurobiological accommodations to ecological conditions and active caregiving. Here, we discuss father contribution to resilience across development. Our model proposes three tenets of resilience - plasticity, sociality, and meaning - and discussion focuses on father-specific contributions to each tenet at different developmental stages; newborn, infant, preschooler, child, and adolescent. Father's style of high arousal, energetic physicality, guided participation in daily skills, joint adventure, and conflict resolution promotes children's flexible approach and social competence within intimate bonds and social groups. By expanding children's interests, sharpening cognitions, tuning affect regulation, encouraging exploration, and accompanying the search for identity, fathers support the sense of meaning, enhancing the human-specific dimension of resilience. We end by highlighting pitfalls to paternal contribution, including absence, abuse, rigidity, expectations, and gender typing, and the need to formulate novel theories to accommodate the "involved dad."
Collapse
Affiliation(s)
- Ruth Feldman
- Center for Developmental Social Neuroscience, Reichman University,Israel
- Yale Child Study Center, New Haven, USA
| |
Collapse
|
6
|
Wilson KM, Arquilla AM, Saltzman W. The parental umwelt: Effects of parenthood on sensory processing in rodents. J Neuroendocrinol 2023; 35:e13237. [PMID: 36792373 DOI: 10.1111/jne.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
An animal's umwelt, comprising its perception of the sensory environment, which is inherently subjective, can change across the lifespan in accordance with major life events. In mammals, the onset of motherhood, in particular, is associated with a neural and sensory plasticity that alters a mother's detection and use of sensory information such as infant-related sensory stimuli. Although the literature surrounding mammalian mothers is well established, very few studies have addressed the effects of parenthood on sensory plasticity in mammalian fathers. In this review, we summarize the major findings on the effects of parenthood on behavioural and neural responses to sensory stimuli from pups in rodent mothers, with a focus on the olfactory, auditory, and somatosensory systems, as well as multisensory integration. We also review the available literature on sensory plasticity in rodent fathers. Finally, we discuss the importance of sensory plasticity for effective parental care, hormonal modulation of plasticity, and an exploration of temporal, ecological, and life-history considerations of sensory plasticity associated with parenthood. The changes in processing and/or perception of sensory stimuli associated with the onset of parental care may have both transient and long-lasting effects on parental behaviour and cognition in both mothers and fathers; as such, several promising areas of study, such as on the molecular/genetic, neurochemical, and experiential underpinnings of parenthood-related sensory plasticity, as well as determinants of interspecific variation, remain potential avenues for further exploration.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Department of Biology, Pomona College, Claremont, CA, USA
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, USA
| |
Collapse
|
7
|
Duclot F, Liu Y, Saland SK, Wang Z, Kabbaj M. Transcriptomic analysis of paternal behaviors in prairie voles. BMC Genomics 2022; 23:679. [PMID: 36183097 PMCID: PMC9526941 DOI: 10.1186/s12864-022-08912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The importance of fathers' engagement in care and its critical role in the offspring's cognitive and emotional development is now well established. Yet, little is known on the underlying neurobiology due to the lack of appropriate animal models. In the socially monogamous and bi-parental prairie vole (Microtus ochrogaster), while 60-80% of virgin males show spontaneous paternal behaviors (Paternal), others display pup-directed aggression (Attackers). Here we took advantage of this phenotypic dichotomy and used RNA-sequencing in three important brain areas to characterize gene expression associated with paternal behaviors of Paternal males and compare it to experienced Fathers and Mothers. RESULTS While Paternal males displayed the same range and extent of paternal behaviors as experienced Fathers, we observed structure-specific transcriptomic differences between parental behaviors phenotypes. Using differential expression, gene set expression, as well as co-expression network analyses, we found that phenotypic differences between Paternal males and Attackers were mainly reflected by the lateral septum (LS), and to a lower extent, the nucleus accumbens (NAc), transcriptomes. In the medial preoptic area (MPOA), the profiles of gene expression mainly reflected differences between females and males regardless of their parental behaviors phenotype. Functional enrichment analyses of those gene sets associated with Paternal males or Attackers in the LS and the NAc revealed the involvement of processes related to the mitochondria, RNA translation, protein degradation processes, as well as epigenetic regulation of gene expression. CONCLUSIONS By leveraging the natural phenotypic differences in parental behaviors in virgin male prairie voles alongside fathers and mothers, we identified a marked structure- and phenotype-specific pattern of gene expression associated with spontaneous paternal behaviors independently from fatherhood and pair-bonding. The LS transcriptome related to the mitochondria, RNA translation, and protein degradation processes was thus highlighted as a primary candidate associated with the spontaneous display of paternal behaviors. Altogether, our observations further characterize the behavioral and transcriptomic signature of parental behaviors in the socially monogamous prairie vole and lay the groundwork to further our understanding of the molecular underpinnings of paternal behavior.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA.
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| | - Yan Liu
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Samantha K Saland
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Zuoxin Wang
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA.
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
8
|
Smorkatcheva AV, Bushuev AV. Reproduction, postnatal development and resting metabolic rate of a poorly studied subterranean rodent, the long-clawed vole (Prometheomys schaposchnikowi). Mamm Biol 2022. [DOI: 10.1007/s42991-022-00302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Wilson KM, Arquilla AM, Rosales-Torres KM, Hussein M, Chan MG, Razak KA, Saltzman W. Neural responses to pup calls and pup odors in California mouse fathers and virgin males. Behav Brain Res 2022; 434:114024. [PMID: 35882277 DOI: 10.1016/j.bbr.2022.114024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022]
Abstract
The onset of mammalian maternal care is associated with plasticity in neural processing of infant-related sensory stimuli; however, little is known about sensory plasticity associated with fatherhood. We quantified behavioral and neural responses of virgin males and new fathers to olfactory and auditory stimuli from young, unfamiliar pups in the biparental California mouse (Peromyscus californicus). Each male was exposed for 10minutes to one of four combinations of a chemosensory stimulus (pup-scented or unscented cotton [control]) and an auditory stimulus (pup vocalizations or white noise [control]). Behavior did not differ between fathers and virgins during exposure to sensory stimuli or during the following hour; however, males in both groups were more active both during and after exposure to pup-related stimuli compared to control stimuli. Fathers had lower expression of Fos in the main olfactory bulbs (MOB) but higher expression in the medial preoptic area (MPOA) and bed nucleus of the stria terminalis medial division, ventral part (STMV) compared to virgins. Lastly, males had higher Fos expression in MPOA when exposed to pup odor compared to control stimuli, and when exposed to pup odor and pup calls compared to pup calls only or control stimuli. These findings suggest that the onset of fatherhood alters activity of MOB, MPOA and STMV and that pup odors and vocalizations have additive or synergistic effects on males' behavior and MPOA activation.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA.
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - Kelsey M Rosales-Torres
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - Manal Hussein
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - May G Chan
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA USA; Department of Psychology, University of California Riverside, Riverside, CA, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA USA
| |
Collapse
|
10
|
Acosta MC, Tillage RP, Weinshenker D, Saltzman W. Acute inhibition of dopamine β-hydroxylase attenuates behavioral responses to pups in adult virgin California mice (Peromyscus californicus). Horm Behav 2022; 137:105086. [PMID: 34808463 PMCID: PMC9250832 DOI: 10.1016/j.yhbeh.2021.105086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/01/2021] [Accepted: 11/06/2021] [Indexed: 01/17/2023]
Abstract
In biparental species, in which both parents care for their offspring, the neural and endocrine mediators of paternal behavior appear to overlap substantially with those underlying maternal behavior. Little is known, however, about the roles of classical neurotransmitters, such as norepinephrine (NE), in paternal care and whether they resemble those in maternal care. We tested the hypothesis that NE facilitates the initiation of nurturant behavior toward pups in virgin male and female California mice (Peromyscus californicus), a biparental rodent. Virtually all parents in this species are attracted to familiar and unfamiliar pups, while virgins either attack, avoid, or nurture pups, suggesting that the neurochemical control of pup-related behavior changes as mice transition into parenthood. We injected virgin males and females with nepicastat, a selective dopamine β-hydroxylase inhibitor that blocks NE synthesis (75 mg/kg, i.p.), or vehicle 2 h before exposing them to a novel pup, estrous female (males only), or pup-sized novel object for 60 min. Nepicastat significantly reduced the number of males and females that approached the pup and that displayed parental behavior. In contrast, nepicastat did not alter virgins' interactions with an estrous female or a novel object, suggesting that nepicastat-induced inhibition of interactions with pups was not mediated by changes in generalized neophobia, arousal, or activity. Nepicastat also significantly reduced NE levels in the amygdala and prefrontal cortex and increased the ratio of dopamine to NE in the hypothalamus. Our results suggest that NE may facilitate the initiation of parental behavior in male and female California mice.
Collapse
Affiliation(s)
- Melina C Acosta
- Graduate Program in Neuroscience, University of California, Riverside, CA 92521, USA; Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Rachel P Tillage
- Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA 30322, USA
| | - Wendy Saltzman
- Graduate Program in Neuroscience, University of California, Riverside, CA 92521, USA; Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
11
|
Cai W, Ma H, Xun Y, Hou W, Wang L, Zhang X, Ran Y, Yuan W, Guo Q, Zhang J, Li L, Yang Y, Li Y, Lv Z, He Z, Jia R, Tai F. Involvement of the dopamine system in paternal behavior induced by repeated pup exposure in virgin male ICR mice. Behav Brain Res 2021; 415:113519. [PMID: 34389426 DOI: 10.1016/j.bbr.2021.113519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/06/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
Like mothers, fathers play a vital role in the development of the brain and behavior of offspring in mammals with biparental care. Unlike mothers, fathers do not experience the physiological processes of pregnancy, parturition, or lactation before their first contact with offspring. Whether pup exposure can induce the onset of paternal behavior and the underlying neural mechanisms remains unclear. By using Slc:ICR male mice exhibiting maternal-like parental care, the present study found that repeated exposure to pups for six days significantly increased the total duration of paternal behavior and shortened the latency to retrieve and care for pups. Repeated pup exposure increased c-Fos-positive neurons and the levels of dopamine- and TH-positive neurons in the nucleus accumbens (NAc). In addition, inhibition of dopamine projections from the ventral tegmental area to the NAc using chemogenetic methods reduced paternal care induced by repeated pup exposure. In conclusion, paternal behavior in virgin male ICR mice can be initiated by repeated pup exposure via sensitization, and the dopamine system may be involved in this process.
Collapse
Affiliation(s)
- Wenqi Cai
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Huan Ma
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yufeng Xun
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wenjuan Hou
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Limin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xueni Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yufeng Ran
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wei Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qianqian Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jing Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Laifu Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yang Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitong Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zijian Lv
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhixiong He
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Rui Jia
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Fadao Tai
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
12
|
Nguyen CTY, Zhao M, Saltzman W. Effects of sex and age on parental motivation in adult virgin California mice. Behav Processes 2020; 178:104185. [PMID: 32603677 DOI: 10.1016/j.beproc.2020.104185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/01/2020] [Accepted: 06/21/2020] [Indexed: 11/18/2022]
Abstract
Female mammals often demonstrate a rapid initiation of maternal responsiveness immediately after giving birth, as a result of neuroendocrine changes that occur during pregnancy and parturition. However, fathers and virgins of some species may display infant care similar to that performed by mothers but without experiencing these physiological events. In biparental species, in which both mothers and fathers care for their offspring, both sex and age may affect parental motivation, even in adult virgins. We examined the effects of sex and age on parental motivation in the California mouse, a monogamous, biparental rodent. We compared parental motivation of male and female virgins in both mid- and old adulthood using two new tests - a T-maze test and a rain test - as well as in standard parental-behavior tests. Adult virgin males were more parentally motivated than adult virgin females in both the T-maze test and the parental-behavior test, but parental motivation did not differ markedly between middle-aged and older adults of either sex. These findings suggest that sex differences in parental motivation in adult virgins are similar to those observed in other biparental rodents, and indicate that the T-maze test may be useful for evaluating parental motivation in this species.
Collapse
Affiliation(s)
- Catherine T Y Nguyen
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States
| | - Meng Zhao
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States.
| |
Collapse
|
13
|
Paternal care in rodents: Ultimate causation and proximate mechanisms. RUSSIAN JOURNAL OF THERIOLOGY 2020. [DOI: 10.15298/rusjtheriol.19.1.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Alsina-Llanes M, Olazábal DE. Prefrontal cortex is associated with the rapid onset of parental behavior in inexperienced adult mice (C57BL/6). Behav Brain Res 2020; 385:112556. [PMID: 32087184 DOI: 10.1016/j.bbr.2020.112556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 11/28/2022]
Abstract
There is significant variability in the immediate behavioral response displayed by inexperienced adult mice when exposed to pups for the first time. The aim of this study was to determine which brain regions were engaged (higher c-Fos-immunoreactivity, c-Fos-ir) when virgin females, that were exposed to pups for 15 or 60 min, displayed full parental behavior (FPB), partial parental behavior (PPB), or non-parental behavior (NPB), or virgin males displayed PPB or infanticidal behavior (IB). The number of c-Fos-ir neurons in the prelimbic cortex (PL) was higher in parental females than in the NPB group (after a 15-min exposure), and the group not exposed to pups (NE). C-Fos expression in the nucleus accumbens (NA) was increased in most groups of females exposed to pups compared to NE. Higher c-Fos-ir was also found in the shell subregion of the NA in infanticidal males, compared to males NE. The cortical (CoA) and medial (MA) amygdala also showed higher c-Fos-ir in parental females compared to NE animals. However, PPB and IB male groups also exhibited higher c-Fos-ir in the CoA and MA compared to the NE group. The expression of c-Fos in the different subregions of medial preoptic area and the ventromedial nucleus of the hypothalamus was not specifically associated with either parental or infanticidal behavior. No brain activation in males was specifically associated with infanticidal behavior. Our results suggest that 15 min of exposure to pups is enough to detect brain regions associated with parental behavior (PL) or pups processing (NA, MA, CoA) in mice. The PL might participate in the immediate onset of parental behavior in virgin females, coordinating and planning its rapid execution.
Collapse
Affiliation(s)
- M Alsina-Llanes
- Departamento de Fisiología, Facultad de Medicina, UdelaR, Uruguay.
| | - D E Olazábal
- Departamento de Fisiología, Facultad de Medicina, UdelaR, Uruguay.
| |
Collapse
|
15
|
Kohl J. Parenting - a paradigm for investigating the neural circuit basis of behavior. Curr Opin Neurobiol 2020; 60:84-91. [PMID: 31830690 PMCID: PMC7005672 DOI: 10.1016/j.conb.2019.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
Parenting is essential for survival and wellbeing in many species. Since it can be performed with little prior experience and entails considerable sacrifices without immediate benefits for the caregiver, this behavior is likely orchestrated by evolutionarily shaped, hard-wired neural circuits. At the same time, experience, environmental factors and internal state also make parenting highly malleable. These characteristics have made parenting an attractive paradigm for linking complex, naturalistic behavior to its underlying neural mechanisms. Recent work - based on the identification of critical neuronal populations and improved tools for dissecting neural circuits - has uncovered novel functional principles and challenged simplistic models of parenting control. A better understanding of the neural basis of parenting will provide crucial clues to how complex behaviors are organized at the level of cells, circuits and computations. Here I review recent progress, discuss emerging functional principles of parental circuits, and outline future opportunities and challenges.
Collapse
Affiliation(s)
- Johannes Kohl
- The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK.
| |
Collapse
|
16
|
Olazábal DE, Sandberg NY. Variation in the density of oxytocin receptors in the brain as mechanism of adaptation to specific social and reproductive strategies. Gen Comp Endocrinol 2020; 286:113337. [PMID: 31734142 DOI: 10.1016/j.ygcen.2019.113337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 01/10/2023]
Abstract
Most species have predominant forms of social and reproductive behavior driven by many years of selection pressures and evolution. For example, rodent species can live in small or large groups, behave more tolerant or aggressively toward conspecifics (including newborns), and form or not bonds with other members of the group (including sexual partners). Any of those behavioral adaptations could result in good fitness for the species, but could also require compromises such as sharing resources, greater parental investment, increased risk of predation, etc. We propose that the oxytocin (OXT) system, among others neuroendocrine peptides, is at the basis of a neural mechanism that adapts and predisposes species to a particular social and reproductive form of living. In this review we will show evidence that the variability in the density of receptors for OXT (OXTR) in the nucleus accumbens (NAc) and the lateral septum (LS) predisposes species to adopt at least 4 different social and reproductive strategies in rodents. Large or medium size groups with lower conspecific spacing (preferred separation distance maintained by adult conspecifics), and high levels of promiscuity are characterized by low levels of OXTR in the NAc and LS (e.g. Ratus norvegicus, Ctenomys sociabilis, Scotinomys teguina, Cavia porcellus); small size groups with higher conspecific spacing and low levels of promiscuity are characterized by high OXTR in the NAc and the LS (e.g. Peromyscus californicus); large or medium groups with lower conspecific spacing and low levels of promiscuity characterized by high levels of OXTR in the NAc but low levels in the LS (e.g. Microtus ochrogaster, Heterocephalus glaber, Microtus kikuchii); and small or medium size groups with higher conspecific spacing and high levels of promiscuity characterized by low levels of OXTR in the NAc and high OXTR in the LS (e.g. Mus musculus, Ctenomys haigi, Peromyscus maniculatus, Microtus pennsylvanicus, Microtus montanus). Careful analysis of the distribution of OXTR, and other peptides receptors, in the brain can contribute to understand its function but also to predict reproductive and social strategies of species.
Collapse
Affiliation(s)
- Daniel E Olazábal
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Natalia Y Sandberg
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
17
|
Perea-Rodriguez JP, de Jong TR, Kung E, Horrell ND, Saltzman W. Consequences of placentophagia by adult virgin male California mice (Peromyscus californicus). Behav Processes 2019; 166:103889. [DOI: 10.1016/j.beproc.2019.103889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022]
|
18
|
Liu Y, Donovan M, Jia X, Wang Z. The ventromedial hypothalamic circuitry and male alloparental behaviour in a socially monogamous rodent species. Eur J Neurosci 2019; 50:3689-3701. [PMID: 31423669 DOI: 10.1111/ejn.14550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/27/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
As prairie voles (Microtus ochrogaster) display spontaneous biparental care, and the ventromedial hypothalamus (VMH) has been implicated in reproductive behaviour, we conducted experiments to test the hypothesis that the VMH neurochemical circuitry is involved in alloparental behaviours in male prairie voles. We compared alloparental behaviours of adult, sexually naïve male and female voles-both displayed licking/grooming, huddling and retrieving behaviours towards conspecific pups. We also stained for the immediate-early gene encoded early growth protein Egr-1 in the vole brain. The pup-exposed animals showed levels of Egr-1 staining that was higher in the VMH but lower in the amygdala compared to animals exposed to a pup-sized piece of plastic (control). A retrograde tracer, Fluoro-Gold (FG), was injected into the VMH of male voles that were subsequently tested in the pup exposure or control condition. More FG/Egr-1 cells were detected for glutamatergic (GLU) staining in the ventral bed nucleus of the stria terminalis (BNSTv) and medial amygdala (MeA), whereas less FG/Egr-1 cells were stained for gamma-aminobutyric acid (GABA) in the MeA of the pup-exposed group compared to the control group. Further, the ratio of GLU:GABA expression in FG/Egr-1 projection neurons from both the BNSTv and MeA to the VMH was increased following pup exposure. Finally, pharmacological blockade of either dopamine D1 receptor or oxytocin receptor in the VMH impaired the onset of male alloparental behaviour. Together, these data suggest that the VMH may be involved in the onset of alloparental care and play a role in regulating social approach in male prairie voles.
Collapse
Affiliation(s)
- Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Meghan Donovan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Xixi Jia
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
19
|
Rosenbaum S, Gettler LT. With a little help from her friends (and family) part II: Non-maternal caregiving behavior and physiology in mammals. Physiol Behav 2019; 193:12-24. [PMID: 29933837 DOI: 10.1016/j.physbeh.2017.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022]
Abstract
The diversity of competing frameworks for explaining the evolution of non-maternal care in mammals (Part I, this issue) reflects the vast range of behaviors and associated outcomes these theories attempt to subsume. Caretaking comprises a wide variety of behavioral domains, and is mediated by an equally large range of physiological systems. In Part II, we provide an overview of how non-maternal care in mammals is expressed, the ways in which it is regulated, and the many effects such care has on both recipients and caretakers. We also discuss the two primary ways in which closer integration of ultimate and proximate levels of explanation can be useful when addressing questions about non-maternal caretaking. Specifically, proximate mechanisms provide important functional clues, and are key to testing theory concerning evolutionary tradeoffs. Finally, we highlight a number of methodological and publication biases that currently shape the literature, which provide opportunities for knowledge advancement in this domain going forward. In this conclusion to our two-part introduction, we provide a broad survey of the behavior and physiology that the contributions to this special issue represent.
Collapse
Affiliation(s)
- Stacy Rosenbaum
- Department of Anthropology, Northwestern University, Evanston, IL, United States; Davee Center for Epidemiology and Endocrinology, Lincoln Park Zoo, Chicago, IL, United States.
| | - Lee T Gettler
- Department of Anthropology, University of Notre Dame, Notre Dame, IN, United States; The Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
20
|
Horrell ND, Saltzman W, Hickmott PW. Plasticity of paternity: Effects of fatherhood on synaptic, intrinsic and morphological characteristics of neurons in the medial preoptic area of male California mice. Behav Brain Res 2019; 365:89-102. [PMID: 30802534 DOI: 10.1016/j.bbr.2019.02.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/16/2019] [Accepted: 02/16/2019] [Indexed: 12/28/2022]
Abstract
Parental care by fathers enhances offspring survival and development in numerous species. In the biparental California mouse, Peromyscus californicus, behavioral plasticity is seen during the transition into fatherhood: adult virgin males often exhibit aggressive or indifferent responses to pups, whereas fathers engage in extensive paternal care. In this species and other biparental mammals, the onset of paternal behavior is associated with increased neural responsiveness to pups in specific brain regions, including the medial preoptic area of the hypothalamus (MPOA), a region strongly implicated in both maternal and paternal behavior. To assess possible changes in neural circuit properties underlying this increased excitability, we evaluated synaptic, intrinsic, and morphological properties of MPOA neurons in adult male California mice that were either virgins or first-time fathers. We used standard whole-cell recordings in a novel in vitro slice preparation. Excitatory and inhibitory post-synaptic currents from MPOA neurons were recorded in response to local electrical stimulation, and input/output curves were constructed for each. Responses to trains of stimuli were also examined. We quantified intrinsic excitability by measuring voltage changes in response to square-pulse injections of both depolarizing and hyperpolarizing current. Biocytin was injected into neurons during recording, and their morphology was analyzed. Most parameters did not differ significantly between virgins and fathers. However, we document a decrease in synaptic inhibition in fathers. These findings suggest that the onset of paternal behavior in California mouse fathers may be associated with limited electrophysiological plasticity within the MPOA.
Collapse
Affiliation(s)
- Nathan D Horrell
- Graduate Program in Neuroscience, University of California, Riverside, CA, 92521, United States; Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, United States
| | - Wendy Saltzman
- Graduate Program in Neuroscience, University of California, Riverside, CA, 92521, United States; Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, United States.
| | - Peter W Hickmott
- Graduate Program in Neuroscience, University of California, Riverside, CA, 92521, United States; Department of Psychology, University of California, Riverside, CA, 92521, United States
| |
Collapse
|
21
|
Smiley KO, Ladyman SR, Gustafson P, Grattan DR, Brown RSE. Neuroendocrinology and Adaptive Physiology of Maternal Care. Curr Top Behav Neurosci 2019; 43:161-210. [PMID: 31808002 DOI: 10.1007/7854_2019_122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Parental care is critical for offspring survival in many species. In mammals, parental care is primarily provided through maternal care, due to obligate pregnancy and lactation constraints, although some species also show paternal and alloparental care. These behaviors are driven by specialized neural circuits that receive sensory, cortical, and hormonal input to generate a coordinated and timely change in behavior, and sustain that behavior through activation of reward pathways. Importantly, the hormonal changes associated with pregnancy and lactation also act to coordinate a broad range of physiological changes to support the mother and enable her to adapt to the demands of these states. This chapter will review the neural pathways that regulate maternal behavior, the hormonal changes that occur during pregnancy and lactation, and how these two facets merge together to promote both young-directed maternal responses (including nursing and grooming) and young-related responses (including maternal aggression and other physiological adaptions to support the development of and caring for young). We conclude by examining how experimental animal work has translated into knowledge of human parenting, particularly in regards to maternal mental health issues.
Collapse
Affiliation(s)
- Kristina O Smiley
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Papillon Gustafson
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
22
|
Romero-Morales L, Cárdenas M, Martínez-Torres M, García-Saucedo B, Carmona A, Luis J. Neuronal activation associated with paternal and aversive interactions toward pups in the Mongolian gerbils (Meriones unguiculatus). Horm Behav 2018; 105:47-57. [PMID: 30056092 DOI: 10.1016/j.yhbeh.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Approach/avoid model is used to analyze the neural regulation of maternal behavior in the laboratory rat. This model proposes that the medial preoptic area (mPOA) and bed nucleus of stria terminalis (BNST) are brain regions involved in facilitating mechanisms. By contrast, anterior hypothalamic nucleus (AHN), ventromedial hypothalamic nucleus (VMH), and periaqueductal gray participate in the inhibiting mechanisms of neural regulation of maternal behavior. We hypothesized that there are also facilitating and inhibiting mechanisms in the neural regulation of paternal behavior. Here, we determined which neural areas are activated during paternal and aversive interactions with pups in the Mongolian gerbils (Meriones unguiculatus). By testing paternal behavior, we selected 40 males aggressive toward pups and 20 paternal males. These males were organized into six groups of 10 animals in each group: aggressive males that interacted with pups (AGG-pups) or candy (AGG-candy), paternal males that interacted with pups (PAT-pups) or candy (PAT-candy), and males with testosterone (T)-induced paternal behavior that interacted with pups (IPAT-pups) or candy (IPAT-candy). After interacting with pups or candy, the brains were extracted and analyzed for immunoreactivity (ir) with c-fos. Males that interacted with pups had significantly higher c-fos-ir in the mPOA/BNST than males that interacted with candy. Males that displayed aggression had significantly higher c-fos-ir in the AHN, VMH, and periaqueductal gray than aggressive males that interacted with candy. These results suggest that in the neural regulation of paternal behavior in the Mongolian gerbil underlie positive and negative mechanisms as occurs in maternal behavior.
Collapse
Affiliation(s)
- Luis Romero-Morales
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Ciudad de México, Mexico; Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico
| | - Mario Cárdenas
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Ciudad de México, Mexico.
| | - Martín Martínez-Torres
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| | - Brenda García-Saucedo
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico
| | - Agustín Carmona
- Laboratorio de Biología Experimental, Depto. De Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico.
| | - Juana Luis
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| |
Collapse
|
23
|
Alsina-Llanes M, Olazábal DE. Do sires and juvenile male mice (C57BL/6) contribute to the rearing of the offspring? Acta Ethol 2018. [DOI: 10.1007/s10211-018-0299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Horrell ND, Hickmott PW, Saltzman W. Neural Regulation of Paternal Behavior in Mammals: Sensory, Neuroendocrine, and Experiential Influences on the Paternal Brain. Curr Top Behav Neurosci 2018; 43:111-160. [PMID: 30206901 DOI: 10.1007/7854_2018_55] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Across the animal kingdom, parents in many species devote extraordinary effort toward caring for offspring, often risking their lives and exhausting limited resources. Understanding how the brain orchestrates parental care, biasing effort over the many competing demands, is an important topic in social neuroscience. In mammals, maternal care is necessary for offspring survival and is largely mediated by changes in hormones and neuropeptides that fluctuate massively during pregnancy, parturition, and lactation (e.g., progesterone, estradiol, oxytocin, and prolactin). In the relatively small number of mammalian species in which parental care by fathers enhances offspring survival and development, males also undergo endocrine changes concurrent with birth of their offspring, but on a smaller scale than females. Thus, fathers additionally rely on sensory signals from their mates, environment, and/or offspring to orchestrate paternal behavior. Males can engage in a variety of infant-directed behaviors that range from infanticide to avoidance to care; in many species, males can display all three behaviors in their lifetime. The neural plasticity that underlies such stark changes in behavior is not well understood. In this chapter we summarize current data on the neural circuitry that has been proposed to underlie paternal care in mammals, as well as sensory, neuroendocrine, and experiential influences on paternal behavior and on the underlying circuitry. We highlight some of the gaps in our current knowledge of this system and propose future directions that will enable the development of a more comprehensive understanding of the proximate control of parenting by fathers.
Collapse
Affiliation(s)
- Nathan D Horrell
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| | - Peter W Hickmott
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Wendy Saltzman
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA.
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
25
|
Different behavioral, neural and neuropeptide responses of fathers to their own and to alien pups in mandarin voles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:257-269. [DOI: 10.1007/s00359-017-1229-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
26
|
Saltzman W, Harris BN, De Jong TR, Perea-Rodriguez JP, Horrell ND, Zhao M, Andrew JR. Paternal Care in Biparental Rodents: Intra- and Inter-individual Variation. Integr Comp Biol 2017; 57:589-602. [PMID: 28641377 PMCID: PMC5886332 DOI: 10.1093/icb/icx047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parental care by fathers, although rare among mmmals, can be essential for the survival and normal development of offspring in biparental species. A growing body of research on biparental rodents has identified several developmental and experiential influences on paternal responsiveness. Some of these factors, such as pubertal maturation, interactions with pups, and cues from a pregnant mate, contribute to pronounced changes in paternal responsiveness across the course of the lifetime in individual males. Others, particularly intrauterine position during gestation and parental care received during postnatal development, can have long-term effects on paternal behavior and contribute to stable differences among individuals within a species. Focusing on five well-studied, biparental rodent species, we review the developmental and experiential factors that have been shown to influence paternal responsiveness, and consider their roles in generating both intra- and inter-individual variation. We also review hormones and neuropeptides that have been shown to modulate paternal care and discuss their potential contributions to behavioral differences within and between males. Finally, we discuss the possibility that vasopressinergic and possibly oxytocinergic signaling within the brain, modulated by gonadal steroid hormones, may represent the "final common pathway" mediating effects of developmental and experiential variables on intra- and inter-individual variation in paternal care.
Collapse
Affiliation(s)
- Wendy Saltzman
- Department of Biology, University of California, Riverside, California, USA
- Neuroscience Graduate Program, University of California, Riverside, California, USA
- Evolution, Ecology and Organismal Biology Graduate Program, University of California, Riverside, California, USA
| | - Breanna N. Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Trynke R. De Jong
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Germany
| | | | - Nathan D. Horrell
- Department of Biology, University of California, Riverside, California, USA
- Neuroscience Graduate Program, University of California, Riverside, California, USA
| | - Meng Zhao
- Department of Biology, University of California, Riverside, California, USA
- Evolution, Ecology and Organismal Biology Graduate Program, University of California, Riverside, California, USA
| | - Jacob R. Andrew
- Department of Biology, University of California, Riverside, California, USA
- Evolution, Ecology and Organismal Biology Graduate Program, University of California, Riverside, California, USA
| |
Collapse
|