1
|
Liu W, Liu J, Wang G, Cheng W, Gong H, Song Y, Song M, Zhuge Y, Li Y, Liu J. Down-regulation of histone deacetylase 2 attenuates ventricular arrhythmias in a mouse model of cardiac hypertrophy through up-regulation of Kv channel-interacting protein 2 expression. Cardiovasc Res 2025; 121:424-439. [PMID: 39870585 DOI: 10.1093/cvr/cvaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 07/24/2024] [Accepted: 10/17/2024] [Indexed: 01/29/2025] Open
Abstract
AIMS Decrease in repolarizing K+ currents, particularly the fast component of transient outward K+ current (Ito,f), prolongs action potential duration (APD) and predisposes the heart to ventricular arrhythmia during cardiac hypertrophy. Histone deacetylases (HDACs) have been suggested to participate in the development of cardiac hypertrophy, and Class I HDAC inhibition has been found to attenuate pathological remodelling. This study investigated the potential therapeutic effects of HDAC2 on ventricular arrhythmia in pressure overload-induced cardiac hypertrophy. METHODS AND RESULTS An in vivo cardiac hypertrophic model was produced by performing transverse aortic constriction (TAC) surgery and an in vitro cardiomyocyte hypertrophy model by stimulating neonatal rat ventricular myocytes (NRVMs) with phenylephrine (PE). HDAC2 expression was up-regulated in TAC mouse hearts and in PE-stimulated cardiomyocytes. Susceptibility to ventricular arrhythmia was increased in TAC mice, while Ito,f was decreased and APD was prolonged in TAC cardiomyocytes. Heart-specific knockdown (HKD) of HDAC2 by RNA interference increased Ito,f, shortened APD, and decreased susceptibility to ventricular arrhythmia. Concomitantly, HKD increased the expression of the obligatory β sub-unit of Ito,f, Kv channel-interacting protein 2 (KChIP2), which is down-regulated in hypertrophic hearts. The effects of HKD on KChIP2 expression, Ito,f and APD were also observed in PE-stimulated cardiomyocytes. Mechanistically, HKD increased H3K4me3 abundance and H3K4me3 enrichment at the Kcnip2 promoter in cardiomyocytes. HKD also decreased the expression of KDM5, the H3K4me3 demethylase, which resulted in H3K4me3 up-regulation. While investigating the regulatory mechanisms underlying the effect of HDAC2 on KDM5 stability, we identified CNOT4 as the active KDM5 ubiquitinase in cardiomyocytes. HKD increased CNOT4 expression and CNOT4-KDM5 interactions and thus enhanced the polyubiquitinated degradation of KDM5. CONCLUSION HDAC2 inhibition serves as a novel therapeutic strategy for preventing cardiac hypertrophy-associated electrophysiological remodelling. Furthermore, we identified a novel signalling pathway of CNOT4-mediated KDM5 degradation contributing to the up-regulation of H3K4me3-mediated KChIP2 expression in response to HDAC2 inhibition.
Collapse
MESH Headings
- Animals
- Histone Deacetylase 2/genetics
- Histone Deacetylase 2/metabolism
- Disease Models, Animal
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/drug effects
- Down-Regulation
- Up-Regulation
- Male
- Arrhythmias, Cardiac/enzymology
- Arrhythmias, Cardiac/prevention & control
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/etiology
- Action Potentials
- Kv Channel-Interacting Proteins/metabolism
- Kv Channel-Interacting Proteins/genetics
- Cardiomegaly/enzymology
- Cardiomegaly/physiopathology
- Cardiomegaly/genetics
- Cardiomegaly/complications
- Mice, Inbred C57BL
- Cells, Cultured
- Rats
- Mice
- Signal Transduction
- Ventricular Remodeling
Collapse
Affiliation(s)
- Wenjuan Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jianping Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Gang Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Wanwen Cheng
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Haochen Gong
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yujuan Song
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Ming Song
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yixin Zhuge
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Ying Li
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jie Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
2
|
Cai Y, Zhang J, Zhang H, Qi J, Shi C, Xu Y. The Kv4 potassium channel modulator NS5806 attenuates cardiac hypertrophy in vivo and in vitro. Sci Rep 2024; 14:19839. [PMID: 39191928 PMCID: PMC11349892 DOI: 10.1038/s41598-024-70962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
The compound NS5806 is a Kv4 channel modulator. This study investigated the chronic effects of NS5806 on cardiac hypertrophy induced by transverse aortic constriction (TAC) in mice in vivo and on neonatal rat ventricular cardiomyocyte hypertrophy induced by endothelin-1 (ET-1) in vitro. Four weeks after TAC, NS5806 was administered by gavage for 4 weeks. Echocardiograms revealed pronounced left ventricular (LV) hypertrophy in TAC-treated mice compared with sham mice. NS5806 attenuated LV hypertrophy, as manifested by the restoration of LV wall thickness and weight and the reversal of contractile dysfunction in TAC-treated mice. NS5806 also blunted the TAC-induced increases in the expression of cardiac hypertrophic and fibrotic genes, including ANP, BNP and TGF-β. Electrophysiological recordings revealed a significant prolongation of action potential duration and QT intervals, accompanied by an increase in susceptibility to ventricular arrhythmias in mice with cardiac hypertrophy. However, NS5806 restored these alterations in electrical parameters and thus reduced the incidence of mouse sudden death. Furthermore, NS5806 abrogated the downregulation of the Kv4 protein in the hypertrophic myocardium but did not influence the reduction in Kv4 mRNA expression. In addition, NS5806 suppressed in vitro cardiomyocyte hypertrophy. The results provide novel insight for further ion channel modulator development as a potential treatment option for cardiac hypertrophy.
Collapse
Affiliation(s)
- Yue Cai
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, 050051, China
- Hebei Key Laboratory of Clinical Pharmacy, Shijiazhuang, 050051, China
| | - Jiali Zhang
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hongxue Zhang
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jinlong Qi
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Chenxia Shi
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
3
|
Wu LY, Song YJ, Zhang CL, Liu J. K V Channel-Interacting Proteins in the Neurological and Cardiovascular Systems: An Updated Review. Cells 2023; 12:1894. [PMID: 37508558 PMCID: PMC10377897 DOI: 10.3390/cells12141894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
KV channel-interacting proteins (KChIP1-4) belong to a family of Ca2+-binding EF-hand proteins that are able to bind to the N-terminus of the KV4 channel α-subunits. KChIPs are predominantly expressed in the brain and heart, where they contribute to the maintenance of the excitability of neurons and cardiomyocytes by modulating the fast inactivating-KV4 currents. As the auxiliary subunit, KChIPs are critically involved in regulating the surface protein expression and gating properties of KV4 channels. Mechanistically, KChIP1, KChIP2, and KChIP3 promote the translocation of KV4 channels to the cell membrane, accelerate voltage-dependent activation, and slow the recovery rate of inactivation, which increases KV4 currents. By contrast, KChIP4 suppresses KV4 trafficking and eliminates the fast inactivation of KV4 currents. In the heart, IKs, ICa,L, and INa can also be regulated by KChIPs. ICa,L and INa are positively regulated by KChIP2, whereas IKs is negatively regulated by KChIP2. Interestingly, KChIP3 is also known as downstream regulatory element antagonist modulator (DREAM) because it can bind directly to the downstream regulatory element (DRE) on the promoters of target genes that are implicated in the regulation of pain, memory, endocrine, immune, and inflammatory reactions. In addition, all the KChIPs can act as transcription factors to repress the expression of genes involved in circadian regulation. Altered expression of KChIPs has been implicated in the pathogenesis of several neurological and cardiovascular diseases. For example, KChIP2 is decreased in failing hearts, while loss of KChIP2 leads to increased susceptibility to arrhythmias. KChIP3 is increased in Alzheimer's disease and amyotrophic lateral sclerosis, but decreased in epilepsy and Huntington's disease. In the present review, we summarize the progress of recent studies regarding the structural properties, physiological functions, and pathological roles of KChIPs in both health and disease. We also summarize the small-molecule compounds that regulate the function of KChIPs. This review will provide an overview and update of the regulatory mechanism of the KChIP family and the progress of targeted drug research as a reference for researchers in related fields.
Collapse
Affiliation(s)
- Le-Yi Wu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yu-Juan Song
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jie Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
4
|
Ogata G, Partida GJ, Fasoli A, Ishida AT. Calcium/calmodulin-dependent protein kinase II associates with the K + channel isoform Kv4.3 in adult rat optic nerve. Front Neuroanat 2022; 16:958986. [PMID: 36172564 PMCID: PMC9512010 DOI: 10.3389/fnana.2022.958986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Spikes are said to exhibit "memory" in that they can be altered by spikes that precede them. In retinal ganglion cell axons, for example, rapid spiking can slow the propagation of subsequent spikes. This increases inter-spike interval and, thus, low-pass filters instantaneous spike frequency. Similarly, a K+ ion channel blocker (4-aminopyridine, 4AP) increases the time-to-peak of compound action potentials recorded from optic nerve, and we recently found that reducing autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) does too. These results would be expected if CaMKII modulates spike propagation by regulating 4AP-sensitive K+ channels. As steps toward identifying a possible substrate, we test whether (i) 4AP alters optic nerve spike shape in ways consistent with reducing K+ current, (ii) 4AP alters spike propagation consistent with effects of reducing CaMKII activation, (iii) antibodies directed against 4AP-sensitive and CaMKII-regulated K+ channels bind to optic nerve axons, and (iv) optic nerve CaMKII co-immunoprecipitates with 4AP-sensitive K+ channels. We find that, in adult rat optic nerve, (i) 4AP selectively slows spike repolarization, (ii) 4AP slows spike propagation, (iii) immunogen-blockable staining is achieved with anti-Kv4.3 antibodies but not with antibodies directed against Kv1.4 or Kv4.2, and (iv) CaMKII associates with Kv4.3. Kv4.3 may thus be a substrate that underlies activity-dependent spike regulation in adult visual system pathways.
Collapse
Affiliation(s)
- Genki Ogata
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Gloria J. Partida
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Anna Fasoli
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Andrew T. Ishida
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology and Vision Science, University of California, Sacramento, Sacramento, CA, United States
| |
Collapse
|
5
|
Kim KH, Oh Y, Liu J, Dababneh S, Xia Y, Kim RY, Kim DK, Ban K, Husain M, Hui CC, Backx PH. Irx5 and transient outward K + currents contribute to transmural contractile heterogeneities in the mouse ventricle. Am J Physiol Heart Circ Physiol 2022; 322:H725-H741. [PMID: 35245131 DOI: 10.1152/ajpheart.00572.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have established that fast transmural gradients of transient outward K+ current (Ito,f) correlate with regional differences in action potential (AP) profile and excitation-contraction coupling (ECC) with high Ito,f expression in the epimyocardium (EPI) being associated with short APs and low contractility and vice versa. Herein, we investigated the effects of disrupted Ito,f gradient on contractile properties using mouse models of Irx5 knockout (Irx5-KO) for selective Ito,f elevation in the endomyocardium (ENDO) of the left ventricle (LV) and Kcnd2 ablation (KV4.2-KO) for selective Ito,freduction in the EPI. Irx5-KO mice exhibited decreased global LV contractility in association with reductions in cell shortening and Ca2+ transient amplitudes in isolated ENDO but not EPI cardiomyocytes. Moreover, transcriptional profiling revealed that the primary effect of Irx5 ablation on ECC-related genes was to increase Ito,f gene expression (i.e. Kcnd2 and Kcnip2) in the ENDO, but not the EPI. Indeed, KV4.2-KO mice showed selective increases in cell shortening and Ca2+ transients in isolated EPI cardiomyocytes, leading to enhanced ventricular contractility and mice lacking both Irx5 and Kcnd2 displayed elevated ventricular contractility comparable to KV4.2-KO mice. Our findings demonstrate that the transmural electromechanical heterogeneities in the healthy ventricles depend on the Irx5-dependent Ito,f gradients. These observations provide a useful framework for assessing the molecular mechanisms underlying the alterations in contractile heterogeneity seen in the diseased heart.
Collapse
Affiliation(s)
- Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jie Liu
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | - Saif Dababneh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ying Xia
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ri Youn Kim
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dae-Kyum Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kiwon Ban
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Mansoor Husain
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Peter H Backx
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Biology, Faculty of Science, York University, Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
6
|
Kuzmin VS, Ivanova AD, Filatova TS, Pustovit KB, Kobylina AA, Atkinson AJ, Petkova M, Voronkov YI, Abramochkin DV, Dobrzynski H. Micro-RNA 133a-3p induces repolarization abnormalities in atrial myocardium and modulates ventricular electrophysiology affecting I Ca,L and Ito currents. Eur J Pharmacol 2021; 908:174369. [PMID: 34310913 DOI: 10.1016/j.ejphar.2021.174369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023]
Abstract
Mir-133a-3p is the most abundant myocardial microRNA. The impact of mir-133a-3p on cardiac electrophysiology is poorly explored. In this study, we investigated the effects of mir-133a-3p on the main ionic currents critical for action potential (AP) generation and electrical activity of the heart. We used conventional ECG, sharp microelectrodes and patch-clamp to clarify a role of mir-133a-3p in normal cardiac electrophysiology in rats after in vivo and in vitro transfection. Mir-133a-3p caused no changes to pacemaker APs and automaticity in the sinoatrial node. No significant changes in heart rate (HR) were observed in vivo; however, miR transfection facilitated HR increase in response to β-adrenergic stimulation. Mir-133a-3p induced repolarization abnormalities in the atrial working myocardium and the L-type calcium current (ICa,L) was significantly increased. The main repolarization currents, including the transient outward (Ito), ultra-rapid (IK,ur), and inward rectifier (IK1) remained unaffected in atrial cardiomyocytes. Mir-133a-3p affected both ICa,L and Ito in ventricular cardiomyocytes. Systemic administration of mir-133a-3p induced QT-interval prolongation. Bioinformatic analysis revealed protein phosphatase 2 (PPP2CA/B) and Kcnd3 (encoding Kv4.3 channels generating Ito) as the main miR-133a-3p targets in the heart. No changes in mRNA expression of Cacna1c (encoding Cav1.2 channels generating ICa,L) and Kcnd3 were seen in mir-133a-3p treated rats. However, the expression of Ppp2cA, encoding PPP2CA, and Kcnip2 encoding KChIP2, a Kv4.3 regulatory protein, were significantly decreased. The accumulation of mir-133a-3p in cardiac myocytes causes chamber-specific electrophysiological changes. The suppression of PPP2CA, involved in adrenergic signal transduction, and Kchip2 may indirectly mediate mir-133a-3p-induced augmentation of ICa,L and attenuation of Ito.
Collapse
Affiliation(s)
- Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Cardiological Complex (NMRCC), Institute of Experimental Cardiology, Moscow, Russia.
| | - Alexandra D Ivanova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Cardiological Complex (NMRCC), Institute of Experimental Cardiology, Moscow, Russia
| | - Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Anastasia A Kobylina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Andrew J Atkinson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Maria Petkova
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Yurij I Voronkov
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Cardiological Complex (NMRCC), Institute of Experimental Cardiology, Moscow, Russia
| | - Halina Dobrzynski
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
7
|
Rodgers JL, Vanthenapalli S, Panguluri SK. Electrical remodeling and cardiotoxicity precedes structural and functional remodeling of mouse hearts under hyperoxia treatment. J Cell Physiol 2021; 236:4482-4495. [PMID: 33230829 DOI: 10.1002/jcp.30165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 01/16/2023]
Abstract
Clinical reports suggest a high incidence of ICU mortality with the use of hyperoxia during mechanical ventilation in patients. Our laboratory is pioneer in studying effect of hyperoxia on cardiac pathophysiology. In this study for the first time, we are reporting the sequence of cardiac pathophysiological events in mice under hyperoxic conditions in time-dependent manner. C57BL/6J male mice, aged 8-10 weeks, were treated with either normal air or >90% oxygen for 24, 48, and 72 h. Following normal air or hyperoxia treatment, physical, biochemical, functional, electrical, and molecular parameters were analyzed. Our data showed that significant reduction of body weight observed as early as 24 h hyperoxia treatment, whereas, no significant changes in heart weight until 72 h. Although we do not see any fibrosis in these hearts, but observed significant increase in cardiomyocyte size with hyperoxia treatment in time-dependent manner. Our data also demonstrated that arrhythmias were present in mice at 24 h hyperoxia, and worsened comparatively after 48 and 72 h. Echocardiogram data confirmed cardiac dysfunction in time-dependent manner. Dysregulation of ion channels such as Kv4.2 and KChIP2; and serum cardiac markers confirmed that hyperoxia-induced effects worsen with each time point. From these observations, it is evident that electrical remodeling precedes structural remodeling, both of which gets worse with length of hyperoxia exposure, therefore shorter periods of hyperoxia exposure is always beneficial for better outcome in ICU/critical care units.
Collapse
Affiliation(s)
- Jennifer L Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, USA
| | - Sahit Vanthenapalli
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, USA
| | - Siva K Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
8
|
Liu W, Wang G, Zhang C, Ding W, Cheng W, Luo Y, Wei C, Liu J. MG53, A Novel Regulator of KChIP2 and I to,f, Plays a Critical Role in Electrophysiological Remodeling in Cardiac Hypertrophy. Circulation 2020; 139:2142-2156. [PMID: 30760025 DOI: 10.1161/circulationaha.118.029413] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND KChIP2 (K+ channel interacting protein) is the auxiliary subunit of the fast transient outward K+ current ( Ito,f) in the heart, and insufficient KChIP2 expression induces Ito,f downregulation and arrhythmogenesis in cardiac hypertrophy. Studies have shown muscle-specific mitsugumin 53 (MG53) has promiscuity of function in the context of normal and diseased heart. This study investigates the possible roles of cardiac MG53 in regulation of KChIP2 expression and Ito,f, and the arrhythmogenic potential in hypertrophy. METHODS MG53 expression is manipulated by genetic ablation of MG53 in mice and adenoviral overexpression or knockdown of MG53 by RNA interference in cultured neonatal rat ventricular myocytes. Cardiomyocyte hypertrophy is produced by phenylephrine stimulation in neonatal rat ventricular myocytes, and pressure overload-induced mouse cardiac hypertrophy is produced by transverse aortic constriction. RESULTS KChIP2 expression and Ito,f density are downregulated in hearts from MG53-knockout mice and MG53-knockdown neonatal rat ventricular myocytes, but upregulated in MG53-overexpressing cells. In phenylephrine-induced cardiomyocyte hypertrophy, MG53 expression is reduced with concomitant downregulation of KChIP2 and Ito,f, which can be reversed by MG53 overexpression, but exaggerated by MG53 knockdown. MG53 knockout enhances Ito,f remodeling and action potential duration prolongation and increases susceptibility to ventricular arrhythmia in mouse cardiac hypertrophy. Mechanistically, MG53 regulates NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activity and subsequently controls KChIP2 transcription. Chromatin immunoprecipitation demonstrates NF-κB protein has interaction with KChIP2 gene. MG53 overexpression decreases, whereas MG53 knockdown increases NF-κB enrichment at the 5' regulatory region of KChIP2 gene. Normalizing NF-κB activity reverses the alterations in KChIP2 in MG53-overexpressing or knockdown cells. Coimmunoprecipitation and Western blotting assays demonstrate MG53 has physical interaction with TAK1 (transforming growth factor-b [TGFb]-activated kinase 1) and IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), critical components of the NF-κB pathway. CONCLUSIONS These findings establish MG53 as a novel regulator of KChIP2 and Ito,f by modulating NF-κB activity and reveal its critical role in electrophysiological remodeling in cardiac hypertrophy.
Collapse
Affiliation(s)
- Wenjuan Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathophysiology (W.L., G.W., W.C., Y.L., J.L.), School of Medicine, Shenzhen University, China
| | - Gang Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathophysiology (W.L., G.W., W.C., Y.L., J.L.), School of Medicine, Shenzhen University, China
| | - Cuicui Zhang
- Prenatal Diagnosis Center, The Women and Children Hospital of Guangdong Province, Guangzhou, China (C.Z.)
| | - Wenwen Ding
- Department of Basic Medicine, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.)
| | - Wanwen Cheng
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathophysiology (W.L., G.W., W.C., Y.L., J.L.), School of Medicine, Shenzhen University, China
| | - Yizhi Luo
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathophysiology (W.L., G.W., W.C., Y.L., J.L.), School of Medicine, Shenzhen University, China
| | - Chaoliang Wei
- Department of Cell Biology and Medical Genetics (C.W.), School of Medicine, Shenzhen University, China
| | - Jie Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathophysiology (W.L., G.W., W.C., Y.L., J.L.), School of Medicine, Shenzhen University, China
| |
Collapse
|
9
|
Calloe K. Doctoral Dissertation: The transient outward potassium current in healthy and diseased hearts. Acta Physiol (Oxf) 2019; 225 Suppl 717:e13225. [PMID: 30628199 DOI: 10.1111/apha.13225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Kirstine Calloe
- Section for Anatomy; Biochemistry and Physiology; Department for Veterinary and Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg C Denmark
| |
Collapse
|
10
|
Rees CM, Yang JH, Santolini M, Lusis AJ, Weiss JN, Karma A. The Ca 2+ transient as a feedback sensor controlling cardiomyocyte ionic conductances in mouse populations. eLife 2018; 7:36717. [PMID: 30251624 PMCID: PMC6205808 DOI: 10.7554/elife.36717] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
Conductances of ion channels and transporters controlling cardiac excitation may vary in a population of subjects with different cardiac gene expression patterns. However, the amount of variability and its origin are not quantitatively known. We propose a new conceptual approach to predict this variability that consists of finding combinations of conductances generating a normal intracellular Ca2+ transient without any constraint on the action potential. Furthermore, we validate experimentally its predictions using the Hybrid Mouse Diversity Panel, a model system of genetically diverse mouse strains that allows us to quantify inter-subject versus intra-subject variability. The method predicts that conductances of inward Ca2+ and outward K+ currents compensate each other to generate a normal Ca2+ transient in good quantitative agreement with current measurements in ventricular myocytes from hearts of different isogenic strains. Our results suggest that a feedback mechanism sensing the aggregate Ca2+ transient of the heart suffices to regulate ionic conductances.
Collapse
Affiliation(s)
- Colin M Rees
- Physics Department, Northeastern University, Boston, United states.,Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, United States
| | - Jun-Hai Yang
- Department of Medicine (Cardiology), Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, United states.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Marc Santolini
- Physics Department, Northeastern University, Boston, United states.,Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, United States
| | - Aldons J Lusis
- Department of Medicine (Cardiology), Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, United states.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, United States.,Department of Microbiology, David Geffen School of Medicine, University of California, Los Angeles, United States.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - James N Weiss
- Department of Medicine (Cardiology), Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, United states.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Alain Karma
- Physics Department, Northeastern University, Boston, United states.,Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, United States
| |
Collapse
|
11
|
A personalized, multiomics approach identifies genes involved in cardiac hypertrophy and heart failure. NPJ Syst Biol Appl 2018; 4:12. [PMID: 29507758 PMCID: PMC5825397 DOI: 10.1038/s41540-018-0046-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 12/14/2017] [Accepted: 01/12/2018] [Indexed: 11/08/2022] Open
Abstract
A traditional approach to investigate the genetic basis of complex diseases is to identify genes with a global change in expression between diseased and healthy individuals. However, population heterogeneity may undermine the effort to uncover genes with significant but individual contribution to the spectrum of disease phenotypes within a population. Here we investigate individual changes of gene expression when inducing hypertrophy and heart failure in 100 + strains of genetically distinct mice from the Hybrid Mouse Diversity Panel (HMDP). We find that genes whose expression fold-change correlates in a statistically significant way with the severity of the disease are either up or down-regulated across strains, and therefore missed by a traditional population-wide analysis of differential gene expression. Furthermore, those "fold-change" genes are enriched in human cardiac disease genes and form a dense co-regulated module strongly interacting with the cardiac hypertrophic signaling network in the human interactome. We validate our approach by showing that the knockdown of Hes1, predicted as a strong candidate, induces a dramatic reduction of hypertrophy by 80-90% in neonatal rat ventricular myocytes. Our results demonstrate that individualized approaches are crucial to identify genes underlying complex diseases as well as to develop personalized therapies.
Collapse
|
12
|
Borghetti G, Eisenberg CA, Signore S, Sorrentino A, Kaur K, Andrade-Vicenty A, Edwards JG, Nerkar M, Qanud K, Sun D, Goichberg P, Leri A, Anversa P, Eisenberg LM, Jacobson JT, Hintze TH, Rota M. Notch signaling modulates the electrical behavior of cardiomyocytes. Am J Physiol Heart Circ Physiol 2017; 314:H68-H81. [PMID: 28939651 DOI: 10.1152/ajpheart.00587.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Notch receptor signaling is active during cardiac development and silenced in myocytes after birth. Conversely, outward K+ Kv currents progressively appear in postnatal myocytes leading to shortening of the action potential (AP) and acquisition of the mature electrical phenotype. In the present study, we tested the possibility that Notch signaling modulates the electrical behavior of cardiomyocytes by interfering with Kv currents. For this purpose, the effects of Notch receptor activity on electrophysiological properties of myocytes were evaluated using transgenic mice with inducible expression of the Notch1 intracellular domain (NICD), the functional fragment of the activated Notch receptor, and in neonatal myocytes after inhibition of the Notch transduction pathway. By patch clamp, NICD-overexpressing cells presented prolonged AP duration and reduced upstroke amplitude, properties that were coupled with reduced rapidly activating Kv and fast Na+ currents, compared with cells obtained from wild-type mice. In cultured neonatal myocytes, inhibition of the proteolitic release of NICD with a γ-secretase antagonist increased transcript levels of the Kv channel-interacting proteins 2 (KChIP2) and enhanced the density of Kv currents. Collectively, these results indicate that Notch signaling represents an important regulator of the electrophysiological behavior of developing and adult myocytes by repressing, at least in part, repolarizing Kv currents. NEW & NOTEWORTHY We investigated the effects of Notch receptor signaling on the electrical properties of cardiomyocytes. Our results indicate that the Notch transduction pathway interferes with outward K+ Kv currents, critical determinants of the electrical repolarization of myocytes.
Collapse
Affiliation(s)
- Giulia Borghetti
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Carol A Eisenberg
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Sergio Signore
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Andrea Sorrentino
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Keerat Kaur
- Department of Physiology, New York Medical College, Valhalla, New York
| | | | - John G Edwards
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Mriganka Nerkar
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Khaled Qanud
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Polina Goichberg
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Annarosa Leri
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Piero Anversa
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | | | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, New York.,Department of Cardiology, Westchester Medical Center, Valhalla, New York
| | - Thomas H Hintze
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
13
|
Nassal DM, Wan X, Liu H, Laurita KR, Deschênes I. KChIP2 regulates the cardiac Ca2+ transient and myocyte contractility by targeting ryanodine receptor activity. PLoS One 2017; 12:e0175221. [PMID: 28384221 PMCID: PMC5383259 DOI: 10.1371/journal.pone.0175221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/22/2017] [Indexed: 12/20/2022] Open
Abstract
Pathologic electrical remodeling and attenuated cardiac contractility are featured characteristics of heart failure. Coinciding with these remodeling events is a loss of the K+ channel interacting protein, KChIP2. While, KChIP2 enhances the expression and stability of the Kv4 family of potassium channels, leading to a more pronounced transient outward K+ current, Ito,f, the guinea pig myocardium is unique in that Kv4 expression is absent, while KChIP2 expression is preserved, suggesting alternative consequences to KChIP2 loss. Therefore, KChIP2 was acutely silenced in isolated guinea pig myocytes, which led to significant reductions in the Ca2+ transient amplitude and prolongation of the transient duration. This change was reinforced by a decline in sarcomeric shortening. Notably, these results were unexpected when considering previous observations showing enhanced ICa,L and prolonged action potential duration following KChIP2 loss, suggesting a disruption of fundamental Ca2+ handling proteins. Evaluation of SERCA2a, phospholamban, RyR, and sodium calcium exchanger identified no change in protein expression. However, assessment of Ca2+ spark activity showed reduced spark frequency and prolonged Ca2+ decay following KChIP2 loss, suggesting an altered state of RyR activity. These changes were associated with a delocalization of the ryanodine receptor activator, presenilin, away from sarcomeric banding to more diffuse distribution, suggesting that RyR open probability are a target of KChIP2 loss mediated by a dissociation of presenilin. Typically, prolonged action potential duration and enhanced Ca2+ entry would augment cardiac contractility, but here we see KChIP2 fundamentally disrupts Ca2+ release events and compromises myocyte contraction. This novel role targeting presenilin localization and RyR activity reveals a significance for KChIP2 loss that reflects adverse remodeling observed in cardiac disease settings.
Collapse
Affiliation(s)
- Drew M. Nassal
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiaoping Wan
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Haiyan Liu
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kenneth R. Laurita
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Isabelle Deschênes
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
14
|
Nassal DM, Wan X, Liu H, Maleski D, Ramirez-Navarro A, Moravec CS, Ficker E, Laurita KR, Deschênes I. KChIP2 is a core transcriptional regulator of cardiac excitability. eLife 2017; 6. [PMID: 28263709 PMCID: PMC5338919 DOI: 10.7554/elife.17304] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 02/19/2017] [Indexed: 11/18/2022] Open
Abstract
Arrhythmogenesis from aberrant electrical remodeling is a primary cause of death among patients with heart disease. Amongst a multitude of remodeling events, reduced expression of the ion channel subunit KChIP2 is consistently observed in numerous cardiac pathologies. However, it remains unknown if KChIP2 loss is merely a symptom or involved in disease development. Using rat and human derived cardiomyocytes, we identify a previously unobserved transcriptional capacity for cardiac KChIP2 critical in maintaining electrical stability. Through interaction with genetic elements, KChIP2 transcriptionally repressed the miRNAs miR-34b and miR-34c, which subsequently targeted key depolarizing (INa) and repolarizing (Ito) currents altered in cardiac disease. Genetically maintaining KChIP2 expression or inhibiting miR-34 under pathologic conditions restored channel function and moreover, prevented the incidence of reentrant arrhythmias. This identifies the KChIP2/miR-34 axis as a central regulator in developing electrical dysfunction and reveals miR-34 as a therapeutic target for treating arrhythmogenesis in heart disease. DOI:http://dx.doi.org/10.7554/eLife.17304.001 The heart pumps blood throughout the body to provide oxygen and nourishment. To do so, proteins in the heart create electrical signals that tell the heart muscles to contract in a coordinated manner. Heart disease can cause cells to lose control of the production or activity of these proteins, creating disorganized electrical signals called arrhythmias that interfere with the heart’s ability to pump. Sometimes these arrhythmias lead to sudden death. Researchers do not know exactly what triggers these changes in the heart’s normal electrical rhythms. This has made it difficult to develop strategies to prevent these disruptions or to fix them when they occur. By studying rat and human heart cells, Nassal et al. now show that a protein called KChIP2 stops working properly during heart disease. Most importantly, because of the decreased level of KChIP2 in heart disease, KChIP2 loses the ability to restrict the production of two microRNA molecules – a role that KChIP2 was not previously known to perform. This loss of activity sets off a cascade of signals that worsens the balance of electrical activity in the heart cells, creating arrhythmias. Treatments that restored proper levels of the fully working KChIP2 protein to the heart cells or that blocked the signals set off by a lack of KChIP2 returned the electrical activity of the cells back to normal. This also stopped the development of arrhythmias. Further studies are now needed to investigate whether these treatments have the same effects in living mammals. If effective, this could ultimately lead to new treatments for heart diseases and arrhythmias. DOI:http://dx.doi.org/10.7554/eLife.17304.002
Collapse
Affiliation(s)
- Drew M Nassal
- Heart and Vascular Research Center, Department of Medicine, Case Western Reserve University, Cleveland, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States
| | - Xiaoping Wan
- Heart and Vascular Research Center, Department of Medicine, Case Western Reserve University, Cleveland, United States
| | - Haiyan Liu
- Heart and Vascular Research Center, Department of Medicine, Case Western Reserve University, Cleveland, United States
| | - Danielle Maleski
- Heart and Vascular Research Center, Department of Medicine, Case Western Reserve University, Cleveland, United States
| | - Angelina Ramirez-Navarro
- Heart and Vascular Research Center, Department of Medicine, Case Western Reserve University, Cleveland, United States
| | - Christine S Moravec
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, United States
| | - Eckhard Ficker
- Heart and Vascular Research Center, Department of Medicine, Case Western Reserve University, Cleveland, United States
| | - Kenneth R Laurita
- Heart and Vascular Research Center, Department of Medicine, Case Western Reserve University, Cleveland, United States
| | - Isabelle Deschênes
- Heart and Vascular Research Center, Department of Medicine, Case Western Reserve University, Cleveland, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States
| |
Collapse
|
15
|
Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016; 160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of different ion channel types are involved in cell signaling networks, and homeostatic regulatory mechanisms contribute to the control of ion channel expression. Profiling of global gene expression using microarray technology has recently provided novel insights into the molecular mechanisms underlying the homeostatic and pathological control of ion channel expression. It has demonstrated that the dysregulation of ion channel expression is associated with the pathogenesis of neural, cardiovascular, and immune diseases as well as cancers. In addition to the transcriptional, translational, and post-translational regulation of ion channels, potentially important evidence on the mechanisms controlling ion channel expression has recently been accumulated. The regulation of alternative pre-mRNA splicing is therefore a novel therapeutic strategy for the treatment of dominant-negative splicing disorders. Epigenetic modification plays a key role in various pathological conditions through the regulation of pluripotency genes. Inhibitors of pre-mRNA splicing and histone deacetyalase/methyltransferase have potential as potent therapeutic drugs for cancers and autoimmune and inflammatory diseases. Moreover, membrane-anchoring proteins, lysosomal and proteasomal degradation-related molecules, auxiliary subunits, and pharmacological agents alter the protein folding, membrane trafficking, and post-translational modifications of ion channels, and are linked to expression-defect channelopathies. In this review, we focused on recent insights into the transcriptional, spliceosomal, epigenetic, and proteasomal regulation of ion channel expression: Ca(2+) channels (TRPC/TRPV/TRPM/TRPA/Orai), K(+) channels (voltage-gated, KV/Ca(2+)-activated, KCa/two-pore domain, K2P/inward-rectifier, Kir), and Ca(2+)-activated Cl(-) channels (TMEM16A/TMEM16B). Furthermore, this review highlights expression of these ion channels in expression-defect channelopathies.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
16
|
Myocardial KChIP2 Expression in Guinea Pig Resolves an Expanded Electrophysiologic Role. PLoS One 2016; 11:e0146561. [PMID: 26764482 PMCID: PMC4713065 DOI: 10.1371/journal.pone.0146561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/18/2015] [Indexed: 11/19/2022] Open
Abstract
Cardiac ion channels and their respective accessory subunits are critical in maintaining proper electrical activity of the heart. Studies have indicated that the K+ channel interacting protein 2 (KChIP2), originally identified as an auxiliary subunit for the channel Kv4, a component of the transient outward K+ channel (Ito), is a Ca2+ binding protein whose regulatory function does not appear restricted to Kv4 modulation. Indeed, the guinea pig myocardium does not express Kv4, yet we show that it still maintains expression of KChIP2, suggesting roles for KChIP2 beyond this canonical auxiliary interaction with Kv4 to modulate Ito. In this study, we capitalize on the guinea pig as a system for investigating how KChIP2 influences the cardiac action potential, independent of effects otherwise attributed to Ito, given the endogenous absence of the current in this species. By performing whole cell patch clamp recordings on isolated adult guinea pig myocytes, we observe that knock down of KChIP2 significantly prolongs the cardiac action potential. This prolongation was not attributed to compromised repolarizing currents, as IKr and IKs were unchanged, but was the result of enhanced L-type Ca2+ current due to an increase in Cav1.2 protein. In addition, cells with reduced KChIP2 also displayed lowered INa from reduced Nav1.5 protein. Historically, rodent models have been used to investigate the role of KChIP2, where dramatic changes to the primary repolarizing current Ito may mask more subtle effects of KChIP2. Evaluation in the guinea pig where Ito is absent, has unveiled additional functions for KChIP2 beyond its canonical regulation of Ito, which defines KChIP2 as a master regulator of cardiac repolarization and depolarization.
Collapse
|
17
|
Panama BK, Korogyi AS, Aschar-Sobbi R, Oh Y, Gray CBB, Gang H, Brown JH, Kirshenbaum LA, Backx PH. Reductions in the Cardiac Transient Outward K+ Current Ito Caused by Chronic β-Adrenergic Receptor Stimulation Are Partly Rescued by Inhibition of Nuclear Factor κB. J Biol Chem 2016; 291:4156-65. [PMID: 26742842 DOI: 10.1074/jbc.m115.694984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Indexed: 12/27/2022] Open
Abstract
The fast transient outward potassium current (Ito,f) plays a critical role in the electrical and contractile properties of the myocardium. Ito,f channels are formed by the co-assembly of the pore-forming α-subunits, Kv4.2 and Kv4.3, together with the accessory β-subunit KChIP2. Reductions of Ito,f are common in the diseased heart, which is also associated with enhanced stimulation of β-adrenergic receptors (β-ARs). We used cultured neonatal rat ventricular myocytes to examine how chronic β-AR stimulation decreases Ito,f. To determine which downstream pathways mediate these Ito,f changes, adenoviral infections were used to inhibit CaMKIIδc, CaMKIIδb, calcineurin, or nuclear factor κB (NF-κB). We observed that chronic β-AR stimulation with isoproterenol (ISO) for 48 h reduced Ito,f along with mRNA expression of all three of its subunits (Kv4.2, Kv4.3, and KChIP2). Inhibiting either CaMKIIδc nor CaMKIIδb did not prevent the ISO-mediated Ito,f reductions, even though CaMKIIδc and CaMKIIδb clearly regulated Ito,f and the mRNA expression of its subunits. Likewise, calcineurin inhibition did not prevent the Ito,f reductions induced by β-AR stimulation despite strongly modulating Ito,f and subunit mRNA expression. In contrast, NF-κB inhibition partly rescued the ISO-mediated Ito,f reductions in association with restoration of KChIP2 mRNA expression. Consistent with these observations, KChIP2 promoter activity was reduced by p65 as well as β-AR stimulation. In conclusion, NF-κB, and not CaMKIIδ or calcineurin, partly mediates the Ito,f reductions induced by chronic β-AR stimulation. Both mRNA and KChIP2 promoter data suggest that the ISO-induced Ito,f reductions are, in part, mediated through reduced KChIP2 transcription caused by NF-κB activation.
Collapse
Affiliation(s)
- Brian K Panama
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada, the Masonic Medical Research Laboratory, Department of Experimental Cardiology, Utica, New York 13501, and
| | - Adam S Korogyi
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Roozbeh Aschar-Sobbi
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Yena Oh
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Charles B B Gray
- the Department of Pharmacology, University of California, San Diego, California 92161
| | - Hongying Gang
- The Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Joan Heller Brown
- the Department of Pharmacology, University of California, San Diego, California 92161
| | - Lorrie A Kirshenbaum
- The Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Peter H Backx
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada, the Division of Cardiology, University Health Network, University of Toronto, Toronto, Ontario M5G 1L7, Canada,
| |
Collapse
|
18
|
Xie Y, Mai JT, Wang F, Lin YQ, Yuan WL, Luo NS, Fang MC, Wang JF, Chen YX. Effects of C-reactive protein on K(+) channel interaction protein 2 in cardiomyocytes. Am J Transl Res 2015; 7:922-931. [PMID: 26175853 PMCID: PMC4494143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/06/2015] [Indexed: 06/04/2023]
Abstract
Several studies have found that C-reactive protein (CRP) was associated with QTc interval prolongation and ventricular arrhythmia. However, little is known about the mechanisms involved. K(+) channel interaction protein 2 (KChIP2) is a necessary subunit for the formation of transient outward potassium current (Ito.f) which plays a critical role in early repolarization and QTc interval of heart. In this study, we aimed to evaluate the effects of CRP on KChIP2 and Ito.f in cardiomyocytes and to explore the potential mechanism. The neonatal mice ventricular cardiomyocytes were cultured and treated with CRP at different concentrations. The expression of KChIP2 was detected by real time quantitative PCR and Western blot. In addition, Ito.f current density was evaluated by whole cell patch clamp techniques. Our results showed that CRP significantly decreased the mRNA and protein expression of KChIP2 in time and doses dependent manners (P < 0.05), and also reduced the current density of Ito.f (P < 0.05). In addition, CRP increased the expression of NF-κB and decreased IκBα expression without significant influence on the expression of ERK1/2 and JNK. Meanwhile, the NF-κB inhibitor PDTC significantly attenuated the effects of CRP on KChIP2 and Ito.f current density. In conclusion, CRP could significantly down-regulate KChIP2 expression and reduce current density of Ito.f partly through NF-κB pathway, suggesting that CRP may directly or indirectly influence QTc interval and arrhythmia via influencing KChIP2 expression and Ito.f current density of cardiomyocytes.
Collapse
Affiliation(s)
- Yong Xie
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, China
| | - Jing-Ting Mai
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, China
| | - Fei Wang
- Department of Anaesthesiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
| | - Yong-Qing Lin
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, China
| | - Wo-Liang Yuan
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, China
| | - Nian-Sang Luo
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, China
| | - Ming-Cheng Fang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, China
| | - Jing-Feng Wang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, China
| | - Yang-Xin Chen
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, China
| |
Collapse
|
19
|
Grubb S, Speerschneider T, Occhipinti D, Fiset C, Olesen SP, Thomsen MB, Calloe K. Loss of K+ currents in heart failure is accentuated in KChIP2 deficient mice. J Cardiovasc Electrophysiol 2014; 25:896-904. [PMID: 24678923 DOI: 10.1111/jce.12422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION KV 4 together with KV Channel-Interacting Protein 2 (KChIP2) mediate the fast recovering transient outward potassium current (I(to,f)) in the heart. KChIP2 is downregulated in human heart failure (HF), potentially underlying the loss of I(to,f). We investigated remodeling associated with HF hypothesizing that KChIP2 plays a central role in the modulation of outward K(+) currents in HF. METHODS AND RESULTS HF was induced by aortic banding in wild-type (WT) and KChIP2 deficient (KChIP2(-/-)) mice, evaluated by echocardiography. Action potentials were measured by floating microelectrodes in intact hearts. Ventricular cardiomyocytes were isolated and whole-cell currents were recorded by patch clamp. Left ventricular action potentials in KChIP2(-/-) mice were prolonged in a rate dependent manner, consistent with patch-clamp data showing loss of a fast recovering outward K(+) current and upregulation of the slow recovering I(to,s) and I(Kur). HF decreased all outward K(+) currents in WT mice and did not change the relative contribution of I(to,f) in WT mice. Compared to WT HF, KChIP2(-/-) HF had a larger reduction of K(+) -current density. However, the relative APD prolongation caused by HF was shorter for KChIP2(-/-) compared with WT, and the APs of the 2 HF mouse types were indistinguishable. CONCLUSION I(to,f) is just one of many K(+) currents being downregulated in murine HF. The downregulation of repolarizing currents in HF is accentuated in KChIP2(-/-) mice. However, the prolongation of APs associated with HF is less in KChIP2(-/-) compared to WT, suggesting other compensatory mechanism(s) in the KChIP2(-/-) mouse.
Collapse
Affiliation(s)
- Søren Grubb
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Speerschneider
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dona Occhipinti
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Céline Fiset
- Faculty of Pharmacy, Research Center of the Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada
| | - Søren-Peter Olesen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten B Thomsen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Calloe
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Zucker IH, Xiao L, Haack KKV. The central renin-angiotensin system and sympathetic nerve activity in chronic heart failure. Clin Sci (Lond) 2014; 126:695-706. [PMID: 24490814 PMCID: PMC4053944 DOI: 10.1042/cs20130294] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
CHF (chronic heart failure) is a multifactorial disease process that is characterized by overactivation of the RAAS (renin-angiotensin-aldosterone system) and the sympathetic nervous system. Both of these systems are chronically activated in CHF. The RAAS consists of an excitatory arm involving AngII (angiotensin II), ACE (angiotensin-converting enzyme) and the AT1R (AngII type 1 receptor). The RAAS also consists of a protective arm consisting of Ang-(1-7) [angiotensin-(1-7)], the AT2R (AngII type 2 receptor), ACE2 and the Mas receptor. Sympatho-excitation in CHF is driven, in large part, by an imbalance of these two arms, with an increase in the AngII/AT1R/ACE arm and a decrease in the AT2R/ACE2 arm. This imbalance is manifested in cardiovascular-control regions of the brain such as the rostral ventrolateral medulla and paraventricular nucleus in the hypothalamus. The present review focuses on the current literature that describes the components of these two arms of the RAAS and their imbalance in the CHF state. Moreover, the present review provides additional evidence for the relevance of ACE2 and Ang-(1-7) as key players in the regulation of central sympathetic outflow in CHF. Finally, we also examine the effects of exercise training as a therapeutic strategy and the molecular mechanisms at play in CHF, in part, because of the ability of exercise training to restore the balance of the RAAS axis and sympathetic outflow.
Collapse
Affiliation(s)
- Irving H Zucker
- *Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Liang Xiao
- *Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Karla K V Haack
- *Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| |
Collapse
|
21
|
Galdames HA, Torres-Farfan C, Spichiger C, Mendez N, Abarzua-Catalan L, Alonso-Vazquez P, Richter HG. Impact of gestational chronodisruption on fetal cardiac genomics. J Mol Cell Cardiol 2014; 66:1-11. [DOI: 10.1016/j.yjmcc.2013.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/20/2013] [Accepted: 10/27/2013] [Indexed: 12/23/2022]
|
22
|
Speerschneider T, Grubb S, Metoska A, Olesen SP, Calloe K, Thomsen MB. Development of heart failure is independent of K+ channel-interacting protein 2 expression. J Physiol 2013; 591:5923-37. [PMID: 24099801 DOI: 10.1113/jphysiol.2013.263483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Abnormal ventricular repolarization in ion channelopathies and heart disease is a major cause of ventricular arrhythmias and sudden cardiac death. K(+) channel-interacting protein 2 (KChIP2) expression is significantly reduced in human heart failure (HF), contributing to a loss of the transient outward K(+) current (Ito). We aim to investigate the possible significance of a changed KChIP2 expression on the development of HF and proarrhythmia. Transverse aortic constrictions (TAC) and sham operations were performed in wild-type (WT) and KChIP2(-/-) mice. Echocardiography was performed before and every 2 weeks after the operation. Ten weeks post-surgery, surface ECG was recorded and we paced the heart in vivo to induce arrhythmias. Afterwards, tissue from the left ventricle was used for immunoblotting. Time courses of HF development were comparable in TAC-operated WT and KChIP2(-/-) mice. Ventricular protein expression of KChIP2 was reduced by 70% after 10 weeks TAC in WT mice. The amplitudes of the J and T waves were enlarged in KChIP2(-/-) control mice. Ventricular effective refractory period, RR, QRS and QT intervals were longer in mice with HF compared to sham-operated mice of either genotype. Pacing-induced ventricular tachycardia (VT) was observed in 5/10 sham-operated WT mice compared with 2/10 HF WT mice with HF. Interestingly, and contrary to previously published data, sham-operated KChIP2(-/-) mice were resistant to pacing-induced VT resulting in only 1/10 inducible mice. KChIP2(-/-) with HF mice had similar low vulnerability to inducible VT (1/9). Our results suggest that although KChIP2 is downregulated in HF, it is not orchestrating the development of HF. Moreover, KChIP2 affects ventricular repolarization and lowers arrhythmia susceptibility. Hence, downregulation of KChIP2 expression in HF may be antiarrhythmic in mice via reduction of the fast transient outward K(+) current.
Collapse
Affiliation(s)
- Tobias Speerschneider
- M. B. Thomsen: Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3b Blegdamsvej, building 12.5.36, Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
23
|
Fotiadis P, Forger DB. Modeling the effects of the circadian clock on cardiac electrophysiology. J Biol Rhythms 2013; 28:69-78. [PMID: 23382593 DOI: 10.1177/0748730412469499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An internal circadian clock regulates the electrical activity of cardiac myocytes controlling the expression of potassium channel interacting protein-2 (KChIP2), which is a key regulator of cardiac electrical activity. Here, we examine how the circadian rhythm of KChIP2 expression affects the dynamics of human and murine ventricular action potentials (APs), as well as the intervals in the equivalent electrocardiograms (ECGs) reflecting the duration of depolarization and repolarization phases of the cardiac ventricular APs (QRS and QT intervals), with mathematical modeling. We show how the internal circadian clock can control the shape of APs and, in particular, predict AP, QRS, and QT interval prolongation following KChIP2 downregulation, as well as shortening of AP, QRS, and QT interval duration following KChIP2 upregulation. Based on the circadian expression of KChIP2, we can accurately predict the circadian rhythm in cardiac electrical activity and suggest the transient outward potassium currents as the key current for circadian rhythmicity. Our modeling work predicts a smaller effect of KChIP2 on AP and QT interval dynamics in humans. Taken together, these results support the role of KChIP2 as the key regulator of circadian rhythms in the electrical activity of the heart; we provide computational models that can be used to explore circadian rhythms in cardiac electrophysiology and susceptibility to arrhythmia.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Mathematics, Computational Medicine, and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
24
|
Panguluri SK, Tur J, Fukumoto J, Deng W, Sneed KB, Kolliputi N, Bennett ES, Tipparaju SM. Hyperoxia-induced hypertrophy and ion channel remodeling in left ventricle. Am J Physiol Heart Circ Physiol 2013; 304:H1651-61. [PMID: 23585127 DOI: 10.1152/ajpheart.00474.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ventricular arrhythmias account for high mortality in cardiopulmonary patients in intensive care units. Cardiovascular alterations and molecular-level changes in response to the commonly used oxygen treatment remains unknown. In the present study we investigated cardiac hypertrophy and cardiac complications in mice subjected to hyperoxia. Results demonstrate that there is a significant increase in average heart weight to tibia length (22%) in mice subjected to hyperoxia treatment vs. normoxia. Functional assessment was performed in mice subjected to hyperoxic treatment, and results demonstrate impaired cardiac function with decreased cardiac output and heart rate. Staining of transverse cardiac sections clearly demonstrates an increase in the cross-sectional area from hyperoxic hearts compared with control hearts. Quantitative real-time RT-PCR and Western blot analysis indicated differential mRNA and protein expression levels between hyperoxia-treated and control left ventricles for ion channels including Kv4.2 (-2 ± 0.08), Kv2.1 (2.54 ± 0.48), and Scn5a (1.4 ± 0.07); chaperone KChIP2 (-1.7 ± 0.06); transcriptional factors such as GATA4 (-1.5 ± 0.05), Irx5 (5.6 ± 1.74), NFκB1 (4.17 ± 0.43); hypertrophy markers including MHC-6 (2.17 ± 0.36) and MHC-7 (4.62 ± 0.76); gap junction protein Gja1 (4.4 ± 0.8); and microRNA processing enzyme Drosha (4.6 ± 0.58). Taken together, the data presented here clearly indicate that hyperoxia induces left ventricular remodeling and hypertrophy and alters the expression of Kv4.2 and MHC6/7 in the heart.
Collapse
Affiliation(s)
- Siva K Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Fujino T, Ide T, Yoshida M, Onitsuka K, Tanaka A, Hata Y, Nishida M, Takehara T, Kanemaru T, Kitajima N, Takazaki S, Kurose H, Kang D, Sunagawa K. Recombinant mitochondrial transcription factor A protein inhibits nuclear factor of activated T cells signaling and attenuates pathological hypertrophy of cardiac myocytes. Mitochondrion 2012; 12:449-58. [DOI: 10.1016/j.mito.2012.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/06/2012] [Accepted: 06/11/2012] [Indexed: 12/18/2022]
|
26
|
Gamazon ER, Ziliak D, Im HK, LaCroix B, Park DS, Cox NJ, Huang RS. Genetic architecture of microRNA expression: implications for the transcriptome and complex traits. Am J Hum Genet 2012; 90:1046-63. [PMID: 22658545 DOI: 10.1016/j.ajhg.2012.04.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/19/2012] [Accepted: 04/28/2012] [Indexed: 12/12/2022] Open
Abstract
We sought to comprehensively and systematically characterize the relationship between genetic variation, miRNA expression, and mRNA expression. Genome-wide expression profiling of samples of European and African ancestry identified in each population hundreds of miRNAs whose increased expression is correlated with correspondingly reduced expression of target mRNAs. We scanned 3' UTR SNPs with a potential functional effect on miRNA binding for cis-acting expression quantitative trait loci (eQTLs) for the corresponding proximal target genes. To extend sequence-based, localized analyses of SNP effect on miRNA binding, we proceeded to dissect the genetic basis of miRNA expression variation; we mapped miRNA expression levels-as quantitative traits-to loci in the genome as miRNA eQTLs, demonstrating that miRNA expression is under significant genetic control. We found that SNPs associated with miRNA expression are significantly enriched with those SNPs already shown to be associated with mRNA. Moreover, we discovered that many of the miRNA-associated genetic variations identified in our study are associated with a broad spectrum of human complex traits from the National Human Genome Research Institute catalog of published genome-wide association studies. Experimentally, we replicated miRNA-induced mRNA expression inhibition and the cis-eQTL relationship to the target gene for several identified relationships among SNPs, miRNAs, and mRNAs in an independent set of samples; furthermore, we conducted miRNA overexpression and inhibition experiments to functionally validate the miRNA-mRNA relationships. This study extends our understanding of the genetic regulation of the transcriptome and suggests that genetic variation might underlie observed relationships between miRNAs and mRNAs more commonly than has previously been appreciated.
Collapse
Affiliation(s)
- Eric R Gamazon
- Section of Genetic Medicine, Department of Medicine, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Grubb S, Calloe K, Thomsen MB. Impact of KChIP2 on Cardiac Electrophysiology and the Progression of Heart Failure. Front Physiol 2012; 3:118. [PMID: 22586403 PMCID: PMC3343377 DOI: 10.3389/fphys.2012.00118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/11/2012] [Indexed: 01/16/2023] Open
Abstract
Electrophysiological remodeling of cardiac potassium ion channels is important in the progression of heart failure. A reduction of the transient outward potassium current (Ito) in mammalian heart failure is consistent with a reduced expression of potassium channel interacting protein 2 (KChIP2, a KV4 subunit). Approaches have been made to investigate the role of KChIP2 in shaping cardiac Ito, including the use of transgenic KChIP2 deficient mice and viral overexpression of KChIP2. The interplay between Ito and myocardial calcium handling is pivotal in the development of heart failure, and is further strengthened by the dual role of KChIP2 as a functional subunit on both KV4 and CaV1.2. Moreover, the potential arrhythmogenic consequence of reduced Ito may contribute to the high relative incidence of sudden death in the early phases of human heart failure. With this review, we offer an overview of the insights into the physiological and pathological roles of KChIP2 and we discuss the limitations of translating the molecular basis of electrophysiological remodeling from animal models of heart failure to the clinical setting.
Collapse
Affiliation(s)
- Søren Grubb
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen Copenhagen, Denmark
| | | | | |
Collapse
|
28
|
Physiological consequences of transient outward K+ current activation during heart failure in the canine left ventricle. J Mol Cell Cardiol 2012; 52:1291-8. [PMID: 22434032 DOI: 10.1016/j.yjmcc.2012.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/08/2012] [Accepted: 03/03/2012] [Indexed: 11/22/2022]
Abstract
BACKGROUND Remodeling of ion channel expression is well established in heart failure (HF). We determined the extent to which I(to) is reduced in tachypacing-induced HF and assessed the ability of an I(to) activator (NS5806) to recover this current. METHOD AND RESULTS Whole-cell patch clamp was used to record I(to) in epicardial (Epi) ventricular myocytes. Epi- and endocardial action potentials were recorded from left ventricular wedge preparations. Right ventricular tachypacing-induced heart failure reduced I(to) density in Epi myocytes (Control=22.1±1.9pA/pF vs 16.1±1.4 after 2weeks and 10.7±1.4pA/pF after 5 weeks, +50mV). Current decay as well as recovery of I(to) from inactivation progressively slowed with the development of heart failure. Reduction of I(to) density was paralleled by a reduction in phase 1 magnitude, epicardial action potential notch and J wave amplitude recorded from coronary-perfused left ventricular wedge preparations. NS5806 increased I(to) (at +50mV) from 16.1±1.4 to 23.9±2.1pA/pF (p<0.05) at 2weeks and from 10.7±1.4 to 14.4±1.9pA/pF (p<0.05) in 5 weeks tachypaced dogs. NS5806 increased both fast and slow phases of I(to) recovery in 2 and 5-week HF cells and restored the action potential notch and J wave in wedge preparations from HF dogs. CONCLUSIONS The I(to) agonist NS5806 increases the rate of recovery and density of I(to), thus reversing the HF-induced reduction in these parameters. In wedge preparations from HF dogs, NS5806 restored the spike-and-dome morphology of the Epi action potential providing proof of principal that some aspects of electrical remodelling during HF can be pharmacologically reversed.
Collapse
|
29
|
Tapping the brake on cardiac growth-endogenous repressors of hypertrophic signaling. J Mol Cell Cardiol 2011; 51:156-67. [PMID: 21586293 DOI: 10.1016/j.yjmcc.2011.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/26/2011] [Accepted: 04/30/2011] [Indexed: 12/14/2022]
Abstract
Cardiac hypertrophy is considered an early hallmark during the clinical course of heart failure and an important risk factor for cardiac morbidity and mortality. Although hypertrophy of individual cardiomyocytes in response to pathological stimuli has traditionally been considered as an adaptive response required to sustain cardiac output, accumulating evidence from studies in patients and animal models suggests that in most instances hypertrophy of the heart also harbors maladaptive aspects. Major strides have been made in our understanding of the pathways that convey pro-hypertrophic signals from the outside of the cell to the nucleus. In recent years it also has become increasingly evident that the heart possesses a variety of endogenous feedback mechanisms to counterbalance this growth response. These repressive mechanisms are of particular interest since they may provide valuable therapeutic options. In this review we summarize currently known endogenous repressors of pathological cardiac growth as they have been studied by gene targeting in mice. Many of the repressors that function in signal transduction appear to regulate calcineurin (e.g. PICOT, calsarcin, RCAN) and JNK signaling (e.g. CDC42, MKP-1) and some will be described in greater detail in this review. In addition, we will focus on factors such as Kruppel-like factors (KLF4, KLF15 and KLF10) and histone deacetylases (HDACs), which constitute a relevant group of nuclear proteins that repress transcription of the hypertrophic gene program in cardiomyocytes.
Collapse
|
30
|
Panama BK, Latour-Villamil D, Farman GP, Zhao D, Bolz SS, Kirshenbaum LA, Backx PH. Nuclear factor kappaB downregulates the transient outward potassium current I(to,f) through control of KChIP2 expression. Circ Res 2011; 108:537-43. [PMID: 21252158 DOI: 10.1161/circresaha.110.229112] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE The fast transient outward K(+) current (I(to,f)) plays a critical role in early repolarization of the heart. I(to,f) is consistently downregulated in cardiac disease. Despite its importance, the regulation of I(to,f) in disease remains poorly understood. OBJECTIVE Because the transcription factor nuclear factor (NF)-κB is activated in cardiac hypertrophy and disease, we studied the role of NF-κB in mediating I(to,f) reductions induced by hypertrophy. METHODS AND RESULTS Culturing neonatal rat ventricular myocytes in the presence of phenylephrine (PE) plus propranolol (Pro), to selectively activate α(1)-adrenergic receptors, caused reductions in I(to,f), as well as KChIP2 and Kv4.3 expression, while increasing Kv4.2 expression. Inhibition of NF-κB, via overexpression of a phosphorylation-deficient mutant of IκBα (IκBαSA) prevented PE/Pro-induced reductions in I(to,f) and KChIP2 mRNA, without affecting Kv4.2 or Kv4.3 expression, suggesting NF-κB mediates the I(to,f) reductions by repressing KChIP2. Indeed, overexpression of the NF-κB activator IκB kinase-β also decreased KChIP2 expression and I(to,f) (despite increasing Kv4.2), whereas IκBαSA overexpression elevated KChIP2 and decreased Kv4.2 levels. In addition, the classic NF-κB activator tumor necrosis factor α also induced NF-κB-dependent reductions of KChIP2 and I(to,f). Finally, inhibition of calcineurin did not prevent PE/Pro-induced reductions in KChIP2. CONCLUSIONS NF-κB regulates KChIP2 and Kv4.2 expression. The reductions in I(to,f) observed following α-adrenergic receptor stimulation or tumor necrosis factor α application require NF-κB-dependent decreases in KChIP2 expression.
Collapse
Affiliation(s)
- Brian K Panama
- DVM, 150 College St, Fitzgerald Bldg, Rm 68, Toronto, Ontario, Canada M5S 3E2
| | | | | | | | | | | | | |
Collapse
|
31
|
How does the shape of the cardiac action potential control calcium signaling and contraction in the heart? J Mol Cell Cardiol 2010; 49:901-3. [PMID: 20850450 DOI: 10.1016/j.yjmcc.2010.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/19/2010] [Accepted: 09/08/2010] [Indexed: 11/21/2022]
|
32
|
Medei E, Marocolo M, Rodrigues DDC, Arantes PC, Takiya CM, Silva J, Rondinelli E, Goldenberg RCDS, de Carvalho ACC, Nascimento JHM. Chronic treatment with anabolic steroids induces ventricular repolarization disturbances: cellular, ionic and molecular mechanism. J Mol Cell Cardiol 2010; 49:165-175. [PMID: 20462507 DOI: 10.1016/j.yjmcc.2010.04.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 02/08/2023]
Abstract
The illicit use of supraphysiological doses of androgenic steroids (AAS) has been suggested as a cause of arrhythmia in athletes. The objectives of the present study were to investigate the time-course and the cellular, ionic and molecular processes underlying ventricular repolarization in rats chronically treated with AAS. Male Wistar rats were treated weekly for 8 weeks with 10mg/kg of nandrolone decanoate (DECA n=21) or vehicle (control n=20). ECG was recorded weekly. Action potential (AP) and transient outward potassium current (I(to)) were recorded in rat hearts. Expression of KChIP2, Kv1.4, Kv4.2, and Kv4.3 was assessed by real-time PCR. Hematoxylin/eosin and Picrosirius red staining were used for histological analysis. QTc was greater in the DECA group. After DECA treatment the left, but not right, ventricle showed a longer AP duration than did the control. I(to) current densities were 47.5% lower in the left but not in the right ventricle after DECA. In the right ventricle the I(to) inactivation time-course was slower than in the control group. After DECA the left ventricle showed lower KChIP2 ( approximately 26%), Kv1.4 ( approximately 23%) and 4.3 ( approximately 70%) expression while the Kv 4.2 increased in 4 ( approximately 250%) and diminished in 3 ( approximately 30%) animals of this group. In the right ventricle the expression of I(to) subunits was similar between the treatment and control groups. DECA-treated hearts had 25% fewer nuclei and greater nuclei diameters in both ventricles. Our results strongly suggest that supraphysiological doses of AAS induce morphological remodeling in both ventricles. However, the electrical remodeling was mainly observed in the left ventricle.
Collapse
|