1
|
Gesquiere LR, Adjangba C, Young G, Brandon C, Parker S, Jefferson EE, Wango TL, Oudu VK, Mututua RS, Kinyua Warutere J, Siodi IL, Markham AC, Archie EA, Alberts SC. Energetic costs of social dominance in wild male baboons. Proc Biol Sci 2025; 292:20241790. [PMID: 39837504 PMCID: PMC11750358 DOI: 10.1098/rspb.2024.1790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/01/2024] [Accepted: 11/27/2024] [Indexed: 01/23/2025] Open
Abstract
In vertebrates, glucocorticoids can be upregulated in response to both psychosocial and energetic stressors, making it difficult to identify the cause of elevated glucocorticoid concentrations when both types of stressors are present. This problem has been particularly challenging in studies of social dominance rank in wild animals. In contrast to glucocorticoids, thyroid hormone concentrations are largely unaffected by psychosocial stressors and therefore offer a better estimate of energetic challenges. Here, we measured faecal metabolites of both triiodothyronine (mT3) and glucocorticoids (fGC) in wild baboons and assessed how these hormonal profiles vary with male dominance rank. We found that alpha males have lower mT3 and higher fGC than males of other ranks, indicating sustained energetic costs of alpha status. By contrast, low-ranking males have higher mT3 but similar fGC concentrations than non-alpha high-ranking males, reflecting their lower exposure to energetic stressors but greater vulnerability to psychosocial stressors than higher-ranking males. We also found that mate-guarding of fertile females, a behaviour expressed at higher rates by alpha males, partly explains the energetic costs of high social status. These findings offer evidence of the different types of costs experienced by low- and high-ranking animals.
Collapse
Affiliation(s)
| | - Christine Adjangba
- Department of Biology, Duke University, Durham, NC, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Georgia Young
- Department of Biology, Duke University, Durham, NC, USA
- Integrative Biology Department, University of California, Berkeley, CA, USA
| | - Clara Brandon
- Department of Biology, Duke University, Durham, NC, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| | - Sophie Parker
- Department of Biology, Duke University, Durham, NC, USA
- RTI International, Durham, NC, USA
| | - Emily E. Jefferson
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Tim L. Wango
- Amboseli Baboon Research Project, PO Box 72211-0020, Nairobi, Kenya
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Vivian K. Oudu
- Amboseli Baboon Research Project, PO Box 72211-0020, Nairobi, Kenya
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | | | | | | | | | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Susan C. Alberts
- Department of Biology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Prox L, Heistermann M, Rakotomala Z, Fichtel C, Kappeler PM. Seasonal variation in aggression and physiological stress in wild female and male redfronted lemurs (Eulemur rufifrons). Horm Behav 2025; 167:105669. [PMID: 39637764 DOI: 10.1016/j.yhbeh.2024.105669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Intraspecific competition with fellow group members represents an unavoidable cost of group living. However, the causes of competition can vary among group members, and ecological and reproductive challenges faced by individuals throughout the year can trigger physical conflicts and or physiological responses. To date, few studies in mammals have described both physiological and behavioral responses to competition simultaneously across the year in both males and females. However, such an approach may shed light on ultimate drivers of sex-specific competitive strategies. In this six-year study on multiple groups of wild redfronted lemurs (Eulemur rufifrons), a primate species from Madagascar, we intended to identify the relative importance of feeding vs. reproductive competition for both sexes. We combined data on fecal glucocorticoid metabolite (FGCM) levels, a proxy for the physiological stress response, with behavioral observations on agonistic interactions during ecologically and socially challenging phases across the year. We found that while FGCM levels increased in both sexes with decreasing fruit consumption, this increase was not accompanied by concomitant changes in agonistic behavior. Female aggression and FGCM levels instead peaked during the birth season, while for males, aggression remained fairly constant across the year. Our results suggest that redfronted lemurs have mechanisms to avoid direct competition through aggression at times when individuals may need to conserve energy.
Collapse
Affiliation(s)
- Lea Prox
- Department of Sociobiology/Anthropology, University of Göttingen, Göttingen, Germany; Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany
| | | | - Zafimahery Rakotomala
- Mention Zoologie et Biodiversite Animale, Université d'Antananarivo, Antananarivo, Madagascar
| | - Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany
| | - Peter M Kappeler
- Department of Sociobiology/Anthropology, University of Göttingen, Göttingen, Germany; Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany.
| |
Collapse
|
3
|
Fox S, Muller MN, Peña NC, González NT, Machanda Z, Otali E, Wrangham R, Thompson ME. Selective social tolerance drives differentiated relationships among wild female chimpanzees. Anim Behav 2024; 217:21-38. [PMID: 39830151 PMCID: PMC11741668 DOI: 10.1016/j.anbehav.2024.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Strong, affiliative bonds often function to facilitate social competition through cooperative defence of resources, but the benefits of social bonds may be low when direct competition is less intense or less beneficial. In such cases, one possible outcome is that relationships are weak and undifferentiated. Alternatively, negotiating stable, selectively tolerant relationships may be a strategy to mitigate the costs and risks of sharing space when direct competition is undesirable. We investigated dyadic social tolerance among wild adult female chimpanzees, who engage in low rates of affiliation and aggression amongst one another. While females associate with one another at different rates, these patterns could reflect shared patterns of behaviour (e.g., ranging) rather than social preference or variation in relationship quality. We first determined whether patterns of dyadic spatial association (five-meter proximity) were differentiated and stable over time. To assess whether dyadic spatial association reflected preference and variation in social tolerance, we tested whether spatial association was actively maintained by waiting and following behaviour, and associated with decreased aggression and increased cofeeding. Spatial associations were differentiated, and stronger associations were more stable. Frequent associates used following and waiting behaviour to actively maintain associations. Association positively predicted time cofeeding and negatively predicted aggression. These patterns were true among related and unrelated dyads. Among unrelated females, dyads with stronger associations maintained proximity more mutually. This study highlights social tolerance as a stable relationship attribute that can predict and explain patterns of behaviour and social network structure, distinct from, or in the absence of, affiliation.
Collapse
Affiliation(s)
- Stephanie Fox
- University of California Santa Barbara, Goleta, USA
- University of New Mexico, Albuquerque, USA
| | | | | | | | | | - Emily Otali
- Kibale Chimpanzee Project, Fort Portal, Uganda
| | | | | |
Collapse
|
4
|
Campbell CR, Manser M, Shiratori M, Williams K, Barreiro L, Clutton-Brock T, Tung J. A female-biased gene expression signature of dominance in cooperatively breeding meerkats. Mol Ecol 2024; 33:e17467. [PMID: 39021304 PMCID: PMC11521775 DOI: 10.1111/mec.17467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/27/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Dominance is a primary determinant of social dynamics and resource access in social animals. Recent studies show that dominance is also reflected in the gene regulatory profiles of peripheral immune cells. However, the strength and direction of this relationship differs across the species and sex combinations investigated, potentially due to variation in the predictors and energetic consequences of dominance status. Here, we investigated the association between social status and gene expression in the blood of wild meerkats (Suricata suricatta; n = 113 individuals), including in response to lipopolysaccharide, Gardiquimod (an agonist of TLR7, which detects single-stranded RNA in vivo) and glucocorticoid stimulation. Meerkats are cooperatively breeding social carnivores in which breeding females physically outcompete other females to suppress reproduction, resulting in high reproductive skew. They therefore present an opportunity to disentangle the effects of social dominance from those of sex per se. We identify a sex-specific signature of dominance, including 1045 differentially expressed genes in females but none in males. Dominant females exhibit elevated activity in innate immune pathways and a larger fold-change response to LPS challenge. Based on these results and a preliminary comparison to other mammals, we speculate that the gene regulatory signature of social status in the immune system depends on the determinants and energetic costs of social dominance, such that it is most pronounced in hierarchies where physical competition is important and reproductive skew is large. Such a pattern has the potential to mediate life history trade-offs between investment in reproduction versus somatic maintenance.
Collapse
Affiliation(s)
- C. Ryan Campbell
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Marta Manser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kalahari Research Centre, Kuruman River Reserve, Northern Cape, South Africa
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Mari Shiratori
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Kelly Williams
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Luis Barreiro
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Tim Clutton-Brock
- Kalahari Research Centre, Kuruman River Reserve, Northern Cape, South Africa
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
- Large Animal Research Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
- Department of Biology, Duke University, Durham, North Carolina, USA
- Duke Population Research Institute, Duke University, Durham, North Carolina, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
5
|
Stranks J, Heistermann M, Sangmaneedet S, Schülke O, Ostner J. The dynamics of sociality and glucocorticoids in wild male Assamese macaques. Horm Behav 2024; 164:105604. [PMID: 39013354 DOI: 10.1016/j.yhbeh.2024.105604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
For males of gregarious species, dominance status and the strength of affiliative relationships can have major fitness consequences. Social dynamics also impose costs by affecting glucocorticoids, mediators of homeostasis and indicators of the physiological response to challenges and within-group competition. We investigated the relationships between dominance, social bonds, seasonal challenges, and faecal glucocorticoid metabolite (fGC) measures in wild Assamese macaques (Macaca assamensis) at Phu Khieo Wildlife Sanctuary, Thailand, combining behavioural data with 4129 samples from 62 adult males over 15 years. Our previous work on this population suggested that increased competition during the mating season was associated with elevated fGC levels and that, unusually for male primates, lower rank position correlated with higher fGC levels. With a much larger dataset and dynamic measures of sociality, we re-examined these relationships and additionally tested the potentially fGC-attenuating effect of social support. Contrary to our previous study, yet consistent with the majority of work on male primates, dominance rank had a positive relationship with fGC levels, as high status correlated with elevated glucocorticoid measures. fGC levels were increased at the onset of the mating season. We demonstrated an fGC-reducing effect of supportive relationships in males and showed that dynamics in affiliation can correlate with dynamics in physiological responses. Our results suggest that in a system with intermediate contest potential, high dominance status can impose physiological costs on males that may potentially be moderated by social relationships. We highlight the need to consider the dynamics of sociality and competition that influence hormonal processes.
Collapse
Affiliation(s)
- James Stranks
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany; Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany; Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Somboon Sangmaneedet
- Department of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Oliver Schülke
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany; Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany; Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Julia Ostner
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany; Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany; Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| |
Collapse
|
6
|
Muller MN, Sabbi KH, Thompson ME, Enigk DK, Hagberg L, Machanda ZP, Menante A, Otali E, Wrangham RW. Age-related reproductive effort in male chimpanzees: terminal investment or alternative tactics? Anim Behav 2024; 213:11-21. [PMID: 39007109 PMCID: PMC11238624 DOI: 10.1016/j.anbehav.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Because senescence impairs the ability of older males to compete successfully for mates, male reproductive strategies are expected to change with age. The terminal investment hypothesis proposes that older males, who could die soon, should take greater risks to obtain mating opportunities. Another possibility is that older males avoid such risks, adopting alternative reproductive tactics, such as increased affiliation with females, increased reliance on coalitions or sexual coercion to continue to compete with younger animals. We tested these hypotheses in wild chimpanzees, Pan troglodytes schweinfurthii, of the Kanyawara community, Kibale National Park, Uganda, where old males sire offspring at relatively high rates. Our data set included >40 000 incidents of male aggression and >5800 copulations observed between 2005 and 2017. We found that, even as their dominance status declined, old males maintained relatively high copulation rates, especially with established mothers. There was no evidence for terminal investment in response to ageing. Males became generally less aggressive as they aged. Neither did old males form affiliative bonds with females, nor use sexual coercion more frequently, as alternative reproductive tactics. Old males did, however, participate in coalitionary aggression at higher rates than young males and increased the proportion of their aggression that was coalitionary over time. Coalitions were positively associated with mating success, particularly for low- and middle-ranking males. These results support the hypothesis that ageing male chimpanzees use coalitions as an alternative reproductive tactic. The lack of evidence for terminal investment in response to ageing appears to reflect a broader mammalian pattern in which males who rely on fighting to secure mating opportunities avoid excessive risk taking as their formidability wanes.
Collapse
Affiliation(s)
- Martin N Muller
- Department of Anthropology, University of New Mexico, Albuquerque, NM, U.S.A
| | - Kris H Sabbi
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, U.S.A
| | | | - Drew K Enigk
- Department of Anthropology, University of New Mexico, Albuquerque, NM, U.S.A
| | - Lindsey Hagberg
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, U.S.A
| | - Zarin P Machanda
- Department of Anthropology, Tufts University, Medford, MA, U.S.A
| | - Ashley Menante
- Department of Anthropology, Tufts University, Medford, MA, U.S.A
| | - Emily Otali
- Kibale Chimpanzee Project, Makerere University Biological Field Station, Fort Portal, Uganda
| | - Richard W Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, U.S.A
| |
Collapse
|
7
|
Cole MF, Barnes P, Monroe IG, Rukundo J, Emery Thompson M, Rosati AG. Age-related physiological dysregulation progresses slowly in semi-free-ranging chimpanzees. Evol Med Public Health 2024; 12:129-142. [PMID: 39239461 PMCID: PMC11375048 DOI: 10.1093/emph/eoae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/24/2024] [Indexed: 09/07/2024] Open
Abstract
Background and objectives Lifestyle has widespread effects on human health and aging. Prior results from chimpanzees (Pan troglodytes), one of humans' closest evolutionary relatives, indicate that these lifestyle effects may also be shared with other species, as semi-free-ranging chimpanzees fed a naturalistic diet show healthier values in several specific health biomarkers, compared with their sedentary, captive counterparts. Here, we examined how lifestyle factors associated with different environments affect rates of physiological aging in closely related chimpanzees. Methodology We compared physiological dysregulation, an index of biological aging, in semi-free-ranging chimpanzees in an African sanctuary versus captive chimpanzees in US laboratories. If the rate of aging is accelerated by high-calorie diet and sedentism, we predicted greater age-related dysregulation in the laboratory populations. Conversely, if costs of a wild lifestyle accelerate aging, then semi-free-ranging chimpanzees at the sanctuary, whose environment better approximates the wild, should show greater age-related dysregulation. We further tested whether dysregulation differed based on sex or body system, as in humans. Results We found that semi-free-ranging chimpanzees showed lower overall dysregulation, as well as lower age-related change in dysregulation, than laboratory chimpanzees. Males experienced lower dysregulation than females in both contexts, and the two populations exhibited distinct aging patterns based on body system. Conclusions and implications Our results support the conclusion that naturalistic living conditions result in healthier aging in chimpanzees. These data provide support for the proposal that lifestyle effects on human health and aging are conserved from deeper into our evolutionary history.
Collapse
Affiliation(s)
- Megan F Cole
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - Paige Barnes
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Isabelle G Monroe
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua Rukundo
- Chimpanzee Sanctuary and Wildlife Conservation Trust, Entebbe, Uganda
| | | | - Alexandra G Rosati
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Streiff C, Herrera A, Voelkl B, Palme R, Würbel H, Novak J. The impact of cage dividers on mouse aggression, dominance and hormone levels. PLoS One 2024; 19:e0297358. [PMID: 38324564 PMCID: PMC10849263 DOI: 10.1371/journal.pone.0297358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
Home cage aggression in group-housed male mice is a major welfare concern and may compromise animal research. Conventional cages prevent flight or retreat from sight, increasing the risk that agonistic encounters will result in injury. Moreover, depending on social rank, mice vary in their phenotype, and these effects seem highly variable and dependent on the social context. Interventions that reduce aggression, therefore, may reduce not only injuries and stress, but also variability between cage mates. Here we housed male mice (Balb/c and SWISS, group sizes of three and five) with or without partial cage dividers for two months. Mice were inspected for wounding weekly and home cages were recorded during housing and after 6h isolation housing, to assess aggression and assign individual social ranks. Fecal boli and fur were collected to quantify steroid levels. We found no evidence that the provision of cage dividers improves the welfare of group housed male mice; The prevalence of injuries and steroid levels was similar between the two housing conditions and aggression was reduced only in Balb/c strain. However, mice housed with cage dividers developed less despotic hierarchies and had more stable social ranks. We also found a relationship between hormone levels and social rank depending on housing type. Therefore, addition of cage dividers may play a role in stabilizing social ranks and modulating the activation of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes, thus reducing phenotypic variability between mice of different ranks.
Collapse
Affiliation(s)
- Christina Streiff
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Adrian Herrera
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Bernhard Voelkl
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rupert Palme
- Unit of Physiology, Pathophysiology, and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Janja Novak
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Cordoni G, Ciarcelluti G, Pasqualotto A, Perri A, Bissiato V, Norscia I. Is it for real? Structural differences between play and real fighting in adult chimpanzees (Pan troglodytes). Am J Primatol 2023; 85:e23537. [PMID: 37461284 DOI: 10.1002/ajp.23537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 08/15/2023]
Abstract
In primates, as well as in other mammals, play fighting (PF) is a complex form of playful activity that is structurally similar to real fighting (RF) and may also be used in a competitive way. Here, we verify the structural key differences that can distinguish PF from RF in adult chimpanzees (Pan troglodytes). We collected 962 h of video recording on 30 adult individuals belonging to four chimpanzee groups (Mona Chimpanzee Sanctuary, Spain; La Vallée des Singes and ZooParc de Beauval, France). We applied different indices-two of which were borrowed from the ecological measures of biodiversity-to test for structural differences between PF (345 sessions) and RF (461 sessions) in the levels of behavior repetition (Repeatability of Same Behavior Index, RSBI), distribution uniformity (Pielou Index, J), variability (Shannon Index, H') and, symmetry (i.e., reciprocal exchange of offensive/defensive behaviors; Asymmetry Index, AI). Moreover, we compared the session duration between PF and RF. We found that duration and RSBI were higher in PF than RF while AI was higher in RF than PF. No difference was found between J and H'. Interestingly, both females and males maintained similar ranking positions (determined via Normalized David's scores) in RF and PF. Our study indicates that session duration, behavior repetition, and symmetry can be distinctive structural key features of PF whereas dominance role-reversal, behavior variability, and distribution uniformity were not. PF in adult chimpanzees may have elements of serious contexts (e.g., absence of role-reversal as in RF) which is in line with the view that play is a blended, multifunctional behavior deriving from the re-combination of different behavioral systems. Our findings highlight the need to investigate play structure and manifestation in a nuanced way to better understand the actual motivation that underlies what appears to be play.
Collapse
Affiliation(s)
- Giada Cordoni
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Giulia Ciarcelluti
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Altea Pasqualotto
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Annarita Perri
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Veronica Bissiato
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Ivan Norscia
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| |
Collapse
|
10
|
Thierry B, Rebout N, Heistermann M. Hormonal responses to mating competition in male Tonkean macaques. Horm Behav 2023; 154:105395. [PMID: 37390781 DOI: 10.1016/j.yhbeh.2023.105395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 06/17/2023] [Indexed: 07/02/2023]
Abstract
Glucocorticoid and androgen hormones play a prominent role in male reproductive effort. Their production usually increases in non-human primates during mating competition, which may include rivalry for access to receptive females, struggles for high dominance rank, or social pressure on low-ranking individuals. It is generally assumed that glucocorticoids and androgens are associated with mating challenges rather than dominance status, but the involvement of multiple factors makes it difficult to disentangle the two. In this regard, Tonkean macaques provide a suitable model because they are characterized by relaxed dominance and year-round breeding, meaning that there is typically no more than one receptive female in a group, and thus first-ranking males can easily monopolize her. We studied two captive groups of Tonkean macaques over an 80-month period, recording the reproductive status of females, collecting urine from males and sampling behaviors in both sexes. Male urinary hormone concentrations could be affected by increased competition caused by the mating period, the number of males and the degree of female attractiveness. The highest increases in androgens were recorded in males performing female mate-guarding. Despite the importance of dominance status in determining which males can mate, we found no significant effect of male rank on glucocorticoids and only a marginal effect on androgens during mate-guarding. Both types of hormones were more directly involved in the mating effort of males than in their dominance status. Our results show that their function can be understood in light of the particular competitive needs generated by the species-specific social system.
Collapse
Affiliation(s)
- Bernard Thierry
- Laboratoire de Psychologie Sociale et Cognitive, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Nancy Rebout
- UMR Herbivores, INRAE, VetAgro Sup, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
11
|
Tkaczynski PJ, Mafessoni F, Girard-Buttoz C, Samuni L, Ackermann CY, Fedurek P, Gomes C, Hobaiter C, Löhrich T, Manin V, Preis A, Valé PD, Wessling EG, Wittiger L, Zommers Z, Zuberbuehler K, Vigilant L, Deschner T, Wittig RM, Crockford C. Shared community effects and the non-genetic maternal environment shape cortisol levels in wild chimpanzees. Commun Biol 2023; 6:565. [PMID: 37237178 DOI: 10.1038/s42003-023-04909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Mechanisms of inheritance remain poorly defined for many fitness-mediating traits, especially in long-lived animals with protracted development. Using 6,123 urinary samples from 170 wild chimpanzees, we examined the contributions of genetics, non-genetic maternal effects, and shared community effects on variation in cortisol levels, an established predictor of survival in long-lived primates. Despite evidence for consistent individual variation in cortisol levels across years, between-group effects were more influential and made an overwhelming contribution to variation in this trait. Focusing on within-group variation, non-genetic maternal effects accounted for 8% of the individual differences in average cortisol levels, significantly more than that attributable to genetic factors, which was indistinguishable from zero. These maternal effects are consistent with a primary role of a shared environment in shaping physiology. For chimpanzees, and perhaps other species with long life histories, community and maternal effects appear more relevant than genetic inheritance in shaping key physiological traits.
Collapse
Affiliation(s)
- Patrick J Tkaczynski
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire.
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Fabrizio Mafessoni
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Weizmann Institute of Science, Department of Plant and Environmental Sciences, Rehovot, Israel.
| | - Cédric Girard-Buttoz
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- The Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS UMR 5229, Lyon, France
| | - Liran Samuni
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Centre for Social Learning & Cognitive Evolution, School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| | - Corinne Y Ackermann
- Universite de Neuchatel, Institut de Biologie, Cognition Compare, Neuchatel, Switzerland
| | - Pawel Fedurek
- Division of Psychology, University of Stirling, Stirling, UK
| | - Cristina Gomes
- Tropical Conservation Institute, Institute of Environment, College of Arts, Science and Education, Florida International University, Miami, FL, USA
| | - Catherine Hobaiter
- Centre for Social Learning & Cognitive Evolution, School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| | - Therese Löhrich
- World Wide Fund for Nature, Dzanga Sangha Protected Areas, BP 1053, Bangui, Central African Republic
- Robert Koch Institute, Epidemiology of Highly Pathogenic Microorganisms, Berlin, Germany
| | - Virgile Manin
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Anna Preis
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Prince D Valé
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- Unité de Formation et de Recherche Agroferesterie, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | - Erin G Wessling
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Zinta Zommers
- Perry World House, University of Pennsylvania, Philadelphia, USA
| | - Klaus Zuberbuehler
- Universite de Neuchatel, Institut de Biologie, Cognition Compare, Neuchatel, Switzerland
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tobias Deschner
- Institute of Cognitive Science, Comparative BioCognition, University of Osnabrück, Osnabrück, Germany
| | - Roman M Wittig
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- The Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS UMR 5229, Lyon, France
| | - Catherine Crockford
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- The Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS UMR 5229, Lyon, France
| |
Collapse
|
12
|
Edes AN, Brown JL, Edwards KL. Evaluating individual biomarkers for predicting health risks in zoo-housed chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). Am J Primatol 2023; 85:e23457. [PMID: 36537335 DOI: 10.1002/ajp.23457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Although biomarkers are often used for predicting morbidity and mortality in humans, similar data are lacking in our closest relatives. This study analyzed 16 biomarkers in zoo-housed chimpanzees and bonobos from serum samples collected during both routine and nonroutine veterinary immobilizations. Generalized linear and generalized linear mixed models were used to determine the efficacy of each biomarker to predict all-cause morbidity, defined as the presence of at least one chronic condition, or cardiac disease as a subset of all-cause morbidity. Cox proportional hazards models were used to examine associations between biomarkers and mortality risk from any cause. Analyses were conducted using two data sets for each species, one with all values retained (chimpanzees: n = 148; bonobos: n = 33) and the other from samples collected during routine immobilizations only (chimpanzees: n = 95; bonobos: n = 23). Consistent results across both data sets in chimpanzees included associations of higher cortisol with all-cause morbidity risk, lower creatinine with cardiac disease risk, and higher creatinine with mortality risk, and in bonobos were increased cardiac disease risk with higher cortisol and lower dehydroepiandrosterone-sulfate, fructosamine, and triglycerides. However, there were some inconsistencies between data sets, such as tumor necrosis factor-α predicting mortality risk positively in chimpanzees when all values were retained, but negatively for routine values only. Despite the close evolutionary relationships between chimpanzees and bonobos, the only result observed in both species was a negative association between albumin and mortality risk in the all values retained data sets. Thus, data suggest some biomarkers may be useful predictors of future health outcomes, although a better understanding of both individual and species variation in biomarkers and their contribution to health risks is needed.
Collapse
Affiliation(s)
- Ashley N Edes
- Department of Reproductive and Behavioral Sciences, Saint Louis Zoo, Saint Louis, Missouri, USA.,Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA
| | - Janine L Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA
| | - Katie L Edwards
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA.,Conservation Science and Policy, North of England Zoological Society, Chester Zoo, Upton by Chester, UK
| |
Collapse
|
13
|
Leimar O, Bshary R. Effects of local versus global competition on reproductive skew and sex differences in social dominance behaviour. Proc Biol Sci 2022; 289:20222081. [PMID: 36448421 PMCID: PMC9709658 DOI: 10.1098/rspb.2022.2081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/04/2022] [Indexed: 12/05/2022] Open
Abstract
Social hierarchies are often found in group-living animals. The hierarchy position can influence reproductive success (RS), with a skew towards high-ranking individuals. The amount of aggression in social dominance varies greatly, both between species and between males and females within species. Using game theory we study this variation by taking into account the degree to which reproductive competition in a social group is mainly local to the group, emphasizing within-group relative RS, or global to a larger population, emphasizing an individual's absolute RS. Our model is similar to recent approaches in that reinforcement learning is used as a behavioural mechanism allowing social-hierarchy formation. We test two hypotheses. The first is that local competition should favour the evolution of mating or foraging interference, and thus of reproductive skew. Second, decreases in reproductive output caused by an individual's accumulated fighting damage, such as reduced parenting ability, will favour less intense aggression but should have little influence on reproductive skew. From individual-based simulations of the evolution of social dominance and interference, we find support for both hypotheses. We discuss to what extent our results can explain observed sex differences in reproductive skew and social dominance behaviour.
Collapse
Affiliation(s)
- Olof Leimar
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Redouan Bshary
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
14
|
Fultz A, Yanagi A, Breaux S, Beaupre L. Aggressive, Submissive, and Affiliative Behavior in Sanctuary Chimpanzees (Pan Troglodytes) During Social Integration. Animals (Basel) 2022; 12:2421. [PMID: 36139279 PMCID: PMC9494963 DOI: 10.3390/ani12182421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Chimp Haven is a sanctuary for chimpanzees being retired from biomedical research and from facilities that can no longer care for them. Chimpanzees often live in smaller groups in captive settings; however, Chimp Haven integrates them into larger, more species-typical groups. Social integrations, the process of introducing unfamiliar chimpanzees to one another, are often complex in terms of logistics and can be stressful due to the territorial nature of the animals, reduced space in captivity, and the fact that these situations are engineered by humans. From 2005 to 2015, Chimp Haven conducted 225 social integrations including 282 chimpanzees (male: n = 135; female: n = 147). Each integration involved 2 to 26 chimpanzees (mean = 9) and their age ranged from < one year old to 59 years old (mean = 30). We collected data ad libitum during the first 60 min after doors were opened between unfamiliar chimpanzees. The chimpanzees’ affiliative, aggressive, and submissive behaviors were examined, comparing the subject’s sex, rearing history, location/enclosure type, and group size impacts on these behaviors. The subject’s sex, location, and group size were associated with the frequency of affiliative behaviors observed during social integration. All variables except for group size were associated with the frequency of aggressive behavior. The frequency of submissive behavior differed based on the subject’s sex, rearing history, and group size. We were unable to make comparisons between successful and unsuccessful integrations, as most of these integrations were successful.
Collapse
Affiliation(s)
- Amy Fultz
- Chimp Haven, 13600 Chimpanzee Place, Keithville, LA 71047, USA
| | - Akie Yanagi
- Chimp Haven, 13600 Chimpanzee Place, Keithville, LA 71047, USA
- Office of Academic Affairs, Niagara County Community College, 3111 Saunders Settlement Rd, Sanborn, NY 14132, USA
| | - Sarah Breaux
- Chimp Haven, 13600 Chimpanzee Place, Keithville, LA 71047, USA
- Department of Veterinary Resources, University of Louisiana at Lafayette-New Iberia Research Center, New Iberia, LA 70562, USA
| | - Leilani Beaupre
- Chimp Haven, 13600 Chimpanzee Place, Keithville, LA 71047, USA
- Independent Researcher, Tumwater, WA 98512, USA
| |
Collapse
|
15
|
Leroux M, Chandia B, Bosshard AB, Zuberbühler K, Townsend SW. Call combinations in chimpanzees: a social tool? Behav Ecol 2022. [DOI: 10.1093/beheco/arac074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
A growing body of evidence suggests the capacity for animals to combine calls into larger communicative structures is more common than previously assumed. Despite its cross-taxa prevalence, little is known regarding the evolutionary pressures driving such combinatorial abilities. One dominant hypothesis posits that social complexity and vocal complexity are linked, with changes in social structuring (e.g., group size) driving the emergence of ever-more complex vocal abilities, such as call sequencing. In this paper, we tested this hypothesis through investigating combinatoriality in the vocal system of the highly social chimpanzee. Specifically, we predicted combinatoriality to be more common in socially-driven contexts and in females and lower-ranked males (socially challenging contexts and socially challenged individuals respectively). Firstly, through applying methods from computational linguistics (i.e., collocation analyses), we built an objective repertoire of combinatorial structures in this species. Second, we investigated what potential factors influenced call combination production. We show that combinatoriality is predominant in 1) social contexts vs. non-social contexts, 2) females vs. males, and 3) negatively correlates with male rank. Together, these results suggest one function of combinatoriality in chimpanzees may be to help individuals navigate their dynamic social world. More generally, we argue these findings provide support for the hypothesized link between social and vocal complexity and can provide insight into the evolution of our own highly combinatorial communication system, language.
Collapse
Affiliation(s)
- Maël Leroux
- Department of Comparative Language Science, University of Zürich , Affolternstrasse 56, 8050 Zurich , Switzerland
- Budongo Conservation Field Station , Masindi , Uganda
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zürich , Affolternstrasse 56, 8050 Zurich , Switzerland
| | - Bosco Chandia
- Budongo Conservation Field Station , Masindi , Uganda
| | - Alexandra B Bosshard
- Department of Comparative Language Science, University of Zürich , Affolternstrasse 56, 8050 Zurich , Switzerland
- Budongo Conservation Field Station , Masindi , Uganda
| | - Klaus Zuberbühler
- Budongo Conservation Field Station , Masindi , Uganda
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zürich , Affolternstrasse 56, 8050 Zurich , Switzerland
- Department of Comparative Cognition, Institute of Biology, University of Neuchatel , Rue Emile-Argand 11, 2000 Neuchâtel , Switzerland
- School of Psychology and Neuroscience, University of St Andrews , St Mary’s quad, south street, St Andrews, KY16 9JP , UK
| | - Simon W Townsend
- Department of Comparative Language Science, University of Zürich , Affolternstrasse 56, 8050 Zurich , Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zürich , Affolternstrasse 56, 8050 Zurich , Switzerland
- Department of Psychology, University of Warwick , University Road, Coventry, CV4 7AL , UK
| |
Collapse
|
16
|
Dantzer B, Newman AEM. Expanding the frame around social dynamics and glucocorticoids: From hierarchies within the nest to competitive interactions among species. Horm Behav 2022; 144:105204. [PMID: 35689971 DOI: 10.1016/j.yhbeh.2022.105204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
The effect of the social environment on individual state or condition has largely focused on glucocorticoid levels (GCs). As metabolic hormones whose production can be influenced by nutritional, physical, or psychosocial stressors, GCs are a valuable (though singular) measure that may reflect the degree of "stress" experienced by an individual. Most work to date has focused on how social rank influences GCs in group-living species or how predation risk influences GCs in prey. This work has been revealing, but a more comprehensive assessment of the social environment is needed to fully understand how different features of the social environment influence GCs in both group living and non-group living species and across life history stages. Just as there can be intense within-group competition among adult conspecifics, it bears appreciating there can also be competition among siblings from the same brood, among adult conspecifics that do not live in groups, or among heterospecifics. In these situations, dominance hierarchies typically emerge, albeit, do dominants or subordinate individuals or species have higher GCs? We examine the degree of support for hypotheses derived from group-living species about whether differential GCs between dominants and subordinates reflect the "stress of subordination" or "costs of dominance" in these other social contexts. By doing so, we aim to test the generality of these two hypotheses and propose new research directions to broaden the lens that focuses on social hierarchies and GCs.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, 48109 Ann Arbor, MI, USA; Department of Ecology and Evolutionary Biology, University of Michigan, 48109, Ann Arbor, MI, USA.
| | - Amy E M Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
17
|
Wilke C, Lahiff N, Badihi G, Donnellan E, Hobaiter C, Machanda Z, Mundry R, Pika S, Soldati A, Wrangham R, Zuberbűhler K, Slocombe K. Referential gestures are not ubiquitous in wild chimpanzees: alternative functions for exaggerated loud scratch gestures. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Smeltzer EA, Stead SM, Li MF, Samson D, Kumpan LT, Teichroeb JA. Social sleepers: The effects of social status on sleep in terrestrial mammals. Horm Behav 2022; 143:105181. [PMID: 35594742 DOI: 10.1016/j.yhbeh.2022.105181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022]
Abstract
Social status among group-living mammals can impact access to resources, such as water, food, social support, and mating opportunities, and this differential access to resources can have fitness consequences. Here, we propose that an animal's social status impacts their access to sleep opportunities, as social status may predict when an animal sleeps, where they sleep, who they sleep with, and how well they sleep. Our review of terrestrial mammals examines how sleep architecture and intensity may be impacted by (1) sleeping conditions and (2) the social experience during wakefulness. Sleeping positions vary in thermoregulatory properties, protection from predators, and exposure to parasites. Thus, if dominant individuals have priority of access to sleeping positions, they may benefit from higher quality sleeping conditions and, in turn, better sleep. With respect to waking experiences, we discuss the impacts of stress on sleep, as it has been established that specific social statuses can be characterized by stress-related physiological profiles. While much research has focused on how dominance hierarchies impact access to resources like food and mating opportunities, differential access to sleep opportunities among mammals has been largely ignored despite its potential fitness consequences.
Collapse
Affiliation(s)
- E A Smeltzer
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - S M Stead
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada.
| | - M F Li
- Department of Anthropology, University of Toronto, 19 Russell St., Toronto, Ontario M5S 2S2, Canada
| | - D Samson
- Department of Anthropology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario L5L 1C6, Canada
| | - L T Kumpan
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - J A Teichroeb
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| |
Collapse
|
19
|
Taborsky B, Kuijper B, Fawcett TW, English S, Leimar O, McNamara JM, Ruuskanen S. An evolutionary perspective on stress responses, damage and repair. Horm Behav 2022; 142:105180. [PMID: 35569424 DOI: 10.1016/j.yhbeh.2022.105180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Variation in stress responses has been investigated in relation to environmental factors, species ecology, life history and fitness. Moreover, mechanistic studies have unravelled molecular mechanisms of how acute and chronic stress responses cause physiological impacts ('damage'), and how this damage can be repaired. However, it is not yet understood how the fitness effects of damage and repair influence stress response evolution. Here we study the evolution of hormone levels as a function of stressor occurrence, damage and the efficiency of repair. We hypothesise that the evolution of stress responses depends on the fitness consequences of damage and the ability to repair that damage. To obtain some general insights, we model a simplified scenario in which an organism repeatedly encounters a stressor with a certain frequency and predictability (temporal autocorrelation). The organism can defend itself by mounting a stress response (elevated hormone level), but this causes damage that takes time to repair. We identify optimal strategies in this scenario and then investigate how those strategies respond to acute and chronic exposures to the stressor. We find that for higher repair rates, baseline and peak hormone levels are higher. This typically means that the organism experiences higher levels of damage, which it can afford because that damage is repaired more quickly, but for very high repair rates the damage does not build up. With increasing predictability of the stressor, stress responses are sustained for longer, because the animal expects the stressor to persist, and thus damage builds up. This can result in very high (and potentially fatal) levels of damage when organisms are exposed to chronic stressors to which they are not evolutionarily adapted. Overall, our results highlight that at least three factors need to be considered jointly to advance our understanding of how stress physiology has evolved: (i) temporal dynamics of stressor occurrence; (ii) relative mortality risk imposed by the stressor itself versus damage caused by the stress response; and (iii) the efficiency of repair mechanisms.
Collapse
Affiliation(s)
- Barbara Taborsky
- Behavioural Ecology Division, Institute of Ecology and Evolution, University of Bern, Switzerland.
| | - Bram Kuijper
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, UK; Institute for Data Science and Artificial Intelligence, University of Exeter, UK
| | - Tim W Fawcett
- Centre for Research in Animal Behaviour (CRAB), University of Exeter, UK
| | - Sinead English
- School of Biological Sciences, University of Bristol, UK
| | - Olof Leimar
- Department of Zoology, Stockholm University, Sweden
| | | | - Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| |
Collapse
|
20
|
Earl AD, Kimmitt AA, Yorzinski JL. Circulating hormones and dominance status predict female behavior during courtship in a lekking species. Integr Comp Biol 2022; 62:9-20. [PMID: 35467712 DOI: 10.1093/icb/icac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Female competitive behaviors during courtship can have substantial fitness consequences yet we know little about the physiological and social mechanisms underlying these behaviors - particularly for females of polygynous lek mating species. We explored the hormonal and social drivers of female intersexual and intrasexual behavior during courtship by males in a captive population of Indian peafowl. We investigated whether (1) female non-stress induced circulating estradiol (E2) and corticosterone (CORT) levels or (2) female dominance status in a dyad predict female solicitation behavior. We also tested whether female circulating E2 and CORT predict dominant females' aggressive behaviors toward subordinate females in the courtship context. Our findings demonstrate that females with higher levels of circulating E2 as well as higher levels of circulating CORT solicit more courtships from males. Dominant females also solicit more courtships from males than subordinate females. Female intrasexual aggressive behaviors during courtship, however, were not associated with circulating levels of E2 or CORT. Overall, we conclude that circulating steroid hormones in conjunction with social dominance might play a role in mediating female behaviors associated with competition for mates. Experimental manipulation and measures of hormonal flexibility throughout the breeding season in relation to competitive and sexual behaviors will be necessary to further examine the link between hormonal mechanisms and female behavior in polygynous lekking systems.
Collapse
Affiliation(s)
- Alexis D Earl
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, 77843, USA.,Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, 10027, USA
| | - Abigail A Kimmitt
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jessica L Yorzinski
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
21
|
Christensen C, Bracken AM, Justin O'Riain M, Heistermann M, King AJ, Fürtbauer I. Simultaneous investigation of urinary and faecal glucocorticoid metabolite concentrations reveals short- versus long-term drivers of HPA-axis activity in a wild primate (Papio ursinus). Gen Comp Endocrinol 2022; 318:113985. [PMID: 35093315 DOI: 10.1016/j.ygcen.2022.113985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
Abstract
Glucocorticoids (GCs), a class of steroid hormones released through activation of the hypothalamic-pituitary-adrenal (HPA) axis, perform many vital functions essential for survival, including orchestrating an organism's response to stressors by modulating physiological and behavioural responses. Assessing changes and variation in GC metabolites from faecal or urine samples allows for the non-invasive monitoring of HPA-axis activity across vertebrates. The time lag of hormone excretion differs between these sample matrices, which has implications for their suitability for studying effects of different temporal nature on HPA-axis activity. However, simultaneous comparisons of predictors of faecal and urinary GC metabolites (fGCs and uGCs, respectively) are lacking. To address this gap, we employ frequent non-invasive sampling to investigate correlates of fGCs and uGCs in wild chacma baboons (Papio ursinus) (n = 17), including long-term (dominance rank, season, female reproductive state) and short-term (time of day, daily weather conditions) factors. Correlated with increasing day length, fGCs gradually decreased from winter to summer. No seasonal effect on uGCs was found but 'rain days' were associated with increased uGCs. Pregnant females had significantly higher fGCs compared to cycling and lactating females, whereas uGCs were not statistically different across reproductive states. A circadian effect was observed in uGCs but not in fGCs. Dominance rank did not affect either fGCs or uGCs. Our study highlights the difference in inherent fluctuation between uGCs and fGCs and its potential consequences for HPA-axis activity monitoring. While uGCs offer the opportunity to study short-term effects, they undergo more pronounced fluctuations, reducing their ability to capture long-term effects. Given the increasing use of urine for biological monitoring, knowledge of this potential limitation is crucial. Where possible, uGCs and fGCs should be monitored in tandem to obtain a comprehensive understanding of short- and long-term drivers of HPA-axis activity.
Collapse
Affiliation(s)
- Charlotte Christensen
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK.
| | - Anna M Bracken
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
| | - M Justin O'Riain
- Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Andrew J King
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
| | - Ines Fürtbauer
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
| |
Collapse
|
22
|
Simons ND, Michopoulos V, Wilson M, Barreiro LB, Tung J. Agonism and grooming behaviour explain social status effects on physiology and gene regulation in rhesus macaques. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210132. [PMID: 35000435 PMCID: PMC8743879 DOI: 10.1098/rstb.2021.0132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Variation in social status predicts molecular, physiological and life-history outcomes across a broad range of species, including our own. Experimental studies indicate that some of these relationships persist even when the physical environment is held constant. Here, we draw on datasets from one such study-experimental manipulation of dominance rank in captive female rhesus macaques-to investigate how social status shapes the lived experience of these animals to alter gene regulation, glucocorticoid physiology and mitochondrial DNA phenotypes. We focus specifically on dominance rank-associated dimensions of the social environment, including both competitive and affiliative interactions. Our results show that simple summaries of rank-associated behavioural interactions are often better predictors of molecular and physiological outcomes than dominance rank itself. However, while measures of immune function are best explained by agonism rates, glucocorticoid-related phenotypes tend to be more closely linked to affiliative behaviour. We conclude that dominance rank serves as a useful summary for investigating social environmental effects on downstream outcomes. Nevertheless, the behavioural interactions that define an individual's daily experiences reveal the proximate drivers of social status-related differences and are especially relevant for understanding why individuals who share the same social status sometimes appear physiologically distinct. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Noah D. Simons
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Vasiliki Michopoulos
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark Wilson
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Luis B. Barreiro
- Genetics Section, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
- Duke Population Research Institute, Duke University, Durham, NC 27708, USA
- Canadian Institute for Advanced Research, Toronto, Canada M5G 1M1
| |
Collapse
|
23
|
Milewski TM, Lee W, Champagne FA, Curley JP. Behavioural and physiological plasticity in social hierarchies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200443. [PMID: 35000436 PMCID: PMC8743892 DOI: 10.1098/rstb.2020.0443] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Individuals occupying dominant and subordinate positions in social hierarchies exhibit divergent behaviours, physiology and neural functioning. Dominant animals express higher levels of dominance behaviours such as aggression, territorial defence and mate-guarding. Dominants also signal their status via auditory, visual or chemical cues. Moreover, dominant animals typically increase reproductive behaviours and show enhanced spatial and social cognition as well as elevated arousal. These biobehavioural changes increase energetic demands that are met via shifting both energy intake and metabolism and are supported by coordinated changes in physiological systems including the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes as well as altered gene expression and sensitivity of neural circuits that regulate these behaviours. Conversely, subordinate animals inhibit dominance and often reproductive behaviours and exhibit physiological changes adapted to socially stressful contexts. Phenotypic changes in both dominant and subordinate individuals may be beneficial in the short-term but lead to long-term challenges to health. Further, rapid changes in social ranks occur as dominant animals socially ascend or descend and are associated with dynamic modulations in the brain and periphery. In this paper, we provide a broad overview of how behavioural and phenotypic changes associated with social dominance and subordination are expressed in neural and physiological plasticity. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- T. M. Milewski
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - W. Lee
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - F. A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - J. P. Curley
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
24
|
Anderson JA, Lea AJ, Voyles TN, Akinyi MY, Nyakundi R, Ochola L, Omondi M, Nyundo F, Zhang Y, Campos FA, Alberts SC, Archie EA, Tung J. Distinct gene regulatory signatures of dominance rank and social bond strength in wild baboons. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200441. [PMID: 35000452 PMCID: PMC8743882 DOI: 10.1098/rstb.2020.0441] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
The social environment is a major determinant of morbidity, mortality and Darwinian fitness in social animals. Recent studies have begun to uncover the molecular processes associated with these relationships, but the degree to which they vary across different dimensions of the social environment remains unclear. Here, we draw on a long-term field study of wild baboons to compare the signatures of affiliative and competitive aspects of the social environment in white blood cell gene regulation, under both immune-stimulated and non-stimulated conditions. We find that the effects of dominance rank on gene expression are directionally opposite in males versus females, such that high-ranking males resemble low-ranking females, and vice versa. Among females, rank and social bond strength are both reflected in the activity of cellular metabolism and proliferation genes. However, while we observe pronounced rank-related differences in baseline immune gene activity, only bond strength predicts the fold-change response to immune (lipopolysaccharide) stimulation. Together, our results indicate that the directionality and magnitude of social effects on gene regulation depend on the aspect of the social environment under study. This heterogeneity may help explain why social environmental effects on health and longevity can also vary between measures. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Jordan A. Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Amanda J. Lea
- Department of Biology, Duke University, Durham, NC 27708, USA
- Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA
- Department of Ecology and Evolution, Princeton University, Princeton, NJ 08544, USA
| | - Tawni N. Voyles
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Mercy Y. Akinyi
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Ruth Nyakundi
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Lucy Ochola
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Martin Omondi
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Fred Nyundo
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Yingying Zhang
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Fernando A. Campos
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
- Duke Population Research Institute, Duke University, Durham, NC 27708, USA
- Canadian Institute for Advanced Research, Toronto, Canada M5G 1M1
| |
Collapse
|
25
|
Bray J, Feldblum JT, Gilby IC. Social bonds predict dominance trajectories in adult male chimpanzees. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|