1
|
Zahradníková A, Pavelková J, Sabo M, Baday S, Zahradník I. Structure-based mechanism of RyR channel operation by calcium and magnesium ions. PLoS Comput Biol 2025; 21:e1012950. [PMID: 40300027 DOI: 10.1371/journal.pcbi.1012950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/11/2025] [Indexed: 05/01/2025] Open
Abstract
Ryanodine receptors (RyRs) serve for excitation-contraction coupling in skeletal and cardiac muscle cells in a noticeably different way, not fully understood at the molecular level. We addressed the structure of skeletal (RyR1) and cardiac (RyR2) isoforms relevant to gating by Ca2+ and Mg2+ ions (M2+). Bioinformatics analysis of RyR structures ascertained the EF-hand loops as the M2+ binding inhibition site and revealed its allosteric coupling to the channel gate. The intra-monomeric inactivation pathway interacts with the Ca2+-activation pathway in both RyR isoforms, and the inter-monomeric pathway, stronger in RyR1, couples to the gate through the S23*-loop of the neighbor monomer. These structural findings were implemented in the model of RyR operation based on statistical mechanics and the Monod-Wyman-Changeux theorem. The model, which defines closed, open, and inactivated macrostates allosterically coupled to M2+-binding activation and inhibition sites, approximated the open probability data for both RyR1 and RyR2 channels at a broad range of M2+ concentrations. The proposed mechanism of RyR operation provides a new interpretation of the structural and functional data of mammalian RyR channels on common grounds. This may provide a new platform for designing pharmacological interventions in the relevant diseases of skeletal and cardiac muscles. The synthetic approach developed in this work may find general use in deciphering mechanisms of ion channel functions.
Collapse
Affiliation(s)
- Alexandra Zahradníková
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Pavelková
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Sabo
- Bioinformatics Laboratory, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Sefer Baday
- Applied Informatics Department, Informatics Institute, Istanbul Technical University, Istanbul, Türkiye
| | - Ivan Zahradník
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Tomás MJ, Pinho AI, Sousa Pinto B, Martins E. The role of genetics in the prognosis of acute myocarditis: a systematic review and meta-analysis. Monaldi Arch Chest Dis 2025. [PMID: 40008466 DOI: 10.4081/monaldi.2025.3231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/10/2024] [Indexed: 02/27/2025] Open
Abstract
Myocarditis is a heterogeneous disease with varying clinical presentations, etiologies, and courses. Apart from environmental factors, genetic factors may also play a role in its pathophysiology. Through a systematic review and meta-analysis, we aimed to characterize the relationship between acute myocarditis (AM), underlying genetic background, and prognosis. We searched on MEDLINE/PubMed and Web of Science for studies reporting clinical outcomes of patients presenting with AM and undergoing genetic testing. The prevalence of a positive genetic test result was 27.3%, with a higher proportion of males (61.3%). Patients with a positive genetic test often had a family history of cardiovascular events (53.3%) and late gadolinium enhancement on cardiac magnetic resonance (81.2%), suggesting that these clinical features may represent a population with a higher burden of genetic background and risk for worse outcomes. The risk of recurrence of AM among patients with a positive genetic test was four times greater than among non-carriers (RR=4.02, p<0.001), and the most frequently observed variants among AM carriers were in the TTN, DSP, PKP2, MYH7, BAG3, RMB20, DSG2, TNNT2, and SCN5A genes. Overall, these findings underscore the need to improve the criteria used for genetic testing in the setting of AM episodes and to identify affected individuals who may benefit from increased surveillance and genetic testing.
Collapse
Affiliation(s)
| | - Ana Isabel Pinho
- Faculty of Medicine, University of Porto; Department of Cardiology, São João University Hospital Center, Porto
| | - Bernardo Sousa Pinto
- MEDCIDS, Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto; CINTESIS@RISE - Health Research Network, Faculty of Medicine, University of Porto
| | - Elisabete Martins
- Faculty of Medicine, University of Porto; Department of Cardiology, São João University Hospital Center, Porto; CINTESIS@RISE - Health Research Network, Faculty of Medicine, University of Porto; São João University Hospital Centre, Member of the European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart), Porto
| |
Collapse
|
3
|
Kokhabi P, Mollazadeh R, Hejazi SF, Nezhad AH, Pazoki-Toroudi H. Importance of Zinc Homeostasis for Normal Cardiac Rhythm. Curr Cardiol Rev 2025; 21:1-18. [PMID: 39301907 PMCID: PMC12060914 DOI: 10.2174/011573403x299868240904120621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 09/22/2024] Open
Abstract
Current arrhythmia therapies such as ion channel blockers, catheter ablation, or implantable cardioverter defibrillators have limitations and side effects, and given the proarrhythmic risk associated with conventional, ion channel-targeted anti-arrhythmic drug therapies, a new approach to arrhythmias may be warranted. Measuring and adjusting the level of specific ions that impact heart rhythm can be a simple and low-complication strategy for preventing or treating specific arrhythmias. In addition, new medicines targeting these ions may effectively treat arrhythmias. Numerous studies have shown that intracellular and extracellular zinc concentrations impact the heart's electrical activity. Zinc has been observed to affect cardiac rhythm through a range of mechanisms. These mechanisms encompass the modulation of sodium, calcium, and potassium ion channels, as well as the influence on beta-adrenergic receptors and the enzyme adenylate cyclase. Moreover, zinc can either counteract or induce oxidative stress, hinder calmodulin or the enzyme Ca (2+)/calmodulin-dependent protein kinase II (CaMKII), regulate cellular ATP levels, affect the processes of aging and autophagy, influence calcium ryanodine receptors, and control cellular inflammation. Additionally, zinc has been implicated in the modulation of circadian rhythm. In all the aforementioned cases, the effect of zinc on heart rhythm is largely influenced by its intracellular and extracellular concentrations. Optimal zinc levels are essential for maintaining a normal heart rhythm, while imbalances-whether deficiencies or excesses-can disrupt electrical activity and contribute to arrhythmias.
Collapse
Affiliation(s)
- Pejman Kokhabi
- School of Advanced Medical Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Reza Mollazadeh
- Department of Cardiology, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Fatemeh Hejazi
- School of Advanced Medical Sciences, Tonekabon Medical Branch, Islamic Azad University, Tonekabon, Iran
| | - Aida Hossein Nezhad
- School of Advanced Medical Sciences, Tonekabon Medical Branch, Islamic Azad University, Tonekabon, Iran
| | - Hamidreza Pazoki-Toroudi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zhong M, Karma A. Role of ryanodine receptor cooperativity in Ca 2+-wave-mediated triggered activity in cardiomyocytes. J Physiol 2024; 602:6745-6787. [PMID: 39565684 DOI: 10.1113/jp286145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/23/2024] [Indexed: 11/22/2024] Open
Abstract
Ca2+ waves are known to trigger delayed after-depolarizations that can cause malignant cardiac arrhythmias. However, modelling Ca2+ waves using physiologically realistic models has remained a major challenge. Existing models with low Ca2+ sensitivity of ryanodine receptors (RyRs) necessitate large release currents, leading to an unrealistically large Ca2+ transient amplitude incompatible with the experimental observations. Consequently, current physiologically detailed models of delayed after-depolarizations resort to unrealistic cell architectures to produce Ca2+ waves with a normal Ca2+ transient amplitude. Here, we address these challenges by incorporating RyR cooperativity into a physiologically detailed model with a realistic cell architecture. We represent RyR cooperativity phenomenologically through a Hill coefficient within the sigmoid function of RyR open probability. Simulations in permeabilized myocytes with high Ca2+ sensitivity reveal that a sufficiently large Hill coefficient is required for Ca2+ wave propagation via the fire-diffuse-fire mechanism. In intact myocytes, propagating Ca2+ waves can occur only within an intermediate Hill coefficient range. Within this range, the spark rate is neither too low, enabling Ca2+ wave propagation, nor too high, allowing for the maintenance of a high sarcoplasmic reticulum load during diastole of the action potential. Moreover, this model successfully replicates other experimentally observed manifestations of Ca2+-wave-mediated triggered activity, including phase 2 and phase 3 early after-depolarizations and high-frequency voltage-Ca2+ oscillations. These oscillations feature an elevated take-off potential with depolarization mediated by the L-type Ca2+ current. The model also sheds light on the roles of luminal gating of RyRs and the mobile buffer ATP in the genesis of these arrhythmogenic phenomena. KEY POINTS: Existing mathematical models of Ca2+ waves use an excessively large Ca2+-release current or unrealistic diffusive coupling between release units. Our physiologically realistic model, using a Hill coefficient in the ryanodine receptor (RyR) gating function to represent RyR cooperativity, addresses these limitations and generates organized Ca2+ waves at Hill coefficients ranging from ∼5 to 10, as opposed to the traditional value of 2. This range of Hill coefficients gives a spark rate neither too low, thereby enabling Ca2+ wave propagation, nor too high, allowing for the maintenance of a high sarcoplasmic reticulum load during the plateau phase of the action potential. Additionally, the model generates Ca2+-wave-mediated phase 2 and phase 3 early after-depolarizations, and coupled membrane voltage with Ca2+ oscillations mediated by the L-type Ca2+ current. This study suggests that pharmacologically targeting RyR cooperativity could be a promising strategy for treating cardiac arrhythmias linked to Ca2+-wave-mediated triggered activity.
Collapse
Affiliation(s)
- Mingwang Zhong
- Physics Department and Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, MA, USA
| | - Alain Karma
- Physics Department and Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, MA, USA
| |
Collapse
|
5
|
Fernandez-Falgueras A, Coll M, Iglesias A, Tiron C, Campuzano O, Brugada R. The importance of variant reinterpretation in inherited cardiovascular diseases: Establishing the optimal timeframe. PLoS One 2024; 19:e0297914. [PMID: 38691546 PMCID: PMC11062523 DOI: 10.1371/journal.pone.0297914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 05/03/2024] Open
Abstract
Inherited cardiovascular diseases are rare diseases that are difficult to diagnose by non-expert professionals. Genetic analyses play a key role in the diagnosis of these diseases, in which the identification of a pathogenic genetic variant is often a diagnostic criterion. Therefore, genetic variant classification and routine reinterpretation as data become available represent one of the main challenges associated with genetic analyses. Using the genetic variants identified in an inherited cardiovascular diseases unit during a 10-year period, the objectives of this study were: 1) to evaluate the impact of genetic variant reinterpretation, 2) to compare the reclassification rates between different cohorts of cardiac channelopathies and cardiomyopathies, and 3) to establish the most appropriate periodicity for genetic variant reinterpretation. All the evaluated cohorts (full cohort of inherited cardiovascular diseases, cardiomyopathies, cardiac channelopathies, hypertrophic cardiomyopathy, dilated cardiomyopathy, arrhythmogenic cardiomyopathy, Brugada syndrome, long QT syndrome and catecholaminergic polymorphic ventricular tachycardia) showed reclassification rates above 25%, showing even higher reclassification rates when there is definitive evidence of the association between the gene and the disease in the cardiac channelopathies. Evaluation of genetic variant reclassification rates based on the year of the initial classification showed that the most appropriate frequency for the reinterpretation would be 2 years, with the possibility of a more frequent reinterpretation if deemed convenient. To keep genetic variant classifications up to date, genetic counsellors play a critical role in the reinterpretation process, providing clinical evidence that genetic diagnostic laboratories often do not have at their disposal and communicating changes in classification and the potential implications of these reclassifications to patients and relatives.
Collapse
Affiliation(s)
- Anna Fernandez-Falgueras
- Department of Cardiology, Hospital Trueta, Girona, Spain
- Molecular Diagnostics and Personalized Medicine Unit, Clinical Laboratory, Hospital Trueta, Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Monica Coll
- Molecular Diagnostics and Personalized Medicine Unit, Clinical Laboratory, Hospital Trueta, Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Anna Iglesias
- Molecular Diagnostics and Personalized Medicine Unit, Clinical Laboratory, Hospital Trueta, Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Coloma Tiron
- Department of Cardiology, Hospital Trueta, Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
| | - Ramon Brugada
- Department of Cardiology, Hospital Trueta, Girona, Spain
- Molecular Diagnostics and Personalized Medicine Unit, Clinical Laboratory, Hospital Trueta, Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
| |
Collapse
|
6
|
Thanassoulas A, Theodoridou M, Barrak L, Riguene E, Alyaarabi T, Elrayess MA, Lai FA, Nomikos M. Arrhythmia-Associated Calmodulin E105A Mutation Alters the Binding Affinity of CaM to a Ryanodine Receptor 2 CaM-Binding Pocket. Int J Mol Sci 2023; 24:15630. [PMID: 37958614 PMCID: PMC10649572 DOI: 10.3390/ijms242115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Calmodulin (CaM) is a small, multifunctional calcium (Ca2+)-binding sensor that binds and regulates the open probability of cardiac ryanodine receptor 2 (RyR2) at both low and high cytosolic Ca2+ concentrations. Recent isothermal titration calorimetry (ITC) studies of a number of peptides that correspond to different regions of human RyR2 showed that two regions of human RyR2 (3584-3602aa and 4255-4271aa) bind with high affinity to CaM, suggesting that these two regions might contribute to a putative RyR2 intra-subunit CaM-binding pocket. Moreover, a previously characterized de novo long QT syndrome (LQTS)-associated missense CaM mutation (E105A) which was identified in a 6-year-old boy, who experienced an aborted first episode of cardiac arrest revealed that this mutation dysregulates normal cardiac function in zebrafish by a complex mechanism that involves alterations in both CaM-Ca2+ and CaM-RyR2 interactions. Herein, to gain further insight into how the CaM E105A mutation leads to severe cardiac arrhythmia, we generated large quantities of recombinant CaMWT and CaME105A proteins. We then performed ITC experiments to investigate and compare the interactions of CaMWT and CaME105A mutant protein with two synthetic peptides that correspond to the two aforementioned human RyR2 regions, which we have proposed to contribute to the RyR2 CaM-binding pocket. Our data reveal that the E105A mutation has a significant negative effect on the interaction of CaM with both RyR2 regions in the presence and absence of Ca2+, highlighting the potential contribution of these two human RyR2 regions to an RyR2 CaM-binding pocket, which may be essential for physiological CaM/RyR2 association and thus channel regulation.
Collapse
Affiliation(s)
- Angelos Thanassoulas
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Maria Theodoridou
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Laila Barrak
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Emna Riguene
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Tamader Alyaarabi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Mohamed A. Elrayess
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - F. Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| |
Collapse
|
7
|
Walweel K, Beard N, van Helden DF, Laver DR. Dantrolene inhibition of ryanodine channels (RyR2) in artificial lipid bilayers depends on FKBP12.6. J Gen Physiol 2023; 155:e202213277. [PMID: 37279522 PMCID: PMC10244881 DOI: 10.1085/jgp.202213277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/18/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Dantrolene is a neutral hydantoin that is clinically used as a skeletal muscle relaxant to prevent overactivation of the skeletal muscle calcium release channel (RyR1) in response to volatile anesthetics. Dantrolene has aroused considerable recent interest as a lead compound for stabilizing calcium release due to overactive cardiac calcium release channels (RyR2) in heart failure. Previously, we found that dantrolene produces up to a 45% inhibition RyR2 with an IC50 of 160 nM, and that this inhibition requires the physiological association between RyR2 and CaM. In this study, we tested the hypothesis that dantrolene inhibition of RyR2 in the presence of CaM is modulated by RyR2 phosphorylation at S2808 and S2814. Phosphorylation was altered by incubations with either exogenous phosphatase (PP1) or kinases; PKA to phosphorylate S2808 or endogenous CaMKII to phosphorylate S2814. We found that PKA caused selective dissociation of FKBP12.6 from the RyR2 complex and a loss of dantrolene inhibition. Rapamycin-induced FKBP12.6 dissociation from RyR2 also resulted in the loss of dantrolene inhibition. Subsequent incubations of RyR2 with exogenous FKBP12.6 reinstated dantrolene inhibition. These findings indicate that the inhibitory action of dantrolene on RyR2 depends on RyR2 association with FKBP12.6 in addition to CaM as previously found.
Collapse
Affiliation(s)
- Kafa Walweel
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, Australia
| | - Nicole Beard
- Faculty of Science and Technology, University of Canberra, Bruce, Australia
| | - Dirk F. van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, Australia
| | - Derek R. Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, Australia
| |
Collapse
|
8
|
Molecular Aspects Implicated in Dantrolene Selectivity with Respect to Ryanodine Receptor Isoforms. Int J Mol Sci 2023; 24:ijms24065409. [PMID: 36982484 PMCID: PMC10049336 DOI: 10.3390/ijms24065409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Dantrolene is an intra-cellularly acting skeletal muscle relaxant used for the treatment of the rare genetic disorder, malignant hyperthermia (MH). In most cases, MH susceptibility is caused by dysfunction of the skeletal ryanodine receptor (RyR1) harboring one of nearly 230 single-point MH mutations. The therapeutic effect of dantrolene is the result of a direct inhibitory action on the RyR1 channel, thus suppressing aberrant Ca2+ release from the sarcoplasmic reticulum. Despite the almost identical dantrolene-binding sequence exits in all three mammalian RyR isoforms, dantrolene appears to be an isoform-selective inhibitor. Whereas RyR1 and RyR3 channels are competent to bind dantrolene, the RyR2 channel, predominantly expressed in the heart, is unresponsive. However, a large body of evidence suggests that the RyR2 channel becomes sensitive to dantrolene-mediated inhibition under certain pathological conditions. Although a consistent picture of the dantrolene effect emerges from in vivo studies, in vitro results are often contradictory. Hence, our goal in this perspective is to provide the best possible clues to the molecular mechanism of dantrolene’s action on RyR isoforms by identifying and discussing potential sources of conflicting results, mainly coming from cell-free experiments. Moreover, we propose that, specifically in the case of the RyR2 channel, its phosphorylation could be implicated in acquiring the channel responsiveness to dantrolene inhibition, interpreting functional findings in the structural context.
Collapse
|
9
|
Greene D, Barton M, Luchko T, Shiferaw Y. Molecular Dynamics Simulations of the Cardiac Ryanodine Receptor Type 2 (RyR2) Gating Mechanism. J Phys Chem B 2022; 126:9790-9809. [PMID: 36384028 PMCID: PMC9720719 DOI: 10.1021/acs.jpcb.2c03031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the cardiac ryanodine receptor type 2 (RyR2) have been linked to fatal cardiac arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT). While many CPVT mutations are associated with an increase in Ca2+ leak from the sarcoplasmic reticulum, the mechanistic details of RyR2 channel gating are not well understood, and this poses a barrier in the development of new pharmacological treatments. To address this, we explore the gating mechanism of the RyR2 using molecular dynamics (MD) simulations. We test the effect of changing the conformation of certain structural elements by constructing chimera RyR2 structures that are derived from the currently available closed and open cryo-electron microscopy (cryo-EM) structures, and we then use MD simulations to relax the system. Our key finding is that the position of the S4-S5 linker (S4S5L) on a single subunit can determine whether the channel as a whole is open or closed. Our analysis reveals that the position of the S4S5L is regulated by interactions with the U-motif on the same subunit and with the S6 helix on an adjacent subunit. We find that, in general, channel gating is crucially dependent on high percent occupancy interactions between adjacent subunits. We compare our interaction analysis to 49 CPVT1 mutations in the literature and find that 73% appear near a high percent occupancy interaction between adjacent subunits. This suggests that disruption of cooperative, high percent occupancy interactions between adjacent subunits is a primary cause of channel leak and CPVT in mutant RyR2 channels.
Collapse
|
10
|
Stutzman MJ, Kim CSJ, Tester DJ, Hamrick SK, Dotzler SM, Giudicessi JR, Miotto MC, Gc JB, Frank J, Marks AR, Ackerman MJ. Characterization of N-terminal RYR2 variants outside CPVT1 hotspot regions using patient iPSCs reveal pathogenesis and therapeutic potential. Stem Cell Reports 2022; 17:2023-2036. [PMID: 35931078 PMCID: PMC9481874 DOI: 10.1016/j.stemcr.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a cardiac channelopathy causing ventricular tachycardia following adrenergic stimulation. Pathogenic variants in RYR2-encoded ryanodine receptor 2 (RYR2) cause CPVT1 and cluster into domains I–IV, with the most N-terminal domain involving residues 77–466. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated for RYR2-F13L, -L14P, -R15P, and -R176Q variants. Isogenic control iPSCs were generated using CRISPR-Cas9/PiggyBac. Fluo-4 Ca2+ imaging assessed Ca2+ handling with/without isoproterenol (ISO), nadolol (Nad), and flecainide (Flec) treatment. CPVT1 iPSC-CMs displayed increased Ca2+ sparking and Ca2+ transient amplitude following ISO compared with control. Combined Nad treatment/ISO stimulation reduced Ca2+ amplitude and sparking in variant iPSC-CMs. Molecular dynamic simulations visualized the structural role of these variants. We provide the first functional evidence that these most proximal N-terminal localizing variants alter calcium handling similar to CPVT1. These variants are located at the N-terminal domain and the central domain interface and could destabilize the RYR2 channel promoting Ca2+ leak-triggered arrhythmias. Extreme N-terminal RyR2 variants alter calcium handling similar to classical CPVT1 Abnormal Ca2+ kinetics as well as uncontrolled Ca2+ release underlies CPVT1 In vitro arrhythmia studies with iPSCs show nadolol is an effective treatment In silico 3D modeling of RYR2 revealed pathogenicity of N-terminal variants
Collapse
Affiliation(s)
- Marissa J Stutzman
- Department of Molecular Pharmacology and Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - C S John Kim
- Department of Molecular Pharmacology and Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - David J Tester
- Department of Molecular Pharmacology and Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA; Department of Cardiovascular Medicine/Division of Heart Rhythm Services; Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN 55905, USA
| | - Samantha K Hamrick
- Department of Molecular Pharmacology and Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven M Dotzler
- Department of Molecular Pharmacology and Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - John R Giudicessi
- Department of Molecular Pharmacology and Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA; Department of Cardiovascular Medicine/Division of Heart Rhythm Services; Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN 55905, USA
| | - Marco C Miotto
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jeevan B Gc
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York 10032, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York 10032, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA; Department of Cardiovascular Medicine/Division of Heart Rhythm Services; Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN 55905, USA; Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Shimamoto K, Ohno S, Kato K, Takayama K, Sonoda K, Fukuyama M, Makiyama T, Okamura S, Asakura K, Imanishi N, Kato Y, Sakaguchi H, Kamakura T, Wada M, Yamagata K, Ishibashi K, Inoue Y, Miyamoto K, Nagase S, Kusano K, Horie M, Aiba T. Impact of cascade screening for catecholaminergic polymorphic ventricular tachycardia type 1. Heart 2022; 108:840-847. [PMID: 35135837 PMCID: PMC9120385 DOI: 10.1136/heartjnl-2021-320220] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/30/2021] [Indexed: 11/06/2022] Open
Abstract
Objective Human cardiac ryanodine receptor 2 (RYR2) shows autosomal-dominant inheritance in catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1); however, de novo variants have been observed in sporadic cases. Here, we investigated CPVT1-related RYR2 variant inheritance and its clinical significance between familial and de novo cases. Methods We enrolled 82 independent CPVT1 probands (median age: 10.0 (7.0–13.0) years; 45 male) carrying the RYR2 variants and whose biological origin could be confirmed by parental genetic analysis: assured familial inheritance (familial group: n=24) and de novo variants (de novo group: n=58). We examined the clinical characteristics of the probands and their family members carrying the RYR2 variants. Results In the de novo group, the RYR2 variants were more likely located in the C-terminus domain and less likely in the N-terminus domain than those in the familial group. The cumulative incidence of the first cardiac events (syncope and cardiac arrest (CA) or CA only) of the probands at the age of 5 and 10 years was higher in the de novo group than in the familial group. Nearly half of the probands in both groups experienced CA events before diagnosis. Only 37.5% of their genotype-positive parents had symptoms; however, at least 66.7% of the genotype-positive siblings were symptomatic. Conclusions CPVT1 probands harbouring de novo RYR2 variants showed an earlier onset of symptoms than those with assured familial inheritance. Cascade screening may enable early diagnosis, risk stratification and prophylactic therapeutic intervention to prevent sudden cardiac death of probands and potential genotype-positive family members.
Collapse
Affiliation(s)
- Keiko Shimamoto
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Koichi Kato
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Koichiro Takayama
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Keiko Sonoda
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Megumi Fukuyama
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satomi Okamura
- Department of Data Science, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Koko Asakura
- Department of Data Science, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Noriaki Imanishi
- Department of Genomic Care, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshiaki Kato
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Heima Sakaguchi
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tsukasa Kamakura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Mitsuru Wada
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kenichiro Yamagata
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kohei Ishibashi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yuko Inoue
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Koji Miyamoto
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Satoshi Nagase
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan .,Department of Clinical Laboratory and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
12
|
Hamilton S, Terentyev D. RyR2 Gain-of-Function and Not So Sudden Cardiac Death. Circ Res 2021; 129:417-419. [PMID: 34292783 DOI: 10.1161/circresaha.121.319651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, The Ohio State University, Columbus. Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus. Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus
| |
Collapse
|
13
|
Blancard M, Touat-Hamici Z, Aguilar-Sanchez Y, Yin L, Vaksmann G, Roux-Buisson N, Fressart V, Denjoy I, Klug D, Neyroud N, Ramos-Franco J, Gomez AM, Guicheney P. A Type 2 Ryanodine Receptor Variant in the Helical Domain 2 Associated with an Impairment of the Adrenergic Response. J Pers Med 2021; 11:579. [PMID: 34202968 PMCID: PMC8235491 DOI: 10.3390/jpm11060579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is triggered by exercise or acute emotion in patients with normal resting electrocardiogram. The major disease-causing gene is RYR2, encoding the cardiac ryanodine receptor (RyR2). We report a novel RYR2 variant, p.Asp3291Val, outside the four CPVT mutation hotspots, in three CPVT families with numerous sudden deaths. This missense variant was first identified in a four-generation family, where eight sudden cardiac deaths occurred before the age of 30 in the context of adrenergic stress. All affected subjects harbored at least one copy of the RYR2 variant. Three affected sisters were homozygous for the variant. The same variant was found in two additional CPVT families. It is located in the helical domain 2 and changes a negatively charged amino acid widely conserved through evolution. Functional analysis of D3291V channels revealed a normal response to cytosolic Ca2+, a markedly reduced luminal Ca2+ sensitivity and, more importantly, an absence of normal response to 8-bromo-cAMP and forskolin stimulation in both transfected HEK293 and HL-1 cells. Our data support that the D3291V-RyR2 is a loss-of-function RyR2 variant responsible for an atypical form of CPVT inducing a mild dysfunction in basal conditions but leading potentially to fatal events through its unresponsiveness to adrenergic stimulation.
Collapse
Affiliation(s)
- Malorie Blancard
- Inserm, UMRS 1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, 75013 Paris, France; (Z.T.-H.); (N.N.); (P.G.)
| | - Zahia Touat-Hamici
- Inserm, UMRS 1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, 75013 Paris, France; (Z.T.-H.); (N.N.); (P.G.)
| | - Yuriana Aguilar-Sanchez
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA; (Y.A.-S.); (J.R.-F.)
| | - Liheng Yin
- Inserm, UMRS 1180, Université Paris Saclay, 92290 Châtenay-Malabry, France; (L.Y.); (A.M.G.)
| | - Guy Vaksmann
- Service de Cardiologie Pédiatrique, Hôpital Privé de la Louvière, 59042 Lille, France;
| | | | | | - Isabelle Denjoy
- Département de Cardiologie, Centre de Référence des Maladies Cardiaques Héréditaires, Hôpital Bichat, AP-HP, 75018 Paris, France;
| | - Didier Klug
- Hôpital Cardiologique, CHRU de Lille, 59000 Lille, France;
| | - Nathalie Neyroud
- Inserm, UMRS 1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, 75013 Paris, France; (Z.T.-H.); (N.N.); (P.G.)
| | - Josefina Ramos-Franco
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA; (Y.A.-S.); (J.R.-F.)
| | - Ana Maria Gomez
- Inserm, UMRS 1180, Université Paris Saclay, 92290 Châtenay-Malabry, France; (L.Y.); (A.M.G.)
| | - Pascale Guicheney
- Inserm, UMRS 1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, 75013 Paris, France; (Z.T.-H.); (N.N.); (P.G.)
| |
Collapse
|
14
|
Yin L, Zahradnikova A, Rizzetto R, Boncompagni S, Rabesahala de Meritens C, Zhang Y, Joanne P, Marqués-Sulé E, Aguilar-Sánchez Y, Fernández-Tenorio M, Villejoubert O, Li L, Wang YY, Mateo P, Nicolas V, Gerbaud P, Lai FA, Perrier R, Álvarez JL, Niggli E, Valdivia HH, Valdivia CR, Ramos-Franco J, Zorio E, Zissimopoulos S, Protasi F, Benitah JP, Gómez AM. Impaired Binding to Junctophilin-2 and Nanostructural Alteration in CPVT Mutation. Circ Res 2021; 129:e35-e52. [PMID: 34111951 DOI: 10.1161/circresaha.121.319094] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Liheng Yin
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Alexandra Zahradnikova
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Riccardo Rizzetto
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Simona Boncompagni
- CAST, Department of Neuroscience, Imaging and Clinical Sciences (DNICS), Medicine and Ageing Sciences (DMSI), University Gabriele d'Annunzio, Chieti, Italy (S.B., F.P.)
| | | | - Yadan Zhang
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK (C.R.d.M., Y.Z., S.Z.)
| | - Pierre Joanne
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Elena Marqués-Sulé
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.).,Physiotherapy, University of Valencia, Valencia, Spain (E.M.-S.)
| | - Yuriana Aguilar-Sánchez
- Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA (Y.A.-S., J.R.-F.)
| | | | - Olivier Villejoubert
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Linwei Li
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Yue Yi Wang
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Philippe Mateo
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | | | - Pascale Gerbaud
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - F Anthony Lai
- College of Medicine, Biomedical & Pharmaceutical Research Unit, QU Health, & Biomedical Research Centre, Qatar University, Doha, Qatar (F.A.L.)
| | | | - Julio L Álvarez
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.).,Institute of Cardiology, Havana, Cuba (J.L.A.)
| | - Ernst Niggli
- Physiology, University of Bern, Bern, Switzerland (M.F.-T., E.N.)
| | - Héctor H Valdivia
- Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin (H.H.V., C.R.V.)
| | - Carmen R Valdivia
- Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin (H.H.V., C.R.V.)
| | - Josefina Ramos-Franco
- Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA (Y.A.-S., J.R.-F.)
| | - Esther Zorio
- Cardiology Department and Unidad de Cardiopatías Familiares, Muerte Súbita y Mecanismos de Enfermedad (CaFaMuSMe), Hospital Universitario y Politécnico La Fe and Instituto de Investigación Sanitaria La Fe, Valencia, Spain (E.Z.).,Center for Biomedical Network Research on Cardiovascular diseases (CIBERCV), Madrid, Spain (E.Z.)
| | - Spyros Zissimopoulos
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK (C.R.d.M., Y.Z., S.Z.)
| | - Feliciano Protasi
- CAST, Department of Neuroscience, Imaging and Clinical Sciences (DNICS), Medicine and Ageing Sciences (DMSI), University Gabriele d'Annunzio, Chieti, Italy (S.B., F.P.)
| | - Jean-Pierre Benitah
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Ana M Gómez
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| |
Collapse
|
15
|
Identification of loss-of-function RyR2 mutations associated with idiopathic ventricular fibrillation and sudden death. Biosci Rep 2021; 41:228220. [PMID: 33825858 PMCID: PMC8062958 DOI: 10.1042/bsr20210209] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
Mutations in cardiac ryanodine receptor (RyR2) are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). Most CPVT RyR2 mutations characterized are gain-of-function (GOF), indicating enhanced RyR2 function as a major cause of CPVT. Loss-of-function (LOF) RyR2 mutations have also been identified and are linked to a distinct entity of cardiac arrhythmia termed RyR2 Ca2+ release deficiency syndrome (CRDS). Exercise stress testing (EST) is routinely used to diagnose CPVT, but it is ineffective for CRDS. There is currently no effective diagnostic tool for CRDS in humans. An alternative strategy to assess the risk for CRDS is to directly determine the functional impact of the associated RyR2 mutations. To this end, we have functionally screened 18 RyR2 mutations that are associated with idiopathic ventricular fibrillation (IVF) or sudden death. We found two additional RyR2 LOF mutations E4146K and G4935R. The E4146K mutation markedly suppressed caffeine activation of RyR2 and abolished store overload induced Ca2+ release (SOICR) in human embryonic kidney 293 (HEK293) cells. E4146K also severely reduced cytosolic Ca2+ activation and abolished luminal Ca2+ activation of single RyR2 channels. The G4935R mutation completely abolished caffeine activation of and [3H]ryanodine binding to RyR2. Co-expression studies showed that the G4935R mutation exerted dominant negative impact on the RyR2 wildtype (WT) channel. Interestingly, the RyR2-G4935R mutant carrier had a negative EST, and the E4146K carrier had a family history of sudden death during sleep, which are different from phenotypes of typical CPVT. Thus, our data further support the link between RyR2 LOF and a new entity of cardiac arrhythmias distinct from CPVT.
Collapse
|
16
|
Maurocalcin and its analog MCaE12A facilitate Ca2+ mobilization in cardiomyocytes. Biochem J 2020; 477:3985-3999. [PMID: 33034621 DOI: 10.1042/bcj20200206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022]
Abstract
Ryanodine receptors are responsible for the massive release of calcium from the sarcoplasmic reticulum that triggers heart muscle contraction. Maurocalcin (MCa) is a 33 amino acid peptide toxin known to target skeletal ryanodine receptor. We investigated the effect of MCa and its analog MCaE12A on isolated cardiac ryanodine receptor (RyR2), and showed that they increase RyR2 sensitivity to cytoplasmic calcium concentrations promoting channel opening and decreases its sensitivity to inhibiting calcium concentrations. By measuring intracellular Ca2+ transients, calcium sparks and contraction on cardiomyocytes isolated from adult rats or differentiated from human-induced pluripotent stem cells, we demonstrated that MCaE12A passively penetrates cardiomyocytes and promotes the abnormal opening of RyR2. We also investigated the effect of MCaE12A on the pacemaker activity of sinus node cells from different mice lines and showed that, MCaE12A improves pacemaker activity of sinus node cells obtained from mice lacking L-type Cav1.3 channel, or following selective pharmacologic inhibition of calcium influx via Cav1.3. Our results identify MCaE12A as a high-affinity modulator of RyR2 and make it an important tool for RyR2 structure-to-function studies as well as for manipulating Ca2+ homeostasis and dynamic of cardiac cells.
Collapse
|
17
|
Bauerová-Hlinková V, Hajdúchová D, Bauer JA. Structure and Function of the Human Ryanodine Receptors and Their Association with Myopathies-Present State, Challenges, and Perspectives. Molecules 2020; 25:molecules25184040. [PMID: 32899693 PMCID: PMC7570887 DOI: 10.3390/molecules25184040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 01/28/2023] Open
Abstract
Cardiac arrhythmias are serious, life-threatening diseases associated with the dysregulation of Ca2+ influx into the cytoplasm of cardiomyocytes. This dysregulation often arises from dysfunction of ryanodine receptor 2 (RyR2), the principal Ca2+ release channel. Dysfunction of RyR1, the skeletal muscle isoform, also results in less severe, but also potentially life-threatening syndromes. The RYR2 and RYR1 genes have been found to harbor three main mutation “hot spots”, where mutations change the channel structure, its interdomain interface properties, its interactions with its binding partners, or its dynamics. In all cases, the result is a defective release of Ca2+ ions from the sarcoplasmic reticulum into the myocyte cytoplasm. Here, we provide an overview of the most frequent diseases resulting from mutations to RyR1 and RyR2, briefly review some of the recent experimental structural work on these two molecules, detail some of the computational work describing their dynamics, and summarize the known changes to the structure and function of these receptors with particular emphasis on their N-terminal, central, and channel domains.
Collapse
|
18
|
Ashna A, van Helden DF, Dos Remedios C, Molenaar P, Laver DR. Phenytoin Reduces Activity of Cardiac Ryanodine Receptor 2; A Potential Mechanism for Its Cardioprotective Action. Mol Pharmacol 2020; 97:250-258. [PMID: 32015008 DOI: 10.1124/mol.119.117721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Phenytoin is a hydantoin derivative that is used clinically for the treatment of epilepsy and has been reported to have antiarrhythmic actions on the heart. In a failing heart, the elevated diastolic Ca2+ leak from the sarcoplasmic reticulum can be normalized by the cardiac ryanodine receptor 2 (RyR2) inhibitor, dantrolene, without inhibiting Ca2+ release during systole or affecting Ca2+ release in normal healthy hearts. Unfortunately, dantrolene is hepatotoxic and unsuitable for chronic long-term administration. Because phenytoin and dantrolene belong to the hydantoin class of compounds, we test the hypothesis that dantrolene and phenytoin have similar inhibitory effects on RyR2 using a single-channel recording of RyR2 activity in artificial lipid bilayers. Phenytoin produced a reversible inhibition of RyR2 channels from sheep and human failing hearts. It followed a hyperbolic dose response with maximal inhibition of ∼50%, Hill coefficient ∼1, and IC50 ranging from 10 to 20 µM. It caused inhibition at diastolic cytoplasmic [Ca2+] but not at Ca2+ levels in the dyadic cleft during systole. Notably, phenytoin inhibits RyR2 from failing human heart but not from healthy heart, indicating that phenytoin may selectively target defective RyR2 channels in humans. We conclude that phenytoin could effectively inhibit RyR2-mediated release of Ca2+ in a manner paralleling that of dantrolene. Moreover, the IC50 of phenytoin in RyR2 is at least threefold lower than for other ion channels and clinically used serum levels, pointing to phenytoin as a more human-safe alternative to dantrolene for therapies against heart failure and cardiac arrythmias. SIGNIFICANCE STATEMENT: We show that phenytoin, a Na channel blocker used clinically for treatment of epilepsy, is a diastolic inhibitor of cardiac calcium release channels [cardiac ryanodine receptor 2 (RyR2)] at doses threefold lower than its current therapeutic levels. Phenytoin inhibits RyR2 from failing human heart and not from healthy heart, indicating that phenytoin may selectively target defective RyR2 channels in humans and pointing to phenytoin as a more human-safe alternative to dantrolene for therapies against heart failure and cardiac arrhythmias.
Collapse
Affiliation(s)
- A Ashna
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (A.A., D.F.v.H., D.R.L.); Bosch Institute, Discipline of Anatomy, University of Sydney, Sydney, New South Wales, Australia (C.d.R.); School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (P.M.); and Northside Clinical School of Medicine, University of Queensland, Cardio-vascular Molecular & Therapeutics Translational Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia (P.M.)
| | - D F van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (A.A., D.F.v.H., D.R.L.); Bosch Institute, Discipline of Anatomy, University of Sydney, Sydney, New South Wales, Australia (C.d.R.); School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (P.M.); and Northside Clinical School of Medicine, University of Queensland, Cardio-vascular Molecular & Therapeutics Translational Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia (P.M.)
| | - C Dos Remedios
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (A.A., D.F.v.H., D.R.L.); Bosch Institute, Discipline of Anatomy, University of Sydney, Sydney, New South Wales, Australia (C.d.R.); School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (P.M.); and Northside Clinical School of Medicine, University of Queensland, Cardio-vascular Molecular & Therapeutics Translational Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia (P.M.)
| | - P Molenaar
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (A.A., D.F.v.H., D.R.L.); Bosch Institute, Discipline of Anatomy, University of Sydney, Sydney, New South Wales, Australia (C.d.R.); School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (P.M.); and Northside Clinical School of Medicine, University of Queensland, Cardio-vascular Molecular & Therapeutics Translational Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia (P.M.)
| | - D R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (A.A., D.F.v.H., D.R.L.); Bosch Institute, Discipline of Anatomy, University of Sydney, Sydney, New South Wales, Australia (C.d.R.); School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (P.M.); and Northside Clinical School of Medicine, University of Queensland, Cardio-vascular Molecular & Therapeutics Translational Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia (P.M.)
| |
Collapse
|
19
|
Olubando D, Hopton C, Eden J, Caswell R, Lowri Thomas N, Roberts SA, Morris-Rosendahl D, Venetucci L, Newman WG. Classification and correlation of RYR2 missense variants in individuals with catecholaminergic polymorphic ventricular tachycardia reveals phenotypic relationships. J Hum Genet 2020; 65:531-539. [PMID: 32152366 DOI: 10.1038/s10038-020-0738-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 11/09/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is predominantly caused by heterozygous missense variants in the cardiac ryanodine receptor, RYR2. However, many RYR2 missense variants are classified as variants of uncertain significance (VUS). We systematically re-evaluated all RYR2 variants in healthy individuals and those with CPVT or arrhythmia using the 2015 American College of Medical Genomics guidelines. RYR2 variants were identified by the NW Genomic Laboratory Hub, from the published literature and databases of sequence variants. Each variant was assessed based on minor allele frequencies, in silico prediction tools and appraisal of functional studies and classified according to the ACMG-AMP guidelines. Phenotype data was collated where available. Of the 326 identified RYR2 missense variants, 55 (16.9%), previously disease-associated variants were reclassified as benign. Application of the gnomAD database of >140,000 controls allowed reclassification of 11 variants more than the ExAC database. CPVT-associated RYR2 variants clustered predominantly between amino acid positions 3949-4332 and 4867-4967 as well as the RyR and IP3R homology-associated and ion transport domains (p < 0.005). CPVT-associated RYR2 variants occurred at more conserved amino acid positions compared with controls, and variants associated with sudden death had higher conservation scores (p < 0.005). There were five potentially pathogenic RYR2 variants associated with sudden death during sleep which were located almost exclusively in the C-terminus of the protein. In conclusion, control sequence databases facilitate reclassification of RYR2 variants but the majority remain as VUS. Notably, pathogenic variants in RYR2 are associated with death in sleep.
Collapse
Affiliation(s)
- Damilola Olubando
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, M13 9WL, UK.,Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, UK
| | - Claire Hopton
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, M13 9WL, UK.,Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, UK
| | - James Eden
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, M13 9WL, UK
| | - Richard Caswell
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - N Lowri Thomas
- School of Pharmacy and Pharmaceutical Sciences, Redwood Building, University of Cardiff, Cardiff, CF10 3NB, UK
| | - Stephen A Roberts
- Division of Population Health, Health Services Research and Primary Care, University of Manchester, Manchester, UK
| | - Deborah Morris-Rosendahl
- Clinical Genetics and Genomics, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| | - Luigi Venetucci
- Manchester Heart Centre, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK.,Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, UK
| | - William G Newman
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, M13 9WL, UK. .,Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, UK. .,Peking University Health Sciences Center, Beijing, PR China.
| |
Collapse
|
20
|
Kistamás K, Veress R, Horváth B, Bányász T, Nánási PP, Eisner DA. Calcium Handling Defects and Cardiac Arrhythmia Syndromes. Front Pharmacol 2020; 11:72. [PMID: 32161540 PMCID: PMC7052815 DOI: 10.3389/fphar.2020.00072] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Calcium ions (Ca2+) play a major role in the cardiac excitation-contraction coupling. Intracellular Ca2+ concentration increases during systole and falls in diastole thereby determining cardiac contraction and relaxation. Normal cardiac function also requires perfect organization of the ion currents at the cellular level to drive action potentials and to maintain action potential propagation and electrical homogeneity at the tissue level. Any imbalance in Ca2+ homeostasis of a cardiac myocyte can lead to electrical disturbances. This review aims to discuss cardiac physiology and pathophysiology from the elementary membrane processes that can cause the electrical instability of the ventricular myocytes through intracellular Ca2+ handling maladies to inherited and acquired arrhythmias. Finally, the paper will discuss the current therapeutic approaches targeting cardiac arrhythmias.
Collapse
Affiliation(s)
- Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Roland Veress
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dental Physiology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - David A Eisner
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators. Proc Natl Acad Sci U S A 2019; 116:25575-25582. [PMID: 31792195 PMCID: PMC6926060 DOI: 10.1073/pnas.1914451116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As a switch for the release of Ca2+ from the sarco(endo)plasmic reticulum of cardiomyocytes, the type 2 ryanodine receptor (RyR2) is subject to sophisticated regulation by a broad spectrum of modulators. Dysregulation of RyR2-mediated Ca2+ release is linked to life-threatening cardiac arrhythmias. The regulatory mechanism of RyR2 by key modulators, such as Ca2+, FKBP12.6, ATP, and caffeine, remains unclear. This study provides important insights into the long-range allosteric regulation of RyR2 channel gating by these modulators and serves as an important framework for mechanistic understanding of the regulation of this key player in the excitation–contraction coupling of cardiac muscles. The type 2 ryanodine receptor (RyR2) is responsible for releasing Ca2+ from the sarcoplasmic reticulum of cardiomyocytes, subsequently leading to muscle contraction. Here, we report 4 cryo-electron microscopy (cryo-EM) structures of porcine RyR2 bound to distinct modulators that, together with our published structures, provide mechanistic insight into RyR2 regulation. Ca2+ alone induces a contraction of the central domain that facilitates the dilation of the S6 bundle but is insufficient to open the pore. The small-molecule agonist PCB95 helps Ca2+ to overcome the barrier for opening. FKBP12.6 induces a relaxation of the central domain that decouples it from the S6 bundle, stabilizing RyR2 in a closed state even in the presence of Ca2+ and PCB95. Although the channel is open when PCB95 is replaced by caffeine and adenosine 5′-triphosphate (ATP), neither of the modulators alone can sufficiently counter the antagonistic effect to open the channel. Our study marks an important step toward mechanistic understanding of the sophisticated regulation of this key channel whose aberrant activity engenders life-threatening cardiac disorders.
Collapse
|
22
|
Kapplinger JD, Pundi KN, Larson NB, Callis TE, Tester DJ, Bikker H, Wilde AAM, Ackerman MJ. Yield of the RYR2 Genetic Test in Suspected Catecholaminergic Polymorphic Ventricular Tachycardia and Implications for Test Interpretation. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e001424. [PMID: 29453246 DOI: 10.1161/circgen.116.001424] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 12/18/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pathogenic RYR2 variants account for ≈60% of clinically definite cases of catecholaminergic polymorphic ventricular tachycardia. However, the rate of rare benign RYR2 variants identified in the general population remains a challenge for genetic test interpretation. Therefore, we examined the results of the RYR2 genetic test among patients referred for commercial genetic testing and examined factors impacting variant interpretability. METHODS Frequency and location comparisons were made for RYR2 variants identified among 1355 total patients of varying clinical certainty and 60 706 Exome Aggregation Consortium controls. The impact of the clinical phenotype on the yield of RYR2 variants was examined. Six in silico tools were assessed using patient- and control-derived variants. RESULTS A total of 18.2% (218/1200) of patients referred for commercial testing hosted rare RYR2 variants, statistically less than the 59% (46/78) yield among clinically definite cases, resulting in a much higher potential genetic false discovery rate among referrals considering the 3.2% background rate of rare, benign RYR2 variants. Exclusion of clearly putative pathogenic variants further complicates the interpretation of the next novel RYR2 variant. Exonic/topologic analyses revealed overrepresentation of patient variants in exons covering only one third of the protein. In silico tools largely failed to show evidence toward enhancement of variant interpretation. CONCLUSIONS Current expert recommendations have resulted in increased use of RYR2 genetic testing in patients with questionable clinical phenotypes. Using the largest to date catecholaminergic polymorphic ventricular tachycardia patient versus control comparison, this study highlights important variables in the interpretation of variants to overcome the 3.2% background rate that confounds RYR2 variant interpretation.
Collapse
Affiliation(s)
- Jamie D Kapplinger
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Krishna N Pundi
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Nicholas B Larson
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Thomas E Callis
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - David J Tester
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Hennie Bikker
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Arthur A M Wilde
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Michael J Ackerman
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Walsh R, Mazzarotto F, Whiffin N, Buchan R, Midwinter W, Wilk A, Li N, Felkin L, Ingold N, Govind R, Ahmad M, Mazaika E, Allouba M, Zhang X, de Marvao A, Day SM, Ashley E, Colan SD, Michels M, Pereira AC, Jacoby D, Ho CY, Thomson KL, Watkins H, Barton PJR, Olivotto I, Cook SA, Ware JS. Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases: the case of hypertrophic cardiomyopathy. Genome Med 2019; 11:5. [PMID: 30696458 PMCID: PMC6350371 DOI: 10.1186/s13073-019-0616-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 12/29/2022] Open
Abstract
Background International guidelines for variant interpretation in Mendelian disease set stringent criteria to report a variant as (likely) pathogenic, prioritising control of false-positive rate over test sensitivity and diagnostic yield. Genetic testing is also more likely informative in individuals with well-characterised variants from extensively studied European-ancestry populations. Inherited cardiomyopathies are relatively common Mendelian diseases that allow empirical calibration and assessment of this framework. Methods We compared rare variants in large hypertrophic cardiomyopathy (HCM) cohorts (up to 6179 cases) to reference populations to identify variant classes with high prior likelihoods of pathogenicity, as defined by etiological fraction (EF). We analysed the distribution of variants using a bespoke unsupervised clustering algorithm to identify gene regions in which variants are significantly clustered in cases. Results Analysis of variant distribution identified regions in which variants are significantly enriched in cases and variant location was a better discriminator of pathogenicity than generic computational functional prediction algorithms. Non-truncating variant classes with an EF ≥ 0.95 were identified in five established HCM genes. Applying this approach leads to an estimated 14–20% increase in cases with actionable HCM variants, i.e. variants classified as pathogenic/likely pathogenic that might be used for predictive testing in probands’ relatives. Conclusions When found in a patient confirmed to have disease, novel variants in some genes and regions are empirically shown to have a sufficiently high probability of pathogenicity to support a “likely pathogenic” classification, even without additional segregation or functional data. This could increase the yield of high confidence actionable variants, consistent with the framework and recommendations of current guidelines. The techniques outlined offer a consistent and unbiased approach to variant interpretation for Mendelian disease genetic testing. We propose adaptations to ACMG/AMP guidelines to incorporate such evidence in a quantitative and transparent manner. Electronic supplementary material The online version of this article (10.1186/s13073-019-0616-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roddy Walsh
- Cardiovascular Research Centre, Cardiovascular Genetics and Genomics group at Royal Brompton Hospital and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK. .,National Heart and Lung Institute, Imperial College London, London, UK. .,Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands.
| | - Francesco Mazzarotto
- Cardiovascular Research Centre, Cardiovascular Genetics and Genomics group at Royal Brompton Hospital and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK.,Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy.,Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Nicola Whiffin
- Cardiovascular Research Centre, Cardiovascular Genetics and Genomics group at Royal Brompton Hospital and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, London, UK.,MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Rachel Buchan
- Cardiovascular Research Centre, Cardiovascular Genetics and Genomics group at Royal Brompton Hospital and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - William Midwinter
- Cardiovascular Research Centre, Cardiovascular Genetics and Genomics group at Royal Brompton Hospital and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Alicja Wilk
- Cardiovascular Research Centre, Cardiovascular Genetics and Genomics group at Royal Brompton Hospital and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Nicholas Li
- Cardiovascular Research Centre, Cardiovascular Genetics and Genomics group at Royal Brompton Hospital and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK.,MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Leanne Felkin
- Cardiovascular Research Centre, Cardiovascular Genetics and Genomics group at Royal Brompton Hospital and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Nathan Ingold
- Cardiovascular Research Centre, Cardiovascular Genetics and Genomics group at Royal Brompton Hospital and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK
| | - Risha Govind
- Cardiovascular Research Centre, Cardiovascular Genetics and Genomics group at Royal Brompton Hospital and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Mian Ahmad
- Cardiovascular Research Centre, Cardiovascular Genetics and Genomics group at Royal Brompton Hospital and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Erica Mazaika
- Cardiovascular Research Centre, Cardiovascular Genetics and Genomics group at Royal Brompton Hospital and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Mona Allouba
- National Heart and Lung Institute, Imperial College London, London, UK.,Aswan Heart Centre, Aswan, Egypt
| | - Xiaolei Zhang
- Cardiovascular Research Centre, Cardiovascular Genetics and Genomics group at Royal Brompton Hospital and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Antonio de Marvao
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Sharlene M Day
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Euan Ashley
- Division of Cardiovascular Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Steven D Colan
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Michelle Michels
- Department of Cardiology, Thoraxcenter, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | - Alexandre C Pereira
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | - Carolyn Y Ho
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Kate L Thomson
- Oxford Medical Genetics Laboratory, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Paul J R Barton
- Cardiovascular Research Centre, Cardiovascular Genetics and Genomics group at Royal Brompton Hospital and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Stuart A Cook
- Cardiovascular Research Centre, Cardiovascular Genetics and Genomics group at Royal Brompton Hospital and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, London, UK.,National Heart Centre Singapore, Singapore, Singapore.,Duke-National University of Singapore, Singapore, Singapore
| | - James S Ware
- Cardiovascular Research Centre, Cardiovascular Genetics and Genomics group at Royal Brompton Hospital and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK. .,National Heart and Lung Institute, Imperial College London, London, UK. .,MRC London Institute of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
24
|
Potenza DM, Janicek R, Fernandez-Tenorio M, Camors E, Ramos-Mondragón R, Valdivia HH, Niggli E. Phosphorylation of the ryanodine receptor 2 at serine 2030 is required for a complete β-adrenergic response. J Gen Physiol 2018; 151:131-145. [PMID: 30541771 PMCID: PMC6363414 DOI: 10.1085/jgp.201812155] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/12/2018] [Accepted: 10/22/2018] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation is thought to play a role in modulation of the ryanodine receptor 2 channel. Using a S2030A knock-in mouse model, Potenza et al. reveal that phosphorylation of RyR2-S2030 mediates channel regulation during the β-adrenergic response. During physical exercise or stress, the sympathetic system stimulates cardiac contractility via β-adrenergic receptor (β-AR) activation, resulting in protein kinase A (PKA)–mediated phosphorylation of the cardiac ryanodine receptor RyR2. PKA-dependent “hyperphosphorylation” of the RyR2 channel has been proposed as a major impairment that contributes to progression of heart failure. However, the sites of PKA phosphorylation and their phosphorylation status in cardiac diseases are not well defined. Among the known RyR2 phosphorylation sites, serine 2030 (S2030) remains highly controversial as a site of functional impact. We examined the contribution of RyR2-S2030 to Ca2+ signaling and excitation–contraction coupling (ECC) in a transgenic mouse with an ablated RyR2-S2030 phosphorylation site (RyR2-S2030A+/+). We assessed ECC gain by using whole-cell patch–clamp recordings and confocal Ca2+ imaging during β-ARs stimulation with isoproterenol (Iso) and consistent SR Ca2+ loading and L-type Ca2+ current (ICa) triggering. Under these conditions, ECC gain is diminished in mutant compared with WT cardiomyocytes. Resting Ca2+ spark frequency (CaSpF) with Iso is also reduced by mutation of S2030. In permeabilized cells, when SR Ca2+ pump activity is kept constant (using 2D12 antibody against phospholamban), cAMP does not change CaSpF in S2030A+/+ myocytes. Using Ca2+ spark recovery analysis, we found that mutant RyR Ca2+ sensitivity is not enhanced by Iso application, contrary to WT RyRs. Furthermore, ablation of RyR2-S2030 prevents acceleration of Ca2+ waves and increases latency to the first spontaneous Ca2+ release after a train of stimulations during Iso treatment. Together, these results suggest that phosphorylation at S2030 may represent an important step in the modulation of RyR2 activity during β-adrenergic stimulation and a potential target for the development of new antiarrhythmic drugs.
Collapse
Affiliation(s)
| | | | | | - Emmanuel Camors
- Center for Arrhythmia Research, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Roberto Ramos-Mondragón
- Center for Arrhythmia Research, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Héctor H Valdivia
- Department of Medicine, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI.,Center for Arrhythmia Research, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Ernst Niggli
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Kapplinger JD, Tester DJ, Ackerman MJ. Response by Kapplinger et al to Letter Regarding Article, “Yield of the RYR2 Genetic Test in Suspected Catecholaminergic Polymorphic Ventricular Tachycardia and Implications for Test Interpretation”. Circ Genom Precis Med 2018; 11:e002176. [DOI: 10.1161/circgen.118.002176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jamie D. Kapplinger
- Mayo Clinic School of Medicine (J.D.K., M.J.A.)
- Medical Scientist Training Program (J.D.K.)
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.)
| | - David J. Tester
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.)
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (D.J.T., M.J.A.)
| | - Michael J. Ackerman
- Mayo Clinic School of Medicine (J.D.K., M.J.A.)
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.)
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (D.J.T., M.J.A.)
- Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN
| |
Collapse
|
26
|
CRISPR/Cas9 Gene editing of RyR2 in human stem cell-derived cardiomyocytes provides a novel approach in investigating dysfunctional Ca 2+ signaling. Cell Calcium 2018; 73:104-111. [PMID: 29730419 DOI: 10.1016/j.ceca.2018.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/27/2022]
Abstract
Type-2 ryanodine receptors (RyR2s) play a pivotal role in cardiac excitation-contraction coupling by releasing Ca2+ from sarcoplasmic reticulum (SR) via a Ca2+ -induced Ca2+ release (CICR) mechanism. Two strategies have been used to study the structure-function characteristics of RyR2 and its disease associated mutations: (1) heterologous cell expression of the recombinant mutant RyR2s, and (2) knock-in mouse models harboring RyR2 point mutations. Here, we establish an alternative approach where Ca2+ signaling aberrancy caused by the RyR2 mutation is studied in human cardiomyocytes with robust CICR mechanism. Specifically, we introduce point mutations in wild-type RYR2 of human induced pluripotent stem cells (hiPSCs) by CRISPR/Cas9 gene editing, and then differentiate them into cardiomyocytes. To verify the reliability of this approach, we introduced the same disease-associated RyR2 mutation, F2483I, which was studied by us in hiPSC-derived cardiomyocytes (hiPSC-CMs) from a patient biopsy. The gene-edited F2483I hiPSC-CMs exhibited longer and wandering Ca2+ sparks, elevated diastolic Ca2+ leaks, and smaller SR Ca2+ stores, like those of patient-derived cells. Our CRISPR/Cas9 gene editing approach validated the feasibility of creating myocytes expressing the various RyR2 mutants, making comparative mechanistic analysis and pharmacotherapeutic approaches for RyR2 pathologies possible.
Collapse
|
27
|
Xiong J, Liu X, Gong Y, Zhang P, Qiang S, Zhao Q, Guo R, Qian Y, Wang L, Zhu L, Wang R, Hao Z, Wen H, Zhang J, Tang K, Zang WF, Yuchi Z, Chen H, Chen SRW, Zheng W, Wang SQ, Xu YW, Liu Z. Pathogenic mechanism of a catecholaminergic polymorphic ventricular tachycardia causing-mutation in cardiac calcium release channel RyR2. J Mol Cell Cardiol 2018; 117:26-35. [PMID: 29477366 DOI: 10.1016/j.yjmcc.2018.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/27/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a condition that is characterized by an abnormal heart rhythm in response to physical or emotional stress. The majority CPVT patients carry mutations in the RYR2 gene that encodes the calcium release channel/ryanodine receptor (RyR2) in cardiomyocytes. The pathogenic mechanisms that account for the clinical phenotypes of CPVT are still elusive. We have identified a de novo mutation, A165D, from a CPVT patient. We found that CPVT phenotypes are recapitulated in A165D knock-in mice. The mutant RyR2 channels enhanced sarcoplasmic reticulum Ca2+ release, triggered delayed afterdepolarization in cardiomyocytes. Structural analysis revealed that the A165D mutation is located in a loop that is involved in inter-subunit interactions in the RyR2 tetrameric structure, it disrupted conformational stability of the RyR2, which favored a closed-to-open state transition, resulting in a leaky channel. The loop also harbors several other CPVT mutations, which suggests a common pathogenic molecular mechanism of CPVT-causing mutations. Our data illustrated disease-relevant functional defects and provide a deeper mechanistic understanding of a life-threatening cardiac arrhythmia.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xijun Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Yunyun Gong
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Peng Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sujing Qiang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Rong Guo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yunyun Qian
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Lipeng Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Li Zhu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Albert, Canada
| | - Zhiyuan Hao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Han Wen
- Department of Physics, State University of New York at Buffalo, Buffalo, New York, United States
| | - Jingying Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wang-Fu Zang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Haijun Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, United States
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Albert, Canada
| | - Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, New York, United States.
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Ya-Wei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China.
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Singh RM, Waqar T, Howarth FC, Adeghate E, Bidasee K, Singh J. Hyperglycemia-induced cardiac contractile dysfunction in the diabetic heart. Heart Fail Rev 2017; 23:37-54. [DOI: 10.1007/s10741-017-9663-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol 2017; 149:1065-1089. [PMID: 29122978 PMCID: PMC5715910 DOI: 10.1085/jgp.201711878] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/12/2017] [Indexed: 01/25/2023] Open
Abstract
Large-conductance Ca2+ release channels known as ryanodine receptors (RyRs) mediate the release of Ca2+ from an intracellular membrane compartment, the endo/sarcoplasmic reticulum. There are three mammalian RyR isoforms: RyR1 is present in skeletal muscle; RyR2 is in heart muscle; and RyR3 is expressed at low levels in many tissues including brain, smooth muscle, and slow-twitch skeletal muscle. RyRs form large protein complexes comprising four 560-kD RyR subunits, four ∼12-kD FK506-binding proteins, and various accessory proteins including calmodulin, protein kinases, and protein phosphatases. RyRs share ∼70% sequence identity, with the greatest sequence similarity in the C-terminal region that forms the transmembrane, ion-conducting domain comprising ∼500 amino acids. The remaining ∼4,500 amino acids form the large regulatory cytoplasmic "foot" structure. Experimental evidence for Ca2+, ATP, phosphorylation, and redox-sensitive sites in the cytoplasmic structure have been described. Exogenous effectors include the two Ca2+ releasing agents caffeine and ryanodine. Recent work describing the near atomic structures of mammalian skeletal and cardiac muscle RyRs provides a structural basis for the regulation of the RyRs by their multiple effectors.
Collapse
Affiliation(s)
- Gerhard Meissner
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
30
|
Whole exome sequencing identified a pathogenic mutation in RYR2 in a Chinese family with unexplained sudden death. J Electrocardiol 2017; 51:309-315. [PMID: 29132927 DOI: 10.1016/j.jelectrocard.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE This study aimed to identify the pathogenic mutation in a Chinese family with unexplained sudden death (USD) or occasional syncope. MATERIALS AND METHODS Whole exome sequencing and target capture sequencing were respectively conducted for two related patients. The genetic data was screened using the 1000 genomes project and SNP database (PubMed), and the identified mutations were assessed for predicted pathogenicity using the SIFT and Polyphen-2 algorithms. RESULTS We identified a heterozygous mutation in the RYR2 gene at c.490C>T (p.P164S), highly conserved across all species, in three family members of USD, syncope and malignant ventricular tachycardias induced by treadmill exercise test, while another heterozygous de novo mutation in SCN5A at c.5576G>A p.R1859H was detected in one family member. Both variants were verified by Sanger sequencing. Importantly, RYR2 p.P164S is associated with the risk of sudden cardiac death, such as in catecholaminergic polymorphic ventricular tachycardia. CONCLUSIONS A pathogenic mutation in RYR2 (p.P164S) is the likely cause of USD in a Chinese family associated with malignant ventricular arrhythmias. Whole exome and target capture sequencing can be useful for discovering the genetic causes of USD.
Collapse
|
31
|
Reduced threshold for store overload-induced Ca 2+ release is a common defect of RyR1 mutations associated with malignant hyperthermia and central core disease. Biochem J 2017; 474:2749-2761. [PMID: 28687594 DOI: 10.1042/bcj20170282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022]
Abstract
Mutations in the skeletal muscle ryanodine receptor (RyR1) cause malignant hyperthermia (MH) and central core disease (CCD), whereas mutations in the cardiac ryanodine receptor (RyR2) lead to catecholaminergic polymorphic ventricular tachycardia (CPVT). Most disease-associated RyR1 and RyR2 mutations are located in the N-terminal, central, and C-terminal regions of the corresponding ryanodine receptor (RyR) isoform. An increasing body of evidence demonstrates that CPVT-associated RyR2 mutations enhance the propensity for spontaneous Ca2+ release during store Ca2+ overload, a process known as store overload-induced Ca2+ release (SOICR). Considering the similar locations of disease-associated RyR1 and RyR2 mutations in the RyR structure, we hypothesize that like CPVT-associated RyR2 mutations, MH/CCD-associated RyR1 mutations also enhance SOICR. To test this hypothesis, we determined the impact on SOICR of 12 MH/CCD-associated RyR1 mutations E2347-del, R2163H, G2434R, R2435L, R2435H, and R2454H located in the central region, and Y4796C, T4826I, L4838V, A4940T, G4943V, and P4973L located in the C-terminal region of the channel. We found that all these RyR1 mutations reduced the threshold for SOICR. Dantrolene, an acute treatment for MH, suppressed SOICR in HEK293 cells expressing the RyR1 mutants R164C, Y523S, R2136H, R2435H, and Y4796C. Interestingly, carvedilol, a commonly used β-blocker that suppresses RyR2-mediated SOICR, also inhibits SOICR in these RyR1 mutant HEK293 cells. Therefore, these results indicate that a reduced SOICR threshold is a common defect of MH/CCD-associated RyR1 mutations, and that carvedilol, like dantrolene, can suppress RyR1-mediated SOICR. Clinical studies of the effectiveness of carvedilol as a long-term treatment for MH/CCD or other RyR1-associated disorders may be warranted.
Collapse
|
32
|
Faltinova A, Tomaskova N, Antalik M, Sevcik J, Zahradnikova A. The N-Terminal Region of the Ryanodine Receptor Affects Channel Activation. Front Physiol 2017; 8:443. [PMID: 28713282 PMCID: PMC5492033 DOI: 10.3389/fphys.2017.00443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/12/2017] [Indexed: 11/29/2022] Open
Abstract
Mutations in the cardiac ryanodine receptor (RyR2), the ion channel responsible for release of calcium ions from intracellular stores into cytoplasm, are the cause of several inherited cardiac arrhythmias. At the molecular level, disease symptoms can be mimicked by domain peptides from mutation-prone regions of RyR2 that bind to RyR2 and activate it. Here we show that the domain peptide DPcpvtN2, corresponding to the central helix of the N-terminal region of RyR2, activates the RyR2 channel. Structural modeling of interaction between DPcpvtN2 and the N-terminal region of RyR2 in the closed and open conformation provided three plausible structures of the complex. Only one of them could explain the dependence of RyR2 activity on concentration of DPcpvtN2. The structure of the complex was at odds with the previously proposed “domain switch” mechanism of competition between domain peptides and ryanodine receptor domains. Likewise, in structural models of the N-terminal region, the conformational changes induced by DPcpvtN2 binding were different from those induced by mutation of central helix amino acids. The activating effect of DPcpvtN2 binding and of mutations in the central helix could be explained by their similar effect on the transition energy between the closed and open conformation of RyR2.
Collapse
Affiliation(s)
- Andrea Faltinova
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics of the Centre of Biosciences, Slovak Academy of SciencesBratislava, Slovakia.,Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of SciencesBratislava, Slovakia
| | - Nataša Tomaskova
- Faculty of Science, Institute of Chemical Sciences, Pavol Jozef Šafárik UniversityKošice, Slovakia
| | - Marián Antalik
- Faculty of Science, Institute of Chemical Sciences, Pavol Jozef Šafárik UniversityKošice, Slovakia
| | - Jozef Sevcik
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of SciencesBratislava, Slovakia
| | - Alexandra Zahradnikova
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics of the Centre of Biosciences, Slovak Academy of SciencesBratislava, Slovakia.,Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of SciencesBratislava, Slovakia
| |
Collapse
|
33
|
Ding Z, Peng J, Liang Y, Yang C, Jiang G, Ren J, Zou Y. Evolution of Vertebrate Ryanodine Receptors Family in Relation to Functional Divergence and Conservation. Int Heart J 2017; 58:969-977. [DOI: 10.1536/ihj.16-558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
- Institute of Biomedical Sciences, Fudan University
| | - Juan Peng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Yanyan Liang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
- Department of Cardiology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Chunjie Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Guoliang Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
- University of Wyoming College of Health Sciences
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
- Institute of Biomedical Sciences, Fudan University
| |
Collapse
|
34
|
Samsó M. A guide to the 3D structure of the ryanodine receptor type 1 by cryoEM. Protein Sci 2016; 26:52-68. [PMID: 27671094 DOI: 10.1002/pro.3052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 01/04/2023]
Abstract
Signal transduction by the ryanodine receptor (RyR) is essential in many excitable cells including all striated contractile cells and some types of neurons. While its transmembrane domain is a classic tetrameric, six-transmembrane cation channel, the cytoplasmic domain is uniquely large and complex, hosting a multiplicity of specialized domains. The overall outline and substructure readily recognizable by electron microscopy make RyR a geometrically well-behaved specimen. Hence, for the last two decades, the 3D structural study of the RyR has tracked closely the technological advances in electron microscopy, cryo-electron microscopy (cryoEM), and computerized 3D reconstruction. This review summarizes the progress in the structural determination of RyR by cryoEM and, bearing in mind the leap in resolution provided by the recent implementation of direct electron detection, analyzes the first near-atomic structures of RyR. These reveal a complex orchestration of domains controlling the channel's function, and help to understand how this could break down as a consequence of disease-causing mutations.
Collapse
Affiliation(s)
- Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
35
|
Bround MJ, Wambolt R, Cen H, Asghari P, Albu RF, Han J, McAfee D, Pourrier M, Scott NE, Bohunek L, Kulpa JE, Chen SRW, Fedida D, Brownsey RW, Borchers CH, Foster LJ, Mayor T, Moore EDW, Allard MF, Johnson JD. Cardiac Ryanodine Receptor (Ryr2)-mediated Calcium Signals Specifically Promote Glucose Oxidation via Pyruvate Dehydrogenase. J Biol Chem 2016; 291:23490-23505. [PMID: 27621312 DOI: 10.1074/jbc.m116.756973] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 11/06/2022] Open
Abstract
Cardiac ryanodine receptor (Ryr2) Ca2+ release channels and cellular metabolism are both disrupted in heart disease. Recently, we demonstrated that total loss of Ryr2 leads to cardiomyocyte contractile dysfunction, arrhythmia, and reduced heart rate. Acute total Ryr2 ablation also impaired metabolism, but it was not clear whether this was a cause or consequence of heart failure. Previous in vitro studies revealed that Ca2+ flux into the mitochondria helps pace oxidative metabolism, but there is limited in vivo evidence supporting this concept. Here, we studied heart-specific, inducible Ryr2 haploinsufficient (cRyr2Δ50) mice with a stable 50% reduction in Ryr2 protein. This manipulation decreased the amplitude and frequency of cytosolic and mitochondrial Ca2+ signals in isolated cardiomyocytes, without changes in cardiomyocyte contraction. Remarkably, in the context of well preserved contractile function in perfused hearts, we observed decreased glucose oxidation, but not fat oxidation, with increased glycolysis. cRyr2Δ50 hearts exhibited hyperphosphorylation and inhibition of pyruvate dehydrogenase, the key Ca2+-sensitive gatekeeper to glucose oxidation. Metabolomic, proteomic, and transcriptomic analyses revealed additional functional networks associated with altered metabolism in this model. These results demonstrate that Ryr2 controls mitochondrial Ca2+ dynamics and plays a specific, critical role in promoting glucose oxidation in cardiomyocytes. Our findings indicate that partial RYR2 loss is sufficient to cause metabolic abnormalities seen in heart disease.
Collapse
Affiliation(s)
- Michael J Bround
- From the Cardiovascular Research Group, Life Sciences Institute and.,Departments of Cellular and Physiological Sciences
| | - Rich Wambolt
- From the Cardiovascular Research Group, Life Sciences Institute and.,the Department of Pathology and Laboratory Medicine, University of British Columbia and the Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6
| | - Haoning Cen
- From the Cardiovascular Research Group, Life Sciences Institute and.,Departments of Cellular and Physiological Sciences
| | - Parisa Asghari
- From the Cardiovascular Research Group, Life Sciences Institute and.,Departments of Cellular and Physiological Sciences
| | - Razvan F Albu
- Biochemistry and Molecular Biology, and.,the Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4
| | - Jun Han
- the University of Victoria-Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, and
| | - Donald McAfee
- From the Cardiovascular Research Group, Life Sciences Institute and.,Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | - Marc Pourrier
- From the Cardiovascular Research Group, Life Sciences Institute and.,Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | - Nichollas E Scott
- Biochemistry and Molecular Biology, and.,the Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4
| | - Lubos Bohunek
- the Department of Pathology and Laboratory Medicine, University of British Columbia and the Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6
| | | | - S R Wayne Chen
- the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 2T9, Canada
| | - David Fedida
- From the Cardiovascular Research Group, Life Sciences Institute and.,Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | | | - Christoph H Borchers
- the University of Victoria-Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, and
| | - Leonard J Foster
- Biochemistry and Molecular Biology, and.,the Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4
| | - Thibault Mayor
- Biochemistry and Molecular Biology, and.,the Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4
| | - Edwin D W Moore
- From the Cardiovascular Research Group, Life Sciences Institute and.,Departments of Cellular and Physiological Sciences
| | - Michael F Allard
- From the Cardiovascular Research Group, Life Sciences Institute and.,the Department of Pathology and Laboratory Medicine, University of British Columbia and the Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6
| | - James D Johnson
- From the Cardiovascular Research Group, Life Sciences Institute and .,Departments of Cellular and Physiological Sciences
| |
Collapse
|
36
|
Ben Jehuda R, Barad L. Patient Specific Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Drug Development and Screening In Catecholaminergic Polymorphic Ventricular Tachycardia. J Atr Fibrillation 2016; 9:1423. [PMID: 27909533 DOI: 10.4022/jafib.1423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia often leading to sudden cardiac death in children and young adults, is characterized by polymorphic/bidirectional ventricular tachycardia induced by adrenergic stimulation associated with emotionally stress or physical exercise. There are two forms of CPVT: 1. CPVT1 is caused by mutations in the RYR2 gene, encoding for ryanodine receptor type 2. CPVT1 is the most common form of CPVT in the population, and is inherited by a dominant mechanism. 2. CPVT2 is caused by mutations in the CASQ2 gene, encoding for cardiac calsequestrin 2 and is inherited by recessive mechanism. Patient-specific induced Pluripotent Stem Cells (iPSC) have the ability to differentiate into cardiomyocytes carrying the patient's genome including CPVT-linked mutations and expressing the disease phenotype in vitro at the cellular level. The potency for in vitro modeling using iPSC-derived cardiomyocytes (iPSC-CMs) has been exploited to investigate a variety of inherited diseases including cardiac arrhythmias such as CPVT. In this review we attempted to cover the majority of CPVT patient specific iPSC research studies previously published. CPVT patient-specific iPSC model enables the in vitro investigation of the molecular and cellular disease-mechanisms by the means of electrophysiologycal and Ca+2 imaging methodologies. Furthermore, this in vitro model allows the screening of various antiarrhythmic drugs, specifically for each patient, also known as "personalized medicine".
Collapse
Affiliation(s)
- Ronen Ben Jehuda
- Department of Physiology, Biophysics and Systems Biology; The Rappaport Institute; Ruth and Bruce Rappaport Faculty of Medicine; Department of Biotechnology, Technion, Haifa, Israel
| | - Lili Barad
- Department of Physiology, Biophysics and Systems Biology; The Rappaport Institute; Ruth and Bruce Rappaport Faculty of Medicine
| |
Collapse
|
37
|
Beauséjour Ladouceur V, Abrams DJ. Whole-Exome Molecular Autopsy After Exertional Sudden Cardiac Death: Not a Panacea but a Step in the Right Direction. CIRCULATION. CARDIOVASCULAR GENETICS 2016; 9:210-2. [PMID: 27329652 DOI: 10.1161/circgenetics.116.001484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Virginie Beauséjour Ladouceur
- From the Inherited Cardiac Arrhythmia Program, Division of Cardiac Electrophysiology, Boston Children's Hospital, MA
| | - Dominic J Abrams
- From the Inherited Cardiac Arrhythmia Program, Division of Cardiac Electrophysiology, Boston Children's Hospital, MA.
| |
Collapse
|
38
|
Walker MA, Williams GSB, Kohl T, Lehnart SE, Jafri MS, Greenstein JL, Lederer WJ, Winslow RL. Superresolution modeling of calcium release in the heart. Biophys J 2016; 107:3018-3029. [PMID: 25517166 PMCID: PMC4269784 DOI: 10.1016/j.bpj.2014.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/20/2014] [Accepted: 11/04/2014] [Indexed: 12/29/2022] Open
Abstract
Stable calcium-induced calcium release (CICR) is critical for maintaining normal cellular contraction during cardiac excitation-contraction coupling. The fundamental element of CICR in the heart is the calcium (Ca2+) spark, which arises from a cluster of ryanodine receptors (RyR). Opening of these RyR clusters is triggered to produce a local, regenerative release of Ca2+ from the sarcoplasmic reticulum (SR). The Ca2+ leak out of the SR is an important process for cellular Ca2+ management, and it is critically influenced by spark fidelity, i.e., the probability that a spontaneous RyR opening triggers a Ca2+ spark. Here, we present a detailed, three-dimensional model of a cardiac Ca2+ release unit that incorporates diffusion, intracellular buffering systems, and stochastically gated ion channels. The model exhibits realistic Ca2+ sparks and robust Ca2+ spark termination across a wide range of geometries and conditions. Furthermore, the model captures the details of Ca2+ spark and nonspark-based SR Ca2+ leak, and it produces normal excitation-contraction coupling gain. We show that SR luminal Ca2+-dependent regulation of the RyR is not critical for spark termination, but it can explain the exponential rise in the SR Ca2+ leak-load relationship demonstrated in previous experimental work. Perturbations to subspace dimensions, which have been observed in experimental models of disease, strongly alter Ca2+ spark dynamics. In addition, we find that the structure of RyR clusters also influences Ca2+ release properties due to variations in inter-RyR coupling via local subspace Ca2+ concentration ([Ca2+]ss). These results are illustrated for RyR clusters based on super-resolution stimulated emission depletion microscopy. Finally, we present a believed-novel approach by which the spark fidelity of a RyR cluster can be predicted from structural information of the cluster using the maximum eigenvalue of its adjacency matrix. These results provide critical insights into CICR dynamics in heart, under normal and pathological conditions.
Collapse
Affiliation(s)
- Mark A Walker
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - George S B Williams
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tobias Kohl
- Heart Research Center Goettingen, Clinic of Cardiology and Pulmonology, University Medical Center Goettingen, Goettingen, Germany
| | - Stephan E Lehnart
- Heart Research Center Goettingen, Clinic of Cardiology and Pulmonology, University Medical Center Goettingen, Goettingen, Germany
| | - M Saleet Jafri
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia
| | - Joseph L Greenstein
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - W J Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Raimond L Winslow
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
39
|
The role of genetic testing in unexplained sudden death. Transl Res 2016; 168:59-73. [PMID: 26143861 DOI: 10.1016/j.trsl.2015.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 12/19/2022]
Abstract
Most sudden deaths are because of a cardiac etiology and are termed sudden cardiac death (SCD). In younger individuals coronary artery disease is less prevalent and cardiac genetic disorders are more common. If sudden death is unexplained despite an appropriate autopsy and toxicologic assessment the term sudden arrhythmic death syndrome (SADS) may be used. This is an umbrella term and common underlying etiologies are primary arrhythmia syndromes with a familial basis such as Brugada syndrome, long QT syndrome, and subtle forms of cardiomyopathy. The first clinical presentation of these conditions is often SCD, which makes identification, screening, and risk stratification crucial to avert further deaths. This review will focus on genetic testing in the context of family screening. It will address the role of the "molecular autopsy" alongside current postmortem practices in the evaluation of SADS deaths. We describe the current data underlying genetic testing in these conditions, explore the potential for next-generation sequencing, and discuss the inherent diagnostic problems in determination of pathogenicity.
Collapse
|
40
|
Ferrantini C, Coppini R, Scellini B, Ferrara C, Pioner JM, Mazzoni L, Priori S, Cerbai E, Tesi C, Poggesi C. R4496C RyR2 mutation impairs atrial and ventricular contractility. ACTA ACUST UNITED AC 2015; 147:39-52. [PMID: 26666913 PMCID: PMC4692489 DOI: 10.1085/jgp.201511450] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/09/2015] [Indexed: 12/11/2022]
Abstract
A ryanodine receptor 2 mutation associated with catecholaminergic polymorphic ventricular tachycardia renders cardiomyocytes incapable of mediating a positive inotropic response. Ryanodine receptor (RyR2) is the major Ca2+ channel of the cardiac sarcoplasmic reticulum (SR) and plays a crucial role in the generation of myocardial force. Changes in RyR2 gating properties and resulting increases in its open probability (Po) are associated with Ca2+ leakage from the SR and arrhythmias; however, the effects of RyR2 dysfunction on myocardial contractility are unknown. Here, we investigated the possibility that a RyR2 mutation associated with catecholaminergic polymorphic ventricular tachycardia, R4496C, affects the contractile function of atrial and ventricular myocardium. We measured isometric twitch tension in left ventricular and atrial trabeculae from wild-type mice and heterozygous transgenic mice carrying the R4496C RyR2 mutation and found that twitch force was comparable under baseline conditions (30°C, 2 mM [Ca2+]o, 1 Hz). However, the positive inotropic responses to high stimulation frequency, 0.1 µM isoproterenol, and 5 mM [Ca2+]o were decreased in R4496C trabeculae, as was post-rest potentiation. We investigated the mechanisms underlying inotropic insufficiency in R4496C muscles in single ventricular myocytes. Under baseline conditions, the amplitude of the Ca2+ transient was normal, despite the reduced SR Ca2+ content. Under inotropic challenge, however, R4496C myocytes were unable to boost the amplitude of Ca2+ transients because they are incapable of properly increasing the amount of Ca2+ stored in the SR because of a larger SR Ca2+ leakage. Recovery of force in response to premature stimuli was faster in R4496C myocardium, despite the unchanged rates of recovery of L-type Ca2+ channel current (ICa-L) and SR Ca2+ content in single myocytes. A faster recovery from inactivation of the mutant R4496C channels could explain this behavior. In conclusion, changes in RyR2 channel gating associated with the R4496C mutation could be directly responsible for the alterations in both ventricular and atrial contractility. The increased RyR2 Po and fractional Ca2+ release from the SR induced by the R4496C mutation preserves baseline contractility despite a slight decrease in SR Ca2+ content, but cannot compensate for the inability to increase SR Ca2+ content during inotropic challenge.
Collapse
Affiliation(s)
- Cecilia Ferrantini
- Center for Molecular Medicine and Applied Biophysics, University of Florence, 50121 Florence, Italy
| | - Raffaele Coppini
- Center for Molecular Medicine and Applied Biophysics, University of Florence, 50121 Florence, Italy
| | - Beatrice Scellini
- Center for Molecular Medicine and Applied Biophysics, University of Florence, 50121 Florence, Italy
| | - Claudia Ferrara
- Center for Molecular Medicine and Applied Biophysics, University of Florence, 50121 Florence, Italy
| | - Josè Manuel Pioner
- Center for Molecular Medicine and Applied Biophysics, University of Florence, 50121 Florence, Italy
| | - Luca Mazzoni
- Center for Molecular Medicine and Applied Biophysics, University of Florence, 50121 Florence, Italy
| | - Silvia Priori
- IRCCS Fondazione Salvatore Maugeri, 27100 Pavia, Italy
| | - Elisabetta Cerbai
- Center for Molecular Medicine and Applied Biophysics, University of Florence, 50121 Florence, Italy
| | - Chiara Tesi
- Center for Molecular Medicine and Applied Biophysics, University of Florence, 50121 Florence, Italy
| | - Corrado Poggesi
- Center for Molecular Medicine and Applied Biophysics, University of Florence, 50121 Florence, Italy
| |
Collapse
|
41
|
Xiao Z, Guo W, Yuen SMWK, Wang R, Zhang L, Van Petegem F, Chen SRW. The H29D Mutation Does Not Enhance Cytosolic Ca2+ Activation of the Cardiac Ryanodine Receptor. PLoS One 2015; 10:e0139058. [PMID: 26405799 PMCID: PMC4583508 DOI: 10.1371/journal.pone.0139058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022] Open
Abstract
The N-terminal domain of the cardiac ryanodine receptor (RyR2) harbors a large number of naturally occurring mutations that are associated with stress-induced ventricular tachyarrhythmia and sudden death. Nearly all these disease-associated N-terminal mutations are located at domain interfaces or buried within domains. Mutations at these locations would alter domain-domain interactions or the stability/folding of domains. Recently, a novel RyR2 mutation H29D associated with ventricular arrhythmia at rest was found to enhance the activation of single RyR2 channels by diastolic levels of cytosolic Ca2+. Unlike other N-terminal disease-associated mutations, the H29D mutation is located on the surface of the N-terminal domain. It is unclear how this surface-exposed H29D mutation that does not appear to interact with other parts of the RyR2 structure could alter the intrinsic properties of the channel. Here we carried out detailed functional characterization of the RyR2-H29D mutant at the molecular and cellular levels. We found that the H29D mutation has no effect on the basal level or the Ca2+ dependent activation of [3H]ryanodine binding to RyR2, the cytosolic Ca2+ activation of single RyR2 channels, or the cytosolic Ca2+- or caffeine-induced Ca2+ release in HEK293 cells. In addition, the H29D mutation does not alter the propensity for spontaneous Ca2+ release or the thresholds for Ca2+ release activation or termination. Furthermore, the H29D mutation does not have significant impact on the thermal stability of the N-terminal region (residues 1–547) of RyR2. Collectively, our data show that the H29D mutation exerts little or no effect on the function of RyR2 or on the folding stability of the N-terminal region. Thus, our results provide no evidence that the H29D mutation enhances the cytosolic Ca2+ activation of RyR2.
Collapse
Affiliation(s)
- Zhichao Xiao
- Libin Cardiovascular Institute of Alberta, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Wenting Guo
- Libin Cardiovascular Institute of Alberta, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Siobhan M. Wong King Yuen
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | - Ruiwu Wang
- Libin Cardiovascular Institute of Alberta, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Lin Zhang
- Libin Cardiovascular Institute of Alberta, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | - S. R. Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- * E-mail:
| |
Collapse
|
42
|
Tzimas C, Terrovitis J, Lehnart SE, Kranias EG, Sanoudou D. Calcium/calmodulin-dependent protein kinase II (CaMKII) inhibition ameliorates arrhythmias elicited by junctin ablation under stress conditions. Heart Rhythm 2015; 12:1599-610. [PMID: 25814413 PMCID: PMC4485547 DOI: 10.1016/j.hrthm.2015.03.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Aberrant calcium signaling is considered one of the key mechanisms contributing to arrhythmias, especially in the context of heart failure. In human heart failure, there is significant down-regulation of the sarcoplasmic reticulum (SR) protein junctin, and junctin deficiency in mice is associated with stress-induced arrhythmias. OBJECTIVE The purpose of this study was to determine whether the increased SR Ca(2+) leak and arrhythmias associated with junctin ablation may be associated with increased calcium/calmodulin-dependent protein kinase II (CaMKII) activity and phosphorylation of the cardiac ryanodine receptor (RyR2) and whether pharmacologic inhibition of CaMKII activity may prevent these arrhythmias. METHODS Using a combination of biochemical, cellular, and in vivo approaches, we tested the ability of KN-93 to reverse aberrant CaMKII phosphorylation of RyR2. Specifically, we performed protein phosphorylation analysis, in vitro cardiomyocyte contractility and Ca(2+) kinetics, and in vivo ECG analysis in junctin-deficient mice. RESULTS In the absence of junctin, RyR2 channels displayed CaMKII-dependent hyperphosphorylation. Notably, CaMKII inhibition by KN-93 reduced the in vivo incidence of stress-induced ventricular tachycardia by 65% in junctin null mice. At the cardiomyocyte level, KN-93 reduced the percentage of junctin null cells exhibiting spontaneous Ca(2+) aftertransients and aftercontractions under stress conditions by 35% and 37%, respectively. At the molecular level, KN-93 blunted the CaMKII-mediated hyperphosphorylation of RyR2 and phospholamban under stress conditions. CONCLUSION Our data suggest that CaMKII inhibition is effective in preventing arrhythmogenesis in the setting of junctin ablation through modulation of both SR Ca(2+) release and uptake. Thus, it merits further investigation as promising molecular therapy.
Collapse
Affiliation(s)
- Christos Tzimas
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - John Terrovitis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephan E Lehnart
- Clinic of Cardiology & Pulmonology, University Medical Center Goettingen, Goettingen, Germany
| | - Evangelia G Kranias
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
43
|
Abstract
The cardiac Ca²⁺ release channel [ryanodine receptor type 2 (RyR2)] is modulated by thiol reactive agents, but the molecular basis of RyR2 modulation by thiol reagents is poorly understood. Cys³⁶³⁵ in the skeletal muscle RyR1 is one of the most hyper-reactive thiols and is important for the redox and calmodulin (CaM) regulation of the RyR1 channel. However, little is known about the role of the corresponding cysteine residue in RyR2 (Cys³⁶⁰²) in the function and regulation of the RyR2 channel. In the present study, we assessed the impact of mutating Cys³⁶⁰² (C³⁶⁰²A) on store overload-induced Ca²⁺ release (SOICR) and the regulation of RyR2 by thiol reagents and CaM. We found that the C³⁶⁰²A mutation suppressed SOICR by raising the activation threshold and delayed the termination of Ca²⁺ release by reducing the termination threshold. As a result, C³⁶⁰²A markedly increased the fractional Ca²⁺ release. Furthermore, the C³⁶⁰²A mutation diminished the inhibitory effect of N-ethylmaleimide on Ca²⁺ release, but it had no effect on the stimulatory action of 4,4'-dithiodipyridine (DTDP) on Ca²⁺ release. In addition, Cys³⁶⁰² mutations (C³⁶⁰²A or C³⁶⁰²R) did not abolish the effect of CaM on Ca²⁺-release termination. Therefore, RyR2-Cys³⁶⁰² is a major site mediating the action of thiol alkylating agent N-ethylmaleimide, but not the action of the oxidant DTDP. Our data also indicate that residue Cys³⁶⁰² plays an important role in the activation and termination of Ca²⁺ release, but it is not essential for CaM regulation of RyR2.
Collapse
|
44
|
S100A1 DNA-based Inotropic Therapy Protects Against Proarrhythmogenic Ryanodine Receptor 2 Dysfunction. Mol Ther 2015; 23:1320-1330. [PMID: 26005840 DOI: 10.1038/mt.2015.93] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/28/2015] [Indexed: 12/21/2022] Open
Abstract
Restoring expression levels of the EF-hand calcium (Ca(2+)) sensor protein S100A1 has emerged as a key factor in reconstituting normal Ca(2+) handling in failing myocardium. Improved sarcoplasmic reticulum (SR) function with enhanced Ca(2+) resequestration appears critical for S100A1's cyclic adenosine monophosphate-independent inotropic effects but raises concerns about potential diastolic SR Ca(2+) leakage that might trigger fatal arrhythmias. This study shows for the first time a diminished interaction between S100A1 and ryanodine receptors (RyR2s) in experimental HF. Restoring this link in failing cardiomyocytes, engineered heart tissue and mouse hearts, respectively, by means of adenoviral and adeno-associated viral S100A1 cDNA delivery normalizes diastolic RyR2 function and protects against Ca(2+)- and β-adrenergic receptor-triggered proarrhythmogenic SR Ca(2+) leakage in vitro and in vivo. S100A1 inhibits diastolic SR Ca(2+) leakage despite aberrant RyR2 phosphorylation via protein kinase A and calmodulin-dependent kinase II and stoichiometry with accessory modulators such as calmodulin, FKBP12.6 or sorcin. Our findings demonstrate that S100A1 is a regulator of diastolic RyR2 activity and beneficially modulates diastolic RyR2 dysfunction. S100A1 interaction with the RyR2 is sufficient to protect against basal and catecholamine-triggered arrhythmic SR Ca(2+) leak in HF, combining antiarrhythmic potency with chronic inotropic actions.
Collapse
|
45
|
Wang X, Weinberg SH, Hao Y, Sobie EA, Smith GD. Calcium homeostasis in a local/global whole cell model of permeabilized ventricular myocytes with a Langevin description of stochastic calcium release. Am J Physiol Heart Circ Physiol 2015; 308:H510-23. [DOI: 10.1152/ajpheart.00296.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Population density approaches to modeling local control of Ca2+-induced Ca2+ release in cardiac myocytes can be used to construct minimal whole cell models that accurately represent heterogeneous local Ca2+ signals. Unfortunately, the computational complexity of such “local/global” whole cell models scales with the number of Ca2+ release unit (CaRU) states, which is a rapidly increasing function of the number of ryanodine receptors (RyRs) per CaRU. Here we present an alternative approach based on a Langevin description of the collective gating of RyRs coupled by local Ca2+ concentration ([Ca2+]). The computational efficiency of this approach no longer depends on the number of RyRs per CaRU. When the RyR model is minimal, Langevin equations may be replaced by a single Fokker-Planck equation, yielding an extremely compact and efficient local/global whole cell model that reproduces and helps interpret recent experiments that investigate Ca2+ homeostasis in permeabilized ventricular myocytes. Our calculations show that elevated myoplasmic [Ca2+] promotes elevated network sarcoplasmic reticulum (SR) [Ca2+] via SR Ca2+-ATPase-mediated Ca2+ uptake. However, elevated myoplasmic [Ca2+] may also activate RyRs and promote stochastic SR Ca2+ release, which can in turn decrease SR [Ca2+]. Increasing myoplasmic [Ca2+] results in an exponential increase in spark-mediated release and a linear increase in nonspark-mediated release, consistent with recent experiments. The model exhibits two steady-state release fluxes for the same network SR [Ca2+] depending on whether myoplasmic [Ca2+] is low or high. In the later case, spontaneous release decreases SR [Ca2+] in a manner that maintains robust Ca2+ sparks.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Applied Science, The College of William and Mary, Williamsburg, Virginia
| | - Seth H. Weinberg
- Department of Applied Science, The College of William and Mary, Williamsburg, Virginia
| | - Yan Hao
- Department of Mathematics and Computer Science, The Hobart and William Smith Colleges, Geneva, New York; and
| | - Eric A. Sobie
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York
| | - Gregory D. Smith
- Department of Applied Science, The College of William and Mary, Williamsburg, Virginia
| |
Collapse
|
46
|
Bannister ML, Thomas NL, Sikkel MB, Mukherjee S, Maxwell C, MacLeod KT, George CH, Williams AJ. The mechanism of flecainide action in CPVT does not involve a direct effect on RyR2. Circ Res 2015; 116:1324-35. [PMID: 25648700 DOI: 10.1161/circresaha.116.305347] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/03/2015] [Indexed: 12/17/2022]
Abstract
RATIONALE Flecainide, a class 1c antiarrhythmic, has emerged as an effective therapy in preventing arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT) refractory to β-adrenergic receptor blockade. It has been proposed that the clinical efficacy of flecainide in CPVT is because of the combined actions of direct blockade of ryanodine receptors (RyR2) and Na(+) channel inhibition. However, there is presently no direct evidence to support the notion that flecainide blocks RyR2 Ca(2+) flux in the physiologically relevant (luminal-to-cytoplasmic) direction. The mechanism of flecainide action remains controversial. OBJECTIVE To examine, in detail, the effect of flecainide on the human RyR2 channel and to establish whether the direct blockade of physiologically relevant RyR2 ion flow by the drug contributes to its therapeutic efficacy in the clinical management of CPVT. METHODS AND RESULTS Using single-channel analysis, we show that, even at supraphysiological concentrations, flecainide did not inhibit the physiologically relevant, luminal-to-cytosolic flux of cations through the channel. Moreover, flecainide did not alter RyR2 channel gating and had negligible effect on the mechanisms responsible for the sarcoplasmic reticulum charge-compensating counter current. Using permeabilized cardiac myocytes to eliminate any contribution of plasmalemmal Na(+) channels to the observed actions of the drug at the cellular level, flecainide did not inhibit RyR2-dependent sarcoplasmic reticulum Ca(2+) release. CONCLUSIONS The principal action of flecainide in CPVT is not via a direct interaction with RyR2. Our data support a model of flecainide action in which Na(+)-dependent modulation of intracellular Ca(2+) handling attenuates RyR2 dysfunction in CPVT.
Collapse
Affiliation(s)
- Mark L Bannister
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - N Lowri Thomas
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Markus B Sikkel
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Saptarshi Mukherjee
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Chloe Maxwell
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Kenneth T MacLeod
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Christopher H George
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.)
| | - Alan J Williams
- From the Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom (M.L.B., N.L.T., S.M., C.M., C.H.G., A.J.W.); and Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (M.B.S., K.T.M.).
| |
Collapse
|
47
|
Liu Y, Sun B, Xiao Z, Wang R, Guo W, Zhang JZ, Mi T, Wang Y, Jones PP, Van Petegem F, Chen SRW. Roles of the NH2-terminal domains of cardiac ryanodine receptor in Ca2+ release activation and termination. J Biol Chem 2015; 290:7736-46. [PMID: 25627681 DOI: 10.1074/jbc.m114.618827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NH2-terminal region (residues 1-543) of the cardiac ryanodine receptor (RyR2) harbors a large number of mutations associated with cardiac arrhythmias and cardiomyopathies. Functional studies have revealed that the NH2-terminal region is involved in the activation and termination of Ca(2+) release. The three-dimensional structure of the NH2-terminal region has recently been solved. It is composed of three domains (A, B, and C). However, the roles of these individual domains in Ca(2+) release activation and termination are largely unknown. To understand the functional significance of each of these NH2-terminal domains, we systematically deleted these domains and assessed their impact on caffeine- or Ca(2+)-induced Ca(2+) release and store overload-induced Ca(2+) release (SOICR) in HEK293 cells. We found that all deletion mutants were capable of forming caffeine- and ryanodine-sensitive functional channels, indicating that the NH2-terminal region is not essential for channel gating. Ca(2+) release measurements revealed that deleting domain A markedly reduced the threshold for SOICR termination but had no effect on caffeine or Ca(2+) activation or the threshold for SOICR activation, whereas deleting domain B substantially enhanced caffeine and Ca(2+) activation and lowered the threshold for SOICR activation and termination. Conversely, deleting domain C suppressed caffeine activation, abolished Ca(2+) activation and SOICR, and diminished protein expression. These results suggest that domain A is involved in channel termination, domain B is involved in channel suppression, and domain C is critical for channel activation and expression. Our data shed new insights into the structure-function relationship of the NH2-terminal domains of RyR2 and the action of NH2-terminal disease mutations.
Collapse
Affiliation(s)
- Yingjie Liu
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Bo Sun
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Zhichao Xiao
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ruiwu Wang
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Wenting Guo
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Joe Z Zhang
- Department of Physiology and HeartOtago, University of Otago, Dunedin 9054, New Zealand, and
| | - Tao Mi
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yundi Wang
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Peter P Jones
- Department of Physiology and HeartOtago, University of Otago, Dunedin 9054, New Zealand, and
| | - Filip Van Petegem
- Cardiovascular Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - S R Wayne Chen
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada,
| |
Collapse
|
48
|
ZHAO YT, VALDIVIA CR, GURROLA GB, HERNÁNDEZ JJ, VALDIVIA HH. Arrhythmogenic mechanisms in ryanodine receptor channelopathies. SCIENCE CHINA-LIFE SCIENCES 2014; 58:54-8. [PMID: 25480325 PMCID: PMC6309702 DOI: 10.1007/s11427-014-4778-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/10/2014] [Indexed: 11/27/2022]
Abstract
Ryanodine receptors (RyRs) are the calcium release channels of sarcoplasmic reticulum (SR) that provide the majority of cal-cium ions (Ca2+) necessary to induce contraction of cardiac and skeletal muscle cells. In their intracellular environment, RyR channels are regulated by a variety of cytosolic and luminal factors so that their output signal (Ca2+) induces finely-graded cell contraction without igniting cellular processes that may lead to aberrant electrical activity (ventricular arrhythmias) or cellular remodeling. The importance of RyR dysfunction has been recently highlighted with the demonstration that point mutations in RYR2, the gene encoding for the cardiac isoform of the RyR (RyR2), are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT), an arrhythmogenic syndrome characterized by the development of adrenergically-mediated ventricular tachycardia in individuals with an apparently normal heart. Here we summarize the state of the field in regards to the main arrhythmogenic mechanisms triggered by RyR2 channels harboring mutations linked to CPVT. Most CPVT mutations characterized to date endow RyR2 channels with a gain of function, resulting in hyperactive channels that release Ca2+ spontaneously, especially during diastole. The spontaneous Ca2+ release is extruded by the electrogenic Na+/Ca2+ exchanger, which depolarizes the external membrane (delayed afterdepolarization or DAD) and may trigger untimely action potentials. However, a rare set of CPVT mutations yield RyR2 channels that are intrinsically hypo-active and hypo-responsive to stimuli, and it is unclear whether these channels release Ca2+ spontaneously during diastole. We discuss novel cellular mechanisms that appear more suitable to explain ventricular arrhythmias due to RyR2 loss-of-function mutations.
Collapse
|
49
|
Borko Ľ, Bauerová-Hlinková V, Hostinová E, Gašperík J, Beck K, Lai FA, Zahradníková A, Ševčík J. Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2897-912. [PMID: 25372681 PMCID: PMC4220973 DOI: 10.1107/s1399004714020343] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/10/2014] [Indexed: 01/11/2023]
Abstract
Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1-606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the hRyR2 N-terminal region, are presented. The N-terminus is held together by a unique network of interactions among its three domains, A, B and C, in which the central helix (amino acids 410-437) plays a prominent stabilizing role. Importantly, the anion-binding site reported for the mouse RyR2 N-terminal region is notably absent from the human RyR2. The structure concurs with the differential stability of arrhythmogenic mutations in the central helix (R420W, I419F and I419F/R420W) which are owing to disparities in the propensity of mutated residues to form energetically favourable or unfavourable contacts. In solution, the N-terminus adopts a globular shape with a prominent tail that is likely to involve residues 545-606, which are unresolved in the crystal structure. Docking the N-terminal domains into cryo-electron microscopy maps of the closed and open RyR1 conformations reveals C(α) atom movements of up to 8 Å upon channel gating, and predicts the location of the leucine-isoleucine zipper segment and the interaction site for spinophilin and phosphoprotein phosphatase 1 on the RyR surface.
Collapse
Affiliation(s)
- Ľubomír Borko
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Vladena Bauerová-Hlinková
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Eva Hostinová
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Juraj Gašperík
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Konrad Beck
- Cardiff University School of Dentistry, Heath Park, Cardiff CF14 4XY, Wales
| | - F. Anthony Lai
- Department of Cardiology, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales
| | - Alexandra Zahradníková
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 833 34 Bratislava, Slovakia
| | - Jozef Ševčík
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| |
Collapse
|
50
|
Generation and characterization of a mouse model harboring the exon-3 deletion in the cardiac ryanodine receptor. PLoS One 2014; 9:e95615. [PMID: 24743769 PMCID: PMC3990712 DOI: 10.1371/journal.pone.0095615] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/28/2014] [Indexed: 11/19/2022] Open
Abstract
A large genomic deletion in human cardiac ryanodine receptor (RYR2) gene has been detected in a number of unrelated families with various clinical phenotypes, including catecholaminergic polymorphic ventricular tachycardia (CPVT). This genomic deletion results in an in-frame deletion of exon-3 (Ex3-del). To understand the underlying disease mechanism of the RyR2 Ex3-del mutation, we generated a mouse model in which the RyR2 exon-3 sequence plus 15-bp intron sequences flanking exon-3 were deleted. Heterozygous Ex3-del mice (Ex3-del+/−) survived, but no homozygous Ex3-del mice were born. Unexpectedly, the Ex3-del+/− mice are not susceptible to CPVT. Ex3-del+/− cardiomyocytes exhibited similar amplitude but altered dynamics of depolarization-induced Ca2+ transients compared to wild type (WT) cells. Immunoblotting analysis revealed markedly reduced expression of RyR2 protein in the Ex3-del+/− mutant heart, indicating that Ex3-del has a major impact on RyR2 protein expression in mice. Cardiac specific, conditional knockout of the WT RyR2 allele in Ex3-del+/− mice led to bradycardia and death. Thus, the absence of CPVT and other phenotypes in Ex3-del+/− mice may be attributable to the predominant expression of the WT RyR2 allele as a result of the markedly reduced expression of the Ex3-del mutant allele. The effect of Ex3-del on RyR2 protein expression is discussed in relation to the phenotypic variability in individuals with the RyR2 exon-3 deletion.
Collapse
|