1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Stokely AM, Votapka LW, Hock MT, Teitgen AE, McCammon JA, McCulloch AD, Amaro RE. NetSci: A Library for High Performance Biomolecular Simulation Network Analysis Computation. J Chem Inf Model 2024; 64:7966-7976. [PMID: 39364881 PMCID: PMC12039534 DOI: 10.1021/acs.jcim.4c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
We present the NetSci program-an open-source scientific software package designed for estimating mutual information (MI) between data sets using GPU acceleration and a k-nearest-neighbor algorithm. This approach significantly enhances calculation speed, achieving improvements of several orders of magnitude over traditional CPU-based methods, with data set size limits dictated only by available hardware. To validate NetSci, we accurately compute MI for an analytically verifiable two-dimensional Gaussian distribution and replicate the generalized correlation (GC) analysis previously conducted on the B1 domain of protein G. We also apply NetSci to molecular dynamics simulations of the Sarcoendoplasmic Reticulum Calcium-ATPase (SERCA) pump, exploring the allosteric mechanisms and pathways influenced by ATP and 2'-deoxy-ATP (dATP) binding. Our analysis reveals distinct allosteric effects induced by ATP compared to dATP, with predicted information pathways from the bound nucleotide to the calcium-binding domain differing based on the nucleotide involved. NetSci proves to be a valuable tool for estimating MI and GC in various data sets and is particularly effective for analyzing intraprotein communication and information transfer.
Collapse
Affiliation(s)
- Andrew M Stokely
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80307, United States
| | - Lane W Votapka
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Marcus T Hock
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Abigail E Teitgen
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, United States
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Rommie E Amaro
- Department of Molecular Biology, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Teitgen AE, Hock MT, McCabe KJ, Childers MC, Huber GA, Marzban B, Beard DA, McCammon JA, Regnier M, McCulloch AD. Multiscale modeling shows how 2'-deoxy-ATP rescues ventricular function in heart failure. Proc Natl Acad Sci U S A 2024; 121:e2322077121. [PMID: 39172779 PMCID: PMC11363293 DOI: 10.1073/pnas.2322077121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
2'-deoxy-ATP (dATP) improves cardiac function by increasing the rate of crossbridge cycling and Ca[Formula: see text] transient decay. However, the mechanisms of these effects and how therapeutic responses to dATP are achieved when dATP is only a small fraction of the total ATP pool remain poorly understood. Here, we used a multiscale computational modeling approach to analyze the mechanisms by which dATP improves ventricular function. We integrated atomistic simulations of prepowerstroke myosin and actomyosin association, filament-scale Markov state modeling of sarcomere mechanics, cell-scale analysis of myocyte Ca[Formula: see text] dynamics and contraction, organ-scale modeling of biventricular mechanoenergetics, and systems level modeling of circulatory dynamics. Molecular and Brownian dynamics simulations showed that dATP increases the actomyosin association rate by 1.9 fold. Markov state models predicted that dATP increases the pool of myosin heads available for crossbridge cycling, increasing steady-state force development at low dATP fractions by 1.3 fold due to mechanosensing and nearest-neighbor cooperativity. This was found to be the dominant mechanism by which small amounts of dATP can improve contractile function at myofilament to organ scales. Together with faster myocyte Ca[Formula: see text] handling, this led to improved ventricular contractility, especially in a failing heart model in which dATP increased ejection fraction by 16% and the energy efficiency of cardiac contraction by 1%. This work represents a complete multiscale model analysis of a small molecule myosin modulator from single molecule to organ system biophysics and elucidates how the molecular mechanisms of dATP may improve cardiovascular function in heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
- Abigail E. Teitgen
- Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Marcus T. Hock
- Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Kimberly J. McCabe
- Department of Computational Physiology, Simula Research Laboratory, Oslo0164, Norway
| | | | - Gary A. Huber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Bahador Marzban
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - Daniel A. Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA98109
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA92093
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
4
|
Hock MT, Teitgen AE, McCabe KJ, Hirakis SP, Huber GA, Regnier M, Amaro RE, McCammon JA, McCulloch AD. Multiscale computational modeling of the effects of 2'-deoxy-ATP on cardiac muscle calcium handling. JOURNAL OF APPLIED PHYSICS 2023; 134:074905. [PMID: 37601331 PMCID: PMC10435275 DOI: 10.1063/5.0157935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
2'-Deoxy-ATP (dATP), a naturally occurring near analog of ATP, is a well-documented myosin activator that has been shown to increase contractile force, improve pump function, and enhance lusitropy in the heart. Calcium transients in cardiomyocytes with elevated levels of dATP show faster calcium decay compared with cardiomyocytes with basal levels of dATP, but the mechanisms behind this are unknown. Here, we design and utilize a multiscale computational modeling framework to test the hypothesis that dATP acts on the sarcoendoplasmic reticulum calcium-ATPase (SERCA) pump to accelerate calcium re-uptake into the sarcoplasmic reticulum during cardiac relaxation. Gaussian accelerated molecular dynamics simulations of human cardiac SERCA2A in the E1 apo, ATP-bound and dATP-bound states showed that dATP forms more stable contacts in the nucleotide binding pocket of SERCA and leads to increased closure of cytosolic domains. These structural changes ultimately lead to changes in calcium binding, which we assessed using Brownian dynamics simulations. We found that dATP increases calcium association rate constants to SERCA and that dATP binds to apo SERCA more rapidly than ATP. Using a compartmental ordinary differential equation model of human cardiomyocyte excitation-contraction coupling, we found that these increased association rate constants contributed to the accelerated rates of calcium transient decay observed experimentally. This study provides clear mechanistic evidence of enhancements in cardiac SERCA2A pump function due to interactions with dATP.
Collapse
Affiliation(s)
- Marcus T. Hock
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Abigail E. Teitgen
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Kimberly J. McCabe
- Department of Computational Physiology, Simula Resesarch Laboratory, Oslo 0164, Norway
| | - Sophia P. Hirakis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Gary A. Huber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98109, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
5
|
Mhatre KN, Mathieu J, Martinson A, Flint G, Blakley LP, Tabesh A, Reinecke H, Yang X, Guan X, Murali E, Klaiman JM, Odom GL, Brown MB, Tian R, Hauschka SD, Raftery D, Moussavi-Harami F, Regnier M, Murry CE. Cell based dATP delivery as a therapy for chronic heart failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538108. [PMID: 37162854 PMCID: PMC10168250 DOI: 10.1101/2023.04.24.538108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Transplanted human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) improve ventricular performance when delivered acutely post-myocardial infarction but are ineffective in chronic myocardial infarction/heart failure. 2'-deoxy-ATP (dATP) activates cardiac myosin and potently increases contractility. Here we engineered hPSC-CMs to overexpress ribonucleotide reductase, the enzyme controlling dATP production. In vivo, dATP-producing CMs formed new myocardium that transferred dATP to host cardiomyocytes via gap junctions, increasing their dATP levels. Strikingly, when transplanted into chronically infarcted hearts, dATP-producing grafts increased left ventricular function, whereas heart failure worsened with wild-type grafts or vehicle injections. dATP-donor cells recipients had greater voluntary exercise, improved cardiac metabolism, reduced pulmonary congestion and pathological cardiac hypertrophy, and improved survival. This combination of remuscularization plus enhanced host contractility offers a novel approach to treating the chronically failing heart.
Collapse
Affiliation(s)
- Ketaki N Mhatre
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Comparative Medicine, University of Washington; Seattle, WA 98195, USA
| | - Amy Martinson
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Galina Flint
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
| | - Leslie P Blakley
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Arash Tabesh
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Hans Reinecke
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Xuan Guan
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
| | - Eesha Murali
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
| | - Jordan M Klaiman
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Guy L Odom
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Department of Neurology, University of Washington; Seattle, WA 98195, USA
| | - Mary Beth Brown
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Washington; Seattle, WA 98195, USA
| | - Rong Tian
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Department of Anesthesiology and Pain Medicine, University of Washington; Seattle, WA 98195, USA
- The Mitochondria and Metabolism Center (MMC), University of Washington; Seattle, WA 98109, USA
| | - Stephen D Hauschka
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington; Seattle, WA 98195, USA
- The Mitochondria and Metabolism Center (MMC), University of Washington; Seattle, WA 98109, USA
- Northwest Metabolomics Research Center, University of Washington; Seattle, WA 98109, USA
| | - Farid Moussavi-Harami
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Division of Cardiology, University of Washington; Seattle, WA 98195, USA
| | - Michael Regnier
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Department of Physiology and Biophysics, University of Washington; Seattle, WA 98195, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Division of Cardiology, University of Washington; Seattle, WA 98195, USA
| |
Collapse
|
6
|
Tomasevic S, Milosevic M, Milicevic B, Simic V, Prodanovic M, Mijailovich SM, Filipovic N. Computational Modeling on Drugs Effects for Left Ventricle in Cardiomyopathy Disease. Pharmaceutics 2023; 15:793. [PMID: 36986654 PMCID: PMC10058954 DOI: 10.3390/pharmaceutics15030793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Cardiomyopathy is associated with structural and functional abnormalities of the ventricular myocardium and can be classified in two major groups: hypertrophic (HCM) and dilated (DCM) cardiomyopathy. Computational modeling and drug design approaches can speed up the drug discovery and significantly reduce expenses aiming to improve the treatment of cardiomyopathy. In the SILICOFCM project, a multiscale platform is developed using coupled macro- and microsimulation through finite element (FE) modeling of fluid-structure interactions (FSI) and molecular drug interactions with the cardiac cells. FSI was used for modeling the left ventricle (LV) with a nonlinear material model of the heart wall. Simulations of the drugs' influence on the electro-mechanics LV coupling were separated in two scenarios, defined by the principal action of specific drugs. We examined the effects of Disopyramide and Dygoxin which modulate Ca2+ transients (first scenario), and Mavacamten and 2-deoxy adenosine triphosphate (dATP) which affect changes of kinetic parameters (second scenario). Changes of pressures, displacements, and velocity distributions, as well as pressure-volume (P-V) loops in the LV models of HCM and DCM patients were presented. Additionally, the results obtained from the SILICOFCM Risk Stratification Tool and PAK software for high-risk HCM patients closely followed the clinical observations. This approach can give much more information on risk prediction of cardiac disease to specific patients and better insight into estimated effects of drug therapy, leading to improved patient monitoring and treatment.
Collapse
Affiliation(s)
- Smiljana Tomasevic
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
- BioIRC Bioengineering Research and Development Center, 34000 Kragujevac, Serbia
| | - Miljan Milosevic
- BioIRC Bioengineering Research and Development Center, 34000 Kragujevac, Serbia
- Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bogdan Milicevic
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
- BioIRC Bioengineering Research and Development Center, 34000 Kragujevac, Serbia
| | - Vladimir Simic
- BioIRC Bioengineering Research and Development Center, 34000 Kragujevac, Serbia
- Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Momcilo Prodanovic
- BioIRC Bioengineering Research and Development Center, 34000 Kragujevac, Serbia
- Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia
- FilamenTech, Inc., Newton, MA 02458, USA
| | - Srboljub M. Mijailovich
- FilamenTech, Inc., Newton, MA 02458, USA
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Nenad Filipovic
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
- BioIRC Bioengineering Research and Development Center, 34000 Kragujevac, Serbia
| |
Collapse
|
7
|
Structural OFF/ON transitions of myosin in relaxed porcine myocardium predict calcium-activated force. Proc Natl Acad Sci U S A 2023; 120:e2207615120. [PMID: 36696446 PMCID: PMC9945958 DOI: 10.1073/pnas.2207615120] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Contraction in striated muscle is initiated by calcium binding to troponin complexes, but it is now understood that dynamic transition of myosin between resting, ordered OFF states on thick filaments and active, disordered ON states that can bind to thin filaments is critical in regulating muscle contractility. These structural OFF to ON transitions of myosin are widely assumed to correspond to transitions from the biochemically defined, energy-sparing, super-relaxed (SRX) state to the higher ATPase disordered-relaxed (DRX) state. Here we examined the effect of 2'-deoxy-ATP (dATP), a naturally occurring energy substrate for myosin, on the structural OFF to ON transitions of myosin motors in porcine cardiac muscle thick filaments. Small-angle X-ray diffraction revealed that titrating dATP in relaxation solutions progressively moves the myosin heads from ordered OFF states on the thick filament backbone to disordered ON states closer to thin filaments. Importantly, we found that the structural OFF to ON transitions are not equivalent to the biochemically defined SRX to DRX transitions and that the dATP-induced structural OFF to ON transitions of myosin motors in relaxed muscle are strongly correlated with submaximal force augmentation by dATP. These results indicate that structural OFF to ON transitions of myosin in relaxed muscle can predict the level of force attained in calcium-activated cardiac muscle. Computational modeling and stiffness measurements suggest a final step in the OFF to ON transition may involve a subset of DRX myosins that form weakly bound cross-bridges prior to becoming active force-producing cross-bridges.
Collapse
|
8
|
Walklate J, Kao K, Regnier M, Geeves MA. Exploring the super-relaxed state of myosin in myofibrils from fast-twitch, slow-twitch, and cardiac muscle. J Biol Chem 2022; 298:101640. [PMID: 35090895 PMCID: PMC8867123 DOI: 10.1016/j.jbc.2022.101640] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 11/28/2022] Open
Abstract
Muscle myosin heads, in the absence of actin, have been shown to exist in two states, the relaxed (turnover ∼0.05 s-1) and super-relaxed states (SRX, 0.005 s-1) using a simple fluorescent ATP chase assay (Hooijman, P. et al (2011) Biophys. J.100, 1969-1976). Studies have normally used purified proteins, myosin filaments, or muscle fibers. Here we use muscle myofibrils, which retain most of the ancillary proteins and 3-D architecture of muscle and can be used with rapid mixing methods. Recording timescales from 0.1 to 1000 s provides a precise measure of the two populations of myosin heads present in relaxed myofibrils. We demonstrate that the population of SRX states is formed from rigor cross bridges within 0.2 s of relaxing with fluorescently labeled ATP, and the population of SRX states is relatively constant over the temperature range of 5 °C-30 °C. The SRX population is enhanced in the presence of mavacamten and reduced in the presence of deoxy-ATP. Compared with myofibrils from fast-twitch muscle, slow-twitch muscle, and cardiac muscles, myofibrils require a tenfold lower concentration of mavacamten to be effective, and mavacamten induced a larger increase in the population of the SRX state. Mavacamten is less effective, however, at stabilizing the SRX state at physiological temperatures than at 5 °C. These assays require small quantities of myofibrils, making them suitable for studies of model organism muscles, human biopsies, or human-derived iPSCs.
Collapse
Affiliation(s)
- Jonathan Walklate
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | - Kerry Kao
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Michael A Geeves
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK.
| |
Collapse
|
9
|
RRM2 Alleviates Doxorubicin-Induced Cardiotoxicity through the AKT/mTOR Signaling Pathway. Biomolecules 2022; 12:biom12020299. [PMID: 35204799 PMCID: PMC8869767 DOI: 10.3390/biom12020299] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic agent that plays an unparalleled role in cancer treatment. However, its serious dose-dependent cardiotoxicity, which eventually contributes to irreversible heart failure, has greatly limited the widespread clinical application of DOX. A previous study has demonstrated that the ribonucleotide reductase M2 subunit (RRM2) exerts salutary effects on promoting proliferation and inhibiting apoptosis and autophagy. However, the specific function of RRM2 in DOX-induced cardiotoxicity is yet to be determined. This study aimed to elucidate the role and potential mechanism of RRM2 on DOX-induced cardiotoxicity by investigating neonatal primary cardiomyocytes and mice treated with DOX. Subsequently, the results indicated that RRM2 expression was significantly reduced in mice hearts and primary cardiomyocytes. Apoptosis and autophagy-related proteins, such as cleaved-Caspase3 (C-Caspase3), LC3B, and beclin1, were distinctly upregulated. Additionally, RRM2 deficiency led to increased autophagy and apoptosis in cells. RRM2 overexpression, on the contrary, alleviated DOX-induced cardiotoxicity in vivo and in vitro. Consistently, DIDOX, an inhibitor of RRM2, attenuated the protective effect of RRM2. Mechanistically, we found that AKT/mTOR inhibitors could reverse the function of RRM2 overexpression on DOX-induced autophagy and apoptosis, which means that RRM2 could have regulated DOX-induced cardiotoxicity through the AKT/mTOR signaling pathway. In conclusion, our experiment established that RRM2 could be a potential treatment in reversing DOX-induced cardiac dysfunction.
Collapse
|
10
|
Rong Z, Chen H, Zhang Z, Zhang Y, Ge L, Lv Z, Zou Y, Lv J, He Y, Li W, Chen L. Identification of cardiomyopathy-related core genes through human metabolic networks and expression data. BMC Genomics 2022; 23:47. [PMID: 35016605 PMCID: PMC8753885 DOI: 10.1186/s12864-021-08271-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Cardiomyopathy is a complex type of myocardial disease, and its incidence has increased significantly in recent years. Dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) are two common and indistinguishable types of cardiomyopathy.
Results
Here, a systematic multi-omics integration approach was proposed to identify cardiomyopathy-related core genes that could distinguish normal, DCM and ICM samples using cardiomyopathy expression profile data based on a human metabolic network. First, according to the differentially expressed genes between different states (DCM/ICM and normal, or DCM and ICM) of samples, three sets of initial modules were obtained from the human metabolic network. Two permutation tests were used to evaluate the significance of the Pearson correlation coefficient difference score of the initial modules, and three candidate modules were screened out. Then, a cardiomyopathy risk module that was significantly related to DCM and ICM was determined according to the significance of the module score based on Markov random field. Finally, based on the shortest path between cardiomyopathy known genes, 13 core genes related to cardiomyopathy were identified. These core genes were enriched in pathways and functions significantly related to cardiomyopathy and could distinguish between samples of different states.
Conclusion
The identified core genes might serve as potential biomarkers of cardiomyopathy. This research will contribute to identifying potential biomarkers of cardiomyopathy and to distinguishing different types of cardiomyopathy.
Collapse
|
11
|
RRM2 Improves Cardiomyocyte Proliferation after Myocardial Ischemia Reperfusion Injury through the Hippo-YAP Pathway. DISEASE MARKERS 2021; 2021:5089872. [PMID: 34868394 PMCID: PMC8639268 DOI: 10.1155/2021/5089872] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 01/13/2023]
Abstract
Objective Ribonucleotide reductase M2 (RRM2) as an enzyme that catalyzes the deoxyreduction of nucleosides to deoxyribonucleoside triphosphate (dNTP) has been extensively studied, and it plays a crucial role in regulating cell proliferation. However, its role in ischemia-reperfusion injury (I/RI) is still unclear. Methods SD rats were used as the research object to detect the expression of RRM2 in the myocardium by constructing an I/RI model. At the same time, primary SD neonatal rat cardiomyocytes were extracted, and hypoxia/reoxygenation (H/R) treatment simulated the I/RI model. Using transfection technology to overexpress RRM2 in cardiomyocytes, quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) was used to detect the expression of RRM2, Cell Counting Kit-8 (CCK-8) assay was used to detect cell viability, and immunofluorescence staining was used to detect Ki67 and EdU-positive cells. Western blot (WB) technology was used to detect YAP and its phosphorylation expression. Results qRT-PCR results indicated that the expression of RRM2 was inhibited in the model group, and cardiomyocytes overexpressing RRM2 can obviously promote the proliferation of primary cardiomyocytes and improve the damage of cardiac structure and function caused by I/R. At the same time, RRM2 can promote the increase of YAP protein expression and the increase of Cyclin D1 mRNA expression. Conclusion RRM2 expression was downregulated in myocardial tissue with I/R. After overexpression of RRM2, cardiomyocyte proliferation was upregulated and the Hippo-YAP signaling pathway was activated.
Collapse
|
12
|
Barrick SK, Greenberg MJ. Cardiac myosin contraction and mechanotransduction in health and disease. J Biol Chem 2021; 297:101297. [PMID: 34634306 PMCID: PMC8559575 DOI: 10.1016/j.jbc.2021.101297] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiac myosin is the molecular motor that powers heart contraction by converting chemical energy from ATP hydrolysis into mechanical force. The power output of the heart is tightly regulated to meet the physiological needs of the body. Recent multiscale studies spanning from molecules to tissues have revealed complex regulatory mechanisms that fine-tune cardiac contraction, in which myosin not only generates power output but also plays an active role in its regulation. Thus, myosin is both shaped by and actively involved in shaping its mechanical environment. Moreover, these studies have shown that cardiac myosin-generated tension affects physiological processes beyond muscle contraction. Here, we review these novel regulatory mechanisms, as well as the roles that myosin-based force generation and mechanotransduction play in development and disease. We describe how key intra- and intermolecular interactions contribute to the regulation of myosin-based contractility and the role of mechanical forces in tuning myosin function. We also discuss the emergence of cardiac myosin as a drug target for diseases including heart failure, leading to the discovery of therapeutics that directly tune myosin contractility. Finally, we highlight some of the outstanding questions that must be addressed to better understand myosin's functions and regulation, and we discuss prospects for translating these discoveries into precision medicine therapeutics targeting contractility and mechanotransduction.
Collapse
Affiliation(s)
- Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
13
|
Modulation of post-powerstroke dynamics in myosin II by 2'-deoxy-ADP. Arch Biochem Biophys 2020; 699:108733. [PMID: 33388313 DOI: 10.1016/j.abb.2020.108733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 01/10/2023]
Abstract
Muscle myosins are molecular motors that hydrolyze ATP and generate force through coordinated interactions with actin filaments, known as cross-bridge cycling. During the cross-bridge cycle, functional sites in myosin 'sense' changes in interactions with actin filaments and the nucleotide binding region, resulting in allosteric transmission of information throughout the structure. We investigated whether the dynamics of the post-powerstroke state of the cross-bridge cycle are modulated in a nucleotide-dependent fashion. We compared molecular dynamics simulations of the myosin II motor domain (M) from Dictyostelium discoideum in the presence of ADP (M.ADP) versus 2'-deoxy-ADP bound myosin (M.dADP). We found that dADP was more flexible than ADP and the two nucleotides interacted with myosin in different ways. Replacement of ADP with dADP in the post-powerstroke state also altered the conformation of the actin binding region in myosin heads. Our results provide atomic level insights into allosteric communication networks in myosin that provide insight into the nucleotide-dependent dynamics of the cross-bridge cycle.
Collapse
|
14
|
Ma W, Childers M, Murray J, Moussavi-Harami F, Gong H, Weiss R, Daggett V, Irving T, Regnier M. Myosin dynamics during relaxation in mouse soleus muscle and modulation by 2'-deoxy-ATP. J Physiol 2020; 598:5165-5182. [PMID: 32818298 PMCID: PMC7719615 DOI: 10.1113/jp280402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/13/2020] [Indexed: 01/29/2023] Open
Abstract
KEY POINTS Skeletal muscle relaxation has been primarily studied by assessing the kinetics of force decay. Little is known about the resultant dynamics of structural changes in myosin heads during relaxation. The naturally occurring nucleotide 2-deoxy-ATP (dATP) is a myosin activator that enhances cross-bridge binding and kinetics. X-ray diffraction data indicate that with elevated dATP, myosin heads were extended closer to actin in relaxed muscle and myosin heads return to an ordered, resting state after contraction more quickly. Molecular dynamics simulations of post-powerstroke myosin suggest that dATP induces structural changes in myosin heads that increase the surface area of the actin-binding regions promoting myosin interaction with actin, which could explain the observed delays in the onset of relaxation. This study of the dATP-induced changes in myosin may be instructive for determining the structural changes desired for other potential myosin-targeted molecular compounds to treat muscle diseases. ABSTRACT Here we used time-resolved small-angle X-ray diffraction coupled with force measurements to study the structural changes in FVB mouse skeletal muscle sarcomeres during relaxation after tetanus contraction. To estimate the rate of myosin deactivation, we followed the rate of the intensity recovery of the first-order myosin layer line (MLL1) and restoration of the resting spacing of the third and sixth order of meridional reflection (SM3 and SM6 ) following tetanic contraction. A transgenic mouse model with elevated skeletal muscle 2-deoxy-ATP (dATP) was used to study how myosin activators may affect soleus muscle relaxation. X-ray diffraction evidence indicates that with elevated dATP, myosin heads were extended closer to actin in resting muscle. Following contraction, there is a slight but significant delay in the decay of force relative to WT muscle while the return of myosin heads to an ordered resting state was initially slower, then became more rapid than in WT muscle. Molecular dynamics simulations of post-powerstroke myosin suggest that dATP induces structural changes in myosin that increase the surface area of the actin-binding regions, promoting myosin interaction with actin. With dATP, myosin heads may remain in an activated state near the thin filaments following relaxation, accounting for the delay in force decay and the initial delay in recovery of resting head configuration, and this could facilitate subsequent contractions.
Collapse
Affiliation(s)
- Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago IL
| | - Matthew Childers
- Department of Bioengineering, University of Washington, Seattle WA
| | - Jason Murray
- Department of Bioengineering, University of Washington, Seattle WA
| | | | - Henry Gong
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago IL
| | - Robert Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca NY
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle WA
| | - Thomas Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago IL
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle WA
| |
Collapse
|
15
|
McCabe KJ, Aboelkassem Y, Teitgen AE, Huber GA, McCammon JA, Regnier M, McCulloch AD. Predicting the effects of dATP on cardiac contraction using multiscale modeling of the sarcomere. Arch Biochem Biophys 2020; 695:108582. [PMID: 32956632 DOI: 10.1016/j.abb.2020.108582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/30/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022]
Abstract
2'-deoxy-ATP (dATP) is a naturally occurring small molecule that has shown promise as a therapeutic because it significantly increases cardiac myocyte force development even at low dATP/ATP ratios. To investigate mechanisms by which dATP alters myosin crossbridge dynamics, we used Brownian dynamics simulations to calculate association rates between actin and ADP- or dADP-bound myosin. These rates were then directly incorporated in a mechanistic Monte Carlo Markov Chain model of cooperative sarcomere contraction. A unique combination of increased powerstroke and detachment rates was required to match experimental steady-state and kinetic data for dATP force production in rat cardiac myocytes when the myosin attachment rate in the model was constrained by the results of a Brownian dynamics simulation. Nearest-neighbor cooperativity was seen to contribute to, but not fully explain, the steep relationship between dATP/ATP ratio and steady-state force-development observed at lower dATP concentrations. Dynamic twitch simulations performed using measured calcium transients as inputs showed that the effects of dATP on the crossbridge alone were not sufficient to explain experimentally observed enhancement of relaxation kinetics by dATP treatment. Hence, dATP may also affect calcium handling even at low concentrations. By enabling the effects of dATP on sarcomere mechanics to be predicted, this multi-scale modeling framework may elucidate the molecular mechanisms by which dATP can have therapeutic effects on cardiac contractile dysfunction.
Collapse
Affiliation(s)
- Kimberly J McCabe
- Simula Research Laboratory, Department of Computational Physiology, PO Box 134, 1325, Lysaker, Norway.
| | - Yasser Aboelkassem
- San Diego State University, Department of Mechanical Engineering, 5500 Campanile Drive San Diego, CA, 92182, USA
| | - Abigail E Teitgen
- University of California San Diego, Department of Bioengineering, 9500 Gilman Drive MC 0412 La Jolla, CA, 92093, USA
| | - Gary A Huber
- University of California San Diego, Department of Chemistry & Biochemistry, 9500 Gilman Drive, MC 0303 La Jolla, CA, 92093, USA
| | - J Andrew McCammon
- University of California San Diego, Department of Chemistry & Biochemistry, 9500 Gilman Drive, MC 0303 La Jolla, CA, 92093, USA
| | - Michael Regnier
- University of Washington, Department of Bioengineering, Box 355061 Seattle, WA, 98195, USA
| | - Andrew D McCulloch
- University of California San Diego, Department of Bioengineering, 9500 Gilman Drive MC 0412 La Jolla, CA, 92093, USA
| |
Collapse
|
16
|
Pioner JM, Guan X, Klaiman JM, Racca AW, Pabon L, Muskheli V, Macadangdang J, Ferrantini C, Hoopmann MR, Moritz RL, Kim DH, Tesi C, Poggesi C, Murry CE, Childers MK, Mack DL, Regnier M. Absence of full-length dystrophin impairs normal maturation and contraction of cardiomyocytes derived from human-induced pluripotent stem cells. Cardiovasc Res 2020; 116:368-382. [PMID: 31049579 DOI: 10.1093/cvr/cvz109] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 12/30/2022] Open
Abstract
AIMS Heart failure invariably affects patients with various forms of muscular dystrophy (MD), but the onset and molecular sequelae of altered structure and function resulting from full-length dystrophin (Dp427) deficiency in MD heart tissue are poorly understood. To better understand the role of dystrophin in cardiomyocyte development and the earliest phase of Duchenne muscular dystrophy (DMD) cardiomyopathy, we studied human cardiomyocytes differentiated from induced pluripotent stem cells (hiPSC-CMs) obtained from the urine of a DMD patient. METHODS AND RESULTS The contractile properties of patient-specific hiPSC-CMs, with no detectable dystrophin (DMD-CMs with a deletion of exon 50), were compared to CMs containing a CRISPR-Cas9 mediated deletion of a single G base at position 263 of the dystrophin gene (c.263delG-CMs) isogenic to the parental line of hiPSC-CMs from a healthy individual. We hypothesized that the absence of a dystrophin-actin linkage would adversely affect myofibril and cardiomyocyte structure and function. Cardiomyocyte maturation was driven by culturing long-term (80-100 days) on a nanopatterned surface, which resulted in hiPSC-CMs with adult-like dimensions and aligned myofibrils. CONCLUSIONS Our data demonstrate that lack of Dp427 results in reduced myofibril contractile tension, slower relaxation kinetics, and to Ca2+ handling abnormalities, similar to DMD cells, suggesting either retarded or altered maturation of cardiomyocyte structures associated with these functions. This study offers new insights into the functional consequences of Dp427 deficiency at an early stage of cardiomyocyte development in both patient-derived and CRISPR-generated models of dystrophin deficiency.
Collapse
Affiliation(s)
- J Manuel Pioner
- Experimental and Clinical Medicine, Div. of Physiology, University of Florence, Florence, Italy
| | - Xuan Guan
- Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Alice W Racca
- School of Biosciences, University of Kent, Canterbury, UK
| | - Lil Pabon
- Pathology, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Veronica Muskheli
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | | | - Cecilia Ferrantini
- Experimental and Clinical Medicine, Div. of Physiology, University of Florence, Florence, Italy
| | | | | | - Deok-Ho Kim
- Bioengineering, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Chiara Tesi
- Experimental and Clinical Medicine, Div. of Physiology, University of Florence, Florence, Italy
| | - Corrado Poggesi
- Experimental and Clinical Medicine, Div. of Physiology, University of Florence, Florence, Italy
| | - Charles E Murry
- Bioengineering, University of Washington, Seattle, WA, USA.,Pathology, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Martin K Childers
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA.,Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - David L Mack
- Bioengineering, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA.,Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Michael Regnier
- Bioengineering, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| |
Collapse
|
17
|
Kolwicz SC, Hall JK, Moussavi-Harami F, Chen X, Hauschka SD, Chamberlain JS, Regnier M, Odom GL. Gene Therapy Rescues Cardiac Dysfunction in Duchenne Muscular Dystrophy Mice by Elevating Cardiomyocyte Deoxy-Adenosine Triphosphate. JACC Basic Transl Sci 2019; 4:778-791. [PMID: 31998848 PMCID: PMC6978556 DOI: 10.1016/j.jacbts.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 01/13/2023]
Abstract
Mutations in the gene encoding for dystrophin leads to structural and functional deterioration of cardiomyocytes and is a hallmark of cardiomyopathy in Duchenne muscular dystrophy (DMD) patients. Administration of recombinant adeno-associated viral vectors delivering microdystrophin or ribonucleotide reductase (RNR), under muscle-specific regulatory control, rescues both baseline and high workload-challenged hearts in an aged, DMD mouse model. However, only RNR treatments improved both systolic and diastolic function under those conditions. Cardiac-specific recombinant adeno-associated viral treatment of RNR holds therapeutic promise for improvement of cardiomyopathy in DMD patients.
Collapse
Key Words
- CK8, miniaturized murine creatine kinase regulatory cassette
- CMV, cytomegalovirus
- DMD, Duchenne muscular dystrophy
- RNR, ribonucleotide reductase
- cTnT, cardiac troponin T
- cardiomyopathy
- dADP, deoxy-adenosine diphosphate
- dATP, deoxy-adenosine triphosphate
- diastolic dysfunction
- dystrophin
- mdx, mouse muscular dystrophy model
- rAAV, recombinant adeno-associated viral vector
- recombinant adeno-associated virus vectors
- ribonucleotide reductase
- μDys, microdystrophin
Collapse
Affiliation(s)
- Stephen C. Kolwicz
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington
| | - John K. Hall
- Department of Neurology, University of Washington, Seattle, Washington
| | - Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Xiolan Chen
- Department of Biochemistry, University of Washington, Seattle, Washington
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
| | - Stephen D. Hauschka
- Department of Biochemistry, University of Washington, Seattle, Washington
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
| | - Jeffrey S. Chamberlain
- Department of Neurology, University of Washington, Seattle, Washington
- Department of Biochemistry, University of Washington, Seattle, Washington
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
| | - Michael Regnier
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
| | - Guy L. Odom
- Department of Neurology, University of Washington, Seattle, Washington
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
| |
Collapse
|
18
|
Yang X, Rodriguez ML, Leonard A, Sun L, Fischer KA, Wang Y, Ritterhoff J, Zhao L, Kolwicz SC, Pabon L, Reinecke H, Sniadecki NJ, Tian R, Ruohola-Baker H, Xu H, Murry CE. Fatty Acids Enhance the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Stem Cell Reports 2019; 13:657-668. [PMID: 31564645 PMCID: PMC6829750 DOI: 10.1016/j.stemcr.2019.08.013] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Although human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a novel platform for heart regeneration, disease modeling, and drug screening, their immaturity significantly hinders their application. A hallmark of postnatal cardiomyocyte maturation is the metabolic substrate switch from glucose to fatty acids. We hypothesized that fatty acid supplementation would enhance hPSC-CM maturation. Fatty acid treatment induces cardiomyocyte hypertrophy and significantly increases cardiomyocyte force production. The improvement in force generation is accompanied by enhanced calcium transient peak height and kinetics, and by increased action potential upstroke velocity and membrane capacitance. Fatty acids also enhance mitochondrial respiratory reserve capacity. RNA sequencing showed that fatty acid treatment upregulates genes involved in fatty acid β-oxidation and downregulates genes in lipid synthesis. Signal pathway analyses reveal that fatty acid treatment results in phosphorylation and activation of multiple intracellular kinases. Thus, fatty acids increase human cardiomyocyte hypertrophy, force generation, calcium dynamics, action potential upstroke velocity, and oxidative capacity. This enhanced maturation should facilitate hPSC-CM usage for cell therapy, disease modeling, and drug/toxicity screens.
Collapse
Affiliation(s)
- Xiulan Yang
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Marita L Rodriguez
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Andrea Leonard
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Lihua Sun
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Karin A Fischer
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98109, USA
| | - Julia Ritterhoff
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Limei Zhao
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Stephen C Kolwicz
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Lil Pabon
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Hans Reinecke
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Haodong Xu
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Charles E Murry
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA.
| |
Collapse
|
19
|
Ribeiro AJS, Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson JB, Brock M, Chaudhary KW, Kanda Y, Berridge B. Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Drug-Induced Inotropic Effects in Early Drug Development. Part 2: Designing and Fabricating Microsystems for Assaying Cardiac Contractility With Physiological Relevance Using Human iPSC-Cardiomyocytes. Front Pharmacol 2019; 10:934. [PMID: 31555128 PMCID: PMC6727630 DOI: 10.3389/fphar.2019.00934] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
Contractility of the myocardium engines the pumping function of the heart and is enabled by the collective contractile activity of its muscle cells: cardiomyocytes. The effects of drugs on the contractility of human cardiomyocytes in vitro can provide mechanistic insight that can support the prediction of clinical cardiac drug effects early in drug development. Cardiomyocytes differentiated from human-induced pluripotent stem cells have high potential for overcoming the current limitations of contractility assays because they attach easily to extracellular materials and last long in culture, while having human- and patient-specific properties. Under these conditions, contractility measurements can be non-destructive and minimally invasive, which allow assaying sub-chronic effects of drugs. For this purpose, the function of cardiomyocytes in vitro must reflect physiological settings, which is not observed in cultured cardiomyocytes derived from induced pluripotent stem cells because of the fetal-like properties of their contractile machinery. Primary cardiomyocytes or tissues of human origin fully represent physiological cellular properties, but are not easily available, do not last long in culture, and do not attach easily to force sensors or mechanical actuators. Microengineered cellular systems with a more mature contractile function have been developed in the last 5 years to overcome this limitation of stem cell-derived cardiomyocytes, while simultaneously measuring contractile endpoints with integrated force sensors/actuators and image-based techniques. Known effects of engineered microenvironments on the maturity of cardiomyocyte contractility have also been discovered in the development of these systems. Based on these discoveries, we review here design criteria of microengineered platforms of cardiomyocytes derived from pluripotent stem cells for measuring contractility with higher physiological relevance. These criteria involve the use of electromechanical, chemical and morphological cues, co-culture of different cell types, and three-dimensional cellular microenvironments. We further discuss the use and the current challenges for developing and improving these novel technologies for predicting clinical effects of drugs based on contractility measurements with cardiomyocytes differentiated from induced pluripotent stem cells. Future research should establish contexts of use in drug development for novel contractility assays with stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Brian D Guth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany.,PreClinical Drug Development Platform (PCDDP), North-West University, Potchefstroom, South Africa
| | - Michael Engwall
- Safety Pharmacology and Animal Research Center, Amgen Research, Thousand Oaks, CA, United States
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - C Michael Foley
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - John Koerner
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Stanley T Parish
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Jennifer B Pierson
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Mathew Brock
- Department of Safety Assessment, Genentech, South San Francisco, CA, United States
| | - Khuram W Chaudhary
- Global Safety Pharmacology, GlaxoSmithKline plc, Collegeville, PA, United States
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Brian Berridge
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
20
|
Rodriguez ML, Beussman KM, Chun KS, Walzer MS, Yang X, Murry CE, Sniadecki NJ. Substrate Stiffness, Cell Anisotropy, and Cell-Cell Contact Contribute to Enhanced Structural and Calcium Handling Properties of Human Embryonic Stem Cell-Derived Cardiomyocytes. ACS Biomater Sci Eng 2019; 5:3876-3888. [PMID: 33438427 DOI: 10.1021/acsbiomaterials.8b01256] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) can be utilized to understand the mechanisms underlying the development and progression of heart disease, as well as to develop better interventions and treatments for this disease. However, these cells are structurally and functionally immature, which undermines some of their adequacy in modeling adult heart tissue. Previous studies with immature cardiomyocytes have shown that altering substrate stiffness, cell anisotropy, and/or cell-cell contact can enhance the contractile and structural maturation of hPSC-CMs. In this study, the structural and calcium handling properties of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) were enhanced by exposure to a downselected combination of these three maturation stimuli. First, hESC-CMs were seeded onto substrates composed of two commercial formulations of polydimethylsiloxane (PDMS), Sylgard 184 and Sylgard 527, whose stiffness ranged from 5 kPa to 101 kPa. Upon analyzing the morphological and calcium transient properties of these cells, it was concluded that a 21 kPa substrate yielded cells with the highest degree of maturation. Next, these PDMS substrates were microcontact-printed with laminin to force the cultured cells into rod-shaped geometries using line patterns that were 12, 18, or 24 μm in width. We found that cells on the 18 and 24 μm pattern widths had structural and functional properties that were superior to those on the 12 μm pattern. The hESC-CMs were then seeded onto these line-stamped surfaces at a density of 500 000 cells per 25-mm-diameter substrate, to enable the formation of cell-cell contacts at their distal ends. We discovered that this combination of culture conditions resulted in cells that were more structurally and functionally mature than those that were only exposed to one or two stimuli. Our results suggest that downselecting a combination of mechanobiological stimuli could prove to be an effective means of maturing hPSC-CMs in vitro.
Collapse
Affiliation(s)
- Marita L Rodriguez
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Kevin M Beussman
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Katherine S Chun
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Melissa S Walzer
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States
| | - Xiulan Yang
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Charles E Murry
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States.,Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States.,Department of Medicine/Cardiology, University of Washington, Seattle, Washington 98195, United States
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States.,Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
21
|
Nunez Lopez YO, Messi ML, Pratley RE, Zhang T, Delbono O. Troponin T3 associates with DNA consensus sequence that overlaps with p53 binding motifs. Exp Gerontol 2018; 108:35-40. [PMID: 29596868 DOI: 10.1016/j.exger.2018.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/25/2018] [Accepted: 03/09/2018] [Indexed: 12/25/2022]
Abstract
We recently reported that in addition to its classical cytoplasmic location, the fast skeletal muscle Troponin T3 (TnT3) shuttles to the nucleus, where it appears to perform nonclassical transcription regulatory functions. Importantly, changes in the composition of the nucleus-localized pool of TnT3 and its fragments contribute to age-dependent muscle damage and wasting. Here, using ChIP-Seq, we demonstrate that TnT3 associates with DNA consensus sequences including the TGCCT motif, which is required for p53 binding to the promoter area of p53-related genes. Gene set enrichment analysis further demonstrated that the p53 pathway was the most significantly enriched pathway among genes annotated to the TnT3 ChIP-Seq peaks. We further demonstrated a strong correlation (r = 0.78, P = 1 × 10-4) between the expression levels of TNNT3 and TP53-inducible ribonucleotide reductase regulatory subunit M2B (RRM2B) in skeletal muscle tissue of 21 lean non-diabetic human subjects and a significant (P < 0.05) reduction in the levels of both gene transcripts in the third age-tertile group [42.3-70 years of age (yoa)] as compared to the second age-tertile (31.3-42.3 yoa). Of note, both TNNT3 and RRM2B expression levels negatively associated with total body fat mass (each with r = 0.49, P < 0.05), whereas RRM2B positively correlated with pancreatic β cell function (rRRM2B~HOMA-B = 0.47, P = 0.047). This work suggests that reduced TNNT3 gene expression is another mechanism leading to reduced TnT3 and excitation-contraction coupling with aging. Consequently, TnT3 appears to contribute to age-related sarcopenia and possibly other age-related deficiencies such as muscle insulin resistance and β cell dysfunction by interacting with TnT3-binding sequences in the promoter area of p53-related genes, among others, and consequently modulating the transcriptional regulation of these target genes.
Collapse
Affiliation(s)
- Yury O Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL 32804, United States.
| | - Maria Laura Messi
- Departments of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL 32804, United States
| | - Tan Zhang
- Departments of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Osvaldo Delbono
- Departments of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
22
|
Teichman SL, Thomson KS, Regnier M. Cardiac Myosin Activation with Gene Therapy Produces Sustained Inotropic Effects and May Treat Heart Failure with Reduced Ejection Fraction. Handb Exp Pharmacol 2017; 243:447-464. [PMID: 27590227 DOI: 10.1007/164_2016_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic inotropic therapy is effective for the treatment of heart failure with reduced ejection fraction, but has been limited by adverse long-term safety profiles, development of tolerance, and the need for chronic parenteral administration. A safe and convenient therapeutic agent that produces sustained inotropic effects could improve symptoms, functional capacity, and quality of life. Small amounts of 2-deoxy-adenosine triphosphate (dATP) activate cardiac myosin leading to enhanced contractility in normal and failing heart muscle. Cardiac myosin activation triggers faster myosin crossbridge cycling with greater force generation during each contraction. This paper describes the rationale and results of a translational medicine effort to increase dATP levels using a gene therapy strategy to deliver and upregulate ribonucleotide reductase (R1R2), the enzyme responsible for dATP synthesis, selectively in cardiomyocytes. In small and large animal models of heart failure, a single dose of this gene therapy has led to sustained inotropic effects with a benign safety profile. Further animal studies are appropriate with the goal of testing this agent in patients with heart failure.
Collapse
Affiliation(s)
- Sam L Teichman
- BEAT Biotherapeutics Corp, 1380 112th Ave., NE, Suite 200, Seattle, WA, 98004, USA.
| | | | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
23
|
Regnier M, Moussavi-Harami F. Gene Therapy for Nonischemic Cardiomyopathy: Moving Forward by Learning From Lessons of the Past. J Am Coll Cardiol 2017; 70:1757-1759. [PMID: 28958333 DOI: 10.1016/j.jacc.2017.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 11/15/2022]
Affiliation(s)
- Michael Regnier
- Department of Bioengineering, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.
| | - Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
24
|
Nowakowski SG, Regnier M, Daggett V. Molecular mechanisms underlying deoxy-ADP.Pi activation of pre-powerstroke myosin. Protein Sci 2017; 26:749-762. [PMID: 28097776 DOI: 10.1002/pro.3121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 01/19/2023]
Abstract
Myosin activation is a viable approach to treat systolic heart failure. We previously demonstrated that striated muscle myosin is a promiscuous ATPase that can use most nucleoside triphosphates as energy substrates for contraction. When 2-deoxy ATP (dATP) is used, it acts as a myosin activator, enhancing cross-bridge binding and cycling. In vivo, we have demonstrated that elevated dATP levels increase basal cardiac function and rescues function of infarcted rodent and pig hearts. Here we investigate the molecular mechanism underlying this physiological effect. We show with molecular dynamics simulations that the binding of dADP.Pi (dATP hydrolysis products) to myosin alters the structure and dynamics of the nucleotide binding pocket, myosin cleft conformation, and actin binding sites, which collectively yield a myosin conformation that we predict favors weak, electrostatic binding to actin. In vitro motility assays at high ionic strength were conducted to test this prediction and we found that dATP increased motility. These results highlight alterations to myosin that enhance cross-bridge formation and reveal a potential mechanism that may underlie dATP-induced improvements in cardiac function.
Collapse
Affiliation(s)
- Sarah G Nowakowski
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195-5013
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195-5013.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington, 98195-5013
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195-5013
| |
Collapse
|
25
|
Translation of Cardiac Myosin Activation with 2-deoxy-ATP to Treat Heart Failure via an Experimental Ribonucleotide Reductase-Based Gene Therapy. JACC Basic Transl Sci 2016; 1:666-679. [PMID: 28553667 PMCID: PMC5444879 DOI: 10.1016/j.jacbts.2016.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite recent advances, chronic heart failure remains a significant and growing unmet medical need, reaching epidemic proportions carrying substantial morbidity, mortality, and costs. A safe and convenient therapeutic agent that produces sustained inotropic effects could ameliorate symptoms and improve functional capacity and quality of life. The authors discovered that small amounts of 2-deoxy-ATP (dATP) activate cardiac myosin leading to enhanced contractility in normal and failing heart muscle. Cardiac myosin activation triggers faster myosin cross-bridge cycling with greater force generation during each contraction. They describe the rationale and results of a translational medicine effort to increase dATP levels using a gene therapy strategy that up-regulates ribonucleotide reductase, the rate-limiting enzyme for dATP synthesis, selectively in cardiomyocytes. In small and large animal models of heart failure, a single dose of this gene therapy has led to sustained inotropic effects with no toxicity or safety concerns identified to date. Further animal studies are being conducted with the goal of testing this agent in patients with heart failure.
Collapse
|
26
|
Carson D, Hnilova M, Yang X, Nemeth CL, Tsui JH, Smith AS, Jiao A, Regnier M, Murry CE, Tamerler C, Kim DH. Nanotopography-Induced Structural Anisotropy and Sarcomere Development in Human Cardiomyocytes Derived from Induced Pluripotent Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21923-32. [PMID: 26866596 PMCID: PMC5681855 DOI: 10.1021/acsami.5b11671] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Understanding the phenotypic development of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is a prerequisite to advancing regenerative cardiac therapy, disease modeling, and drug screening applications. Lack of consistent hiPSC-CM in vitro data can be largely attributed to the inability of conventional culture methods to mimic the structural, biochemical, and mechanical aspects of the myocardial niche accurately. Here, we present a nanogrid culture array comprised of nanogrooved topographies, with groove widths ranging from 350 to 2000 nm, to study the effect of different nanoscale structures on the structural development of hiPSC-CMs in vitro. Nanotopographies were designed to have a biomimetic interface, based on observations of the oriented myocardial extracellular matrix (ECM) fibers found in vivo. Nanotopographic substrates were integrated with a self-assembling chimeric peptide containing the Arg-Gly-Asp (RGD) cell adhesion motif. Using this platform, cell adhesion to peptide-coated substrates was found to be comparable to that of conventional fibronectin-coated surfaces. Cardiomyocyte organization and structural development were found to be dependent on the nanotopographical feature size in a biphasic manner, with improved development achieved on grooves in the 700-1000 nm range. These findings highlight the capability of surface-functionalized, bioinspired substrates to influence cardiomyocyte development, and the capacity for such platforms to serve as a versatile assay for investigating the role of topographical guidance cues on cell behavior. Such substrates could potentially create more physiologically relevant in vitro cardiac tissues for future drug screening and disease modeling studies.
Collapse
Affiliation(s)
- Daniel Carson
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Marketa Hnilova
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Xiulan Yang
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Cameron L. Nemeth
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan H. Tsui
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Alec S.T. Smith
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Alex Jiao
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Charles E. Murry
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Candan Tamerler
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Mechanical Engineering and Bioengineering Research Center, University of Kansas, Lawrence, Kansas 66045, United States
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
- Corresponding Author: . Phone: 1-206-616-1133. Fax: 1-206-685-3300
| |
Collapse
|
27
|
Roberts MA, Tran D, Coulombe KL, Razumova M, Regnier M, Murry CE, Zheng Y. Stromal Cells in Dense Collagen Promote Cardiomyocyte and Microvascular Patterning in Engineered Human Heart Tissue. Tissue Eng Part A 2016; 22:633-44. [PMID: 26955856 PMCID: PMC4840925 DOI: 10.1089/ten.tea.2015.0482] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/29/2016] [Indexed: 01/08/2023] Open
Abstract
Cardiac tissue engineering is a strategy to replace damaged contractile tissue and model cardiac diseases to discover therapies. Current cardiac and vascular engineering approaches independently create aligned contractile tissue or perfusable vasculature, but a combined vascularized cardiac tissue remains to be achieved. Here, we sought to incorporate a patterned microvasculature into engineered heart tissue, which balances the competing demands from cardiomyocytes to contract the matrix versus the vascular lumens that need structural support. Low-density collagen hydrogels (1.25 mg/mL) permit human embryonic stem cell-derived cardiomyocytes (hESC-CMs) to form a dense contractile tissue but cannot support a patterned microvasculature. Conversely, high collagen concentrations (density ≥6 mg/mL) support a patterned microvasculature, but the hESC-CMs lack cell-cell contact, limiting their electrical communication, structural maturation, and tissue-level contractile function. When cocultured with matrix remodeling stromal cells, however, hESC-CMs structurally mature and form anisotropic constructs in high-density collagen. Remodeling requires the stromal cells to be in proximity with hESC-CMs. In addition, cocultured cardiac constructs in dense collagen generate measurable active contractions (on the order of 0.1 mN/mm(2)) and can be paced up to 2 Hz. Patterned microvascular networks in these high-density cocultured cardiac constructs remain patent through 2 weeks of culture, and hESC-CMs show electrical synchronization. The ability to maintain microstructural control within engineered heart tissue enables generation of more complex features, such as cellular alignment and a vasculature. Successful incorporation of these features paves the way for the use of large scale engineered tissues for myocardial regeneration and cardiac disease modeling.
Collapse
Affiliation(s)
- Meredith A. Roberts
- Department of Bioengineering, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Dominic Tran
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Kareen L.K. Coulombe
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Pathology, University of Washington, Seattle, Washington
| | - Maria Razumova
- Department of Bioengineering, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Charles E. Murry
- Department of Bioengineering, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Pathology, University of Washington, Seattle, Washington
- Department of Medicine/Cardiology, University of Washington, Seattle, Washington
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
28
|
Cheng Y, Hogarth KA, O'Sullivan ML, Regnier M, Pyle WG. 2-Deoxyadenosine triphosphate restores the contractile function of cardiac myofibril from adult dogs with naturally occurring dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2016; 310:H80-91. [PMID: 26497964 PMCID: PMC4796460 DOI: 10.1152/ajpheart.00530.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022]
Abstract
Dilated cardiomyopathy (DCM) is a major type of heart failure resulting from loss of systolic function. Naturally occurring canine DCM is a widely accepted experimental paradigm for studying human DCM. 2-Deoxyadenosine triphosphate (dATP) can be used by myosin and is a superior energy substrate over ATP for cross-bridge formation and increased systolic function. The objective of this study was to evaluate the beneficial effect of dATP on contractile function of cardiac myofibrils from dogs with naturally occurring DCM. We measured actomyosin NTPase activity and contraction/relaxation properties of isolated myofibrils from nonfailing (NF) and DCM canine hearts. NTPase assays indicated replacement of ATP with dATP significantly increased myofilament activity in both NF and DCM samples. dATP significantly improved maximal tension of DCM myofibrils to the NF sample level. dATP also restored Ca(2+) sensitivity of tension that was reduced in DCM samples. Similarly, dATP increased the kinetics of contractile activation (kACT), with no impact on the rate of cross-bridge tension redevelopment (kTR). Thus, the activation kinetics (kACT/kTR) that were reduced in DCM samples were restored for dATP to NF sample levels. dATP had little effect on relaxation. The rate of early slow-phase relaxation was slightly reduced with dATP, but its duration was not, nor was the fast-phase relaxation or times to 50 and 90% relaxation. Our findings suggest that myosin utilization of dATP improves cardiac myofibril contractile properties of naturally occurring DCM canine samples, restoring them to NF levels, without compromising relaxation. This suggests elevation of cardiac dATP is a promising approach for the treatment of DCM.
Collapse
Affiliation(s)
- Yuanhua Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Kaley A Hogarth
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - M Lynne O'Sullivan
- Department of Clinical Studies, University of Guelph, Guelph, Ontario, Canada
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - W Glen Pyle
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| |
Collapse
|
29
|
Racca AW, Klaiman JM, Pioner JM, Cheng Y, Beck AE, Moussavi-Harami F, Bamshad MJ, Regnier M. Contractile properties of developing human fetal cardiac muscle. J Physiol 2015; 594:437-52. [PMID: 26460603 DOI: 10.1113/jp271290] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/06/2015] [Indexed: 01/10/2023] Open
Abstract
KEY POINTS The contractile properties of human fetal cardiac muscle have not been previously studied. Small-scale approaches such as isolated myofibril and isolated contractile protein biomechanical assays allow study of activation and relaxation kinetics of human fetal cardiac muscle under well-controlled conditions. We have examined the contractile properties of human fetal cardiac myofibrils and myosin across gestational age 59-134 days. Human fetal cardiac myofibrils have low force and slow kinetics of activation and relaxation that increase during the time period studied, and kinetic changes may result from structural maturation and changes in protein isoform expression. Understanding the time course of human fetal cardiac muscle structure and contractile maturation can provide a framework to study development of contractile dysfunction with disease and evaluate the maturation state of cultured stem cell-derived cardiomyocytes. ABSTRACT Little is known about the contractile properties of human fetal cardiac muscle during development. Understanding these contractile properties, and how they change throughout development, can provide valuable insight into human heart development, and provide a framework to study the early stages of cardiac diseases that develop in utero. We characterized the contractile properties of isolated human fetal cardiac myofibrils across 8-19 weeks of gestation. Mechanical measurements revealed that in early stages of gestation there is low specific force and slow rates of force development and relaxation, with increases in force and the rates of activation and relaxation as gestation progresses. The duration and slope of the initial, slow phase of relaxation, related to myosin detachment and thin filament deactivation rates, decreased with gestation age. F-actin sliding on human fetal cardiac myosin-coated surfaces slowed significantly from 108 to 130 days of gestation. Electron micrographs showed human fetal muscle myofibrils elongate and widen with age, but features such as the M-line and Z-band are apparent even as early as day 52. Protein isoform analysis revealed that β-myosin is predominantly expressed even at the earliest time point studied, but there is a progressive increase in expression of cardiac troponin I (TnI), with a concurrent decrease in slow skeletal TnI. Together, our results suggest that cardiac myofibril force production and kinetics of activation and relaxation change significantly with gestation age and are influenced by the structural maturation of the sarcomere and changes in contractile filament protein isoforms.
Collapse
Affiliation(s)
- Alice W Racca
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jordan M Klaiman
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - J Manuel Pioner
- Department of Experimental and Clinical Medicine, Division of Physiology, University of Florence, Italy
| | - Yuanhua Cheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Anita E Beck
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Hospital, Seattle, WA, USA
| | - Farid Moussavi-Harami
- Division of Cardiology, Department of Internal Medicine, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Hospital, Seattle, WA, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Kolwicz SC, Odom GL, Nowakowski SG, Moussavi-Harami F, Chen X, Reinecke H, Hauschka SD, Murry CE, Mahairas GG, Regnier M. AAV6-mediated Cardiac-specific Overexpression of Ribonucleotide Reductase Enhances Myocardial Contractility. Mol Ther 2015; 24:240-250. [PMID: 26388461 DOI: 10.1038/mt.2015.176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/10/2015] [Indexed: 12/13/2022] Open
Abstract
Impaired systolic function, resulting from acute injury or congenital defects, leads to cardiac complications and heart failure. Current therapies slow disease progression but do not rescue cardiac function. We previously reported that elevating the cellular 2 deoxy-ATP (dATP) pool in transgenic mice via increased expression of ribonucleotide reductase (RNR), the enzyme that catalyzes deoxy-nucleotide production, increases myosin-actin interaction and enhances cardiac muscle contractility. For the current studies, we initially injected wild-type mice retro-orbitally with a mixture of adeno-associated virus serotype-6 (rAAV6) containing a miniaturized cardiac-specific regulatory cassette (cTnT(455)) composed of enhancer and promotor portions of the human cardiac troponin T gene (TNNT2) ligated to rat cDNAs encoding either the Rrm1 or Rrm2 subunit. Subsequent studies optimized the system by creating a tandem human RRM1-RRM2 cDNA with a P2A self-cleaving peptide site between the subunits. Both rat and human Rrm1/Rrm2 cDNAs resulted in RNR enzyme overexpression exclusively in the heart and led to a significant elevation of left ventricular (LV) function in normal mice and infarcted rats, measured by echocardiography or isolated heart perfusions, without adverse cardiac remodeling. Our study suggests that increasing RNR levels via rAAV-mediated cardiac-specific expression provide a novel gene therapy approach to potentially enhance cardiac systolic function in animal models and patients with heart failure.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| | - Guy L Odom
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Sarah G Nowakowski
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Xiaolan Chen
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Hans Reinecke
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Stephen D Hauschka
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Pathology, University of Washington, Seattle, Washington, USA; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | | | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
31
|
Psotka MA, Teerlink JR. Cardiac myosin activators: up and coming. Eur J Heart Fail 2015; 17:750-2. [PMID: 26179667 DOI: 10.1002/ejhf.313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 01/10/2023] Open
Affiliation(s)
- Mitchell A Psotka
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - John R Teerlink
- School of Medicine, University of California San Francisco, San Francisco, CA, USA.,Section of Cardiology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|
32
|
Ruan JL, Tulloch NL, Saiget M, Paige SL, Razumova MV, Regnier M, Tung KC, Keller G, Pabon L, Reinecke H, Murry CE. Mechanical Stress Promotes Maturation of Human Myocardium From Pluripotent Stem Cell-Derived Progenitors. Stem Cells 2015; 33:2148-57. [PMID: 25865043 DOI: 10.1002/stem.2036] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 04/02/2015] [Indexed: 12/22/2022]
Abstract
Recent advances in pluripotent stem cell biology and directed differentiation have identified a population of human cardiovascular progenitors that give rise to cardiomyocytes, smooth muscle, and endothelial cells. Because the heart develops from progenitors in 3D under constant mechanical load, we sought to test the effects of a 3D microenvironment and mechanical stress on differentiation and maturation of human cardiovascular progenitors into myocardial tissue. Progenitors were derived from embryonic stem cells, cast into collagen hydrogels, and left unstressed or subjected to static or cyclic mechanical stress. Compared to 2D culture, the unstressed 3D environment increased cardiomyocyte numbers and decreased smooth muscle numbers. Additionally, 3D culture suppressed smooth muscle α-actin content, suggesting diminished cell maturation. Cyclic stress-conditioning increased expression of several cardiac markers, including β-myosin heavy chain and cardiac troponin T, and the tissue showed enhanced calcium dynamics and force production. There was no effect of mechanical loading on cardiomyocyte or smooth muscle specification. Thus, 3D growth conditions favor cardiac differentiation from cardiovascular progenitors, whereas 2D conditions promote smooth muscle differentiation. Mechanical loading promotes cardiomyocyte structural and functional maturation. Culture in 3-D facilitates understanding how cues such as mechanical stress affect the differentiation and morphogenesis of distinct cardiovascular cell populations into organized, functional human cardiovascular tissue. Stem Cells 2015;33:2148-2157.
Collapse
Affiliation(s)
- Jia-Ling Ruan
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Nathaniel L Tulloch
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Department of Pathology, University of Washington, Seattle, Washington, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA.,Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
| | - Mark Saiget
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Sharon L Paige
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Maria V Razumova
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Kelvin Chan Tung
- McEwen Central for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | - Gordon Keller
- McEwen Central for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | - Lil Pabon
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Hans Reinecke
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Department of Pathology, University of Washington, Seattle, Washington, USA.,Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
33
|
Kadota S, Carey J, Reinecke H, Leggett J, Teichman S, Laflamme MA, Murry CE, Regnier M, Mahairas GG. Ribonucleotide reductase-mediated increase in dATP improves cardiac performance via myosin activation in a large animal model of heart failure. Eur J Heart Fail 2015; 17:772-81. [PMID: 25876005 DOI: 10.1002/ejhf.270] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/26/2015] [Accepted: 03/11/2015] [Indexed: 01/16/2023] Open
Abstract
AIMS Heart failure remains a leading cause of morbidity, hospitalizations, and deaths. We previously showed that overexpression of the enzyme ribonucleotide reductase (RNR) in cardiomyocytes increased levels of the myosin activator, 2-deoxy-ATP, catalysed enhanced contraction, and improved cardiac performance in rodent hearts. Here we used a swine model of myocardial infarction (MI) to test preliminarily a novel gene therapy for heart failure based on delivery of the human RNR enzyme complex under the control of a cardiac-specific promoter via an adeno-associated virus serotype 6 vector--designated as BB-R12. METHODS AND RESULTS We induced heart failure following MI in Yucatan minipigs by balloon occlusion of the left anterior descending artery. Two weeks, later, pigs received BB-R12 at one of three doses via antegrade coronary infusion. At 2 months post-treatment, LVEF and systolic LV dimension (measured by echocardiography) improved significantly in the high-dose group, despite further deterioration in the saline controls. Haemodynamic parameters including LV end-diastolic pressure, +dP/dt, and -dP/dt all trended towards improvement in the high-dose group. We observed no difference in the histopathological appearance of hearts or other organs from treated animals vs. controls, nor did we encounter any safety or tolerability concerns following BB-R12 delivery. CONCLUSION These pilot results suggest cardiac-specific gene therapy using BB-R12 may reverse cardiac dysfunction by myosin activation in a large-animal heart failure model with no observed safety concerns. Thus further research into the therapeutic potential of BB-R12 for patients with chronic heart failure appears warranted.
Collapse
Affiliation(s)
- Shin Kadota
- Department of Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle, WA, USA
| | - John Carey
- North American Science Associates Inc., Northwood, OH, USA
| | - Hans Reinecke
- Department of Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle, WA, USA
| | | | | | - Michael A Laflamme
- Department of Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle, WA, USA
| | - Charles E Murry
- Department of Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle, WA, USA.,Department of Bioengineering University of Washington, Seattle, WA, USA.,Department of Medicine/Cardiology, University of Washington, Seattle, WA, USA
| | - Michael Regnier
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle, WA, USA.,Department of Bioengineering University of Washington, Seattle, WA, USA
| | | |
Collapse
|
34
|
Racca AW, Beck AE, McMillin MJ, Korte FS, Bamshad MJ, Regnier M. The embryonic myosin R672C mutation that underlies Freeman-Sheldon syndrome impairs cross-bridge detachment and cycling in adult skeletal muscle. Hum Mol Genet 2015; 24:3348-58. [PMID: 25740846 DOI: 10.1093/hmg/ddv084] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/02/2015] [Indexed: 02/06/2023] Open
Abstract
Distal arthrogryposis is the most common known heritable cause of congenital contractures (e.g. clubfoot) and results from mutations in genes that encode proteins of the contractile complex of skeletal muscle cells. Mutations are most frequently found in MYH3 and are predicted to impair the function of embryonic myosin. We measured the contractile properties of individual skeletal muscle cells and the activation and relaxation kinetics of isolated myofibrils from two adult individuals with an R672C substitution in embryonic myosin and distal arthrogryposis syndrome 2A (DA2A) or Freeman-Sheldon syndrome. In R672C-containing muscle cells, we observed reduced specific force, a prolonged time to relaxation and incomplete relaxation (elevated residual force). In R672C-containing muscle myofibrils, the initial, slower phase of relaxation had a longer duration and slower rate, and time to complete relaxation was greatly prolonged. These observations can be collectively explained by a small subpopulation of myosin cross-bridges with greatly reduced detachment kinetics, resulting in a slower and less complete deactivation of thin filaments at the end of contractions. These findings have important implications for selecting and testing directed therapeutic options for persons with DA2A and perhaps congenital contractures in general.
Collapse
Affiliation(s)
| | - Anita E Beck
- Department of Pediatrics, Seattle Children's Hospital, Seattle, WA 98105, USA
| | | | | | - Michael J Bamshad
- Department of Pediatrics, Department of Genome Sciences, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Michael Regnier
- Department of Bioengineering, Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA and
| |
Collapse
|
35
|
Moussavi-Harami F, Razumova MV, Racca AW, Cheng Y, Stempien-Otero A, Regnier M. 2-Deoxy adenosine triphosphate improves contraction in human end-stage heart failure. J Mol Cell Cardiol 2015; 79:256-63. [PMID: 25498214 PMCID: PMC4301986 DOI: 10.1016/j.yjmcc.2014.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/16/2014] [Accepted: 12/02/2014] [Indexed: 01/10/2023]
Abstract
We are developing a novel treatment for heart failure by increasing myocardial 2 deoxy-ATP (dATP). Our studies in rodent models have shown that substitution of dATP for adenosine triphosphate (ATP) as the energy substrate in vitro or elevation of dATP in vivo increases myocardial contraction and that small increases in the native dATP pool of heart muscle are sufficient to improve cardiac function. Here we report, for the first time, the effect of dATP on human adult cardiac muscle contraction. We measured the contractile properties of chemically-demembranated multicellular ventricular wall preparations and isolated myofibrils from human subjects with end-stage heart failure. Isometric force was increased at both saturating and physiologic Ca(2+) concentrations with dATP compared to ATP. This resulted in an increase in the Ca(2+) sensitivity of force (pCa50) by 0.06 pCa units. The rate of force redevelopment (ktr) in demembranated wall muscle was also increased, as was the rate of contractile activation (kACT) in isolated myofibrils, indicating increased cross-bridge binding and cycling compared with ATP in failing human myocardium. These data suggest that dATP could increase dP/dT and end systolic pressure in failing human myocardium. Importantly, even though the magnitude and rate of force development were increased, there was no increase in the time to 50% and 90% myofibril relaxation. These data, along with our previous studies in rodent models, show the promise of elevating myocardial dATP to enhance contraction and restore cardiac pump function. These data also support further pre-clinical evaluation of this new approach for treating heart failure.
Collapse
Affiliation(s)
- Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Maria V Razumova
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Alice W Racca
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Yuanhua Cheng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - April Stempien-Otero
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
36
|
Lundy SD, Murphy SA, Dupras SK, Dai J, Murry CE, Laflamme MA, Regnier M. Cell-based delivery of dATP via gap junctions enhances cardiac contractility. J Mol Cell Cardiol 2014; 72:350-9. [PMID: 24780238 PMCID: PMC4073675 DOI: 10.1016/j.yjmcc.2014.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 11/18/2022]
Abstract
The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is a promising strategy to treat myocardial infarction and reverse heart failure, but to date the contractile benefit in most studies remains modest. We have previously shown that the nucleotide 2-deoxyadenosine triphosphate (dATP) can substitute for ATP as the energy substrate for cardiac myosin, and increasing cellular dATP content by globally overexpressing ribonucleotide reductase (R1R2) can dramatically enhance cardiac contractility. Because dATP is a small molecule, we hypothesized that it would diffuse readily between cells via gap junctions and enhance the contractility of neighboring coupled wild type cells. To test this hypothesis, we performed studies with the goals of (1) validating gap junction-mediated dATP transfer in vitro and (2) investigating the use of R1R2-overexpressing hPSC-CMs in vivo as a novel strategy to increase cardiac function. We first performed intracellular dye transfer studies using dATP conjugated to fluorescein and demonstrated rapid gap junction-mediated transfer between cardiomyocytes. We then cocultured wild type cardiomyocytes with either cardiomyocytes or fibroblasts overexpressing R1R2 and saw more than a twofold increase in the extent and rate of contraction of wild type cardiomyocytes. Finally, we transplanted hPSC-CMs overexpressing R1R2 into healthy uninjured rat hearts and noted an increase in fractional shortening from 41±4% to 53±5% just five days after cell transplantation. These findings demonstrate that dATP is an inotropic factor that spreads between cells via gap junctions. Our data suggest that transplantation of dATP-producing hPSC-CMs could significantly increase the effectiveness of cardiac cell therapy.
Collapse
Affiliation(s)
- Scott D Lundy
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sean A Murphy
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Sarah K Dupras
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA
| | - Jin Dai
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA
| | - Michael A Laflamme
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
37
|
Yang X, Rodriguez M, Pabon L, Fischer KA, Reinecke H, Regnier M, Sniadecki NJ, Ruohola-Baker H, Murry CE. Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol 2014; 72:296-304. [PMID: 24735830 DOI: 10.1016/j.yjmcc.2014.04.005] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/15/2014] [Accepted: 04/05/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) have great potential as a cell source for therapeutic applications such as regenerative medicine, disease modeling, drug screening, and toxicity testing. This potential is limited, however, by the immature state of the cardiomyocytes acquired using current protocols. Tri-iodo-l-thyronine (T3) is a growth hormone that is essential for optimal heart growth. In this study, we investigated the effect of T3 on hiPSC-CM maturation. METHODS AND RESULTS A one-week treatment with T3 increased cardiomyocyte size, anisotropy, and sarcomere length. T3 treatment was associated with reduced cell cycle activity, manifest as reduced DNA synthesis and increased expression of the cyclin-dependent kinase inhibitor p21. Contractile force analyses were performed on individual cardiomyocytes using arrays of microposts, revealing an almost two-fold higher force per-beat after T3 treatment and also an enhancement in contractile kinetics. This improvement in force generation was accompanied by an increase in rates of calcium release and reuptake, along with a significant increase in sarcoendoplasmic reticulum ATPase expression. Finally, although mitochondrial genomes were not numerically increased, extracellular flux analysis showed a significant increase in maximal mitochondrial respiratory capacity and respiratory reserve capability after T3 treatment. CONCLUSIONS Using a broad spectrum of morphological, molecular, and functional parameters, we conclude that T3 is a driver for hiPSC-CM maturation. T3 treatment may enhance the utility of hiPSC-CMs for therapy, disease modeling, or drug/toxicity screens.
Collapse
Affiliation(s)
- Xiulan Yang
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Marita Rodriguez
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA
| | - Lil Pabon
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Karin A Fischer
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA
| | - Hans Reinecke
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | | | - Charles E Murry
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
38
|
Feest ER, Steven Korte F, Tu AY, Dai J, Razumova MV, Murry CE, Regnier M. Thin filament incorporation of an engineered cardiac troponin C variant (L48Q) enhances contractility in intact cardiomyocytes from healthy and infarcted hearts. J Mol Cell Cardiol 2014; 72:219-27. [PMID: 24690333 DOI: 10.1016/j.yjmcc.2014.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 03/03/2014] [Accepted: 03/21/2014] [Indexed: 01/10/2023]
Abstract
Many current pharmaceutical therapies for systolic heart failure target intracellular [Ca(2+)] ([Ca(2+)]i) metabolism, or cardiac troponin C (cTnC) on thin filaments, and can have significant side-effects, including arrhythmias or adverse effects on diastolic function. In this study, we tested the feasibility of directly increasing the Ca(2+) binding properties of cTnC to enhance contraction independent of [Ca(2+)]i in intact cardiomyocytes from healthy and myocardial infarcted (MI) hearts. Specifically, cardiac thin filament activation was enhanced through adenovirus-mediated over-expression of a cardiac troponin C (cTnC) variant designed to have increased Ca(2+) binding affinity conferred by single amino acid substitution (L48Q). In skinned cardiac trabeculae and myofibrils we and others have shown that substitution of L48Q cTnC for native cTnC increases Ca(2+) sensitivity of force and the maximal rate of force development. Here we introduced L48Q cTnC into myofilaments of intact cardiomyocytes via adeno-viral transduction to deliver cDNA for the mutant or wild type (WT) cTnC protein. Using video-microscopy to monitor cell contraction, relaxation, and intracellular Ca(2+) transients (Fura-2), we report that incorporation of L48Q cTnC significantly increased contractility of cardiomyocytes from healthy and MI hearts without adversely affecting Ca(2+) transient properties or relaxation. The improvements in contractility from L48Q cTnC expression are likely the result of enhanced contractile efficiency, as intracellular Ca(2+) transient amplitudes were not affected. Expression and incorporation of L48Q cTnC into myofilaments was confirmed by Western blot analysis of myofibrils from transduced cardiomyocytes, which indicated replacement of 18±2% of native cTnC with L48Q cTnC. These experiments demonstrate the feasibility of directly targeting cardiac thin filament proteins to enhance cardiomyocyte contractility that is impaired following MI.
Collapse
Affiliation(s)
- Erik R Feest
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA
| | - F Steven Korte
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA; Centers for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - An-Yue Tu
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA
| | - Jin Dai
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA
| | - Maria V Razumova
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA; Centers for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA; Centers for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
39
|
Rodriguez AG, Rodriguez ML, Han SJ, Sniadecki NJ, Regnier M. Enhanced contractility with 2-deoxy-ATP and EMD 57033 is correlated with reduced myofibril structure and twitch power in neonatal cardiomyocytes. Integr Biol (Camb) 2013; 5:1366-73. [PMID: 24056444 DOI: 10.1039/c3ib40135a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As cardiomyocytes mature, their sarcomeres and Z-band widths increase in length in order for their myofibrils to produce stronger twitch forces during a contraction. In this study, we tested the hypothesis that tensional homeostasis is affected by altering myofibril forces. To assess this hypothesis, neonatal rat cardiomyocytes were cultured on arrays of microposts to measure cellular contractility. An optical line scanning technique was used to measure the deflections in the microposts with high temporal resolution, enabling the analysis of twitch force, twitch velocity, and twitch power. Myofibril force production was elevated by vector-mediated overexpression of ribonucleotide reductase (RR) to increase cellular dATP content or by adding the inotropic agent EMD 57033 (EMD). We found that RR and EMD treatment did not affect cardiomyocyte twitch force, but it did lead to reduced twitch velocity and twitch power. Immunofluorescent analysis of α-actinin revealed that RR-over-expressing cardiomyocytes and EMD-treated cardiomyocytes had lower spread area, sarcomere length, and Z-band width as compared to control cells. These results indicate a correlation between myofibril structure and cardiac power. This correlation was confirmed by exposing the cells to the myosin II inhibitor blebbistatin, and then subsequently washing it out. After wash-out, cardiomyocytes exhibited a reduction in twitch force, velocity, and power due to shorter sarcomere length and Z-band widths. Our results suggest that cardiac myofibril structure is regulated by tensional homeostasis. If myofibril-generated forces in cardiomyocytes are elevated, a state of tensional homeostasis is maintained by producing sufficient twitch forces with a lower degree myofibril structure.
Collapse
Affiliation(s)
- Anthony G Rodriguez
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
40
|
Nuclear tropomyosin and troponin in striated muscle: new roles in a new locale? J Muscle Res Cell Motil 2013; 34:275-84. [DOI: 10.1007/s10974-013-9356-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/23/2013] [Indexed: 01/03/2023]
|
41
|
Racca AW, Beck AE, Rao VS, Flint GV, Lundy SD, Born DE, Bamshad MJ, Regnier M. Contractility and kinetics of human fetal and human adult skeletal muscle. J Physiol 2013; 591:3049-61. [PMID: 23629510 DOI: 10.1113/jphysiol.2013.252650] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Little is known about the contraction and relaxation properties of fetal skeletal muscle, and measurements thus far have been made with non-human mammalian muscle. Data on human fetal skeletal muscle contraction are lacking, and there are no published reports on the kinetics of either fetal or adult human skeletal muscle myofibrils. Understanding the contractile properties of human fetal muscle would be valuable in understanding muscle development and a variety of muscle diseases that are associated with mutations in fetal muscle sarcomere proteins. Therefore, we characterised the contractile properties of developing human fetal skeletal muscle and compared them to adult human skeletal muscle and rabbit psoas muscle. Electron micrographs showed human fetal muscle sarcomeres are not fully formed but myofibril formation is visible. Isolated myofibril mechanical measurements revealed much lower specific force, and slower rates of isometric force development, slow phase relaxation, and fast phase relaxation in human fetal when compared to human adult skeletal muscle. The duration of slow phase relaxation was also significantly longer compared to both adult groups, but was similarly affected by elevated ADP. F-actin sliding on human fetal skeletal myosin coated surfaces in in vitro motility (IVM) assays was much slower compared with adult rabbit skeletal myosin, though the Km(app) (apparent (fitted) Michaelis-Menten constant) of F-actin speed with ATP titration suggests a greater affinity of human fetal myosin for nucleotide binding. Replacing ATP with 2 deoxy-ATP (dATP) increased F-actin speed for both groups by a similar amount. Titrations of ADP into IVM assays produced a similar inhibitory affect for both groups, suggesting ADP binding may be similar, at least under low load. Together, our results suggest slower but similar mechanisms of myosin chemomechanical transduction for human fetal muscle that may also be limited by immature myofilament structure.
Collapse
Affiliation(s)
- Alice W Racca
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Nowakowski SG, Kolwicz SC, Korte FS, Luo Z, Robinson-Hamm JN, Page JL, Brozovich F, Weiss RS, Tian R, Murry CE, Regnier M. Transgenic overexpression of ribonucleotide reductase improves cardiac performance. Proc Natl Acad Sci U S A 2013; 110:6187-92. [PMID: 23530224 PMCID: PMC3625337 DOI: 10.1073/pnas.1220693110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously demonstrated that cardiac myosin can use 2-deoxy-ATP (dATP) as an energy substrate, that it enhances contraction and relaxation with minimal effect on calcium-handling properties in vitro, and that contractile enhancement occurs with only minor elevation of cellular [dATP]. Here, we report the effect of chronically enhanced dATP concentration on cardiac function using a transgenic mouse that overexpresses the enzyme ribonucleotide reductase (TgRR), which catalyzes the rate-limiting step in de novo deoxyribonucleotide biosynthesis. Hearts from TgRR mice had elevated left ventricular systolic function compared with wild-type (WT) mice, both in vivo and in vitro, without signs of hypertrophy or altered diastolic function. Isolated cardiomyocytes from TgRR mice had enhanced contraction and relaxation, with no change in Ca(2+) transients, suggesting targeted improvement of myofilament function. TgRR hearts had normal ATP and only slightly decreased phosphocreatine levels by (31)P NMR spectroscopy, and they maintained rate responsiveness to dobutamine challenge. These data demonstrate long-term (at least 5-mo) elevation of cardiac [dATP] results in sustained elevation of basal left ventricular performance, with maintained β-adrenergic responsiveness and energetic reserves. Combined with results from previous studies, we conclude that this occurs primarily via enhanced myofilament activation and contraction, with similar or faster ability to relax. The data are sufficiently compelling to consider elevated cardiac [dATP] as a therapeutic option to treat systolic dysfunction.
Collapse
Affiliation(s)
| | - Stephen C. Kolwicz
- Mitochondria and Metabolism Center, University of Washington School of Medicine, Seattle, WA 98195
| | - Frederick Steven Korte
- Department of Bioengineering, University of Washington, Seattle, WA 98195
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195
| | - Zhaoxiong Luo
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | | | - Jennifer L. Page
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
| | | | - Robert S. Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington School of Medicine, Seattle, WA 98195
| | - Charles E. Murry
- Department of Bioengineering, University of Washington, Seattle, WA 98195
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195
- Department of Pathology, University of Washington, Seattle, WA 98195; and
- Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98195
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195
| |
Collapse
|
43
|
Lundy SD, Zhu WZ, Regnier M, Laflamme MA. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev 2013; 22:1991-2002. [PMID: 23461462 DOI: 10.1089/scd.2012.0490] [Citation(s) in RCA: 554] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite preclinical studies demonstrating the functional benefit of transplanting human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) into damaged myocardium, the ability of these immature cells to adopt a more adult-like cardiomyocyte (CM) phenotype remains uncertain. To address this issue, we tested the hypothesis that prolonged in vitro culture of human embryonic stem cell (hESC)- and human induced pluripotent stem cell (hiPSC)-derived CMs would result in the maturation of their structural and contractile properties to a more adult-like phenotype. Compared to their early-stage counterparts (PSC-CMs after 20-40 days of in vitro differentiation and culture), late-stage hESC-CMs and hiPSC-CMs (80-120 days) showed dramatic differences in morphology, including increased cell size and anisotropy, greater myofibril density and alignment, sarcomeres visible by bright-field microscopy, and a 10-fold increase in the fraction of multinucleated CMs. Ultrastructural analysis confirmed improvements in the myofibrillar density, alignment, and morphology. We measured the contractile performance of late-stage hESC-CMs and hiPSC-CMs and noted a doubling in shortening magnitude with slowed contraction kinetics compared to the early-stage cells. We then examined changes in the calcium-handling properties of these matured CMs and found an increase in calcium release and reuptake rates with no change in the maximum amplitude. Finally, we performed electrophysiological assessments in hESC-CMs and found that late-stage myocytes have hyperpolarized maximum diastolic potentials, increased action potential amplitudes, and faster upstroke velocities. To correlate these functional changes with gene expression, we performed qPCR and found a robust induction of the key cardiac structural markers, including β-myosin heavy chain and connexin-43, in late-stage hESC-CMs and hiPSC-CMs. These findings suggest that PSC-CMs are capable of slowly maturing to more closely resemble the phenotype of adult CMs and may eventually possess the potential to regenerate the lost myocardium with robust de novo force-producing tissue.
Collapse
Affiliation(s)
- Scott D Lundy
- Departments of Bioengineering, University of Washington, Seattle, Washington, USA
| | | | | | | |
Collapse
|
44
|
Baker AJ. Refueling the heart: Using 2-deoxy-ATP to enhance cardiac contractility. J Mol Cell Cardiol 2011; 51:883-4. [PMID: 22001677 DOI: 10.1016/j.yjmcc.2011.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 09/29/2011] [Indexed: 11/25/2022]
|