1
|
Iliev A, Gaydarski L, Kotov G, Landzhov B, Kirkov V, Stanchev S. The vascular footprint in cardiac homeostasis and hypertensive heart disease-A link between apelin receptor, vascular endothelial growth factor, and neuronal nitric oxide synthase. Anat Rec (Hoboken) 2024; 307:3548-3563. [PMID: 38618880 DOI: 10.1002/ar.25453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
Recent studies have suggested a connection between disturbances of the apelin system and various cardiac pathologies, including hypertension, heart failure, and atherosclerosis. Vascular endothelial growth factor is crucial for cardiac homeostasis as a critical molecule in cardiac angiogenesis. Neuronal nitric oxide synthase is an essential enzyme producing nitric oxide, a key regulator of vascular tone. The present study aims to shed light upon the complex interactions between these three vital signaling molecules and examine their changes with the progression of hypertensive heart disease. We used two groups of spontaneously hypertensive rats and age-matched Wistar rats as controls. The expression of the apelin receptor, vascular endothelial growth factor, and neuronal nitric oxide synthase were assessed immunohistochemically. We used capillary density and cross-sectional area of the cardiomyocytes as quantitative parameters of cardiac hypertrophy. Immunoreactivity of the molecules was more potent in both ventricles of spontaneously hypertensive rats compared with age-matched controls. However, capillary density was lower in both ventricles of the two age groups of spontaneously hypertensive rats compared with controls, and the difference was statistically significant. In addition, the cross-sectional area of the cardiomyocytes was higher in both ventricles of the two age groups of spontaneously hypertensive rats compared with controls, and the difference was statistically significant. Our study suggests a potential link between the apelin receptor, vascular endothelial growth factor, and neuronal nitric oxide synthase in cardiac homeostasis and the hypertensive myocardium. Nevertheless, further research is required to better comprehend these interactions and their potential therapeutic implications.
Collapse
Affiliation(s)
- Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Lyubomir Gaydarski
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi Kotov
- Clinic of Rheumatology, University Hospital "St. Ivan Rilski", Department of Rheumatology, Medical University of Sofia, Sofia, Bulgaria
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Vidin Kirkov
- Department of Health Policy and Management, Faculty of Public Health "Prof. Dr. Tzekomir Vodenicharov", Medical University of Sofia, Sofia, Bulgaria
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
2
|
Cacciapuoti F, Mauro C, Capone V, Chianese S, Tarquinio LG, Gottilla R, Marsico F, Crispo S, Cacciapuoti F. The Role of Vericiguat in Early Phases of Anterior Myocardial Infarction: A Potential Game-Changer? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1595. [PMID: 39459382 PMCID: PMC11510088 DOI: 10.3390/medicina60101595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Anterior myocardial infarction is a critical condition with significant implications for cardiac function and patient prognosis. Despite advancements in reperfusion therapies, optimizing recovery during the early phases of myocardial infarction remains challenging. Anterior myocardial infarction can lead to substantial long-term effects on a patient's health due to extensive damage to the heart muscle, particularly the left ventricle, impacting both quality of life and overall prognosis. Vericiguat, a soluble guanylate cyclase stimulator, has shown promise in heart failure, but its role in early anterior myocardial infarction has not yet been fully explored. By enhancing soluble guanylate cyclase activity, vericiguat may increase cyclic guanosine monophosphate production, leading to vasodilation, inhibition of platelet aggregation, and potential cardioprotective effects. Currently, treatment options for anterior myocardial infarction primarily focus on reperfusion strategies and managing complications. However, there is a critical need for adjunctive therapies that specifically target the pathophysiological changes occurring in the early phases of myocardial infarction. Vericiguat's mechanism of action offers a novel approach to improving vascular function and myocardial health, potentially contributing to innovative treatment strategies that could transform the care and prognosis of patients with anterior myocardial infarction.
Collapse
Affiliation(s)
- Federico Cacciapuoti
- Department of Internal Medicine, “L. Vanvitelli” University, 80131 Naples, Italy
| | - Ciro Mauro
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| | - Valentina Capone
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
| | - Salvatore Chianese
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| | - Luca Gaetano Tarquinio
- Post-Graduate School of Emergency Medicine, “L. Vanvitelli” University, 80131 Naples, Italy
| | - Rossella Gottilla
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| | - Fabio Marsico
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| | - Salvatore Crispo
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| | - Fulvio Cacciapuoti
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| |
Collapse
|
3
|
Dong Y, Li Y, Liu C, Guo Y, Feng Y. Is cardiac function associated with the clinical course of disease in patients with gout? A prospective study. Echocardiography 2024; 41:e15911. [PMID: 39225580 DOI: 10.1111/echo.15911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE To analyze the function of the left heart in patients with different courses of gout, the independent influencing factors for left heart functional changes, and interactions between left atrial and left ventricular functions. METHODS Patients with gout (n = 171) were selected; 87 patients with a disease course <10 years were included in Group I, and 84 patients with a disease course ≥10 years were included in Group II. Ninety-four healthy volunteers comprised the control group. RESULTS The intergroup differences in cardiac strain parameters were statistically significant (p < .05). Moreover, the differences gradually declined with disease progression. Multivariate logistic regression analysis showed that uric acid was an independent predictor of decreased left ventricular global longitudinal strain (LVGLS). Moreover, LVGLS had a positive effect on the left atrial systolic rate (LASr) and the left atrial systolic contraction time (LASct) but no interaction with the left atrial systolic contraction duration (LAScd). CONCLUSION The course of the disease significantly affected the function of the left heart in gout patients, and uric acid was observed to be an independent predictor of decreased LVGLS in gout patients.
Collapse
Affiliation(s)
- Yanni Dong
- Department of Medical Ultrasonics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yiming Li
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Caijie Liu
- Department of Medical Ultrasonics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yingnan Guo
- Department of Medical Ultrasonics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yanhong Feng
- Department of Medical Ultrasonics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
4
|
Yu C, Li X, Ma J, Liang S, Zhao Y, Li Q, Zhang R. Spatiotemporal modulation of nitric oxide and Notch signaling by hemodynamic-responsive Trpv4 is essential for ventricle regeneration. Cell Mol Life Sci 2024; 81:60. [PMID: 38279064 PMCID: PMC10817848 DOI: 10.1007/s00018-023-05092-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024]
Abstract
Zebrafish have a remarkable ability to regenerate injured hearts. Altered hemodynamic forces after larval ventricle ablation activate the endocardial Klf2a-Notch signaling cascade to direct zebrafish cardiac regeneration. However, how the heart perceives blood flow changes and initiates signaling pathways promoting regeneration is not fully understood. The present study demonstrated that the mechanosensitive channel Trpv4 sensed the altered hemodynamic forces in injured hearts and its expression was regulated by blood flow. In addition to mediating the endocardial Klf2a-Notch signal cascade around the atrioventricular canal (AVC), we discovered that Trpv4 regulated nitric oxide (NO) signaling in the bulbus arteriosus (BA). Further experiments indicated that Notch signaling primarily acted at the early stage of regeneration, and the major role of NO signaling was at the late stage and through TGF-β pathway. Overall, our findings revealed that mechanosensitive channels perceived the changes in hemodynamics after ventricle injury, and provide novel insights into the temporal and spatial coordination of multiple signaling pathways regulating heart regeneration.
Collapse
Affiliation(s)
- Chunxiao Yu
- TaiKang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xueyu Li
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jinmin Ma
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Shuzhang Liang
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yan Zhao
- TaiKang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qi Li
- TaiKang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ruilin Zhang
- TaiKang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
5
|
Adams JA, Uryash A, Lopez JR. Non-Invasive Pulsatile Shear Stress Modifies Endothelial Activation; A Narrative Review. Biomedicines 2022; 10:biomedicines10123050. [PMID: 36551807 PMCID: PMC9775985 DOI: 10.3390/biomedicines10123050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The monolayer of cells that line both the heart and the entire vasculature is the endothelial cell (EC). These cells respond to external and internal signals, producing a wide array of primary or secondary messengers involved in coagulation, vascular tone, inflammation, and cell-to-cell signaling. Endothelial cell activation is the process by which EC changes from a quiescent cell phenotype, which maintains cellular integrity, antithrombotic, and anti-inflammatory properties, to a phenotype that is prothrombotic, pro-inflammatory, and permeable, in addition to repair and leukocyte trafficking at the site of injury or infection. Pathological activation of EC leads to increased vascular permeability, thrombosis, and an uncontrolled inflammatory response that leads to endothelial dysfunction. This pathological activation can be observed during ischemia reperfusion injury (IRI) and sepsis. Shear stress (SS) and pulsatile shear stress (PSS) are produced by mechanical frictional forces of blood flow and contraction of the heart, respectively, and are well-known mechanical signals that affect EC function, morphology, and gene expression. PSS promotes EC homeostasis and cardiovascular health. The archetype of inducing PSS is exercise (i.e., jogging, which introduces pulsations to the body as a function of the foot striking the pavement), or mechanical devices which induce external pulsations to the body (Enhanced External Pulsation (EECP), Whole-body vibration (WBV), and Whole-body periodic acceleration (WBPA aka pGz)). The purpose of this narrative review is to focus on the aforementioned noninvasive methods to increase PSS, review how each of these modify specific diseases that have been shown to induce endothelial activation and microcirculatory dysfunction (Ischemia reperfusion injury-myocardial infarction and cardiac arrest and resuscitation), sepsis, and lipopolysaccharide-induced sepsis syndrome (LPS)), and review current evidence and insight into how each may modify endothelial activation and how these may be beneficial in the acute and chronic setting of endothelial activation and microvascular dysfunction.
Collapse
Affiliation(s)
- Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Correspondence:
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Jose R. Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| |
Collapse
|
6
|
Cornuault L, Rouault P, Duplàa C, Couffinhal T, Renault MA. Endothelial Dysfunction in Heart Failure With Preserved Ejection Fraction: What are the Experimental Proofs? Front Physiol 2022; 13:906272. [PMID: 35874523 PMCID: PMC9304560 DOI: 10.3389/fphys.2022.906272] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has been recognized as the greatest single unmet need in cardiovascular medicine. Indeed, the morbi-mortality of HFpEF is high and as the population ages and the comorbidities increase, so considerably does the prevalence of HFpEF. However, HFpEF pathophysiology is still poorly understood and therapeutic targets are missing. An unifying, but untested, theory of the pathophysiology of HFpEF, proposed in 2013, suggests that cardiovascular risk factors lead to a systemic inflammation, which triggers endothelial cells (EC) and coronary microvascular dysfunction. This cardiac small vessel disease is proposed to be responsible for cardiac wall stiffening and diastolic dysfunction. This paradigm is based on the fact that microvascular dysfunction is highly prevalent in HFpEF patients. More specifically, HFpEF patients have been shown to have decreased cardiac microvascular density, systemic endothelial dysfunction and a lower mean coronary flow reserve. Importantly, impaired coronary microvascular function has been associated with the severity of HF. This review discusses evidence supporting the causal role of endothelial dysfunction in the pathophysiology of HFpEF in human and experimental models.
Collapse
|
7
|
Cho JS, Han YS, Jensen C, Sieck G. Effects of arginase inhibition on myocardial Ca 2+ and contractile responses. Physiol Rep 2022; 10:e15396. [PMID: 35866269 PMCID: PMC9305075 DOI: 10.14814/phy2.15396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 04/18/2023] Open
Abstract
Nitric oxide (NO) is thought to increase cardiac contractility by increasing cytosolic Ca2+ concentration ([Ca2+ ]cyt ) during excitation. Alternatively, NO could increase the sensitivity of the contractile response to [Ca2+ ]cyt (Ca2+ sensitivity). Arginase regulates NO production by competing with NO synthase (NOS), and thus, arginase inhibition should increase cardiac contractility by increasing NO production. We hypothesized that arginase inhibition increases cardiac contractility by increasing both [Ca2+ ]cyt and Ca2+ sensitivity. [Ca2+ ]cyt and contractile (sarcomere length [SL] shortening) responses to electrical stimulation were measured simultaneously in isolated rat cardiomyocytes using an IonOptix system. In the same cardiomyocytes, measurements were obtained at baseline, following 3-min exposure to an arginase inhibitor (S-[2-boronoethyl]-l-cysteine; BEC) and following 3-min exposure to BEC plus a NOS inhibitor (NG -nitro-l-arginine-methyl ester; l-NAME). These responses were compared to time-matched control cardiomyocytes that were untreated. Compared to baseline, BEC increased the amplitude and the total amount of evoked [Ca2+ ]cyt , and the extent and velocity of SL shortening in cardiomyocytes, whereas addition of l-NAME mitigated these effects. The [Ca2+ ]cyt at 50% contraction and relaxation were not different across treatment groups indicating no effect of BEC on Ca2+ sensitivity. The [Ca2+ ]cyt and SL shortening responses in time-matched controls did not vary with time. Arginase inhibition by BEC significantly increased the amplitude and the total amount of evoked [Ca2+ ]cyt , and the extent and velocity of SL shortening in cardiomyocytes, but did not affect Ca2+ sensitivity. These effects of BEC were mitigated by l-NAME. Together, these results indicate an effect of NO on [Ca2+ ]cyt responses that then increase the contractile response of cardiomyocytes.
Collapse
Affiliation(s)
- Jin Sun Cho
- Department of Anesthesiology and Pain MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Young Soo Han
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Cole Jensen
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Gary Sieck
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
8
|
Yan L, Wen M, Qin Y, Bi C, Zhao Y, Fan W, Yan J, Huang W, Liu Y. Soft Electrodes for Electrochemical and Electrophysiological Monitoring of Beating Cardiomyocytes. Angew Chem Int Ed Engl 2022; 61:e202203757. [DOI: 10.1002/anie.202203757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Li‐Ping Yan
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Ming‐Yong Wen
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yu Qin
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Chen‐Xi Bi
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yi Zhao
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wen‐Ting Fan
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Jing Yan
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wei‐Hua Huang
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yan‐Ling Liu
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| |
Collapse
|
9
|
Yan LP, Wen MY, Qin Y, Bi CX, Zhao Y, Fan WT, Yan J, Huang WH, Liu YL. Soft Electrodes for Electrochemical and Electrophysiological Monitoring of Beating Cardiomyocytes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Li-Ping Yan
- Wuhan University College of Chemistry and Molecular Sciences 430072 Wuhan CHINA
| | - Ming-Yong Wen
- Wuhan University College of Chemistry and Molecular Sciences 430072 Wuhan CHINA
| | - Yu Qin
- Wuhan University College of Chemistry and Molecular Sciences 430072 Wuhan CHINA
| | - Chen-Xi Bi
- Wuhan University College of Chemistry and Molecular Sciences 430072 Wuhan CHINA
| | - Yi Zhao
- Wuhan University College of Chemistry and Molecular Sciences 430072 Wuhan CHINA
| | - Wen-Ting Fan
- Wuhan University College of Chemistry and Molecular Sciences 430072 Wuhan CHINA
| | - Jing Yan
- Wuhan University College of Chemistry and Molecular Sciences 430072 Wuhan CHINA
| | - Wei-Hua Huang
- Wuhan University College of Chemistry and Molecular Sciences NO. 299, Bayi Road, Luojia Hill, Wuchang 430072 Wuhan CHINA
| | - Yan-Ling Liu
- Wuhan University College of Chemistry and Molecular Sciences 430072 Wuhan CHINA
| |
Collapse
|
10
|
Adams JA, Uryash A, Lopez JR, Sackner MA. The Endothelium as a Therapeutic Target in Diabetes: A Narrative Review and Perspective. Front Physiol 2021; 12:638491. [PMID: 33708143 PMCID: PMC7940370 DOI: 10.3389/fphys.2021.638491] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/29/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes has reached worldwide epidemic proportions, and threatens to be a significant economic burden to both patients and healthcare systems, and an important driver of cardiovascular mortality and morbidity. Improvement in lifestyle interventions (which includes increase in physical activity via exercise) can reduce diabetes and cardiovascular disease mortality and morbidity. Encouraging a population to increase physical activity and exercise is not a simple feat particularly in individuals with co-morbidities (obesity, heart disease, stroke, peripheral vascular disease, and those with cognitive and physical limitations). Translation of the physiological benefits of exercise within that vulnerable population would be an important step for improving physical activity goals and a stopgap measure to exercise. In large part many of the beneficial effects of exercise are due to the introduction of pulsatile shear stress (PSS) to the vascular endothelium. PSS is a well-known stimulus for endothelial homeostasis, and induction of a myriad of pathways which include vasoreactivity, paracrine/endocrine function, fibrinolysis, inflammation, barrier function, and vessel growth and formation. The endothelial cell mediates the balance between vasoconstriction and relaxation via the major vasodilator endothelial derived nitric oxide (eNO). eNO is critical for vasorelaxation, increasing blood flow, and an important signaling molecule that downregulates the inflammatory cascade. A salient feature of diabetes, is endothelial dysfunction which is characterized by a reduction of the bioavailability of vasodilators, particularly nitric oxide (NO). Cellular derangements in diabetes are also related to dysregulation in Ca2+ handling with increased intracellular Ca2+overload, and oxidative stress. PSS increases eNO bioavailability, reduces inflammatory phenotype, decreases intracellular Ca2+ overload, and increases antioxidant capacity. This narrative review and perspective will outline four methods to non-invasively increase PSS; Exercise (the prototype for increasing PSS), Enhanced External Counterpulsation (EECP), Whole Body Vibration (WBV), Passive Simulated Jogging and its predicate device Whole Body Periodic Acceleration, and will discuss current knowledge on their use in diabetes.
Collapse
Affiliation(s)
- Jose A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Jose R Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Marvin A Sackner
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, FL, United States
| |
Collapse
|
11
|
Infante T, Costa D, Napoli C. Novel Insights Regarding Nitric Oxide and Cardiovascular Diseases. Angiology 2021; 72:411-425. [PMID: 33478246 DOI: 10.1177/0003319720979243] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a powerful mediator with biological activities such as vasodilation and prevention of vascular smooth muscle cell proliferation as well as functional regulation of cardiac cells. Thus, impaired production or reduced bioavailability of NO predisposes to the onset of different cardiovascular (CV) diseases. Alterations in the redox balance associated with excitation-contraction coupling have been identified in heart failure (HF), thus contributing to contractile abnormalities and arrhythmias. For its ability to influence cell proliferation and angiogenesis, NO may be considered a therapeutic option for the management of several CV diseases. Several clinical studies and trials investigated therapeutic NO strategies for systemic hypertension, atherosclerosis, and/or prevention of in stent restenosis, coronary heart disease (CHD), pulmonary arterial hypertension (PAH), and HF, although with mixed results in long-term treatment and effective dose administered in selected groups of patients. Tadalafil, sildenafil, and cinaguat were evaluated for the treatment of PAH, whereas vericiguat was investigated in the treatment of HF patients with reduced ejection fraction. Furthermore, supplementation with hydrogen sulfide, tetrahydrobiopterin, and nitrite/nitrate has shown beneficial effects at the vascular level.
Collapse
Affiliation(s)
- Teresa Infante
- Department of Advanced Clinical and Surgical Sciences, 18994University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Dario Costa
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, 18994University of Campania "L. Vanvitelli," Naples, Italy
| | - Claudio Napoli
- Department of Advanced Clinical and Surgical Sciences, 18994University of Campania "Luigi Vanvitelli," Naples, Italy.,IRCCS SDN, Naples, Italy
| |
Collapse
|
12
|
Abstract
PURPOSE OF THE REVIEW This review summarizes sex-related changes in the heart and vasculature that occur with aging, both in the presence and absence of cardiovascular disease (CVD). RECENT FINDINGS In the presence of CVD risk factors and/or overt CVD, sex-specific changes in the number of cardiomyocytes, extent of the myocardial extracellular matrix, and myocellular hypertrophy promote unique patterns of LV remodeling in men and women. In addition, age- and sex-specific vascular stiffening is also well established, driven by changes in endothelial dysfunction, elastin-collagen content, microvascular dysfunction, and neurohormonal signaling. Together, these changes in LV chamber geometry and morphology, coupled with heightened vascular stiffness, appear to drive both age-related increases in systolic function and declines in diastolic function, particularly in postmenopausal women. Accordingly, estrogen has been implicated as a key mediator, given its direct vasodilating properties, association with nitric oxide excretion, and involvement in myocellular Ca2+ handling, mitochondrial energy production, and oxidative stress. The culmination of the abovementioned sex-specific cardiac and vascular changes across the lifespan provides important insight into heart failure development, particularly of the preserved ejection fraction variety, while offering promise for future preventive strategies and therapeutic approaches.
Collapse
Affiliation(s)
- Andrew Oneglia
- Applied Physiology and Advanced Imaging Lab, University of Texas at Arlington, 655 West Mitchell St, Arlington, TX, 76010, USA
| | - Michael D Nelson
- Applied Physiology and Advanced Imaging Lab, University of Texas at Arlington, 655 West Mitchell St, Arlington, TX, 76010, USA
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, AHSP Suite A3206, Los Angeles, CA, 90048, USA
| | - C Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, AHSP Suite A3206, Los Angeles, CA, 90048, USA.
| |
Collapse
|
13
|
Xiong TY, Liu C, Liao YB, Zheng W, Li YJ, Li X, Ou Y, Wang ZJ, Wang X, Li CM, Zhao ZG, Feng Y, Liu XJ, Chen M. Differences in metabolic profiles between bicuspid and tricuspid aortic stenosis in the setting of transcatheter aortic valve replacement. BMC Cardiovasc Disord 2020; 20:229. [PMID: 32423380 PMCID: PMC7236099 DOI: 10.1186/s12872-020-01491-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/19/2020] [Indexed: 02/08/2023] Open
Abstract
Background To explore why bicuspid aortic stenosis has certain clinical differences from the tricuspid morphology, we evaluated the metabolomics profile involved in bicuspid aortic valve (BAV) aortic stenosis prior to and after transcatheter aortic valve replacement (TAVR) in comparison with tricuspid aortic valve (TAV). Methods In this TAVR cohort with prospectively collected data, blood samples were obtained before TAVR valve deployment and at the 7th day after TAVR, which were then sent for liquid and gas chromatography-mass spectrometry detection. Besides comparisons between BAV and TAV, BAV patients were also divided in subgroups according to baseline hemodynamics (i.e. maximal transaortic velocity, Vmax) and post-procedural reverse left ventricular (LV) remodeling (i.e. the change in LV mass index from baseline, ∆LVMI) for further analysis. Metabolic differences between groups were identified by integrating univariate test, multivariate analysis and weighted correlation network analysis algorithm. Results A total of 57 patients were enrolled including 33 BAV patients. The BAV group showed lower arginine and proline metabolism both before and post TAVR than TAV represented by decreased expression of L-Glutamine. In BAV subgroup analysis, patients with baseline Vmax > 5 m/s (n = 11) or the 4th quartile of change in ∆LVMI at one-year follow-up (i.e. poorly-recovered LV, n = 8) showed elevated arachidonic acid metabolism compared with Vmax < 4.5 m/s (n = 12) or the 1st quartile of ∆LVMI (i.e. well-recovered LV, n = 8) respectively. Conclusions Difference in arginine and proline metabolism was identified between BAV and TAV in TAVR recipients. Elevated arachidonic acid metabolism may reflect more severe baseline hemodynamics and worse LV reserve remodeling after TAVR in BAV.
Collapse
Affiliation(s)
- Tian-Yuan Xiong
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Chang Liu
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Yan-Biao Liao
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Wen Zheng
- Laboratory of Mitochondrial Biology, West China-Washington Mitochondria and Metabolism Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yi-Jian Li
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Xi Li
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Yuanweixiang Ou
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Zi-Jie Wang
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Xi Wang
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Chang-Ming Li
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Zhen-Gang Zhao
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Yuan Feng
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Xiao-Jing Liu
- Laboratory of Mitochondrial Biology, West China-Washington Mitochondria and Metabolism Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China. .,Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China.
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
14
|
Differences in cNOS/iNOS Activity during Resistance to Trypanosoma cruzi Infection in 5-Lipoxygenase Knockout Mice. Mediators Inflamm 2020; 2019:5091630. [PMID: 31772504 PMCID: PMC6854994 DOI: 10.1155/2019/5091630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/14/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Infection with the protozoan Trypanosoma cruzi causes Chagas disease and consequently leads to severe inflammatory heart condition; however, the mechanisms driving this inflammatory response have not been completely elucidated. Nitric oxide (NO) is a key mediator of parasite killing in T. cruzi-infected mice, and previous studies have suggested that leukotrienes (LTs) essentially regulate the NO activity in the heart. We used infected 5-lipoxygenase-deficient mice (5-LO−/−) to explore the participation of nitric oxide synthase isoforms, inducible (iNOS) and constitutive (cNOS), in heart injury, cytokine profile, and oxidative stress during the early stage of T. cruzi infection. Our evidence suggests that the cNOS of the host is involved in the resistance of 5-LO−/− mice during T. cruzi infection. iNOS inhibition generated a remarkable increase in T. cruzi infection in the blood and heart of mice, whereas cNOS inhibition reduced cardiac parasitism (amastigote nests). Furthermore, this inhibition associates with a higher IFN-γ production and lower lipid peroxidation status. These data provide a better understanding about the influence of NO-interfering therapies for the inflammatory response toward T. cruzi infection.
Collapse
|
15
|
Lado-Abeal J. Non-thyroidal illness syndrome, the hidden player in the septic shock induced myocardial contractile depression. Med Hypotheses 2020; 142:109775. [PMID: 32344285 DOI: 10.1016/j.mehy.2020.109775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Septic shock causes high mortality in hospitalized patients, especially in those that develop myocardial dysfunction as an early complication. The myocardial dysfunction of septic shock is characterized by a decrease in ventricular relaxation (diastolic dysfunction) and reduced ventricular ejection fraction (systolic dysfunction). Most patients with septic shock have low serum thyroid hormone levels, a condition known as non-thyroidal illness syndrome. Thyroid hormones sustain myocardial contractility and energy metabolism. Septic shock non-thyroidal illness syndrome causes myocardial hypothyroidism, and hypothyroidism causes myocardial dysfunction that resembles the myocardial depression of septic shock. We hypothesize that the myocardial hypothyroidism that occurs during septic shock has a causal role in the pathogenesis of septic shock-induced myocardial dysfunction. Thyroid hormones regulate the calcium cycle, the phenotype of contractile proteins, adrenergic response, and fatty acid transport and oxidation in the cardiomyocytes. Therefore, the administration of levothyroxine and liothyronine to normalize thyroid hormones level within the myocardium will improve the myocardial function. The hypothesis will be tested in humans with septic shock by performing a prospective, randomized, placebo-controlled study to compare the effect of thyroid hormone administration with placebo on myocardial function. The proposed hypothesis challenges the idea that non-thyroidal illness syndrome is a beneficial response of the thyroid hormone axis to illness and that thyroid hormone replacement is detrimental. The administration of thyroid hormone in order to prevent and reverse myocardial hypothyroidism during septic shock is a new theoretical concept on thyroid hormone metabolism and action at the tissue level during non-thyroidal illness syndrome. If the hypothesis is correct, clinicians should consider cardiac hypothyroidism as a central player in myocardial dysfunction caused by sepsis. Thyroid hormone replacement should be incorporated into the armamentarium of septic shock treatment.
Collapse
Affiliation(s)
- Joaquin Lado-Abeal
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Truman Medical Centers and University of Missouri Kansas City, MO, USA.
| |
Collapse
|
16
|
Wang C, Qiao S, Hong L, Sun J, Che T, An J, Camara AKS. NOS cofactor tetrahydrobiopterin contributes to anesthetic preconditioning induced myocardial protection in the isolated ex vivo rat heart. Int J Mol Med 2020; 45:615-622. [PMID: 31894305 DOI: 10.3892/ijmm.2019.4445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/04/2019] [Indexed: 11/05/2022] Open
Abstract
Anesthetic preconditioning (APC) may decrease the myocardium injury nearly 50% following ischemia/reperfusion (I/R) by enhancing recovery of cardiac function, reducing myocardial enzyme release and lowering infarct size when utilized as pretreatment or posttreatment agents. I/R increases nitric oxide (NO) production through endothelial NO synthase (NOS3) and heat shock protein 90 (HSP90). The present study aimed to observe the role of BH4 availability and the association of HSP90 with NOS3 in APC‑mediated cardioprotection against I/R injury. Isolated rat hearts were subjected to no‑flow ischemia for 30 min and reperfusion for 120 min. Sevoflurane (3.5%) was administered for 15 min followed by a 15 min washout prior to ischemia. 2,4-Diamino-6-hydroxypyrimidine (DAHP) or sepiapterin (SP) was administered for 40 min until the onset of ischemia. The results revealed that compared with pre‑ischemic basal levels, BH4 levels decreased and BH2 levels increased following I/R. BH4 levels were significantly increased and BH2 levels were significantly decreased in the APC + I/R hearts compared with the I/R group hearts. The BH4:BH2 ratio in the APC‑treated hearts was also increased compared with that in the I/R group hearts. SP increased the recovery of contractile function and the production of NO, and decreased the production of superoxide anion (O2·‑) in I/R heart, but did not elicit these effects in APC‑treated hearts. DAHP treatment inhibited the APC‑mediated recovery of contractile function, increased O2·‑ levels and decreased NO production, but had no effect in I/R hearts. The cardioprotection of APC was demonstrated to be modulated by the BH4 precursor SP, which increased BH4 levels, or DAHP, which inhibited GTP cyclohydrolase I. Both APC and SP treatments increased the combination of HSP90 and NOS3, which improved the NOS3 activity and function. The results suggested that BH4, which servesas a cofactor for NOS, mediated the resistance of APC to I/R injury by promoting the binding of HSP90 and NOS3.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Clinical Medicine Research, Suzhou, Jiangsu 215153, P.R. China
| | - Shigang Qiao
- Institute of Clinical Medicine Research, Suzhou, Jiangsu 215153, P.R. China
| | - Lei Hong
- Institute of Clinical Medicine Research, Suzhou, Jiangsu 215153, P.R. China
| | - Jie Sun
- Institute of Clinical Medicine Research, Suzhou, Jiangsu 215153, P.R. China
| | - Tuanjie Che
- Laboratory of Precision Medicine and Translational Medicine, The Affiliated Suzhou Science and Technology Town Hospital of
Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Jianzhong An
- Institute of Clinical Medicine Research, Suzhou, Jiangsu 215153, P.R. China
| | - Amadou K S Camara
- Department of Anesthesiology and Physiology,
Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
17
|
Akhmadeeva K, Belova A, Karimova R. Biochemical parameters of rat blood in the models of chronic heart failure and chronic kidney disease at the administration of nitric oxide donor. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202700071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In modern veterinary medicine, the simultaneous occurrence of chronic heart failure and chronic kidney disease is often found. However, the cause and effect often exchange places, which creates great difficulties in the animals’ treatment. Chlofusan acts on both systems. It improves cardiac and renal functions by means of providing cardioprotective and nephroprotective effects. Models of chronic heart failure and chronic kidney disease in rats provide important information on the pathophysiology of these diseases in other animal species, and the assessment of changes in the biochemical analysis of blood makes it possible to assess the state of the heart and kidneys in the study. In the course of research, the results of rat biochemical analysis were studied on models of chronic heart and kidney failure with the introduction of an exogenous nitric oxide donor. Chlofuzan contributes to a partial balance restoration of biochemical blood parameters in rats, which indicates the restoration of the mutual work of the heart and kidneys.
Collapse
|
18
|
Bae H, Kim T, Lim I. Effects of nitric oxide on apoptosis and voltage-gated calcium channels in human cardiac myofibroblasts. Clin Exp Pharmacol Physiol 2019; 47:16-26. [PMID: 31519057 DOI: 10.1111/1440-1681.13178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 02/05/2023]
Abstract
We characterised the voltage-gated Ca2+ channels (VGCCs) in human cardiac fibroblasts (HCFs) and myofibroblasts (HCMFs) and investigated the effects of nitric oxide (NO) on apoptosis and on these channels. Western blotting and immunofluorescence analyses show that α-smooth muscle actin (a myofibroblast marker) was markedly expressed in passage (P) 12-15 but not in P4 HCF cells, whereas calponin (a fibroblast marker) was expressed only in P4 cells. CaV 1.2 (L-type) and CaV 3.3 (T-type) of VGCCs were highly expressed in P12-15 cells, but only weak CaV 2.3 (R-type) expression was identified in P4 cells using reverse transcription-polymerase chain reaction analysis. S-Nitroso-N-acetylpenicillamine (SNAP, an NO donor) decreased cell viability of HCMFs in a dose-dependent manner and induced apoptotic changes, and nifedipine (an L-type Ca2+ channel blocker) prevented apoptosis as shown with immunofluorescence staining and flow cytometry. Whole-cell mode patch-clamp recordings demonstrate the presence of L-type Ca2+ (IC a,L ) and T-type Ca2+ (IC a,T ) currents in HCMFs. SNAP inhibited IC a,L of HCMFs, but pre-treatment with ODQ (a guanylate cyclase inhibitor) or KT5823 (a PKG inhibitor) prevented it. Pre-treating cells with KT5720 (a PKA inhibitor) or SQ22536 (an adenylate cyclase inhibitor) blocked SNAP-induced inhibition of IC a,L . 8-Bromo-cyclic GMP or 8-bromo-cyclic AMP also inhibited IC a,L . However, pre-treatment with N-ethylmaleimide (a thiol-alkylating reagent) did not block the SNAP effect, nor did DL-dithiothreitol (a reducing agent) reverse it. These data suggest that high concentrations of NO injure HCMFs and inhibit IC a,L through the PKG and PKA signalling pathways but not through the S-nitrosylation pathway.
Collapse
Affiliation(s)
- Hyemi Bae
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Taeho Kim
- Department of Internal Medicine, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Inja Lim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
19
|
The Role of NO Synthase in the Cardioprotective Effect of Substances of Humic Origin on the Model of Ischemia and Reperfusion of Isolated Rat Heart. Bull Exp Biol Med 2019; 166:598-601. [PMID: 30903506 DOI: 10.1007/s10517-019-04399-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/20/2022]
Abstract
The cardioprotective and inotropic effects of standardized active natural substance based on high-molecular-weight compounds of humic origin were studied on the model of global ischemia (40 min) and reperfusion of isolated perfused rat heart. Preventive administration of the test substance (0.1 mg/ml) before ischemia/reperfusion modeling reduced reperfusion contracture and necrotic death of cardiomyocytes and promoted recovery of myocardial contractility. Blockade of NO synthase with L-NAME (100 μM) abolished the above effects of the test substance. It was hypothesized that NO synthase plays an important role in the development of the cardioprotective and inotropic effects of the test natural substance.
Collapse
|
20
|
Hossain E, Sarkar O, Li Y, Anand-Srivastava MB. Inhibition of overexpression of Giα proteins and nitroxidative stress contribute to sodium nitroprusside-induced attenuation of high blood pressure in SHR. Physiol Rep 2019; 6:e13658. [PMID: 29595917 PMCID: PMC5875540 DOI: 10.14814/phy2.13658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/13/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
We earlier showed that vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit enhanced expression of Giα proteins which was attributed to the decreased levels of nitric oxide (NO), because elevation of the intracellular levels of NO by NO donors; sodium nitroprusside (SNP) and S-Nitroso-N-acetyl-DL-penicillamine (SNAP), attenuated the enhanced expression of Giα proteins. Since the enhanced expression of Giα proteins is implicated in the pathogenesis of hypertension, the present study was undertaken to investigate if treatment of SHR with SNP could also attenuate the development of high blood pressure (BP) and explore the underlying molecular mechanisms. Intraperitoneal injection of SNP at a concentration of 0.5 mg/kg body weight twice a week for 2 weeks into SHR attenuated the high blood pressure by about 80 mmHg without affecting the BP in WKY rats. SNP treatment also attenuated the enhanced levels of superoxide anion (O2- ), hydrogen peroxide (H2 O2 ), peroxynitrite (ONOO- ), and NADPH oxidase activity in VSMC from SHR to control levels. In addition, the overexpression of different subunits of NADPH oxidase; Nox-1, Nox-2, Nox-4, P22phox , and P47phox , and Giα proteins in VSMC from SHR were also attenuated by SNP treatment. On the other hand, SNP treatment augmented the decreased levels of intracellular NO, eNOS, and cGMP in VSMC from SHR. These results suggest that SNP treatment attenuates the development of high BP in SHR through the elevation of intracellular levels of cGMP and inhibition of the enhanced levels of Giα proteins and nitroxidative stress.
Collapse
Affiliation(s)
- Ekhtear Hossain
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Oli Sarkar
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
21
|
Semantic Multi-Classifier Systems Identify Predictive Processes in Heart Failure Models across Species. Biomolecules 2018; 8:biom8040158. [PMID: 30486323 PMCID: PMC6315933 DOI: 10.3390/biom8040158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022] Open
Abstract
Genetic model organisms have the potential of removing blind spots from the underlying gene regulatory networks of human diseases. Allowing analyses under experimental conditions they complement the insights gained from observational data. An inevitable requirement for a successful trans-species transfer is an abstract but precise high-level characterization of experimental findings. In this work, we provide a large-scale analysis of seven weak contractility/heart failure genotypes of the model organism zebrafish which all share a weak contractility phenotype. In supervised classification experiments, we screen for discriminative patterns that distinguish between observable phenotypes (homozygous mutant individuals) as well as wild-type (homozygous wild-types) and carriers (heterozygous individuals). As the method of choice we use semantic multi-classifier systems, a knowledge-based approach which constructs hypotheses from a predefined vocabulary of high-level terms (e.g., Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways or Gene Ontology (GO) terms). Evaluating these models leads to a compact description of the underlying processes and guides the screening for new molecular markers of heart failure. Furthermore, we were able to independently corroborate the identified processes in Wistar rats.
Collapse
|
22
|
Bae H, Choi J, Kim YW, Lee D, Kim JH, Ko JH, Bang H, Kim T, Lim I. Effects of Nitric Oxide on Voltage-Gated K⁺ Currents in Human Cardiac Fibroblasts through the Protein Kinase G and Protein Kinase A Pathways but Not through S-Nitrosylation. Int J Mol Sci 2018. [PMID: 29534509 PMCID: PMC5877675 DOI: 10.3390/ijms19030814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study investigated the expression of voltage-gated K+ (KV) channels in human cardiac fibroblasts (HCFs), and the effect of nitric oxide (NO) on the KV currents, and the underlying phosphorylation mechanisms. In reverse transcription polymerase chain reaction, two types of KV channels were detected in HCFs: delayed rectifier K+ channel and transient outward K+ channel. In whole-cell patch-clamp technique, delayed rectifier K+ current (IK) exhibited fast activation and slow inactivation, while transient outward K+ current (Ito) showed fast activation and inactivation kinetics. Both currents were blocked by 4-aminopyridine. An NO donor, S-nitroso-N-acetylpenicillamine (SNAP), increased the amplitude of IK in a concentration-dependent manner with an EC50 value of 26.4 µM, but did not affect Ito. The stimulating effect of SNAP on IK was blocked by pretreatment with 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or by KT5823. 8-bromo-cyclic GMP stimulated the IK. The stimulating effect of SNAP on IK was also blocked by pretreatment with KT5720 or by SQ22536. Forskolin and 8-bromo-cyclic AMP each stimulated IK. On the other hand, the stimulating effect of SNAP on IK was not blocked by pretreatment of N-ethylmaleimide or by DL-dithiothreitol. Our data suggest that NO enhances IK, but not Ito, among KV currents of HCFs, and the stimulating effect of NO on IK is through the PKG and PKA pathways, not through S-nitrosylation.
Collapse
Affiliation(s)
- Hyemi Bae
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Jeongyoon Choi
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Young-Won Kim
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Donghee Lee
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Jung-Ha Kim
- Department of Family Medicine, College of Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Seoul 06973, Korea.
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Taeho Kim
- Department of Internal Medicine, College of Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Seoul 06973, Korea.
| | - Inja Lim
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| |
Collapse
|
23
|
Scalzo RL, Bauer TA, Harrall K, Moreau K, Ozemek C, Herlache L, McMillin S, Huebschmann AG, Dorosz J, Reusch JEB, Regensteiner JG. Acute vitamin C improves cardiac function, not exercise capacity, in adults with type 2 diabetes. Diabetol Metab Syndr 2018; 10:7. [PMID: 29456629 PMCID: PMC5813393 DOI: 10.1186/s13098-018-0306-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/04/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND People with type 2 diabetes (T2D) have impaired exercise capacity, even in the absence of complications, which is predictive of their increased cardiovascular mortality. Cardiovascular dysfunction is one potential cause of this exercise defect. Acute infusion of vitamin C has been separately shown to improve diastolic and endothelial function in prior studies. We hypothesized that acute vitamin C infusion would improve exercise capacity and that these improvements would be associated with improved cardiovascular function. METHODS Adults with T2D (n = 31, 7 female, 24 male, body mass index (BMI): 31.5 ± 0.8 kg/m2) and BMI-similar healthy adults (n = 21, 11 female, 10 male, BMI: 30.4 ± 0.7 kg/m2) completed two randomly ordered visits: IV infusion of vitamin C (7.5 g) and a volume-matched saline infusion. During each visit peak oxygen uptake (VO2peak), brachial artery flow mediated dilation (FMD), reactive hyperemia (RH; plethysmography), and cardiac echocardiography were measured. General linear mixed models were utilized to assess the differences in all study variables. RESULTS Acute vitamin C infusion improved diastolic function, assessed by lateral and septal E:E' (P < 0.01), but did not change RH (P = 0.92), or VO2peak (P = 0.33) in any participants. CONCLUSION Acute vitamin C infusion improved diastolic function but did not change FMD, forearm reactive hyperemia, or peak exercise capacity. Future studies should further clarify the role of endothelial function as well as other possible physiological causes of exercise impairment in order to provide potential therapeutic targets.Trial registration NCT00786019. Prospectively registered May 2008.
Collapse
Affiliation(s)
- Rebecca L. Scalzo
- Division of Endocrinology, Department of Medicine, University of Colorado School of Medicine (UCSOM), 12801 E17th Ave, Aurora, CO 80045 USA
- Department of Medicine, Center for Women’s Health Research, University of Colorado School of Medicine (UCSOM), Aurora, CO USA
| | - Timothy A. Bauer
- Division of General Internal Medicine, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO USA
| | - Kylie Harrall
- Department of Medicine, Center for Women’s Health Research, University of Colorado School of Medicine (UCSOM), Aurora, CO USA
| | - Kerrie Moreau
- Division of Geriatrics, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO USA
- Department of Medicine, Center for Women’s Health Research, University of Colorado School of Medicine (UCSOM), Aurora, CO USA
- VAMC-Geriatric Research Education and Clinical Center (GRECC), Denver, CO 80215 USA
| | - Cemal Ozemek
- Division of Geriatrics, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO USA
| | - Leah Herlache
- Division of General Internal Medicine, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO USA
| | - Shawna McMillin
- Division of General Internal Medicine, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO USA
| | - Amy G. Huebschmann
- Division of General Internal Medicine, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO USA
- Department of Medicine, Center for Women’s Health Research, University of Colorado School of Medicine (UCSOM), Aurora, CO USA
| | - Jennifer Dorosz
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO USA
| | - Jane E. B. Reusch
- Division of Endocrinology, Department of Medicine, University of Colorado School of Medicine (UCSOM), 12801 E17th Ave, Aurora, CO 80045 USA
- Department of Medicine, Center for Women’s Health Research, University of Colorado School of Medicine (UCSOM), Aurora, CO USA
- Veterans Administration Medical Center (VAMC), Denver, CO 80215 USA
| | - Judith G. Regensteiner
- Division of General Internal Medicine, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO USA
- Department of Medicine, Center for Women’s Health Research, University of Colorado School of Medicine (UCSOM), Aurora, CO USA
| |
Collapse
|
24
|
Pavlaki N, Nikolaev VO. Imaging of PDE2- and PDE3-Mediated cGMP-to-cAMP Cross-Talk in Cardiomyocytes. J Cardiovasc Dev Dis 2018; 5:jcdd5010004. [PMID: 29367582 PMCID: PMC5872352 DOI: 10.3390/jcdd5010004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclic nucleotides 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are important second messengers that regulate cardiovascular function and disease by acting in discrete subcellular microdomains. Signaling compartmentation at these locations is often regulated by phosphodiesterases (PDEs). Some PDEs are also involved in the cross-talk between the two second messengers. The purpose of this review is to summarize and highlight recent findings about the role of PDE2 and PDE3 in cardiomyocyte cyclic nucleotide compartmentation and visualization of this process using live cell imaging techniques.
Collapse
Affiliation(s)
- Nikoleta Pavlaki
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
25
|
Morell M, Burgos JI, Gonano LA, Vila Petroff M. AMPK-dependent nitric oxide release provides contractile support during hyperosmotic stress. Basic Res Cardiol 2017; 113:7. [PMID: 29273902 DOI: 10.1007/s00395-017-0665-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/13/2017] [Indexed: 01/11/2023]
Abstract
In different pathological situations, cardiac cells undergo hyperosmotic stress (HS) and cell shrinkage. This change in cellular volume has been associated with contractile dysfunction and cell death. Given that nitric oxide (NO) is a well-recognized modulator of cardiac contractility and cell survival, we evaluated whether HS increases NO production and its impact on the negative inotropic effect observed during this type of stress. Superfusing cardiac myocytes with a hypertonic solution (HS: 440 mOsm) decreased cell volume and increased NO-sensitive DAF-FM fluorescence compared with myocytes superfused with an isotonic solution (IS: 309 mOsm). When cells were exposed to HS in addition to different inhibitors: L-NAME (NO synthase inhibitor), nitroguanidine (nNOS inhibitor), and Wortmannin (eNOS inhibitor) cell shrinkage occurred in the absence of NO release, suggesting that HS activates nNOS and eNOS. Consistently, western blot analysis demonstrated that maintaining cardiac myocytes in HS promotes phosphorylation and thus, activation of nNOS and eNOS compared to myocytes maintained in IS. HS-induced nNOS and eNOS activation and NO production were also prevented by AMPK inhibition with Dorsomorphin (DORSO). In addition, the HS-induced negative inotropic effect was exacerbated in the presence of either L-NAME, DORSO, ODQ (guanylate cyclase inhibitor), or KT5823 (PKG inhibitor), suggesting that NO provides contractile support via a cGMP/PKG-dependent mechanism. Our findings suggest a novel mechanism of AMPK-dependent NO release in cardiac myocytes with putative pathophysiological relevance determined, at least in part, by its capability to reduce the extent of contractile dysfunction associated with hyperosmotic stress.
Collapse
Affiliation(s)
- Malena Morell
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Juan Ignacio Burgos
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Luis Alberto Gonano
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Martin Vila Petroff
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
26
|
The Effects of Aqueous Extract from Nardostachys chinensis Batalin on Blood Pressure and Cardiac Hypertrophy in Two-Kidney One-Clip Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4031950. [PMID: 29234388 PMCID: PMC5660807 DOI: 10.1155/2017/4031950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/06/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023]
Abstract
Aims The aim of this study was to investigate the effects of the aqueous extract of Nardostachys chinensis Batalin (NCBAE) on blood pressure and cardiac hypertrophy using two-kidney one-clip (2K1C) hypertensive rats. Methods 2K1C rat models were set up by clipping the left renal artery. Sham-operated rats underwent the same surgical procedure except for renal arterial clipping. 2K1C hypertensive rats were orally given NCBAE at doses of 210, 420, and 630 mg·kg−1·d−1 for 6 weeks. Twelve weeks after surgery, rat SBP and echocardiographic parameters were measured, cardiac histopathology was assessed, serum NO and LDH were detected, and the expression of Bcl-2 and caspase-3 of left ventricular tissue was assessed by western blot. Results Treatment with NCBAE resulted in a decrease of SBP, LVPWd, LVPWs, IVSd, IVSs, LVW/BW ratio, and cardiomyocyte CSA, an increase of LVEF, and inhibition of 2K1C-induced reduction in serum NO and elevation of LDH compared with 2K1C group. NCBAE intervention also showed a significant increase of Bcl-2 expression and reduction of cleaved caspase-3 level dose-dependently in left ventricular tissue. Conclusion Our data demonstrate that NCBAE has an antihypertensive property and protective effect on 2K1C-induced cardiac hypertrophy especially at the dose of 630 mg·kg−1·d−1.
Collapse
|
27
|
Bae H, Lim I. Effects of nitric oxide on large-conductance Ca 2+ -activated K + currents in human cardiac fibroblasts through PKA and PKG-related pathways. Clin Exp Pharmacol Physiol 2017; 44:1116-1124. [PMID: 28731589 DOI: 10.1111/1440-1681.12817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/29/2017] [Accepted: 07/11/2017] [Indexed: 01/22/2023]
Abstract
The human cardiac fibroblast (HCF) is the most abundant cell type in the myocardium, and HCFs play critical roles in maintaining normal cardiac function. However, unlike cardiomyocytes, the electrophysiology of HCFs is not well established. In the cardiovascular system, Ca2+ -activated K+ (KCa) channels have distinct physiological and pathological functions, and nitric oxide (NO) plays a key role. In this study, we investigated the potential effects of NO on KCa channels in HCFs. We recorded strong oscillating, well-maintained outward K+ currents without marked inactivation throughout the test pulse period and detected outward rectification in the I-V curve; these are all characteristics that are typical of KCa currents. These currents were blocked with iberiotoxin (IBTX, a BKCa blocker) but not with TRAM-34 (an IKCa blocker). The amplitudes of the currents were increased with SNAP (an NO donor), and these increases were inhibited with IBTX. The SNAP-stimulating effect on the BKCa currents was blocked by pretreatment with KT5823 (a protein kinase G [PKG] inhibitor) or 1 H-[1,-2, -4] oxadiazolo-[4,-3-a] quinoxalin-1-one (ODQ; a soluble guanylate cyclase inhibitor). Additionally, 8-bromo-cyclic guanosine 3',5'-monophosphate (8-Br-cGMP) stimulated the BKCa currents, and pretreatment with KT5720 (a protein kinase A [PKA] inhibitor) and SQ22536 (an adenylyl cyclase inhibitor) blocked the NO-stimulating effect on the BKCa currents. Furthermore, 8-bromo-cyclic adenosine 3',5'-monophosphate (8-Br-cAMP) activated the BKCa currents. These data suggest that BKCa current is the main subtype of the KCa current in HCFs and that NO enhances these currents through the PKG and PKA pathways.
Collapse
Affiliation(s)
- Hyemi Bae
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Inja Lim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
28
|
Mesquita TRR, de Jesus ICG, Dos Santos JF, de Almeida GKM, de Vasconcelos CML, Guatimosim S, Macedo FN, Dos Santos RV, de Menezes-Filho JER, Miguel-Dos-Santos R, Matos PTD, Scalzo S, Santana-Filho VJ, Albuquerque-Júnior RLC, Pereira-Filho RN, Lauton-Santos S. Cardioprotective Action of Ginkgo biloba Extract against Sustained β-Adrenergic Stimulation Occurs via Activation of M 2/NO Pathway. Front Pharmacol 2017; 8:220. [PMID: 28553225 PMCID: PMC5426084 DOI: 10.3389/fphar.2017.00220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/10/2017] [Indexed: 01/08/2023] Open
Abstract
Ginkgo biloba is the most popular phytotherapic agent used worldwide for treatment of several human disorders. However, the mechanisms involved in the protective actions of Ginkgo biloba on cardiovascular diseases remain poorly elucidated. Taking into account recent studies showing beneficial actions of cholinergic signaling in the heart and the cholinergic hypothesis of Ginkgo biloba-mediated neuroprotection, we aimed to investigate whether Ginkgo biloba extract (GBE) promotes cardioprotection via activation of cholinergic signaling in a model of isoproterenol-induced cardiac hypertrophy. Here, we show that GBE treatment (100 mg/kg/day for 8 days, v.o.) reestablished the autonomic imbalance and baroreflex dysfunction caused by chronic β-adrenergic receptor stimulation (β-AR, 4.5 mg/kg/day for 8 days, i.p.). Moreover, GBE prevented the upregulation of muscarinic receptors (M2) and downregulation of β1-AR in isoproterenol treated-hearts. Additionally, we demonstrated that GBE prevents the impaired endothelial nitric oxide synthase activity in the heart. GBE also prevented the pathological cardiac remodeling, electrocardiographic changes and impaired left ventricular contractility that are typical of cardiac hypertrophy. To further investigate the mechanisms involved in GBE cardioprotection in vivo, we performed in vitro studies. By using neonatal cardiomyocyte culture we demonstrated that the antihypertrophic action of GBE was fully abolished by muscarinic receptor antagonist or NOS inhibition. Altogether, our data support the notion that antihypertrophic effect of GBE occurs via activation of M2/NO pathway uncovering a new mechanism involved in the cardioprotective action of Ginkgo biloba.
Collapse
Affiliation(s)
| | - Itamar C G de Jesus
- Departments of Physiology and Biophysics, Federal University of Minas GeraisBelo Horizonte, Brazil
| | | | | | | | - Silvia Guatimosim
- Departments of Physiology and Biophysics, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - Fabrício N Macedo
- Department of Physiology, Federal University of SergipeSão Cristóvão, Brazil
| | | | | | | | - Paulo T D Matos
- Department of Physiology, Federal University of SergipeSão Cristóvão, Brazil
| | - Sérgio Scalzo
- Departments of Physiology and Biophysics, Federal University of Minas GeraisBelo Horizonte, Brazil
| | | | | | | | | |
Collapse
|
29
|
Zhao CY, Greenstein JL, Winslow RL. Mechanisms of the cyclic nucleotide cross-talk signaling network in cardiac L-type calcium channel regulation. J Mol Cell Cardiol 2017; 106:29-44. [PMID: 28365422 PMCID: PMC5508987 DOI: 10.1016/j.yjmcc.2017.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 01/20/2017] [Indexed: 10/19/2022]
Abstract
Regulation of L-type Calcium (Ca2+) Channel (LCC) gating is critical to shaping the cardiac action potential (AP) and triggering the initiation of excitation-contraction (EC) coupling in cardiac myocytes. The cyclic nucleotide (cN) cross-talk signaling network, which encompasses the β-adrenergic and the Nitric Oxide (NO)/cGMP/Protein Kinase G (PKG) pathways and their interaction (cross-talk) through distinctively-regulated phosphodiesterase isoenzymes (PDEs), regulates LCC current via Protein Kinase A- (PKA) and PKG-mediated phosphorylation. Due to the tightly-coupled and intertwined biochemical reactions involved, it remains to be clarified how LCC gating is regulated by the signaling network from receptor to end target. In addition, the large number of EC coupling-related phosphorylation targets of PKA and PKG makes it difficult to quantify and isolate changes in L-type Ca2+ current (ICaL) responses regulated by the signaling network. We have developed a multi-scale, biophysically-detailed computational model of LCC regulation by the cN signaling network that is supported by experimental data. LCCs are modeled with functionally distinct PKA- and PKG-phosphorylation dependent gating modes. The model exhibits experimentally observed single channel characteristics, as well as whole-cell LCC currents upon activation of the cross-talk signaling network. Simulations show 1) redistribution of LCC gating modes explains changes in whole-cell current under various stimulation scenarios of the cN cross-talk network; 2) NO regulation occurs via potentiation of a gating mode characterized by prolonged closed times; and 3) due to compensatory actions of cross-talk and antagonizing functions of PKA- and PKG-mediated phosphorylation of LCCs, the effects of individual inhibitions of PDEs 2, 3, and 4 on ICaL are most pronounced at low levels of β-adrenergic stimulation. Simulations also delineate the contribution of the following two mechanisms to overall LCC regulation, which have otherwise been challenging to distinguish: 1) regulation of PKA and PKG activation via cN cross-talk (Mechanism 1); and 2) LCC interaction with activated PKA and PKG (Mechanism 2). These results provide insights into how cN signals transduced via the cN cross-talk signaling network are integrated via LCC regulation in the heart.
Collapse
Affiliation(s)
- Claire Y Zhao
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| | - Joseph L Greenstein
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| | - Raimond L Winslow
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
30
|
Francisco C, Neves JS, Falcão-Pires I, Leite-Moreira A. Can Adiponectin Help us to Target Diastolic Dysfunction? Cardiovasc Drugs Ther 2017; 30:635-644. [PMID: 27757724 DOI: 10.1007/s10557-016-6694-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adiponectin is the most abundant adipokine and exhibits anti-inflammatory, antiatherogenic and antidiabetic properties. Unlike other adipokines, it inversely correlates with body weight and obesity-linked cardiovascular complications. Diastolic dysfunction is the main mechanism responsible for approximately half of all heart failure cases, the so-called heart failure with preserved ejection fraction (HFpEF), but therapeutic strategies specifically directed towards these patients are still lacking. In the last years, a link between adiponectin and diastolic dysfunction has been suggested. There are several mechanisms through which adiponectin may prevent most of the pathophysiologic mechanisms underlying diastolic dysfunction and HFpEF, including the prevention of myocardial hypertrophy, cardiac fibrosis, nitrative and oxidative stress, atherosclerosis and inflammation, while promoting angiogenesis. Thus, understanding the mechanisms underlying adiponectin-mediated improvement of diastolic function has become an exciting field of research, making adiponectin a promising therapeutic target. In this review, we explore the relevance of adiponectin signaling for the prevention of diastolic dysfunction and identify prospective therapeutic targets aiming at the treatment of this clinical condition.
Collapse
Affiliation(s)
- Catarina Francisco
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319, Porto, Portugal
| | - João Sérgio Neves
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar São João, Alameda Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
31
|
Fernandes T, Gomes-Gatto CV, Pereira NP, Alayafi YR, das Neves VJ, Oliveira EM. NO Signaling in the Cardiovascular System and Exercise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017:211-245. [DOI: 10.1007/978-981-10-4304-8_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Role of Nitric Oxide, Nitric Oxide Synthase, Soluble Guanylyl Cyclase, and cGMP-Dependent Protein Kinase I in Mouse Stem Cell Cardiac Development. Stem Cells Int 2016; 2016:2868323. [PMID: 27840646 PMCID: PMC5093303 DOI: 10.1155/2016/2868323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/26/2016] [Indexed: 11/17/2022] Open
Abstract
Introduction and Aim. Nitric oxide (NO) can trigger cardiac differentiation of embryonic stem cells (ESCs), indicating a cardiogenic function of the NO synthetizing enzyme(s) (NOS). However, the involvement of the NO/NOS downstream effectors soluble guanylyl cyclase (sGC) and cGMP activated protein kinase I (PKG-I) is less defined. Therefore, we assess the involvement of the entire NO/NOS/sGC/PKG-I pathway during cardiac differentiation process. Methods. Mouse ESCs were differentiated toward cardiac lineages by hanging drop methodology for 21 days. NOS/sGC/PKG-I pathway was studied quantifying genes, proteins, enzymatic activities, and effects of inhibition during differentiation. Percentages of beating embryoid bodies (mEBs) were evaluated as an index of cardiogenesis. Results and Discussion. Genes and protein expression of enzymes were increased during differentiation with distinctive kinetics and proteins possessed their enzymatic functions. Exogenous administered NO accelerated whereas the blockade of PKG-I strongly slowed cardiogenesis. sGC inhibition was effective only at early stages and NOS blockade ineffective. Of NOS/sGC/PKG-I pathway, PKG-I seems to play the prominent role in cardiac maturation. Conclusion. We concluded that exogenous administered NO and other pharmacological strategies able to increase the activity of PKG-I provide new tools to investigate and promote differentiation of cardiogenic precursors.
Collapse
|
33
|
Kindo M, Gerelli S, Bouitbir J, Hoang Minh T, Charles AL, Mazzucotelli JP, Zoll J, Piquard F, Geny B. Left Ventricular Transmural Gradient in Mitochondrial Respiration Is Associated with Increased Sub-Endocardium Nitric Oxide and Reactive Oxygen Species Productions. Front Physiol 2016; 7:331. [PMID: 27582709 PMCID: PMC4987374 DOI: 10.3389/fphys.2016.00331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Left ventricle (LV) transmural gradient in mitochondrial respiration has been recently reported. However, to date, the physiological mechanisms involved in the lower endocardium mitochondrial respiration chain capacity still remain to be determined. Since, nitric oxide (NO) synthase expression in the heart has spatial heterogeneity and might impair mitochondrial function, we investigated a potential association between LV transmural NO and mitochondrial function gradient. METHODS Maximal oxidative capacity (VMax) and relative contributions of the respiratory chain complexes II, III, IV (VSucc) and IV (VTMPD), mitochondrial content (citrate synthase activity), coupling, NO (electron paramagnetic resonance), and reactive oxygen species (ROS) production (H2O2 and dihydroethidium (DHE) staining) were determined in rat sub-endocardium (Endo) and sub-epicardium (Epi). Further, the effect of a direct NO donor (MAHMA NONOate) on maximal mitochondrial respiratory rates (Vmax) was determined. RESULTS Mitochondrial respiratory chain activities were reduced in the Endo compared with the Epi (-16.92%; P = 0.04 for Vmax and -18.73%; P = 0.02, for Vsucc, respectively). NO production was two-fold higher in the Endo compared with the Epi (P = 0.002) and interestingly, increasing NO concentration reduced Vmax. Mitochondrial H2O2 and LV ROS productions were significantly increased in Endo compared to Epi, citrate synthase activity and mitochondrial coupling being similar in the two layers. CONCLUSIONS LV mitochondrial respiration transmural gradient is likely related to NO and possibly ROS increased production in the sub-endocardium.
Collapse
Affiliation(s)
- Michel Kindo
- Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Chirurgie Cardiovasculaire, Pôle d'activité Médico-Chirurgicale Cardiovasculaire, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France
| | - Sébastien Gerelli
- Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Chirurgie Cardiovasculaire, Pôle d'activité Médico-Chirurgicale Cardiovasculaire, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France
| | - Jamal Bouitbir
- Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France
| | - Tam Hoang Minh
- Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Chirurgie Cardiovasculaire, Pôle d'activité Médico-Chirurgicale Cardiovasculaire, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France
| | - Anne-Laure Charles
- Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France
| | - Jean-Philippe Mazzucotelli
- Service de Chirurgie Cardiovasculaire, Pôle d'activité Médico-Chirurgicale Cardiovasculaire, Nouvel Hôpital Civil, CHRU de Strasbourg Strasbourg, France
| | - Joffrey Zoll
- Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France
| | - François Piquard
- Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France
| | - Bernard Geny
- Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France
| |
Collapse
|
34
|
Ozemek C, Hildreth KL, Groves DW, Moreau KL. Acute ascorbic acid infusion increases left ventricular diastolic function in postmenopausal women. Maturitas 2016; 92:154-161. [PMID: 27621254 DOI: 10.1016/j.maturitas.2016.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVES We tested the hypothesis that oxidative stress contributes to reductions in left ventricular diastolic (LV) function in estrogen-deficient postmenopausal women, related in part to reduced nitric oxide (NO) bioavailability. STUDY DESIGN LV diastolic function - recorded using transthoracic echocardiography and determined as the peak early (E) to late (A) mitral inflow velocity ratio and the E to peak early (e') mitral annular velocity ratio - and brachial artery flow mediated dilation (FMD), a biomarker of NO bioavailability, were measured during acute systemic infusions of saline (control) and ascorbic acid (experimental model to decrease oxidative stress) in healthy premenopausal women (N=14, 18-40 years) and postmenopausal women (N=23, 45-75 years). RESULTS The E/A ratio was lower (1.16[1.06-1.33] vs 1.65[1.5-2.3]; median[interquartile range]) and the E/e' ratio was elevated (8.8[7.6-9.9] vs. 6.6[5.5-7.3]) in postmenopausal compared with premenopausal women, indicating reduced LV diastolic function. E/A and E/e' were correlated with FMD (r=0.54 and r=-0.59, respectively, both P<0.01). Ascorbic acid infusion improved both FMD (5.4±2.0% to 7.8±2.6%) and E/e' (to 8.1[7.2-9.7], P=0.01) in postmenopausal women but not in premenopausal women. Ascorbic acid did not change E/A in either group. CONCLUSION The current study provides evidence that oxidative stress contributes to reduced LV diastolic function in estrogen-deficient postmenopausal women, possibly by reducing the availability of NO.
Collapse
Affiliation(s)
- Cemal Ozemek
- University of Colorado School of Medicine at the Anschutz Medical Campus, Division of Geriatric Medicine, 12631 East 17th Ave., Aurora, CO, 80045, United States
| | - Kerry L Hildreth
- University of Colorado School of Medicine at the Anschutz Medical Campus, Division of Geriatric Medicine, 12631 East 17th Ave., Aurora, CO, 80045, United States
| | - Daniel W Groves
- University of Colorado, Anschutz Medical Campus, Division of Cardiology, 12631 East 17th Ave. B130, Aurora, CO, 80045, United States
| | - Kerrie L Moreau
- University of Colorado School of Medicine at the Anschutz Medical Campus, Division of Geriatric Medicine, 12631 East 17th Ave., Aurora, CO, 80045, United States; Denver Veterans Administration Medical Center, Geriatric Research Education Clinical Center (GRECC), 1055 Clermont St, Denver, CO, 80220, United States.
| |
Collapse
|
35
|
Zaripova RI, Ziyatdinova NI, Zefirov TL. Effect of NO Synthase Blockade on Myocardial Contractility of Hypokinetic Rats during Stimulation of β-Adrenoreceptors. Bull Exp Biol Med 2016; 161:215-7. [PMID: 27383158 DOI: 10.1007/s10517-016-3378-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 11/24/2022]
Abstract
Stimulation of β-adrenoreceptors with low (10(-8) and 10(-7) M) or high (10(-6) M) doses of isoproterenol in hypokinetic rats treated with L-NAME (a non-selective blocker of NO synthases) decreased or increased myocardial contractility, respectively. In control rats, all examined doses of isoproterenol used under blockade of NO synthases inhibited myocardial contractility.
Collapse
Affiliation(s)
- R I Zaripova
- Department of Anatomy, Physiology, and Human Health Protection, Kazan Federal University, Kazan, Tatarstan, Russia
| | - N I Ziyatdinova
- Department of Anatomy, Physiology, and Human Health Protection, Kazan Federal University, Kazan, Tatarstan, Russia
| | - T L Zefirov
- Department of Anatomy, Physiology, and Human Health Protection, Kazan Federal University, Kazan, Tatarstan, Russia.
| |
Collapse
|
36
|
Roof SR, Boslett J, Russell D, del Rio C, Alecusan J, Zweier JL, Ziolo MT, Hamlin R, Mohler PJ, Curran J. Insulin-like growth factor 1 prevents diastolic and systolic dysfunction associated with cardiomyopathy and preserves adrenergic sensitivity. Acta Physiol (Oxf) 2016; 216:421-34. [PMID: 26399932 DOI: 10.1111/apha.12607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/03/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
Abstract
AIMS Insulin-like growth factor 1 (IGF-1)-dependent signalling promotes exercise-induced physiological cardiac hypertrophy. However, the in vivo therapeutic potential of IGF-1 for heart disease is not well established. Here, we test the potential therapeutic benefits of IGF-1 on cardiac function using an in vivo model of chronic catecholamine-induced cardiomyopathy. METHODS Rats were perfused with isoproterenol via osmotic pump (1 mg kg(-1) per day) and treated with 2 mg kg(-1) IGF-1 (2 mg kg(-1) per day, 6 days a week) for 2 or 4 weeks. Echocardiography, ECG, and blood pressure were assessed. In vivo pressure-volume loop studies were conducted at 4 weeks. Heart sections were analysed for fibrosis and apoptosis, and relevant biochemical signalling cascades were assessed. RESULTS After 4 weeks, diastolic function (EDPVR, EDP, tau, E/A ratio), systolic function (PRSW, ESPVR, dP/dtmax) and structural remodelling (LV chamber diameter, wall thickness) were all adversely affected in isoproterenol-treated rats. All these detrimental effects were attenuated in rats treated with Iso+IGF-1. Isoproterenol-dependent effects on BP were attenuated by IGF-1 treatment. Adrenergic sensitivity was blunted in isoproterenol-treated rats but was preserved by IGF-1 treatment. Immunoblots indicate that cardioprotective p110α signalling and activated Akt are selectively upregulated in Iso+IGF-1-treated hearts. Expression of iNOS was significantly increased in both the Iso and Iso+IGF-1 groups; however, tetrahydrobiopterin (BH4) levels were decreased in the Iso group and maintained by IGF-1 treatment. CONCLUSION IGF-1 treatment attenuates diastolic and systolic dysfunction associated with chronic catecholamine-induced cardiomyopathy while preserving adrenergic sensitivity and promoting BH4 production. These data support the potential use of IGF-1 therapy for clinical applications for cardiomyopathies.
Collapse
Affiliation(s)
| | - J. Boslett
- The Dorothy M. Davis Heart and Lung Research Institute; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - D. Russell
- Department of Veterinary Clinical Sciences; College of Veterinarian Medicine; The Ohio State University; Columbus OH USA
| | | | - J. Alecusan
- The Dorothy M. Davis Heart and Lung Research Institute; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - J. L. Zweier
- The Dorothy M. Davis Heart and Lung Research Institute; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - M. T. Ziolo
- The Dorothy M. Davis Heart and Lung Research Institute; The Ohio State University Wexner Medical Center; Columbus OH USA
- Department of Physiology and Cell Biology; The Ohio State University Wexner Medical Center; Columbus OH USA
| | | | - P. J. Mohler
- The Dorothy M. Davis Heart and Lung Research Institute; The Ohio State University Wexner Medical Center; Columbus OH USA
- Department of Internal Medicine; The Ohio State University Wexner Medical Center; Columbus OH USA
- Department of Physiology and Cell Biology; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - J. Curran
- The Dorothy M. Davis Heart and Lung Research Institute; The Ohio State University Wexner Medical Center; Columbus OH USA
- Department of Internal Medicine; The Ohio State University Wexner Medical Center; Columbus OH USA
| |
Collapse
|
37
|
Bil-Lula I, Lin HB, Biały D, Wawrzyńska M, Diebel L, Sawicka J, Woźniak M, Sawicki G. Subthreshold nitric oxide synthase inhibition improves synergistic effects of subthreshold MMP-2/MLCK-mediated cardiomyocyte protection from hypoxic injury. J Cell Mol Med 2016; 20:1086-94. [PMID: 26992120 PMCID: PMC4882990 DOI: 10.1111/jcmm.12827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/04/2016] [Indexed: 01/06/2023] Open
Abstract
Injury of myocardium during ischaemia/reperfusion (I/R) is a complex and multifactorial process involving uncontrolled protein phosphorylation, nitration/nitrosylation by increased production of nitric oxide and accelerated contractile protein degradation by matrix metalloproteinase‐2 (MMP‐2). It has been shown that simultaneous inhibition of MMP‐2 with doxycycline (Doxy) and myosin light chain kinase (MLCK) with ML‐7 at subthreshold concentrations protects the heart from contractile dysfunction triggered by I/R in a synergistic manner. In this study, we showed that additional co‐administration of nitric oxide synthase (NOS) inhibitor (1400W or L‐NAME) in subthreshold concentrations improves this synergistic protection in the model of hypoxia–reoxygenation (H‐R)‐induced contractile dysfunction of cardiomyocytes. Isolated cardiomyocytes were subjected to 3 min. of hypoxia and 20 min. of reoxygenation in the presence or absence of the inhibitor cocktails. Contractility of cardiomyocytes was expressed as myocyte peak shortening. Inhibition of MMP‐2 by Doxy (25–100 μM), MLCK by ML‐7 (0.5–5 μM) and NOS by L‐NAME (25–100 μM) or 1400W (25–100 μM) protected myocyte contractility after H‐R in a concentration‐dependent manner. Inhibition of these activities resulted in full recovery of cardiomyocyte contractility after H‐R at the level of highest single‐drug concentration. The combination of subthreshold concentrations of NOS, MMP‐2 and MLCK inhibitors fully protected cardiomyocyte contractility and MLC1 from degradation by MMP‐2. The observed protection with addition of L‐NAME or 1400W was better than previously reported combination of ML‐7 and Doxy. The results of this study suggest that addition of NOS inhibitor to the mixture of inhibitors is better strategy for protecting cardiomyocyte contractility.
Collapse
Affiliation(s)
- Iwona Bil-Lula
- Department of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Han-Bin Lin
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dariusz Biały
- Department and Clinic of Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Lucas Diebel
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jolanta Sawicka
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mieczyslaw Woźniak
- Department of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland.,Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Grzegorz Sawicki
- Department of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland.,Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
38
|
On the study of the role of NO-mediated pathways in the myocardial response to acute stretch. Nitric Oxide 2016; 53:1-3. [PMID: 26691329 DOI: 10.1016/j.niox.2015.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/09/2015] [Indexed: 01/09/2023]
|
39
|
Zhao CY, Greenstein JL, Winslow RL. Roles of phosphodiesterases in the regulation of the cardiac cyclic nucleotide cross-talk signaling network. J Mol Cell Cardiol 2016; 91:215-27. [PMID: 26773602 PMCID: PMC4764497 DOI: 10.1016/j.yjmcc.2016.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/12/2015] [Accepted: 01/04/2016] [Indexed: 12/27/2022]
Abstract
The balanced signaling between the two cyclic nucleotides (cNs) cAMP and cGMP plays a critical role in regulating cardiac contractility. Their degradation is controlled by distinctly regulated phosphodiesterase isoenzymes (PDEs), which in turn are also regulated by these cNs. As a result, PDEs facilitate communication between the β-adrenergic and Nitric Oxide (NO)/cGMP/Protein Kinase G (PKG) signaling pathways, which regulate the synthesis of cAMP and cGMP respectively. The phenomena in which the cAMP and cGMP pathways influence the dynamics of each other are collectively referred to as cN cross-talk. However, the cross-talk response and the individual roles of each PDE isoenzyme in shaping this response remain to be fully characterized. We have developed a computational model of the cN cross-talk network that mechanistically integrates the β-adrenergic and NO/cGMP/PKG pathways via regulation of PDEs by both cNs. The individual model components and the integrated network model replicate experimentally observed activation-response relationships and temporal dynamics. The model predicts that, due to compensatory interactions between PDEs, NO stimulation in the presence of sub-maximal β-adrenergic stimulation results in an increase in cytosolic cAMP accumulation and corresponding increases in PKA-I and PKA-II activation; however, the potentiation is small in magnitude compared to that of NO activation of the NO/cGMP/PKG pathway. In a reciprocal manner, β-adrenergic stimulation in the presence of sub-maximal NO stimulation results in modest cGMP elevation and corresponding increase in PKG activation. In addition, we demonstrate that PDE2 hydrolyzes increasing amounts of cAMP with increasing levels of β-adrenergic stimulation, and hydrolyzes increasing amounts of cGMP with decreasing levels of NO stimulation. Finally, we show that PDE2 compensates for inhibition of PDE5 both in terms of cGMP and cAMP dynamics, leading to cGMP elevation and increased PKG activation, while maintaining whole-cell β-adrenergic responses similar to that prior to PDE5 inhibition. By defining and quantifying reactions comprising cN cross-talk, the model characterizes the cross-talk response and reveals the underlying mechanisms of PDEs in this non-linear, tightly-coupled reaction system.
Collapse
Affiliation(s)
- Claire Y Zhao
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| | - Joseph L Greenstein
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| | - Raimond L Winslow
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
40
|
Berk J, Wade R, Baser HD, Lado J. Case report: severe reversible cardiomyopathy associated with systemic inflammatory response syndrome in the setting of diabetic hyperosmolar hyperglycemic non-ketotic syndrome. BMC Cardiovasc Disord 2015; 15:123. [PMID: 26466591 PMCID: PMC4606557 DOI: 10.1186/s12872-015-0112-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/24/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND This case study features a woman who presented with clinical and laboratory findings consistent with hyperosmolar hyperglycemic non-ketotic syndrome (HHNS), systemic inflammatory response syndrome (SIRS), and non-thyroidal illness syndrome (NTIS) who was noted to have a transient decrease in myocardial function. To our knowledge, this is the first case discussing the overlapping pathophysiological mechanisms could increase susceptibility to SIRS-induced cardiomyopathy. It is imperative that this clinical question be investigated further as such a relationship may have significant clinical implications for prevention and future treatments, particularly in patients similar to the one presented in this clinical case. CASE PRESENTATION A 53-year old Caucasian female presented to the Emergency Department for cough, nausea, vomiting and "feeling sick for 3 weeks." Labs were indicative of diabetic ketoacidosis. Initial electrocardiograms were suggestive of possible myocardial infarction and follow-up echocardiogram showed severely depressed left ventricular systolic function which resolved upon treatment of ketoacidosis. CONCLUSION We suggest that her cardiomyopathy could have three synergistic sources: SIRS, HHNS and NTIS. Overlapping mechanisms suggest uncontrolled diabetes mellitus and NTIS could increase susceptibility to SIRS-induced cardiomyopathy as seen in this case. HHNS and SIRS cause cardiac tissue injury through mechanisms including impairment of fatty acid oxidation and formation of reactive oxygen species, as well as modifying the function of membrane calcium channels. As a result, it is conceivable that diabetes may amplify the deleterious effects of inflammatory stressors on cardiac myocytes. This novel case report offers a path for future research into prevention and treatment of SIRS-induced cardiomyopathy in, but not exclusive to, the setting of diabetes.
Collapse
Affiliation(s)
- Justin Berk
- Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St Stop 9410, Lubbock, TX, 79416, USA.
| | - Raymond Wade
- Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St Stop 9410, Lubbock, TX, 79416, USA.
| | - Hatice Duygu Baser
- Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St Stop 9410, Lubbock, TX, 79416, USA.
| | - Joaquin Lado
- Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St Stop 9410, Lubbock, TX, 79416, USA.
| |
Collapse
|
41
|
Ndongson-Dongmo B, Heller R, Hoyer D, Brodhun M, Bauer M, Winning J, Hirsch E, Wetzker R, Schlattmann P, Bauer R. Phosphoinositide 3-kinase gamma controls inflammation-induced myocardial depression via sequential cAMP and iNOS signalling. Cardiovasc Res 2015; 108:243-53. [PMID: 26334033 DOI: 10.1093/cvr/cvv217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022] Open
Abstract
AIMS Sepsis-induced myocardial depression (SIMD), an early and frequent event of infection-induced systemic inflammatory response syndrome (SIRS), is characterized by reduced contractility irrespective of enhanced adrenergic stimulation. Phosphoinositide-3 kinase γ (PI3Kγ) is known to prevent β-adrenergic overstimulation via its scaffold function by activating major cardiac phosphodiesterases and restricting cAMP levels. However, the role of PI3Kγ in SIRS-induced myocardial depression is unknown. This study is aimed at determining the specific role of lipid kinase-dependent and -independent functions of PI3Kγ in the pathogenesis of SIRS-induced myocardial depression. METHODS AND RESULTS PI3Kγ knockout mice (PI3Kγ(-/-)), mice expressing catalytically inactive PI3Kγ (PI3Kγ(KD/KD)), and wild-type mice (P3Kγ(+/+)) were exposed to lipopolysaccharide (LPS)-induced systemic inflammation and assessed for survival, cardiac autonomic nervous system function, and left ventricular performance. Additionally, primary adult cardiomyocytes were used to analyse PI3Kγ effects on myocardial contractility and inflammatory response. SIRS-induced adrenergic overstimulation induced a transient hypercontractility state in PI3Kγ(-/-) mice, followed by reduced contractility. In contrast, P3Kγ(+/+) mice and PI3Kγ(KD/KD) mice developed an early and ongoing myocardial depression despite exposure to similarly increased catecholamine levels. Compared with cells from P3Kγ(+/+) and PI3Kγ(KD/KD) mice, cardiomyocytes from PI3Kγ(-/-) mice showed an enhanced and prolonged cAMP-mediated signalling upon norepinephrine and an intensified LPS-induced proinflammatory response characterized by nuclear factor of activated T-cells-mediated inducible nitric oxide synthase up-regulation. CONCLUSIONS This study reveals the lipid kinase-independent scaffold function of PI3Kγ as a mediator of SIMD during inflammation-induced SIRS. Activation of cardiac phosphodiesterases via PI3Kγ is shown to restrict myocardial hypercontractility early after SIRS induction as well as the subsequent inflammatory responses.
Collapse
Affiliation(s)
- Bernadin Ndongson-Dongmo
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Regine Heller
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Dirk Hoyer
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany Biomagnetic Center, Hans Berger Clinic for Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Michael Brodhun
- Department of Pathology, Helios-Klinikum Erfurt, Erfurt, Germany
| | - Michael Bauer
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Johannes Winning
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Emilio Hirsch
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Reinhard Wetzker
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Peter Schlattmann
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
42
|
Chang P, Wang Q, Xu H, Yang M, Lin X, Li X, Zhang Z, Zhang X, Zhao F, Zhao X, Bai F, Yu J. Tetrahydrobiopterin reverse left ventricular hypertrophy and diastolic dysfunction through the PI3K/p-Akt pathway in spontaneously hypertensive rats. Biochem Biophys Res Commun 2015; 463:1012-20. [PMID: 26093301 DOI: 10.1016/j.bbrc.2015.06.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 11/23/2022]
Abstract
Hypertension induced hypertrophy and diastolic dysfunction and is associated with cardiac oxidation and reduced NO production. We hypothesized that tetrahydrobiopterin (BH4) can regulate the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway and reverse cardiac hypertrophy and diastolic dysfunction in spontaneously hypertensive rats. Ten-week-old male spontaneously hypertensive rats (SHR) and age-matched normotensive control Wistar-Kyoto (WKY) rats were divided into five groups, WKY, WKY + BH4, SHR, SHR + BH4 and SHR + VAL. In SHR, diastolic dysfunction was accompanied by concentric hypertrophy, cardiac oxidation, and reduced cardiac BH4 and NO production. Four-week BH4 and valsartan administration reversed hypertrophy and improved diastolic function. BH4 and valsartan blunted the expression of hypertrophy markers α-skeletal actin (α-SA) and β-myosin heavy chain (β-MHC). Only BH4 reduced hypertension and induced myocardial fibrosis and expression of transforming growth factor-β1 (TGF-β1). BH4 reduced cardiac oxidant stress and increased NO production. Exogenous BH4 increased phosphorylated Akt levels and increased Bcl-2 expression. In conclusion, less BH4 and reduced NO increases myocardial hypertrophy and cardiac oxidative stress, which exacerbates diastolic dysfunction. Exogenous BH4 ameliorates cardiac hypertrophy and diastolic dysfunction through the PI3K/p-Akt pathway. BH4 may be a potent therapy for hypertension with diastolic dysfunction.
Collapse
Affiliation(s)
- Peng Chang
- Department of Cardiology, Lanzhou University Second Hospital, Gansu, China
| | - Qiongying Wang
- Department of Cardiology, Lanzhou University Second Hospital, Gansu, China
| | - Han Xu
- Department of Cardiology, Lanzhou University Second Hospital, Gansu, China
| | - Mina Yang
- Department of Cardiology, Lanzhou University Second Hospital, Gansu, China
| | - Xin Lin
- Department of Cardiology, Lanzhou University Second Hospital, Gansu, China
| | - Xiuli Li
- Department of Cardiology, Lanzhou University Second Hospital, Gansu, China
| | - Zhengyi Zhang
- Department of General Medicine, Lanzhou University Second Hospital, Gansu, China
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Gansu, China
| | - Feng Zhao
- Department of Cardiology, Lanzhou University Second Hospital, Gansu, China
| | - Xu Zhao
- Department of Cardiology, Lanzhou University Second Hospital, Gansu, China
| | - Feng Bai
- Department of Cardiology, Lanzhou University Second Hospital, Gansu, China
| | - Jing Yu
- Department of Cardiology, Lanzhou University Second Hospital, Gansu, China.
| |
Collapse
|
43
|
Olgar Y, Hidisoglu E, Celen MC, Yamasan BE, Yargicoglu P, Ozdemir S. 2.1 GHz electromagnetic field does not change contractility and intracellular Ca2+ transients but decreases β-adrenergic responsiveness through nitric oxide signaling in rat ventricular myocytes. Int J Radiat Biol 2015; 91:851-857. [PMID: 26136087 DOI: 10.3109/09553002.2015.1068462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Due to the increasing use of wireless technology in developing countries, particularly mobile phones, the influence of electromagnetic fields (EMF) on biologic systems has become the subject of an intense debate. Therefore, in this study we investigated the effect of 2.1 GHz EMF on contractility and beta-adrenergic (β-AR) responsiveness of ventricular myocytes. MATERIALS AND METHODS Rats were randomized to the following groups: Sham rats (SHAM) and rats exposed to 2.1 GHz EMF for 2 h/day for 10 weeks (EM-10). Sarcomere shortening and Ca(2+) transients were recorded in isolated myocytes loaded with Fura2-AM and electrically stimulated at 1 Hz, while L-type Ca(2+) currents (I(CaL)) were measured using whole-cell patch clamping at 36 ± 1°C. Cardiac nitric oxide (NO) levels were measured in tissue samples using a colorimetric assay kit. RESULTS Fractional shortening and amplitude of the matched Ca(2+) transients were not changed in EM-10 rats. Although the isoproterenol-induced (10(-6) M) I(CaL) response was reduced in rats exposed to EMF, basal I(CaL) density in myocytes was similar between the two groups (p < 0.01). Moreover, EMF exposure led to a significant increase in nitric oxide levels in rat heart (p < 0.02). CONCLUSIONS Long-term exposure to 2.1 GHz EMF decreases β-AR responsiveness of ventricular myocytes through NO signaling.
Collapse
Affiliation(s)
- Yusuf Olgar
- a Department of Biophysics , Faculty of Medicine, Akdeniz University , Antalya , Turkey
| | - Enis Hidisoglu
- a Department of Biophysics , Faculty of Medicine, Akdeniz University , Antalya , Turkey
| | - Murat Cenk Celen
- a Department of Biophysics , Faculty of Medicine, Akdeniz University , Antalya , Turkey
| | - Bilge Eren Yamasan
- a Department of Biophysics , Faculty of Medicine, Akdeniz University , Antalya , Turkey
| | - Piraye Yargicoglu
- a Department of Biophysics , Faculty of Medicine, Akdeniz University , Antalya , Turkey
| | - Semir Ozdemir
- a Department of Biophysics , Faculty of Medicine, Akdeniz University , Antalya , Turkey
| |
Collapse
|
44
|
Zhang B, Davis JP, Ziolo MT. Cardiac Catheterization in Mice to Measure the Pressure Volume Relationship: Investigating the Bowditch Effect. J Vis Exp 2015:e52618. [PMID: 26131569 DOI: 10.3791/52618] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Animal models that mimic human cardiac disorders have been created to test potential therapeutic strategies. A key component to evaluating these strategies is to examine their effects on heart function. There are several techniques to measure in vivo cardiac mechanics (e.g., echocardiography, pressure/volume relations, etc.). Compared to echocardiography, real-time left ventricular (LV) pressure/volume analysis via catheterization is more precise and insightful in assessing LV function. Additionally, LV pressure/volume analysis provides the ability to instantaneously record changes during manipulations of contractility (e.g., β-adrenergic stimulation) and pathological insults (e.g., ischemia/reperfusion injury). In addition to the maximum (+dP/dt) and minimum (-dP/dt) rate of pressure change in the LV, an accurate assessment of LV function via several load-independent indexes (e.g., end systolic pressure volume relationship and preload recruitable stroke work) can be attained. Heart rate has a significant effect on LV contractility such that an increase in the heart rate is the primary mechanism to increase cardiac output (i.e., Bowditch effect). Thus, when comparing hemodynamics between experimental groups, it is necessary to have similar heart rates. Furthermore, a hallmark of many cardiomyopathy models is a decrease in contractile reserve (i.e., decreased Bowditch effect). Consequently, vital information can be obtained by determining the effects of increasing heart rate on contractility. Our and others data has demonstrated that the neuronal nitric oxide synthase (NOS1) knockout mouse has decreased contractility. Here we describe the procedure of measuring LV pressure/volume with increasing heart rates using the NOS1 knockout mouse model.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University; Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Jonathan P Davis
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University
| | - Mark T Ziolo
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University;
| |
Collapse
|
45
|
Machado-Silva W, Alfinito-Kreis R, Carvalho LSF, Quinaglia-E-Silva JC, Almeida OLR, Brito CJ, Ferreira AP, Córdova C, Sposito AC, Nóbrega OT. Endothelial nitric oxide synthase genotypes modulate peripheral vasodilatory properties after myocardial infarction. Gene 2015; 568:165-9. [PMID: 26002446 DOI: 10.1016/j.gene.2015.05.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/12/2015] [Accepted: 05/16/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Studies in population genetics suggest an important relationship between the eNOS G894T polymorphism and occurrence of acute myocardial infarction (AMI), with little known on its influence on the post-AMI period. AIM To investigate the association of allelic variants produced by the G894T transversion in eNOS (rs1799983) with post-AMI variables. METHODS Cross-sectional analyses of anthropometric, clinical and laboratory assessments obtained within the first 24h and after 5 and 30 days of the AMI event across T carriers and G homozygotes of eNOS in 371 consecutive cases of AMI with ST-segment elevation admitted to a Brazilian emergency service in cardiology. Genotypes were determined by polymerase chain reaction followed by enzymatic restriction. RESULTS Despite no difference between genotypic groups on aspects as Killip-Kimbal classification scores, extension of infarcted mass, lipid profile or pattern of medication use, an increase in serum nitric oxide from admission to day 5 was higher for T carriers (p<0.001). Thirty days post-AMI, peripheral blood flow reserve was larger among T carriers either by flow- (p=0.037) and nitrate-mediated (p=0.040) dilation testing. CONCLUSION Our results suggest an association of the eNOS 894T allele with an apparent improvement in late arterial function in post-AMI patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Ciro J Brito
- Universidade Católica de Brasília (UCB-DF), Taguatinga, DF, Brazil.
| | | | - Cláudio Córdova
- Universidade Católica de Brasília (UCB-DF), Taguatinga, DF, Brazil.
| | - Andrei C Sposito
- Universidade de Brasília (UnB), Brasília, DF, Brazil; Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | | | | |
Collapse
|
46
|
Ziolo MT, Houser SR. Abnormal Ca(2+) cycling in failing ventricular myocytes: role of NOS1-mediated nitroso-redox balance. Antioxid Redox Signal 2014; 21:2044-59. [PMID: 24801117 PMCID: PMC4208612 DOI: 10.1089/ars.2014.5873] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Heart failure (HF) results from poor heart function and is the leading cause of death in Western society. Abnormalities of Ca(2+) handling at the level of the ventricular myocyte are largely responsible for much of the poor heart function. RECENT ADVANCES Although studies have unraveled numerous mechanisms for the abnormal Ca(2+) handling, investigations over the past decade have indicated that much of the contractile dysfunction and adverse remodeling that occurs in HF involves oxidative stress. CRITICAL ISSUES Regrettably, antioxidant therapy has been an immense disappointment in clinical trials. Thus, redox signaling is being reassessed to elucidate why antioxidants failed to treat HF. FUTURE DIRECTIONS A recently identified aspect of redox signaling (specifically the superoxide anion radical) is its interaction with nitric oxide, known as the nitroso-redox balance. There is a large nitroso-redox imbalance with HF, and we suggest that correcting this imbalance may be able to restore myocyte contraction and improve heart function.
Collapse
Affiliation(s)
- Mark T Ziolo
- 1 Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio
| | | |
Collapse
|
47
|
Jain K, Suryakumar G, Ganju L, Singh SB. Differential hypoxic tolerance is mediated by activation of heat shock response and nitric oxide pathway. Cell Stress Chaperones 2014; 19:801-12. [PMID: 24590457 PMCID: PMC4389840 DOI: 10.1007/s12192-014-0504-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 12/16/2022] Open
Abstract
The fall in ambient oxygen pressure in high-altitude milieu elicits a wide range of physiological responses in the myocardium, which may differ from individual to individual. This condition, known as hypobaric hypoxia, invokes the cardioprotective heat shock response. The present study focuses on the role played by this ubiquitous response in mediating a differential tolerance to acute hypoxic stress. Sprague Dawley rats were exposed to simulated hypoxia equivalent to 223 mmHg pressure, screened on the basis of time taken for onset of a characteristic hyperventilatory response, and categorized as susceptible (<10 min), normal (10-25 min), or tolerant (>25 min). The tolerant animals displayed a significant upregulation of heat shock protein (Hsp)70/HSPA, evident through immunohistochemical staining of the cardiac tissue. The increased expression of transcription factor heat shock factor-1 led to the downstream activation of other chaperones, including Hsp90/HSPC, Hsp60/HSPD1, and Hsp27/HSPB1. The higher induction of HSPs in tolerant animals contributed to higher nitric oxide synthesis mediated by both endothelial nitric oxide synthase and inducible nitric oxide synthase activation. Conversely, susceptible animals showed significantly higher expression of the proinflammatory markers tumor necrosis factor alpha and nuclear factor kappa-light-chain enhancer of activated B cells in the myocardium. Evaluation of circulatory stress markers identified increased levels of reactive oxygen species, corticosterone and endothelin-1 in the susceptible animals highlighting their vulnerability to hypoxic stress. The heat shock response, through the action of chaperones and enhanced NO generation thus contributes substantially to the ability to sustain survival under acute sub lethal hypoxia.
Collapse
Affiliation(s)
- Kanika Jain
- Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054 India
| | - Geetha Suryakumar
- Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054 India
| | - Lilly Ganju
- Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054 India
| | - Shashi Bala Singh
- Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054 India
| |
Collapse
|
48
|
Gonano LA, Morell M, Burgos JI, Dulce RA, De Giusti VC, Aiello EA, Hare JM, Vila Petroff M. Hypotonic swelling promotes nitric oxide release in cardiac ventricular myocytes: impact on swelling-induced negative inotropic effect. Cardiovasc Res 2014; 104:456-66. [PMID: 25344365 DOI: 10.1093/cvr/cvu230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Cardiomyocyte swelling occurs in multiple pathological situations and has been associated with contractile dysfunction, cell death, and enhanced propensity to arrhythmias. We investigate whether hypotonic swelling promotes nitric oxide (NO) release in cardiomyocytes, and whether it impacts on swelling-induced contractile dysfunction. METHODS AND RESULTS Superfusing rat cardiomyocytes with a hypotonic solution (HS; 217 mOsm), increased cell volume, reduced myocyte contraction and Ca(2+) transient, and increased NO-sensitive 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) fluorescence. When cells were exposed to HS + 2.5 mM of the NO synthase inhibitor l-NAME, cell swelling occurred in the absence of NO release. Swelling-induced NO release was also prevented by the nitric oxide synthase 1 (NOS1) inhibitor, nitroguanidine, and significantly reduced in NOS1 knockout mice. Additionally, colchicine (inhibitor of microtubule polymerization) prevented the increase in DAF-FM fluorescence induced by HS, indicating that microtubule integrity is necessary for swelling-induced NO release. The swelling-induced negative inotropic effect was exacerbated in the presence of either l-NAME, nitroguandine, the guanylate cyclase inhibitor, ODQ, or the PKG inhibitor, KT5823, suggesting that NOS1-derived NO provides contractile support via a cGMP/PKG-dependent mechanism. Indeed, ODQ reduced Ca(2+) wave velocity and both ODQ and KT5823 reduced the HS-induced increment in ryanodine receptor (RyR2, Ser2808) phosphorylation, suggesting that in this context, cGMP/PKG may contribute to preserve contractile function by enhancing sarcoplasmic reticulum Ca(2+) release. CONCLUSIONS Our findings suggest a novel mechanism for NO release in cardiomyocytes with putative pathophysiological relevance determined, at least in part, by its capability to reduce the extent of contractile dysfunction associated with hypotonic swelling.
Collapse
Affiliation(s)
- Luis Alberto Gonano
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata 1900, Argentina
| | - Malena Morell
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata 1900, Argentina
| | - Juan Ignacio Burgos
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata 1900, Argentina
| | - Raul Ariel Dulce
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Verónica Celeste De Giusti
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata 1900, Argentina
| | - Ernesto Alejandro Aiello
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata 1900, Argentina
| | - Joshua Michael Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Martin Vila Petroff
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata 1900, Argentina
| |
Collapse
|
49
|
Ablation of plasma membrane Ca(2+)-ATPase isoform 4 prevents development of hypertrophy in a model of hypertrophic cardiomyopathy. J Mol Cell Cardiol 2014; 77:53-63. [PMID: 25280781 DOI: 10.1016/j.yjmcc.2014.09.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 11/20/2022]
Abstract
The mechanisms linking the expression of sarcomeric mutant proteins to the development of pathological hypertrophy in hypertrophic cardiomyopathy (HCM) remain poorly understood. We investigated the role of the plasma membrane Ca(2+)-ATPase PMCA4 in the HCM phenotype using a transgenic model that expresses mutant (Glu180Gly) α-tropomyosin (Tm180) in heart. Immunoblot analysis revealed that cardiac PMCA4 expression was upregulated early in Tm180 disease pathogenesis. This was accompanied by an increase in levels of the L-type Ca(2+)-channel, which is implicated in pathological hypertrophy. When Tm180 mice were crossed with a PMCA4-null line, loss of PMCA4 caused the abrogation of hypertrophy in Tm180/PMCA4-null double mutant mice. RT-PCR analysis of Tm180/PMCA4-null hearts revealed blunting of the fetal program and reversion of pro-fibrotic Col1a1 and Col3a1 gene expression to wild-type levels. This was accompanied by evidence of reduced L-type Ca(2+)-channel expression, and diminished calcineurin activity. Expression of the metabolic substrate transporters glucose transporter 4 and carnitine palmitoyltransferase 1b was preserved and Tm180-related changes in mRNA levels of various contractile stress-related proteins including the cardiac ankyrin protein CARP and the N2B isoform of titin were reversed in Tm180/PMCA4-null hearts. cGMP levels were increased and phosphorylation of vasodilator-stimulated phosphoprotein was elevated in Tm180/PMCA4-null hearts. These changes were associated with a sharp reduction in left ventricular end-diastolic pressure in Tm180/PMCA4-null hearts, which occurred despite persistence of Tm180-related impairment of relaxation dynamics. These results reveal a novel and specific role for PMCA4 in the Tm180 hypertrophic phenotype, with the "protective" effects of PMCA4 deficiency encompassing multiple determinants of HCM-related hypertrophy.
Collapse
|
50
|
Pugh SD, MacDougall DA, Agarwal SR, Harvey RD, Porter KE, Calaghan S. Caveolin contributes to the modulation of basal and β-adrenoceptor stimulated function of the adult rat ventricular myocyte by simvastatin: a novel pleiotropic effect. PLoS One 2014; 9:e106905. [PMID: 25211146 PMCID: PMC4161364 DOI: 10.1371/journal.pone.0106905] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/10/2014] [Indexed: 12/22/2022] Open
Abstract
The number of people taking statins is increasing across the globe, highlighting the importance of fully understanding statins' effects on the cardiovascular system. The beneficial impact of statins extends well beyond regression of atherosclerosis to include direct effects on tissues of the cardiovascular system ('pleiotropic effects'). Pleiotropic effects on the cardiac myocyte are often overlooked. Here we consider the contribution of the caveolin protein, whose expression and cellular distribution is dependent on cholesterol, to statin effects on the cardiac myocyte. Caveolin is a structural and regulatory component of caveolae, and is a key regulator of cardiac contractile function and adrenergic responsiveness. We employed an experimental model in which inhibition of myocyte HMG CoA reductase could be studied in the absence of paracrine influences from non-myocyte cells. Adult rat ventricular myocytes were treated with 10 µM simvastatin for 2 days. Simvastatin treatment reduced myocyte cholesterol, caveolin 3 and caveolar density. Negative inotropic and positive lusitropic effects (with corresponding changes in [Ca2+]i) were seen in statin-treated cells. Simvastatin significantly potentiated the inotropic response to β2-, but not β1-, adrenoceptor stimulation. Under conditions of β2-adrenoceptor stimulation, phosphorylation of phospholamban at Ser16 and troponin I at Ser23/24 was enhanced with statin treatment. Simvastatin increased NO production without significant effects on eNOS expression or phosphorylation (Ser1177), consistent with the reduced expression of caveolin 3, its constitutive inhibitor. In conclusion, statin treatment can reduce caveolin 3 expression, with functional consequences consistent with the known role of caveolae in the cardiac cell. These data are likely to be of significance, particularly during the early phases of statin treatment, and in patients with heart failure who have altered β-adrenoceptor signalling. In addition, as caveolin is ubiquitously expressed and has myriad tissue-specific functions, the impact of statin-dependent changes in caveolin is likely to have many other functional sequelae.
Collapse
Affiliation(s)
- Sara D. Pugh
- School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - David A. MacDougall
- School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Shailesh R. Agarwal
- Department of Pharmacology, University of Nevada Reno, Reno, Nevada, United States of America
| | - Robert D. Harvey
- Department of Pharmacology, University of Nevada Reno, Reno, Nevada, United States of America
| | - Karen E. Porter
- Division of Cardiovascular and Diabetes Research, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Sarah Calaghan
- School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
| |
Collapse
|