1
|
Jiang K, Su F, Deng R, Xu Y, Qin A, Yuan X, Xing D, Chen Y, Wang D, Shen L, Hwa J, Hou L, Xiang Y. Cardiomyocyte-specific NHE1 overexpression confers protection against myocardial infarction during hyperglycemia. Cardiovasc Diabetol 2025; 24:184. [PMID: 40287728 PMCID: PMC12034198 DOI: 10.1186/s12933-025-02743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Acute hyperglycemia on admission is frequently observed during the early phase after acute myocardial infarction (MI), even without the history of diabetes mellitus. We previously reported that inhibiting Na+/H+ exchanger 1 (NHE1) activity post-MI may improve outcomes, but not in the setting of MI with acute hyperglycemia. However, the precise role of NHE1 in the pathophysiology of MI with acute hyperglycemia remains to be elucidated, and there are no effective strategies for its prevention or treatment. METHODS AND RESULTS We analyzed 85 post-MI patients, identifying acute hyperglycemia (glucose > 7 mM) in non-diabetic individuals, linked to elevated BNP, CK-MB, and reduced plasma Na+. Using retrospective cohort studies and MI with acute hyperglycemia mouse models, we demonstrated that hyperglycemia exacerbates myocardial injury by reducing extracellular Na+, increasing intracellular Na+, and elevating pH, suggesting NHE1 activation as inferred from the observed intracellular pH (pHi) shift. Cardiomyocyte-specific NHE1 ablation or pharmacological inhibition worsened cardiac dysfunction and fibrosis in MI with acute hyperglycemia, while NHE1 overexpression conferred protection. RNA sequencing and drug screening identified accelerated NHE1 activation via 3% NaCl and lithospermic acid (LA) as a novel strategy to mitigate cardiomyocyte necroptosis, alleviating ischemic injury in MI and ischemia reperfusion models. Hypoxia-hyperglycemia and necroptosis induction models in NHE1-knockout, NHE1-overexpressing, and MLKL-overexpressing cardiomyocytes revealed that NHE1 activation, unlike its protective role in oxygen-glucose deprivation, promotes MLKL degradation via autophagosome-lysosomal pathways, reducing cardiomyocyte death. MLKL knockout and MLKL-NHE1 double knockout mice confirmed that MLKL ablation counteracts NHE1 inhibition's detrimental effects. CONCLUSIONS Activation of myocardial NHE1 promotes MLKL autophagic degradation, mitigating cardiomyocyte necroptosis and acute hyperglycemia-exacerbated MI, highlighting NHE1 as a hyperglycemia-dependent cardioprotective target. Moderate NHE1 activation may represent a novel therapeutic strategy for MI with acute hyperglycemia.
Collapse
Affiliation(s)
- Kai Jiang
- Key Laboratory of Cardiology, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fanghua Su
- Key Laboratory of Cardiology, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Institute of Biophysics, Chinese Academy of Science, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruhua Deng
- Key Laboratory of Cardiology, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yue Xu
- Key Laboratory of Cardiology, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Anqi Qin
- Key Laboratory of Cardiology, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xun Yuan
- Key Laboratory of Cardiology, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Dongmei Xing
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, 450000, China
| | - Yang Chen
- Key Laboratory of Cardiology, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Dandan Wang
- Key Laboratory of Cardiology, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lan Shen
- Department of Cardiology, Clinical Research Unit, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - John Hwa
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Lei Hou
- Cardiology Department, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, 201600, China.
| | - Yaozu Xiang
- Key Laboratory of Cardiology, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Institute of Biophysics, Chinese Academy of Science, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Endo S, Kanamori H, Yoshida A, Naruse G, Komura S, Minatoguchi S, Watanabe T, Kawaguchi T, Yamada Y, Mikami A, Miyazaki T, Akiyama H, Okura H. Sodium-glucose cotransporter 2 inhibitor empagliflozin enhances autophagy and reverses remodeling in hearts with large, old myocardial infarctions. Eur J Pharmacol 2025; 992:177355. [PMID: 39922424 DOI: 10.1016/j.ejphar.2025.177355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Large clinical trials recently showed that sodium-glucose cotransporter 2 (SGLT2) inhibitors improve the prognosis of heart failure patients with or without diabetes. Using a mouse model of large myocardial infarction, we investigated the therapeutic effects and underlying molecular mechanisms of the highly selective SGLT2 inhibitor empagliflozin in heart failure. Four weeks after myocardial infarction induced by left coronary artery ligation, the surviving mice were assigned to vehicle or empagliflozin groups and treated for 8 weeks. Empagliflozin did not alter body weight, blood pressure, glycohemoglobin, blood glucose or beta-hydroxybutyrate levels but significantly attenuated cardiac dysfunction and left ventricular dilatation (remodeling). Hearts from empagliflozin-treated mice showed less fibrosis, less cardiomyocyte hypertrophy, and lower myocardial ANP levels than those from vehicle-treated mice. Autophagy was augmented in cardiomyocytes from empagliflozin-treated mice, as indicated by increased myocardial microtubule-associated protein-1 LC3 (light chain 3)-II levels and LC-3-II/I ratio as well as increased levels of cathepsin D and ATP. Additionally, numerous autophagic vacuoles and lysosomes were observed, accompanied by increased AMP-activated protein kinase (AMPK) phosphorylation and suppression of mammalian target of rapamycin phosphorylation. Myocardial sodium-hydrogen antiporter (NHE)-1 expression was increased in infarcted mice, and that effect was unchanged by empagliflozin. In vitro, empagliflozin increased autophagic flux and induced an intracellular pH drop, AMPK activation and ATP production in cardiomyocytes. These effects were similar to those of the NHE-1 inhibitor cariporide, suggesting a possibility that they both act on the same pathway. Empagliflozin is a beneficial pharmacological tool that enhances autophagy to reverse remodeling in the postinfarction heart.
Collapse
Affiliation(s)
- Susumu Endo
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiromitsu Kanamori
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Akihiro Yoshida
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Genki Naruse
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shingo Komura
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shingo Minatoguchi
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takatomo Watanabe
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Yoshihisa Yamada
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Atsushi Mikami
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Japan
| | - Hiroyuki Okura
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
3
|
Ibañez AM, Godoy Coto J, Martínez VR, Del Milagro Yeves A, Dolcetti FJC, Cervellini S, Echavarría L, Velez-Rueda JO, Lofeudo JM, Portiansky EL, Bellini MJ, Aiello EA, Ennis IL, De Giusti VC. Cardioprotection and neurobehavioral impact of swimming training in ovariectomized rats. GeroScience 2025; 47:2317-2334. [PMID: 39527177 PMCID: PMC11979057 DOI: 10.1007/s11357-024-01422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiovascular (CV) disease is the major cause of mortality. Estrogens (E) exert multiple CV and neuroprotective effects. During menopause, CV and cognitive pathologies increase dramatically. At present, it is known that E exert many of their beneficial effects through the G protein-coupled estrogen receptor (GPER). Exercise reduces the risk of developing CV diseases. Sodium/proton exchanger (NHE-1) is overexpressed in ovariectomized (OVX) rats, probably due to the increase in reactive oxidative species (ROS). Insulin-like growth factor 1 (IGF-1), the main humoral mediator of exercise, inhibits the NHE-1. We aim to explore the subcellular mechanisms involved in the heart and brain impact of physiological exercise in OVX rats. We speculate that physical training, via IGF-1, prevents the increase in ROS, improving heart and brain physiological functions during menopause. Exercise diminished cardiac ROS production and increased catalase (CAT) activity in OVX rats. In concordance, IGF-1 treatment reduces brain ROS, surely contributing to the improvement in brain behavior. Moreover, the aerobic routine was able to prevent, and IGF-1 therapy to revert, NHE-1 hyperactivity in OVX rats. Finally, our results confirm the proposed signaling pathway as IGF-1/PI3K-AKT/NO. Surprisingly, GPER inhibitor (G36) was able to abolish the IGF-1 effect, suggesting that directly or indirectly GPER is part of the IGF-1 pathway. We propose that IGF-1 is the main responsible for the protective effect of aerobic training both in the heart and brain in OVX rats. Moreover, we showed that not only it is possible to prevent but also to revert the menopause-induced NHE-1 hyperactivity by exercise/IGF-1 cascade.
Collapse
Affiliation(s)
- Alejandro Martín Ibañez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Joshua Godoy Coto
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Valeria Romina Martínez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Alejandra Del Milagro Yeves
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Franco Juan Cruz Dolcetti
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Sofía Cervellini
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Lucía Echavarría
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Jorge Omar Velez-Rueda
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Juan Manuel Lofeudo
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Enrique Leo Portiansky
- Cátedra de Patología General- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata- CONICET, La Plata, Argentina
| | - María José Bellini
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Ernesto Alejandro Aiello
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Irene Lucía Ennis
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Verónica Celeste De Giusti
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
4
|
Yasutake R, Nagoshi T, Yoshii A, Takahashi H, Oi Y, Kimura H, Kashiwagi Y, Tanaka TD, Tanaka Y, Yoshimura M. Suppression of B-type natriuretic peptide gene expression in cardiomyocytes under anoxic conditions. Peptides 2024; 182:171316. [PMID: 39490746 DOI: 10.1016/j.peptides.2024.171316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Several cell biology studies have focused on the effects of hypoxic environments on cardiomyocytes. However, the effect of anoxic conditions on cardiomyocytes remains largely unexplored. In the present study, we investigated the direct effects of anoxia on B-type natriuretic peptide (BNP) gene expression in cardiomyocytes. Neonatal rat cardiomyocytes (NRCMs) were exposed to anoxia using an airtight chamber saturated with 95 % N2/5 % CO2. BNP mRNA levels in NRCM were substantially reduced after more than 8 h of anoxia exposure, whereas after reoxygenation, BNP gene expression levels recovered in a time-dependent manner and significantly increased after 24 h of reoxygenation. BNP mRNA levels suppressed under anoxic conditions were significantly increased by aldosterone-induced activation of sodium-proton exchanger 1 (NHE1), which was canceled by an NHE1 inhibitor, suggesting that anoxia reduces BNP gene expression, at least in part, in an NHE1-dependent manner. In summary, we found that BNP gene expression in cardiomyocytes decreases under anoxic conditions, in contrast to previous research findings that BNP expression increases under hypoxic conditions. These findings reveal a new insight that, within a single heart tissue in various cardiovascular diseases, such as myocardial infarction, the biological responses of cardiomyocytes are fundamentally different in regions of anoxia and hypoxia.
Collapse
Affiliation(s)
- Rei Yasutake
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Tomohisa Nagoshi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Akira Yoshii
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Hirotake Takahashi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yuhei Oi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Haruka Kimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yusuke Kashiwagi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Toshikazu D Tanaka
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yoshiro Tanaka
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
5
|
Kreitzer MA, Vredeveld M, Tinner K, Powell AM, Schantz AW, Leininger R, Merillat R, Gongwer MW, Tchernookova BK, Malchow RP. ATP-mediated increase in H + efflux from retinal Müller cells of the axolotl. J Neurophysiol 2024; 131:124-136. [PMID: 38116604 PMCID: PMC11286307 DOI: 10.1152/jn.00321.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Previous work has shown that activation of tiger salamander retinal radial glial cells by extracellular ATP induces a pronounced extracellular acidification, which has been proposed to be a potent modulator of neurotransmitter release. This study demonstrates that low micromolar concentrations of extracellular ATP similarly induce significant H+ effluxes from Müller cells isolated from the axolotl retina. Müller cells were enzymatically isolated from axolotl retina and H+ fluxes were measured from individual cells using self-referencing H+-selective microelectrodes. The increased H+ efflux from axolotl Müller cells induced by extracellular ATP required activation of metabotropic purinergic receptors and was dependent upon calcium released from internal stores. We further found that the ATP-evoked increase in H+ efflux from Müller cells of both tiger salamander and axolotl were sensitive to pharmacological agents known to interrupt calmodulin and protein kinase C (PKC) activity: chlorpromazine (CLP), trifluoperazine (TFP), and W-7 (all calmodulin inhibitors) and chelerythrine, a PKC inhibitor, all attenuated ATP-elicited increases in H+ efflux. ATP-initiated H+ fluxes of axolotl Müller cells were also significantly reduced by amiloride, suggesting a significant contribution by sodium-hydrogen exchangers (NHEs). In addition, α-cyano-4-hydroxycinnamate (4-cin), a monocarboxylate transport (MCT) inhibitor, also reduced the ATP-induced increase in H+ efflux in both axolotl and tiger salamander Müller cells, and when combined with amiloride, abolished ATP-evoked increase in H+ efflux. These data suggest that axolotl Müller cells are likely to be an excellent model system to understand the cell-signaling pathways regulating H+ release from glia and the role this may play in modulating neuronal signaling.NEW & NOTEWORTHY Glial cells are a key structural part of the tripartite synapse and have been suggested to regulate synaptic transmission, but the regulatory mechanisms remain unclear. We show that extracellular ATP, a potent glial cell activator, induces H+ efflux from axolotl retinal Müller (glial) cells through a calcium-dependent pathway that is likely to involve calmodulin, PKC, Na+/H+ exchange, and monocarboxylate transport, and suggest that such H+ release may play a key role in modulating neuronal transmission.
Collapse
Affiliation(s)
- Matthew A Kreitzer
- Department of Biology, Indiana Wesleyan University, Marion, Indiana, United States
| | - Mason Vredeveld
- Department of Biology, Indiana Wesleyan University, Marion, Indiana, United States
| | - Kaleb Tinner
- Department of Biology, Indiana Wesleyan University, Marion, Indiana, United States
| | - Alyssa M Powell
- Department of Biology, Indiana Wesleyan University, Marion, Indiana, United States
| | - Adam W Schantz
- Department of Biology, Indiana Wesleyan University, Marion, Indiana, United States
| | - Rachel Leininger
- Department of Biology, Indiana Wesleyan University, Marion, Indiana, United States
| | - Rajapone Merillat
- Department of Biology, Indiana Wesleyan University, Marion, Indiana, United States
| | - Michael W Gongwer
- Department of Biology, Indiana Wesleyan University, Marion, Indiana, United States
| | - Boriana K Tchernookova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Robert Paul Malchow
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Psychology, College of the Holy Cross, Worcester, Massachusetts, United States
| |
Collapse
|
6
|
Lyu YS, Oh S, Kim JH, Kim SY, Jeong MH. Comparison of SGLT2 inhibitors with DPP-4 inhibitors combined with metformin in patients with acute myocardial infarction and diabetes mellitus. Cardiovasc Diabetol 2023; 22:185. [PMID: 37481509 PMCID: PMC10362625 DOI: 10.1186/s12933-023-01914-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/03/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Although sodium-glucose cotransporter 2 inhibitors (SGLT2i) have demonstrated cardiovascular benefits in patients with type 2 diabetes mellitus, real-world evidence regarding their benefits to diabetic patients with acute myocardial infarction (AMI) is insufficient. This study evaluated cardiovascular outcomes by comparing SGLT2i with dipeptidyl peptidase-4 inhibitors (DPP-4i) in combination with metformin in diabetic patients with AMI. METHODS This study involved 779 diabetic participants with AMI from a Korean nationwide multicenter observational cohort, who were divided into two groups: (1) metformin plus SGLT2i group (SGLT2i group, n = 186) and (2) metformin plus DPP-4i (DPP-4i group, n = 593). The primary endpoint was one year of major adverse composite events (MACEs), a composite outcome of all-cause mortality, non-fatal myocardial infarction, any revascularization, cerebrovascular accident, and stent thrombosis. To balance the baseline differences, inverse probability of treatment weighting (IPTW) was performed. RESULTS After IPTW, the rate of MACEs in the SGLT2i group was not significantly lower than that in the DPP-4i group (hazard ratio [HR], 0.99; 95% confidence interval [Cl], 0.46 to 2.14, p = 0.983). In the unadjusted and adjusted analyses, all items for clinical outcomes were comparable between the two groups. In our exploratory analysis, the left ventricular ejection fraction showed a significant improvement in the SGLT2i group than in the DPP-4i group before achieving statistical balancing (6.10 ± 8.30 versus 2.95 ± 10.34, p = 0.007) and after IPTW adjustment (6.91 ± 8.91 versus 3.13 ± 10.41, p = 0.027). CONCLUSIONS Our findings demonstrated that SGLT2i did not influence the rate of MACEs compared with DPP-4i in combination with metformin in diabetic patients with AMI but did improve left ventricular ejection fraction. TRIAL REGISTRATION Not applicable (retrospectively registered).
Collapse
Affiliation(s)
- Young Sang Lyu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chosun University Hospital, Gwangju, Republic of Korea
| | - Seok Oh
- Departmnent of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Jin Hwa Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chosun University Hospital, Gwangju, Republic of Korea
| | - Sang Yong Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chosun University Hospital, Gwangju, Republic of Korea
| | - Myung Ho Jeong
- Departmnent of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea.
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
7
|
Capone F, Sotomayor-Flores C, Bode D, Wang R, Rodolico D, Strocchi S, Schiattarella GG. Cardiac metabolism in HFpEF: from fuel to signalling. Cardiovasc Res 2023; 118:3556-3575. [PMID: 36504368 DOI: 10.1093/cvr/cvac166] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) is marked by distinctive changes in myocardial uptake and utilization of energy substrates. Among the different types of HF, HF with preserved ejection fraction (HFpEF) is a highly prevalent, complex, and heterogeneous condition for which metabolic derangements seem to dictate disease progression. Changes in intermediate metabolism in cardiometabolic HFpEF-among the most prevalent forms of HFpEF-have a large impact both on energy provision and on a number of signalling pathways in the heart. This dual, metabolic vs. signalling, role is played in particular by long-chain fatty acids (LCFAs) and short-chain carbon sources [namely, short-chain fatty acids (SCFAs) and ketone bodies (KBs)]. LCFAs are key fuels for the heart, but their excess can be harmful, as in the case of toxic accumulation of lipid by-products (i.e. lipotoxicity). SCFAs and KBs have been proposed as a potential major, alternative source of energy in HFpEF. At the same time, both LCFAs and short-chain carbon sources are substrate for protein post-translational modifications and other forms of direct and indirect signalling of pivotal importance in HFpEF pathogenesis. An in-depth molecular understanding of the biological functions of energy substrates and their signalling role will be instrumental in the development of novel therapeutic approaches to HFpEF. Here, we summarize the current evidence on changes in energy metabolism in HFpEF, discuss the signalling role of intermediate metabolites through, at least in part, their fate as substrates for post-translational modifications, and highlight clinical and translational challenges around metabolic therapy in HFpEF.
Collapse
Affiliation(s)
- Federico Capone
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Division of Internal Medicine, Department of Medicine, University of Padua, Padua, Italy
| | - Cristian Sotomayor-Flores
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Rongling Wang
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefano Strocchi
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
8
|
Velliou M, Polyzogopoulou E, Ventoulis I, Parissis J. Clinical pharmacology of SGLT-2 inhibitors in heart failure. Expert Rev Clin Pharmacol 2023; 16:149-160. [PMID: 36701817 DOI: 10.1080/17512433.2023.2173574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Sodium-glucose cotransporter 2 (SGLT2) inhibitors constitute a class of oral antiglycemic agents that have emerged as a new therapeutic strategy for heart failure (HF) with reduced ejection fraction (HFrEF) and, potentially, for HF with preserved ejection fraction (HFpEF). AREAS COVERED Ongoing efforts to clarify the exact mechanisms of action of SGLT2 inhibitors (SGLT2i) reveal that glycosuria and osmotic diuresis, resulting from the blockade of renal receptors, is not the sole pathophysiological mechanism. Nevertheless, the underlying mechanisms, accounting for their cardiovascular beneficial effects which have been clearly demonstrated in clinical trials, remain unclear. The aim of this review is to summarize the primary outcomes of large-scale studies regarding the use of SGLT2i in HF and provide an overview of the potential pathways involved in the SGLT2i-mediated cardioprotection. EXPERT OPINION SGLT2i exhibit favorable pleiotropic effects, which extend beyond their primary indication as pharmaceutical agents intended for glycemic control. Given their unique pathophysiological profile, these agents have revolutionized the management of HF, while in the near future, it is possible that evolving research in the field may unfold further perspectives on their potential use in the treatment of other chronic conditions.
Collapse
Affiliation(s)
- Maria Velliou
- Emergency Medicine Department, Attikon University Hospital, Athens, Greece
| | | | - Ioannis Ventoulis
- Department of Occupational Therapy, University of Western Macedonia, Ptolemaida, Greece
| | - John Parissis
- Emergency Medicine Department, Attikon University Hospital, Athens, Greece.,Heart Failure Clinic, Attikon University Hospital, Athens, Greece
| |
Collapse
|
9
|
Polyunsaturated ω3 fatty acids prevent the cardiac hypertrophy in hypertensive rats. Biochim Biophys Acta Gen Subj 2023; 1867:130278. [PMID: 36410610 DOI: 10.1016/j.bbagen.2022.130278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
It has been demonstrated that supplementation with the two main omega 3 polyunsaturated fatty acids (ω3 FAs), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), leads to modifications in the cardiac physiology. ω3 FAs can affect the membrane's lipid composition, as well as proteins' location and/or function. The Na+/H+ exchanger (NHE1) is an integral membrane protein involved in the maintenance of intracellular pH and its hyperactivity has been associated with the development of various cardiovascular diseases such as cardiac hypertrophy. Our aim was to determine the effect of ω3 FAs on systolic blood pressure (SBP), lipid profiles, NHE1 activity, and cardiac function in spontaneously hypertensive rats (SHR) using Wistar rats (W) as normotensive control. After weaning, the rats received orally ω3 FAs (200 mg/kg body mass/day/ 4 months). We measured SBP, lipid profiles, and different echocardiography parameters, which were used to calculate cardiac hypertrophy index, systolic function, and ventricular geometry. The rats were sacrificed, and ventricular cardiomyocytes were obtained to measure NHE1 activity. While the treatment with ω3 FAs did not affect the SBP, lipid analysis of plasma revealed a significant decrease in omega-6/omega-3 ratio, correlated with a significant reduction in left ventricular mass index in SHR. The NHE1 activity was significantly higher in SHR compared with W. While in W the NHE1 activity was similar in both groups, a significant decrease in NHE1 activity was detected in SHRs supplemented with ω3 FAs, reaching values comparable with W. Altogether, these findings revealed that diet supplementation with ω3 FAs since early age prevents the development of cardiac hypertrophy in SHR, perhaps by decreasing NHE1 activity, without altering hemodynamic overload.
Collapse
|
10
|
Gao Z, Bao J, Hu Y, Tu J, Ye L, Wang L. Sodium-glucose Cotransporter 2 Inhibitors and Pathological Myocardial Hypertrophy. Curr Drug Targets 2023; 24:1009-1022. [PMID: 37691190 PMCID: PMC10879742 DOI: 10.2174/1389450124666230907115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new type of oral hypoglycemic drugs that exert a hypoglycemic effect by blocking the reabsorption of glucose in the proximal renal tubules, thus promoting the excretion of glucose from urine. Their hypoglycemic effect is not dependent on insulin. Increasing data shows that SGLT2 inhibitors improve cardiovascular outcomes in patients with type 2 diabetes. Previous studies have demonstrated that SGLT2 inhibitors can reduce pathological myocardial hypertrophy with or without diabetes, but the exact mechanism remains to be elucidated. To clarify the relationship between SGLT2 inhibitors and pathological myocardial hypertrophy, with a view to providing a reference for the future treatment thereof, this study reviewed the possible mechanisms of SGLT2 inhibitors in attenuating pathological myocardial hypertrophy. We focused specifically on the mechanisms in terms of inflammation, oxidative stress, myocardial fibrosis, mitochondrial function, epicardial lipids, endothelial function, insulin resistance, cardiac hydrogen and sodium exchange, and autophagy.
Collapse
Affiliation(s)
- Zhicheng Gao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaqi Bao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yilan Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junjie Tu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Xia H, Zahra A, Jia M, Wang Q, Wang Y, Campbell SL, Wu J. Na +/H + Exchanger 1, a Potential Therapeutic Drug Target for Cardiac Hypertrophy and Heart Failure. Pharmaceuticals (Basel) 2022; 15:ph15070875. [PMID: 35890170 PMCID: PMC9318128 DOI: 10.3390/ph15070875] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Cardiac hypertrophy is defined as increased heart mass in response to increased hemodynamic requirements. Long-term cardiac hypertrophy, if not counteracted, will ultimately lead to heart failure. The incidence of heart failure is related to myocardial infarction, which could be salvaged by reperfusion and ultimately invites unfavorable myocardial ischemia-reperfusion injury. The Na+/H+ exchangers (NHEs) are membrane transporters that exchange one intracellular proton for one extracellular Na+. The first discovered NHE isoform, NHE1, is expressed almost ubiquitously in all tissues, especially in the myocardium. During myocardial ischemia-reperfusion, NHE1 catalyzes increased uptake of intracellular Na+, which in turn leads to Ca2+ overload and subsequently myocardial injury. Numerous preclinical research has shown that NHE1 is involved in cardiac hypertrophy and heart failure, but the exact molecular mechanisms remain elusive. The objective of this review is to demonstrate the potential role of NHE1 in cardiac hypertrophy and heart failure and investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Huiting Xia
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (H.X.); (A.Z.)
| | - Aqeela Zahra
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (H.X.); (A.Z.)
| | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
| | - Yunfu Wang
- Taihe Hospital, Hubei University of Medicine, Shiyan 440070, China;
| | - Susan L. Campbell
- Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (H.X.); (A.Z.)
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
- Correspondence:
| |
Collapse
|
12
|
Regulation of proton partitioning in kinase-activating acute myeloid leukemia and its therapeutic implication. Leukemia 2022; 36:1990-2001. [PMID: 35624145 PMCID: PMC9343251 DOI: 10.1038/s41375-022-01606-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022]
Abstract
Gain-of-function kinase mutations are common in AML and usually portend an inferior prognosis. We reported a novel mechanism whereby kinase mutants induced intracellular alkalization characteristic in oncogenesis. Thirteen kinases were found to activate sodium/hydrogen exchanger (NHE1) in normal hematopoietic progenitors, of which FLT3-ITD, KRASG12D, and BTK phosphorylated NHE1 maintained alkaline intracellular pH (pHi) and supported survival of AML cells. Primary AML samples with kinase mutations also showed increased NHE1 phosphorylation and evidence of NHE1 addiction. Amiloride enhanced anti-leukemic effects and intracellular distribution of kinase inhibitors and chemotherapy. Co-inhibition of NHE1 and kinase synergistically acidified pHi in leukemia and inhibited its growth in vivo. Plasma from patients taking amiloride for diuresis reduced pHi of leukemia and enhanced cytotoxic effects of kinase inhibitors and chemotherapy in vitro. NHE1-mediated intracellular alkalization played a key pathogenetic role in transmitting the proliferative signal from mutated-kinase and could be exploited for therapeutic intervention in AML.
Collapse
|
13
|
Dong Y, Li H, Ilie A, Gao Y, Boucher A, Zhang XC, Orlowski J, Zhao Y. Structural basis of autoinhibition of the human NHE3-CHP1 complex. SCIENCE ADVANCES 2022; 8:eabn3925. [PMID: 35613257 PMCID: PMC9132474 DOI: 10.1126/sciadv.abn3925] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Sodium-proton exchanger 3 (NHE3/SLC9A3) located in the apical membrane of renal and gastrointestinal epithelia mediates salt and fluid absorption and regulates pH homeostasis. As an auxiliary regulatory factor of NHE proteins, calcineurin B homologous protein 1 (CHP1) facilitates NHE3 maturation, plasmalemmal expression, and pH sensitivity. Dysfunctions of NHE3 are associated with renal and digestive system disorders. Here, we report the cryo-electron microscopy structure of the human NHE3-CHP1 complex in its inward-facing conformation. We found that a cytosolic helix-loop-helix motif in NHE3 blocks the intracellular cavity formed between the core and dimerization domains, functioning as an autoinhibitory element and hindering substrate transport. Furthermore, two phosphatidylinositol molecules are found to bind to the peripheric juxtamembrane sides of the complex, function as anchors to stabilize the complex, and may thus enhance its transport activity.
Collapse
Affiliation(s)
- Yanli Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alina Ilie
- Department of Physiology, McGill University, Montreal, Canada
| | - Yiwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Annie Boucher
- Department of Physiology, McGill University, Montreal, Canada
| | - Xuejun Cai Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Canada
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Osaka N, Mori Y, Terasaki M, Hiromura M, Saito T, Yashima H, Shiraga Y, Kawakami R, Ohara M, Fukui T, Yamagishi SI. Luseogliflozin inhibits high glucose-induced TGF- β2 expression in mouse cardiomyocytes by suppressing NHE-1 activity. J Int Med Res 2022; 50:3000605221097490. [PMID: 35510669 PMCID: PMC9082751 DOI: 10.1177/03000605221097490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective Sodium-glucose cotransporter-2 (SGLT2) inhibitors exhibit cardioprotective properties in patients with diabetes. However, SGLT2 is not expressed in the heart, and the underlying molecular mechanisms are not fully understood. We investigated whether the SGLT2 inhibitor luseogliflozin exerts beneficial effects on high glucose-exposed cardiomyocytes via the suppression of sodium-hydrogen exchanger-1 (NHE-1) activity. Methods Mouse cardiomyocytes were incubated under normal or high glucose conditions with vehicle, luseogliflozin, or the NHE-1 inhibitor cariporide. NHE-1 activity and gene expression were evaluated by the SNARF assay and real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis, respectively. Six-week-old male db/db mice were treated with vehicle or luseogliflozin for 6 weeks, and the hearts were collected for histological, RT-PCR, and western blot analyses. Results High glucose increased NHE-1 activity and transforming growth factor (Tgf)-β2 mRNA levels in cardiomyocytes, both of which were inhibited by luseogliflozin or cariporide, whereas their combination showed no additive suppression of Tgf-β2 mRNA levels. Luseogliflozin attenuated cardiac hypertrophy and fibrosis in db/db mice in association with decreased mRNA and protein levels of TGF-β2. Conclusions Luseogliflozin may suppress cardiac hypertrophy in diabetes by reducing Tgf-β2 expression in cardiomyocytes via the suppression of NHE-1 activity.
Collapse
Affiliation(s)
- Naoya Osaka
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Yusaku Mori
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Anti-glycation Research Section, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Michishige Terasaki
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Munenori Hiromura
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Tomomi Saito
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Hironori Yashima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Yoshie Shiraga
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Raichi Kawakami
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Makoto Ohara
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Tomoyasu Fukui
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Sho-Ichi Yamagishi
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| |
Collapse
|
15
|
Nikolic M, Zivkovic V, Jovic JJ, Sretenovic J, Davidovic G, Simovic S, Djokovic D, Muric N, Bolevich S, Jakovljevic V. SGLT2 inhibitors: a focus on cardiac benefits and potential mechanisms. Heart Fail Rev 2022; 27:935-949. [PMID: 33534040 DOI: 10.1007/s10741-021-10079-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 12/16/2022]
Abstract
This paper highlights the cardioprotective potential of sodium-glucose cotransporter 2 inhibitors (SLGT2i), as well as several most discussed mechanisms responsible for their cardioprotection. Cardiovascular diseases are considered a primary cause of death in nearly 80% of type 2 diabetes mellitus (T2DM) patients, with a 2-4-fold greater incidence of heart failure (HF) among diabetics. As novel hypoglycemics, SGLT2i showed exceptional cardiovascular benefits, reflected through robust reductions of cardiovascular mortality and hospitalization for HF in T2DM patients. Recently, those effects have been reported even in patients with HF and reduced ejection fraction irrespectively of diabetic status, suggesting that cardioprotective effects of SGLT2i are driven independently of their hypoglycemic actions. SGLT2i exerted hemodynamic and metabolic effects, partially driven by natriuresis and osmotic diuresis. However, those systemic effects are modest, and therefore cannot be completely related to the cardiac benefits of these agents in T2DM patients. Hence, increased circulating ketone levels during SGLT2i administration have brought out another hypothesis of a cardiac metabolic switch. Moreover, SGLT2i influence ion homeostasis and exert anti-inflammatory and antifibrotic effects. Their enviable influence on oxidative stress markers, as well as anti- and pro-apoptotic factors, have also been reported. However, since the main mechanistical contributor of their cardioprotection has not been elucidated yet, a joint action of systemic and molecular mechanisms has been suggested. In the light of ongoing trials evaluating the effects of SGLT2i in patients with HF and preserved ejection fraction, a new chapter of beneficial SGLT2i mechanisms is expected, which might resolve their main underlying action.
Collapse
Affiliation(s)
- Maja Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana Joksimovic Jovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jasmina Sretenovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Goran Davidovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Clinic of Cardiology, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Stefan Simovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Clinic of Cardiology, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Danijela Djokovic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Clinic of Psychiatry, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Nemanja Muric
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Clinic of Psychiatry, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia.
| |
Collapse
|
16
|
Ma J, Gao X, Li Y, DeCoursey TE, Shull GE, Wang HS. The HVCN1 voltage-gated proton channel contributes to pH regulation in canine ventricular myocytes. J Physiol 2022; 600:2089-2103. [PMID: 35244217 PMCID: PMC9058222 DOI: 10.1113/jp282126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
KEY POINTS Intracellular pH (pHi ) regulation is crucial for cardiac function, as acidification depresses contractility and causes arrhythmias. H+ ions are generated in cardiomyocytes from metabolic processes and particularly from CO2 hydration, which has been shown to facilitate CO2 -venting from mitochondria. Currently, the NHE1 Na+ /H+ exchanger is viewed as the dominant H+ -extrusion mechanism in cardiac muscle. We show that the HVCN1 voltage-gated proton channel is present and functional in canine ventricular myocytes, and that HVCN1 and NHE1 both contribute to pHi regulation. HVCN1 provides an energetically-efficient mechanism of H+ -extrusion that would not cause Na+ -loading, which can cause pathology, and that could contribute to transport-mediated CO2 disposal. These results provide a major advance in our understanding of pHi regulation in cardiac muscle. ABSTRACT Regulation of intracellular pH (pHi ) in cardiomyocytes is crucial for cardiac function; however, currently known mechanisms for direct or indirect extrusion of acid from cardiomyocytes seem insufficient for energetically-efficient extrusion of the massive H+ loads generated under in vivo conditions. In cardiomyocytes, voltage-sensitive H+ channel activity mediated by the HVCN1 proton channel would be a highly efficient means of disposing of H+ , while avoiding Na+ -loading, as occurs during direct acid extrusion via Na+ /H+ exchange or indirect acid extrusion via Na+ -HCO3 - cotransport. PCR and immunoblotting demonstrated expression of HVCN1 mRNA and protein in canine heart. Patch clamp analysis of canine ventricular myocytes revealed a voltage-gated H+ current that was highly H+ -selective. The current was blocked by external Zn2+ and the HVCN1 blocker 5-chloro-2-guanidinobenzimidazole (ClGBI). Both the gating and Zn2+ blockade of the current were strongly influenced by the pH gradient across the membrane. All characteristics of the observed current were consistent with the known hallmarks of HVCN1-mediated H+ current. Inhibition of HVCN1 and the NHE1 Na+ /H+ exchanger, singly and in combination, showed that either mechanism is largely sufficient to maintain pHi in beating cardiomyocytes, but that inhibition of both activities causes rapid acidification. These results show that HVCN1 is expressed in canine ventricular myocytes and provides a major H+ -extrusion activity, with a capacity similar to that of NHE1. In the beating heart in vivo, this activity would allow Na+ -independent extrusion of H+ during each action potential and, when functionally coupled with anion transport mechanisms, could facilitate transport-mediated CO2 disposal. Abstract figure legend The HVCN1 proton channel is expressed in canine ventricular myocytes and contributes to H+ extrusion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Xiaoqian Gao
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Yutian Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, Illinois, 60612, USA
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| |
Collapse
|
17
|
Wichaiyo S, Saengklub N. Alterations of sodium-hydrogen exchanger 1 function in response to SGLT2 inhibitors: what is the evidence? Heart Fail Rev 2022; 27:1973-1990. [PMID: 35179683 DOI: 10.1007/s10741-022-10220-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
This review summarizes and describes the current evidence addressing how sodium-glucose cotransporter 2 (SGLT2) inhibitors alter the function of sodium-hydrogen exchanger 1 (NHE-1), in association with their protective effects against adverse cardiovascular events. In the heart, SGLT2 inhibitors modulate the function of NHE-1 (either by direct inhibition or indirect attenuation of protein expression), which promotes cardiac contraction and an enhanced energy supply, in association with improved mitochondrial function, reduced inflammation/oxidative/endoplasmic reticulum stress, and attenuated fibrosis and apoptotic/autophagic cell death. The vasodilating effect of SGLT2 inhibitors has also been proposed due to NHE-1 inhibition. Moreover, platelet-expressed NHE-1 might serve as a target for SGLT2 inhibitors, since these drugs and selective NHE-1 inhibitors produce comparable activity against adenosine diphosphate-stimulated platelet activation. Overall, it is promising that the modulation of the functions of NHE-1 on the heart, blood vessels, and platelets may act as a contributing pathway for the cardiovascular benefits of SGLT2 inhibitors in diabetes and heart failure.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand. .,Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| | - Nakkawee Saengklub
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
18
|
Hypotension in hereditary cardiomyopathy. Pflugers Arch 2022; 474:517-527. [PMID: 35141778 DOI: 10.1007/s00424-022-02669-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 12/25/2022]
Abstract
It is well accepted that hypertension may lead to the development of heart failure (HF). However, little is known about the development of hypotension that may contribute to the onset of hereditary cardiomyopathy (HCM), thus promoting heart failure and early death. The purpose of this study is to verify whether a decrease in blood pressure takes place during different phases of HCM (asymptomatic, necrosis, hypertrophy, and heart failure). Using the well-known animal model, the UM-X7.1 hamster strain of HCM (HCMH), our results showed the absence of a change in mean arterial pressure (MAP) during the asymptomatic phase preceding the development of necrosis in HCMHs when compared to age-matched normal hamster (NH). However, there was a progressive decrease in MAP that reached its lowest level during the heart failure phase. The MAP during the development of the necrosis phase of HCM was accompanied by a significant increase in the level of the sodium-hydrogen exchanger, NHE1. Treatments with the potent NHE1 inhibitor, EMD 87580 (rimeporide), did not affect MAP of NH. However, treatments with EMD 87580 during the three phases of the development of HCM significantly reversed the hypotension associated with HCM.Our results showed that the development of HCM is associated with hypotension. These results suggest that a decrease in blood pressure could be a biomarker signal for HCM leading to HF and early death. Since the blockade of NHE1 significantly but partially prevented the reduction in MAP, this suggests that other mechanisms can contribute to the development of hypotension in HCM.
Collapse
|
19
|
Diabetes, Heart Failure and Beyond: Elucidating the Cardioprotective Mechanisms of Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors. Am J Cardiovasc Drugs 2022; 22:35-46. [PMID: 34189716 DOI: 10.1007/s40256-021-00486-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Approximately 5 million individuals in the US are living with congestive heart failure (CHF), with 650,000 new cases being diagnosed every year. CHF has a multifactorial etiology, ranging from coronary artery disease, hypertension, valvular abnormalities and diabetes mellitus. Currently, guidelines by the American College of Cardiology advocate the use of angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor blockers, β-blockers, diuretics, aldosterone antagonists, and inotropes for the medical management of heart failure. The sodium glucose cotransporter 2 (SGLT2) inhibitors are a class of drug that have been widely used in the management of type 2 diabetes mellitus that work by inhibiting the reabsorption of glucose in the proximal convoluted tubule. Since the EMPA-REG OUTCOME trial, several studies have demonstrated the benefits of SGLT2 inhibitors in reducing cardiovascular risk related to heart failure. While the cardiovascular benefits could be explained by their ability to reduce weight, improve glycemic index and lower blood pressure, several recent trials have suggested that SGLT2 inhibitors exhibit pleiotropic effects that underlie their cardioprotective properties. These findings have led to an expansion in preclinical and clinical research aiming to understand the mechanisms by which SGLT2 inhibitors improve heart failure outcomes.
Collapse
|
20
|
Al-Shamasi AA, Elkaffash R, Mohamed M, Rayan M, Al-Khater D, Gadeau AP, Ahmed R, Hasan A, Eldassouki H, Yalcin HC, Abdul-Ghani M, Mraiche F. Crosstalk between Sodium-Glucose Cotransporter Inhibitors and Sodium-Hydrogen Exchanger 1 and 3 in Cardiometabolic Diseases. Int J Mol Sci 2021; 22:12677. [PMID: 34884494 PMCID: PMC8657861 DOI: 10.3390/ijms222312677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
Abnormality in glucose homeostasis due to hyperglycemia or insulin resistance is the hallmark of type 2 diabetes mellitus (T2DM). These metabolic abnormalities in T2DM lead to cellular dysfunction and the development of diabetic cardiomyopathy leading to heart failure. New antihyperglycemic agents including glucagon-like peptide-1 receptor agonists and the sodium-glucose cotransporter-2 inhibitors (SGLT2i) have been shown to attenuate endothelial dysfunction at the cellular level. In addition, they improved cardiovascular safety by exhibiting cardioprotective effects. The mechanism by which these drugs exert their cardioprotective effects is unknown, although recent studies have shown that cardiovascular homeostasis occurs through the interplay of the sodium-hydrogen exchangers (NHE), specifically NHE1 and NHE3, with SGLT2i. Another theoretical explanation for the cardioprotective effects of SGLT2i is through natriuresis by the kidney. This theory highlights the possible involvement of renal NHE transporters in the management of heart failure. This review outlines the possible mechanisms responsible for causing diabetic cardiomyopathy and discusses the interaction between NHE and SGLT2i in cardiovascular diseases.
Collapse
Affiliation(s)
- Al-Anood Al-Shamasi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Rozina Elkaffash
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Meram Mohamed
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Menatallah Rayan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Dhabya Al-Khater
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Alain-Pierre Gadeau
- INSERM, Biology of Cardiovascular Disease, University of Bordeaux, U1034 Pessac, France;
| | - Rashid Ahmed
- Department of Mechanical and Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (R.A.); (A.H.)
- Biomedical Research Centre (BRC), Qatar University, Doha P.O. Box 2713, Qatar;
| | - Anwarul Hasan
- Department of Mechanical and Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (R.A.); (A.H.)
- Biomedical Research Centre (BRC), Qatar University, Doha P.O. Box 2713, Qatar;
| | - Hussein Eldassouki
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B5, Canada;
| | | | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio, TX 7703, USA;
| | - Fatima Mraiche
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
21
|
Chaklader M, Rothermel BA. Calcineurin in the heart: New horizons for an old friend. Cell Signal 2021; 87:110134. [PMID: 34454008 PMCID: PMC8908812 DOI: 10.1016/j.cellsig.2021.110134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023]
Abstract
Calcineurin, also known as PP2B or PPP3, is a member of the PPP family of protein phosphatases that also includes PP1 and PP2A. Together these three phosphatases carryout the majority of dephosphorylation events in the heart. Calcineurin is distinct in that it is activated by the binding of calcium/calmodulin (Ca2+/CaM) and therefore acts as a node for integrating Ca2+ signals with changes in phosphorylation, two fundamental intracellular signaling cascades. In the heart, calcineurin is primarily thought of in the context of pathological cardiac remodeling, acting through the Nuclear Factor of Activated T-cell (NFAT) family of transcription factors. However, calcineurin activity is also essential for normal heart development and homeostasis in the adult heart. Furthermore, it is clear that NFAT-driven changes in transcription are not the only relevant processes initiated by calcineurin in the setting of pathological remodeling. There is a growing appreciation for the diversity of calcineurin substrates that can impact cardiac function as well as the diversity of mechanisms for targeting calcineurin to specific sub-cellular domains in cardiomyocytes and other cardiac cell types. Here, we will review the basics of calcineurin structure, regulation, and function in the context of cardiac biology. Particular attention will be given to: the development of improved tools to identify and validate new calcineurin substrates; recent studies identifying new calcineurin isoforms with unique properties and targeting mechanisms; and the role of calcineurin in cardiac development and regeneration.
Collapse
Affiliation(s)
- Malay Chaklader
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
22
|
de las Heras N, Galiana A, Ballesteros S, Olivares-Álvaro E, Fuller PJ, Lahera V, Martín-Fernández B. Proanthocyanidins Maintain Cardiac Ionic Homeostasis in Aldosterone-Induced Hypertension and Heart Failure. Int J Mol Sci 2021; 22:ijms22179602. [PMID: 34502509 PMCID: PMC8431754 DOI: 10.3390/ijms22179602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Excess aldosterone promotes pathological remodeling of the heart and imbalance in cardiac ion homeostasis of sodium, potassium and calcium. Novel treatment with proanthocyanidins in aldosterone-treated rats has resulted in downregulation of cardiac SGK1, the main genomic aldosterone-induced intracellular mediator of ion handling. It therefore follows that proanthocyanidins could be modulating cardiac ion homeostasis in aldosterone-treated rats. Male Wistar rats received aldosterone (1 mg kg−1 day−1) +1% NaCl for three weeks. Half of the animals in each group were simultaneously treated with the proanthocyanidins-rich extract (80% w/w) (PRO80, 5 mg kg−1 day−1). PRO80 prevented cardiac hypertrophy and decreased calcium content. Expression of ion channels (ROMK, NHE1, NKA and NCX1) and calcium transient mediators (CAV1.2, pCaMKII and oxCaMKII) were reduced by PRO80 treatment in aldosterone-treated rats. To conclude, our data indicate that PRO80 may offer an alternative treatment to conventional MR-blockade in the prevention of aldosterone-induced cardiac pathology.
Collapse
Affiliation(s)
- Natalia de las Heras
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
| | - Adrián Galiana
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
| | - Sandra Ballesteros
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
| | - Elena Olivares-Álvaro
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
| | - Peter J. Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
| | - Vicente Lahera
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
| | - Beatriz Martín-Fernández
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
- Correspondence: ; Tel.: +34-987-291-000 (ext. 3650)
| |
Collapse
|
23
|
Liu J, Tian J, Sodhi K, Shapiro JI. The Na/K-ATPase Signaling and SGLT2 Inhibitor-Mediated Cardiorenal Protection: A Crossed Road? J Membr Biol 2021; 254:513-529. [PMID: 34297135 PMCID: PMC8595165 DOI: 10.1007/s00232-021-00192-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
In different large-scale clinic outcome trials, sodium (Na+)/glucose co-transporter 2 (SGLT2) inhibitors showed profound cardiac- and renal-protective effects, making them revolutionary treatments for heart failure and kidney disease. Different theories are proposed according to the emerging protective effects other than the original purpose of glucose-lowering in diabetic patients. As the ATP-dependent primary ion transporter providing the Na+ gradient to drive other Na+-dependent transporters, the possible role of the sodium–potassium adenosine triphosphatase (Na/K-ATPase) as the primary ion transporter and its signaling function is not explored.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Biomedical Sciences, JCE School of Medicine, Marshall University, Huntington, WV, USA.
| | - Jiang Tian
- Department of Biomedical Sciences, JCE School of Medicine, Marshall University, Huntington, WV, USA
| | - Komal Sodhi
- Department of Surgery, JCE School of Medicine, Marshall University, Huntington, WV, USA
| | - Joseph I Shapiro
- Departments of Medicine, JCE School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
24
|
Philippaert K, Kalyaanamoorthy S, Fatehi M, Long W, Soni S, Byrne NJ, Barr A, Singh J, Wong J, Palechuk T, Schneider C, Darwesh AM, Maayah ZH, Seubert JM, Barakat K, Dyck JR, Light PE. Cardiac Late Sodium Channel Current Is a Molecular Target for the Sodium/Glucose Cotransporter 2 Inhibitor Empagliflozin. Circulation 2021; 143:2188-2204. [PMID: 33832341 PMCID: PMC8154177 DOI: 10.1161/circulationaha.121.053350] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND SGLT2 (sodium/glucose cotransporter 2) inhibitors exert robust cardioprotective effects against heart failure in patients with diabetes, and there is intense interest to identify the underlying molecular mechanisms that afford this protection. Because the induction of the late component of the cardiac sodium channel current (late-INa) is involved in the etiology of heart failure, we investigated whether these drugs inhibit late-INa. METHODS Electrophysiological, in silico molecular docking, molecular, calcium imaging, and whole heart perfusion techniques were used to address this question. RESULTS The SGLT2 inhibitor empagliflozin reduced late-INa in cardiomyocytes from mice with heart failure and in cardiac Nav1.5 sodium channels containing the long QT syndrome 3 mutations R1623Q or ΔKPQ. Empagliflozin, dapagliflozin, and canagliflozin are all potent and selective inhibitors of H2O2-induced late-INa (half maximal inhibitory concentration = 0.79, 0.58, and 1.26 µM, respectively) with little effect on peak sodium current. In mouse cardiomyocytes, empagliflozin reduced the incidence of spontaneous calcium transients induced by the late-INa activator veratridine in a similar manner to tetrodotoxin, ranolazine, and lidocaine. The putative binding sites for empagliflozin within Nav1.5 were investigated by simulations of empagliflozin docking to a three-dimensional homology model of human Nav1.5 and point mutagenic approaches. Our results indicate that empagliflozin binds to Nav1.5 in the same region as local anesthetics and ranolazine. In an acute model of myocardial injury, perfusion of isolated mouse hearts with empagliflozin or tetrodotoxin prevented activation of the cardiac NLRP3 (nuclear-binding domain-like receptor 3) inflammasome and improved functional recovery after ischemia. CONCLUSIONS Our results provide evidence that late-INa may be an important molecular target in the heart for the SGLT2 inhibitors, contributing to their unexpected cardioprotective effects.
Collapse
Affiliation(s)
- Koenraad Philippaert
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| | - Subha Kalyaanamoorthy
- Faculty of Medicine and Dentistry (S.K., A.M.D., J.M.S., K.B.), University of Alberta, Edmonton, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences (S.K., A.M.D., J.M.S., K.B.), University of Alberta, Edmonton, Canada
| | - Mohammad Fatehi
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| | - Wentong Long
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| | - Shubham Soni
- Department of Pediatrics (S.S., N.J.B., Z.H.M., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - Nikole J. Byrne
- Department of Pediatrics (S.S., N.J.B., Z.H.M., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - Amy Barr
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| | - Jyoti Singh
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| | - Jordan Wong
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| | - Taylor Palechuk
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| | - Chloe Schneider
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| | - Ahmed M. Darwesh
- Faculty of Medicine and Dentistry (S.K., A.M.D., J.M.S., K.B.), University of Alberta, Edmonton, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences (S.K., A.M.D., J.M.S., K.B.), University of Alberta, Edmonton, Canada
| | - Zaid H. Maayah
- Department of Pediatrics (S.S., N.J.B., Z.H.M., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - John M. Seubert
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
- Faculty of Medicine and Dentistry (S.K., A.M.D., J.M.S., K.B.), University of Alberta, Edmonton, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences (S.K., A.M.D., J.M.S., K.B.), University of Alberta, Edmonton, Canada
| | - Khaled Barakat
- Faculty of Medicine and Dentistry (S.K., A.M.D., J.M.S., K.B.), University of Alberta, Edmonton, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences (S.K., A.M.D., J.M.S., K.B.), University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology (K.B.), University of Alberta, Edmonton, Canada
| | - Jason R.B. Dyck
- Department of Pediatrics (S.S., N.J.B., Z.H.M., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - Peter E. Light
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| |
Collapse
|
25
|
Berezin AE, Berezin AA. Shift of conventional paradigm of heart failure treatment: from angiotensin receptor neprilysin inhibitor to sodium-glucose co-transporter 2 inhibitors? Future Cardiol 2021; 17:497-506. [PMID: 33615880 DOI: 10.2217/fca-2020-0178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Current clinical guidelines for heart failure (HF) contain a brand new therapeutic strategy for HF with reduced ejection fraction (HFrEF), which is based on neurohumoral modulation through the use of angiotensin receptor neprilysin inhibitors. There is a large body of evidence for the fact that sodium-glucose co-transporter 2 inhibitors may significantly improve all-cause mortality, cardiovascular mortality and hospitalization for HF in patients with HFrEF who received renin-angiotensin system blockers including angiotensin receptor neprilysin inhibitors, β-blockers and mineralocorticoid receptor antagonists. The review discusses that sodium-glucose co-transporter 2 inhibitors have a wide spectrum of favorable molecular effects and contribute to tissue protection, improving survival in HFrEF patients.
Collapse
Affiliation(s)
- Alexander E Berezin
- Internal Medicine Department, State Medical University of Zaporozhye, 26, Mayakovsky av., Zaporozhye, UA-69035, Ukraine
| | - Alexander A Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye, 69096, Ukraine
| |
Collapse
|
26
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
27
|
Zavala MR, Díaz RG, Villa-Abrille MC, Pérez NG. Thioredoxin 1 (TRX1) Overexpression Cancels the Slow Force Response (SFR) Development. Front Cardiovasc Med 2021; 8:622583. [PMID: 33718450 PMCID: PMC7952880 DOI: 10.3389/fcvm.2021.622583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/18/2021] [Indexed: 11/28/2022] Open
Abstract
The stretch of cardiac muscle increases developed force in two phases. The first phase occurs immediately after stretch and is the expression of the Frank–Starling mechanism, while the second one or slow force response (SFR) occurs gradually and is due to an increase in the calcium transient amplitude. An important step in the chain of events leading to the SFR generation is the increased production of reactive oxygen species (ROS) leading to redox sensitive ERK1/2, p90RSK, and NHE1 phosphorylation/activation. Conversely, suppression of ROS production blunts the SFR. The purpose of this study was to explore whether overexpression of the ubiquitously expressed antioxidant molecule thioredoxin-1 (TRX1) affects the SFR development and NHE1 phosphorylation. We did not detect any change in basal phopho-ERK1/2, phopho-p90RSK, and NHE1 expression in mice with TRX1 overexpression compared to wild type (WT). Isolated papillary muscles from WT or TRX1-overexpressing mice were stretched from 92 to 98% of its maximal length. A prominent SFR was observed in WT mice that was completely canceled in TRX1 animals. Interestingly, myocardial stretch induced a significant increase in NHE1 phosphorylation in WT mice that was not detected in TRX1-overexpressing mice. These novel results suggest that magnification of cardiac antioxidant defense power by overexpression of TRX1 precludes NHE1 phosphorylation/activation after stretch, consequently blunting the SFR development.
Collapse
Affiliation(s)
- Maite R Zavala
- Fellow From Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Romina G Díaz
- Established Investigators of CONICET, Buenos Aires, Argentina
| | - María C Villa-Abrille
- Established Investigators of CONICET, Buenos Aires, Argentina.,Full Professors of Physiology, Facultad de Ciencias Médicas de La Plata, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Néstor G Pérez
- Established Investigators of CONICET, Buenos Aires, Argentina.,Full Professors of Physiology, Facultad de Ciencias Médicas de La Plata, Universidad Nacional de La Plata, Buenos Aires, Argentina
| |
Collapse
|
28
|
Ennis IL, Pérez NG. Cardiac Mineralocorticoid Receptor and the Na +/H + Exchanger: Spilling the Beans. Front Cardiovasc Med 2021; 7:614279. [PMID: 33553262 PMCID: PMC7854694 DOI: 10.3389/fcvm.2020.614279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/01/2020] [Indexed: 01/08/2023] Open
Abstract
Current evidence reveals that cardiac mineralocorticoid receptor (MR) activation following myocardial stretch plays an important physiological role in adapting developed force to sudden changes in hemodynamic conditions. Its underlying mechanism involves a previously unknown nongenomic effect of the MR that triggers redox-mediated Na+/H+ exchanger (NHE1) activation, intracellular Na+ accumulation, and a consequent increase in Ca2+ transient amplitude through reverse Na+/Ca2+ exchange. However, clinical evidence assigns a detrimental role to MR activation in the pathogenesis of severe cardiac diseases such as congestive heart failure. This mini review is meant to present and briefly discuss some recent discoveries about locally triggered cardiac MR signals with the objective of shedding some light on its physiological but potentially pathological consequences in the heart.
Collapse
Affiliation(s)
- Irene Lucía Ennis
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas de la Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Néstor Gustavo Pérez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas de la Plata, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
29
|
Park KC, Krywawych S, Richard E, Desviat LR, Swietach P. Cardiac Complications of Propionic and Other Inherited Organic Acidemias. Front Cardiovasc Med 2020; 7:617451. [PMID: 33415129 PMCID: PMC7782273 DOI: 10.3389/fcvm.2020.617451] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical observations and experimental studies have determined that systemic acid-base disturbances can profoundly affect the heart. A wealth of information is available on the effects of altered pH on cardiac function but, by comparison, much less is known about the actions of the organic anions that accumulate alongside H+ ions in acidosis. In the blood and other body fluids, these organic chemical species can collectively reach concentrations of several millimolar in severe metabolic acidoses, as in the case of inherited organic acidemias, and exert powerful biological actions on the heart that are not intuitive to predict. Indeed, cardiac pathologies, such as cardiomyopathy and arrhythmia, are frequently reported in organic acidemia patients, but the underlying pathophysiological mechanisms are not well established. Research efforts in the area of organic anion physiology have increased dramatically in recent years, particularly for propionate, which accumulates in propionic acidemia, one of the commonest organic acidemias characterized by a high incidence of cardiac disease. This Review provides a comprehensive historical overview of all known organic acidemias that feature cardiac complications and a state-of-the-art overview of the cardiac sequelae observed in propionic acidemia. The article identifies the most promising candidates for molecular mechanisms that become aberrantly engaged by propionate anions (and its metabolites), and discusses how these may result in cardiac derangements in propionic acidemia. Key clinical and experimental findings are considered in the context of potential therapies in the near future.
Collapse
Affiliation(s)
- Kyung Chan Park
- Department of Anatomy, Physiology and Genetics, Burdon Sanderson Cardiac Science Centre, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Steve Krywawych
- Department of Chemical Pathology, Great Ormond Street Hospital, London, United Kingdom
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa, Universidad Autonoma de Madrid-Consejo Superior de Investigaciones Cientificas (UAM-CSIC), Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa, Universidad Autonoma de Madrid-Consejo Superior de Investigaciones Cientificas (UAM-CSIC), Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pawel Swietach
- Department of Anatomy, Physiology and Genetics, Burdon Sanderson Cardiac Science Centre, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Role of Genetic Mutations of the Na +/H + Exchanger Isoform 1, in Human Disease and Protein Targeting and Activity. Mol Cell Biochem 2020; 476:1221-1232. [PMID: 33201382 DOI: 10.1007/s11010-020-03984-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/06/2020] [Indexed: 01/22/2023]
Abstract
The mammalian Na+/H+ exchanger isoform one (NHE1) is a plasma membrane protein that is ubiquitously present in human cells. It functions to regulate intracellular pH removing an intracellular proton in exchange for one extracellular sodium and is involved in heart disease and in promoting metastasis in cancer. It is made of a 500 amino acid membrane domain plus a 315 amino acid, regulatory cytosolic tail. The membrane domain is thought to have 12 transmembrane segments and a large membrane-associated extracellular loop. Early studies demonstrated that in mice, disruption of the NHE1 gene results in locomotor ataxia and a phenotype of slow-wave epilepsy. Defects included a progressive neuronal degeneration. Growth and reproductive ability were also reduced. Recent studies have identified human autosomal homozygous recessive mutations in the NHE1 gene (SLC9A1) that result in impaired development, ataxia and other severe defects, and explain the cause of the human disease Lichtenstein-Knorr syndrome. Other human mutations have been identified that are stop codon polymorphisms. These cause short non-functional NHE1 proteins, while other genetic polymorphisms in the NHE1 gene cause impaired expression of the NHE1 protein, reduced activity, enhanced protein degradation or altered kinetic activation of the protein. Since NHE1 plays a key role in many human physiological functions and in human disease, genetic polymorphisms of the protein that significantly alter its function and are likely play significant roles in varying human phenotypes and be involved in disease.
Collapse
|
31
|
Medina AJ, Ibáñez AM, Diaz-Zegarra LA, Portiansky EL, Blanco PG, Pereyra EV, de Giusti VC, Aiello EA, Yeves AM, Ennis IL. Cardiac up-regulation of NBCe1 emerges as a beneficial consequence of voluntary wheel running in mice. Arch Biochem Biophys 2020; 694:108600. [PMID: 33007282 DOI: 10.1016/j.abb.2020.108600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022]
Abstract
Physical training stimulates the development of physiologic cardiac hypertrophy (CH), being a key event in this process the inhibition of the Na+/H+ exchanger. However, the role of the sodium bicarbonate cotransporter (NBC) has not been explored yet under this circumstance. C57/Bl6 mice were allowed to voluntary exercise (wheel running) for five weeks. Cardiac mass was evaluated by echocardiography and histomorphometry detecting that training promoted the development of physiological CH (heart weight/tibia length ratio, mg/mm: 6.54 ± 0.20 vs 8.81 ± 0.24; interstitial collagen content, %: 3.14 ± 0.63 vs. 1.57 ± 0.27; and cross-sectional area of cardiomyocytes, μm2: 200.6 ± 8.92 vs. 281.9 ± 24.05; sedentary (Sed) and exercised (Ex) mice, respectively). The activity of the electrogenic isoform of the cardiac NBC (NBCe1) was estimated by recording intracellular pH under high potassium concentration and by measuring action potential duration (APD). NBCe1 activity was significantly increased in isolated cardiomyocytes of trained mice. Additionally, the APD was shorter and the alkalization due to high extracellular potassium-induced depolarization was greater in this group, indicating that the NBCe1 was hyperactive. These results are online with the observed myocardial up-regulation of the NBCe1 (Western Blot, %: 100 ± 13.86 vs. 202 ± 29.98; Sed vs. Ex, n = 6 each group). In addition, we detected a reduction in H2O2 production in the myocardium of trained mice. These results support that voluntary training induces the development of physiologic CH with up-regulation of the cardiac NBCe1 in mice. Furthermore, the improvement in the antioxidant capacity contributes to the beneficial cardiovascular consequences of physical training.
Collapse
Affiliation(s)
- Andrés J Medina
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Alejandro M Ibáñez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Leandro A Diaz-Zegarra
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Enrique L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias UNLP-CONICET, Argentina
| | - Paula G Blanco
- Servicio de Cardiología, Facultad de Ciencias Veterinarias, UNLP-CONICET, Argentina
| | - Erica V Pereyra
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Verónica C de Giusti
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Alejandra M Yeves
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Irene L Ennis
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina.
| |
Collapse
|
32
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
33
|
Li L, Li X, Zhang Z, Liu L, Zhou Y, Liu F. Protective Mechanism and Clinical Application of Hydrogen in Myocardial Ischemia-reperfusion Injury. Pak J Biol Sci 2020; 23:103-112. [PMID: 31944068 DOI: 10.3923/pjbs.2020.103.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cardiovascular disease accounts for one-third of all deaths, with ischemic heart disease as the main cause of death. Under pathological conditions, ischemia-reperfusion injury (IRI) often occurs in tissues. Ischemic injury is mainly caused by anaerobic cell death and reperfusion which results in a wide range of inflammatory responses. These responses are able to increase tissue damage and even damage to the whole body. IRI can also aggravate the original cardiovascular disease during the treatment of cardiovascular disease. Therefore, it is particularly important to understand the mechanism of myocardial ischemia-reperfusion injury (MIRI) for clinical treatment and application. At the same time, it is necessary to find a safe, reliable and feasible method for treating MIRI to reduce the incidence of complications and mortality as well as improve the prognosis and quality of life of patients. As a selective antioxidant, hydrogen can neutralize excessive free radicals, has certain anti-apoptotic and anti-inflammatory effects and it has gradually become a focus and hotspot of preclinical and clinical research. Hydrogen has been shown to have a certain therapeutic effect on MIRI, which can provide a new therapeutic direction for the clinical treatment of myocardial ischemia-reperfusion injury. In this review, the protective mechanism and clinical application of hydrogen in myocardial ischemia-reperfusion injury is discussed.
Collapse
|
34
|
Zhang M, Shah AM. Nitric oxide fine-tunes NHE1 to control cardiomyocyte pH. Cardiovasc Res 2020; 116:1925-1926. [PMID: 32176247 DOI: 10.1093/cvr/cvaa065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Min Zhang
- Department of Cardiology, King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Ajay M Shah
- Department of Cardiology, King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
35
|
Abstract
The serine/threonine phosphatase calcineurin acts as a crucial connection between calcium signaling the phosphorylation states of numerous important substrates. These substrates include, but are not limited to, transcription factors, receptors and channels, proteins associated with mitochondria, and proteins associated with microtubules. Calcineurin is activated by increases in intracellular calcium concentrations, a process that requires the calcium sensing protein calmodulin binding to an intrinsically disordered regulatory domain in the phosphatase. Despite having been studied for around four decades, the activation of calcineurin is not fully understood. This review largely focuses on what is known about the activation process and highlights aspects that are currently not understood. Video abstract.
Collapse
Affiliation(s)
- Trevor P Creamer
- Center for Structural Biology, Department of Molecular & Cellular Biochemistry, 741 S. Limestone Street, Lexington, KY, 40536-0509, USA.
| |
Collapse
|
36
|
Lu C, Ma Z, Cheng X, Wu H, Tuo B, Liu X, Li T. Pathological role of ion channels and transporters in the development and progression of triple-negative breast cancer. Cancer Cell Int 2020; 20:377. [PMID: 32782435 PMCID: PMC7409684 DOI: 10.1186/s12935-020-01464-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is a common malignancy in women. Among breast cancer types, triple-negative breast cancer (TNBC) tends to affect younger women, is prone to axillary lymph node, lung, and bone metastases; and has a high recurrence rate. Due to a lack of classic biomarkers, the currently available treatments are surgery and chemotherapy; no targeted standard treatment options are available. Therefore, it is urgent to find a novel and effective therapeutic target. As alteration of ion channels and transporters in normal mammary cells may affect cell growth, resulting in the development and progression of TNBC, ion channels and transporters may be promising new therapeutic targets for TNBC. This review summarizes ion channels and transporters related to TNBC and may provide new tumor biomarkers and help in the development of novel targeted therapies.
Collapse
Affiliation(s)
- Chengli Lu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou Province China
| | - Zhiyuan Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou Province China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou Province China
| | - Huichao Wu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou Province China
| |
Collapse
|
37
|
Lopaschuk GD, Verma S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC Basic Transl Sci 2020; 5:632-644. [PMID: 32613148 PMCID: PMC7315190 DOI: 10.1016/j.jacbts.2020.02.004] [Citation(s) in RCA: 509] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/20/2022]
Abstract
Recent clinical trials have shown that sodium glucose co-transport 2 (SGLT2) inhibitors have dramatic beneficial cardiovascular outcomes. These include a reduced incidence of cardiovascular death and heart failure hospitalization in people with and without diabetes, and those with and without prevalent heart failure. The actual mechanism(s) responsible for these beneficial effects are not completely clear. Several potential theses have been proposed to explain the cardioprotective effects of SGLT2 inhibition, which include diuresis/natriuresis, blood pressure reduction, erythropoiesis, improved cardiac energy metabolism, inflammation reduction, inhibition of the sympathetic nervous system, prevention of adverse cardiac remodeling, prevention of ischemia/reperfusion injury, inhibition of the Na+/H+-exchanger, inhibition of SGLT1, reduction in hyperuricemia, increasing autophagy and lysosomal degradation, decreasing epicardial fat mass, increasing erythropoietin levels, increasing circulating pro-vascular progenitor cells, decreasing oxidative stress, and improving vascular function. The strengths and weaknesses of these proposed mechanisms are reviewed in an effort to try to synthesize and prioritize the mechanisms as they relate to clinical event reduction.
Collapse
Affiliation(s)
- Gary D. Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, Li Ka Shing Knowledge Institute of St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Brea MS, Díaz RG, Escudero DS, Zavala MR, Portiansky EL, Villa-Abrille MC, Caldiz CI, Pérez NG, Morgan PE. Silencing of epidermal growth factor receptor reduces Na+/H+ exchanger 1 activity and hypertensive cardiac hypertrophy. Biochem Pharmacol 2019; 170:113667. [DOI: 10.1016/j.bcp.2019.113667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
|
39
|
Wakabayashi S, Morihara H, Yokoe S, Nakagawa T, Moriwaki K, Tomoda K, Asahi M. Overexpression of Na +/H + exchanger 1 specifically induces cell death in human iPS cells via sustained activation of the Rho kinase ROCK. J Biol Chem 2019; 294:19577-19588. [PMID: 31723030 DOI: 10.1074/jbc.ra119.010329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/04/2019] [Indexed: 01/15/2023] Open
Abstract
Understanding the specific properties of human induced pluripotent stem cells (iPSCs) is important for quality control of iPSCs. Having incidentally discovered that overexpression of plasma membrane Na+/H+ exchanger 1 (NHE1) induces cell death in iPSCs, we investigated the mechanism of NHE1-induced cell death. Doxycycline-induced NHE1 overexpression arrested cell growth, and nearly all cells were killed by a necrotic process within 72 h. NHE1 overexpression led to sustained activation of Rho-associated coiled-coil kinase (ROCK), accompanied by dramatic changes in cell shape, cell elongation, and swelling of peripheral cells in iPSC colonies, as well as marked stress fiber formation. The ROCK inhibitor Y27632 reduced NHE1-induced cell death. ROCK-dependent phenotypes were suppressed by a loss-of-function mutation of NHE1 and inhibited by an inhibitor of NHE1 activity, indicating that NHE1-mediated transport activity is required. Moreover, ROCK was activated by trimethylamine treatment-mediated cytosolic alkalinization and accumulated in the plasma membrane near NHE1 in peripheral iPSCs of cell colonies. By contrast, cell death did not occur in mesendoderm-like cells that had differentiated from iPSCs, indicating that the NHE1-mediated effects were specific for iPSCs. These results suggest that NHE1 overexpression specifically induces death of iPSCs via sustained ROCK activation, probably caused by an increase in local pH near NHE1. Finally, monensin, a Na+/H+ exchange ionophore, selectively killed iPSCs, suggesting that monensin could help eliminate iPSCs that remain after differentiation, a strategy that might be useful for improving regenerative medicine.
Collapse
Affiliation(s)
- Shigeo Wakabayashi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki City, Osaka 569-8686, Japan
| | - Hirofumi Morihara
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki City, Osaka 569-8686, Japan
| | - Shunichi Yokoe
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki City, Osaka 569-8686, Japan
| | - Takatoshi Nakagawa
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki City, Osaka 569-8686, Japan
| | - Kazumasa Moriwaki
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki City, Osaka 569-8686, Japan
| | - Kiichiro Tomoda
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki City, Osaka 569-8686, Japan
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki City, Osaka 569-8686, Japan
| |
Collapse
|
40
|
Yeves AM, Ennis IL. Na +/H + exchanger and cardiac hypertrophy. HIPERTENSION Y RIESGO VASCULAR 2019; 37:22-32. [PMID: 31601481 DOI: 10.1016/j.hipert.2019.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
Reactive cardiac hypertrophy (CH) is an increase in heart mass in response to hemodynamic overload. Exercise-induced CH emerges as an adaptive response with improved cardiac function, in contrast to pathological CH that represents a risk factor for cardiovascular health. The Na+/H+ exchanger (NHE-1) is a membrane transporter that not only regulates intracellular pH but also intracellular Na+ concentration. In the scenario of cardiovascular diseases, myocardial NHE-1 is activated by a variety of stimuli, such as neurohumoral factors and mechanical stress, leading to intracellular Na+ overload and activation of prohypertrophic cascades. NHE-1 hyperactivity is intimately linked to heart diseases, including ischemia-reperfusion injury, maladaptive CH and heart failure. In this review, we will present evidence to support that the NHE-1 hyperactivity constitutes a "switch on/off" for the pathological phenotype during CH development. We will also discuss some classical and novel strategies to avoid NHE-1 hyperactivity, and that are therefore worthwhile to improve cardiovascular health.
Collapse
Affiliation(s)
- A M Yeves
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata - CONICET, Calle 60 y 120, 1900 La Plata, Argentina
| | - I L Ennis
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata - CONICET, Calle 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
41
|
Structural and Functional Changes in the Na +/H + Exchanger Isoform 1, Induced by Erk1/2 Phosphorylation. Int J Mol Sci 2019; 20:ijms20102378. [PMID: 31091671 PMCID: PMC6566726 DOI: 10.3390/ijms20102378] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
The human Na+/H+ exchanger isoform 1 (NHE1) is a plasma membrane transport protein that plays an important role in pH regulation in mammalian cells. Because of the generation of protons by intermediary metabolism as well as the negative membrane potential, protons accumulate within the cytosol. Extracellular signal-regulated kinase (ERK)-mediated regulation of NHE1 is important in several human pathologies including in the myocardium in heart disease, as well as in breast cancer as a trigger for growth and metastasis. NHE1 has a N-terminal, a 500 amino acid membrane domain, and a C-terminal 315 amino acid cytosolic domain. The C-terminal domain regulates the membrane domain and its effects on transport are modified by protein binding and phosphorylation. Here, we discuss the physiological regulation of NHE1 by ERK, with an emphasis on the critical effects on structure and function. ERK binds directly to the cytosolic domain at specific binding domains. ERK also phosphorylates NHE1 directly at multiple sites, which enhance NHE1 activity with subsequent downstream physiological effects. The NHE1 cytosolic regulatory tail possesses both ordered and disordered regions, and the disordered regions are stabilized by ERK-mediated phosphorylation at a phosphorylation motif. Overall, ERK pathway mediated phosphorylation modulates the NHE1 tail, and affects the activity, structure, and function of this membrane protein.
Collapse
|
42
|
Silencing of the Na+/H+ exchanger 1(NHE-1) prevents cardiac structural and functional remodeling induced by angiotensin II. Exp Mol Pathol 2019; 107:1-9. [DOI: 10.1016/j.yexmp.2019.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 12/30/2022]
|
43
|
Kuriyama S. Protection of the kidney with sodium–glucose cotransporter 2 inhibitors: potential mechanisms raised by the large-scaled randomized control trials. Clin Exp Nephrol 2018; 23:304-312. [DOI: 10.1007/s10157-018-1673-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022]
|
44
|
Fuchs S, Hansen SC, Markones M, Mymrikov EV, Heerklotz H, Hunte C. Calcineurin B homologous protein 3 binds with high affinity to the CHP binding domain of the human sodium/proton exchanger NHE1. Sci Rep 2018; 8:14837. [PMID: 30287853 PMCID: PMC6172220 DOI: 10.1038/s41598-018-33096-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022] Open
Abstract
The Na+/H+ exchanger NHE1 is critical for cell vitality as it controls intracellular pH and cell volume. Its functionality is influenced by calcineurin B homologous proteins (CHPs). The human isoform CHP3 is important for transport of NHE1 to the plasma membrane and for its activity. Here, we characterized the binding interaction of human CHP3 with the regulatory domain of NHE1. The exact binding site of CHP3 was previously debated. CHP3 as well as both regions of NHE1 in question were produced and purified. CHP3 specifically formed stable complexes with the CHP-binding region (CBD) of NHE1 (residues 503-545) in size-exclusion chromatography (SEC), but not with the C-terminal region (CTD, residues 633-815). CTD was functional as shown by Ca2+-dependent binding of calmodulin in SEC analysis. CHP3 bound with high affinity to CBD with an equilibrium dissociation constant (KD) of 56 nM determined by microscale thermophoresis. The high affinity was substantiated by isothermal calorimetry analysis (KD = 3 nM), which also revealed that the interaction with CBD is strongly exothermic (ΔG° = -48.6 kJ/mol, ΔH = -75.3 kJ/mol, -TΔS° = 26.7 kJ/mol). The data provide insights in the molecular mechanisms that underlie the regulatory interaction of CHP3 and NHE1 and more general of calcineurin homologous proteins with their target proteins.
Collapse
Affiliation(s)
- Simon Fuchs
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, D-79104, Freiburg, Germany
| | - Sierra C Hansen
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Marie Markones
- Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, D-79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104, Freiburg, Germany
| | - Evgeny V Mymrikov
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104, Freiburg, Germany
| | - Heiko Heerklotz
- Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, D-79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104, Freiburg, Germany
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104, Freiburg, Germany.
| |
Collapse
|
45
|
Yeves AM, Burgos JI, Medina AJ, Villa-Abrille MC, Ennis IL. Cardioprotective role of IGF-1 in the hypertrophied myocardium of the spontaneously hypertensive rats: A key effect on NHE-1 activity. Acta Physiol (Oxf) 2018; 224:e13092. [PMID: 31595734 DOI: 10.1111/apha.13092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
AIM Myocardial Na+/H+ exchanger-1 (NHE-1) hyperactivity and oxidative stress are interrelated phenomena playing pivotal roles in the development of pathological cardiac hypertrophy and heart failure. Exercise training is effective to convert pathological into physiological hypertrophy in the spontaneously hypertensive rats (SHR), and IGF-1-key humoral mediator of exercise training-inhibits myocardial NHE-1, at least in normotensive rats. Therefore, we hypothesize that IGF-1 by hampering NHE-1 hyperactivity and oxidative stress should exert a cardioprotective effect in the SHR. METHODS NHE-1 activity [proton efflux ( J H + ) mmol L-1 min-1], expression and phosphorylation; H2O2 production; superoxide dismutase (SOD) activity; contractility and calcium transients were measured in SHR hearts in the presence/absence of IGF-1. RESULTS IGF-1 significantly decreased NHE-1 activity ( J H + at pHi 6.95: 1.39 ± 0.32, n = 9 vs C 3.27 ± 0.3, n = 20, P < .05); effect prevented by AG1024, an antagonist of IGF-1 receptor (2.7 ± 0.4, n = 7); by the PI3K inhibitor wortmannin (3.14 ± 0.41, n = 7); and the AKT inhibitor MK2206 (3.37 ± 0.43, n = 14). Moreover, IGF-1 exerted an antioxidant effect revealed by a significant reduction in H2O2 production accompanied by an increase in SOD activity. In addition, IGF-1 improved cardiomyocyte contractility as evidenced by an increase in sarcomere shortening and a decrease in the relaxation constant, underlined by an increase in the amplitude and rate of decay of the calcium transients. CONCLUSION IGF-1 exerts a cardioprotective role on the hypertrophied hearts of the SHR, in which the inhibition of NHE-1 hyperactivity, as well as the positive inotropic and antioxidant effects, emerges as key players.
Collapse
Affiliation(s)
- A. M. Yeves
- Centro de Investigaciones Cardiovasculares; Facultad de Ciencias Médicas; UNLP-CONICET; La Plata Argentina
| | - J. I. Burgos
- Centro de Investigaciones Cardiovasculares; Facultad de Ciencias Médicas; UNLP-CONICET; La Plata Argentina
| | - A. J. Medina
- Centro de Investigaciones Cardiovasculares; Facultad de Ciencias Médicas; UNLP-CONICET; La Plata Argentina
| | - M. C. Villa-Abrille
- Centro de Investigaciones Cardiovasculares; Facultad de Ciencias Médicas; UNLP-CONICET; La Plata Argentina
| | - I. L. Ennis
- Centro de Investigaciones Cardiovasculares; Facultad de Ciencias Médicas; UNLP-CONICET; La Plata Argentina
| |
Collapse
|
46
|
Xue J, Zhou D, Poulsen O, Hartley I, Imamura T, Xie EX, Haddad GG. Exploring miRNA-mRNA regulatory network in cardiac pathology in Na +/H + exchanger isoform 1 transgenic mice. Physiol Genomics 2018; 50:846-861. [PMID: 30029588 DOI: 10.1152/physiolgenomics.00048.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Numerous studies have demonstrated that Na+/H+ exchanger isoform 1 (NHE1) is elevated in myocardial diseases and its effect is detrimental. To better understand the involvement of NHE1, we have previously studied cardiac-specific NHE1 transgenic mice and shown that these mice develop cardiac hypertrophy, interstitial fibrosis, and cardiac dysfunction. The purpose of current study was to identify microRNAs and their mRNA targets involved in NHE1-mediated cardiac injury. An unbiased high-throughput sequencing study was performed on both microRNAs and mRNAs. RNA sequencing showed that differentially expressed genes were enriched in hypertrophic cardiomyopathy pathway by Kyoto Encyclopedia of Genes and Genomes annotation in NHE1 transgenic hearts. These genes were classified as contraction defects (e.g., Myl2, Myh6, Mybpc3, and Actb), impaired intracellular Ca2+ homeostasis (e.g., SERCA2a, Ryr2, Rcan1, and CaMKII delta), and signaling molecules for hypertrophic cardiomyopathy (e.g., Itga/b, IGF-1, Tgfb2/3, and Prkaa1/2). microRNA sequencing revealed that 15 microRNAs were differentially expressed (2-fold, P < 0.05). Six of them (miR-1, miR-208a-3p, miR-199a-5p, miR-21-5p, miR-146a-5p, and miR-30c-5p) were reported to be related to cardiac pathological functions. The integrative analysis of microRNA and RNA sequencing data identified several crucial microRNAs including miR-30c-5p, miR-199a-5p, miR-21-5p, and miR-34a-5p as well as 10 of their mRNA targets that may affect the heart via NFAT hypertrophy and cardiac hypertrophy signaling. Furthermore, important microRNAs and mRNA targets were validated by quantitative PCR. Our study comprehensively characterizes the expression patterns of microRNAs and mRNAs, establishes functional microRNA-mRNA pairs, elucidates the potential signaling pathways, and provides novel insights on the mechanisms underlying NHE1-medicated cardiac injury.
Collapse
Affiliation(s)
- Jin Xue
- Department of Pediatrics, University of California San Diego , La Jolla, California
| | - Dan Zhou
- Department of Pediatrics, University of California San Diego , La Jolla, California
| | - Orit Poulsen
- Department of Pediatrics, University of California San Diego , La Jolla, California
| | - Iain Hartley
- Department of Pediatrics, University of California San Diego , La Jolla, California
| | - Toshihiro Imamura
- Department of Pediatrics, University of California San Diego , La Jolla, California
| | - Edward X Xie
- Department of Pediatrics, University of California San Diego , La Jolla, California
| | - Gabriel G Haddad
- Department of Pediatrics, University of California San Diego , La Jolla, California.,Departments of Neurosciences, University of California San Diego , La Jolla, California.,The Rady Children's Hospital , San Diego, California
| |
Collapse
|
47
|
Cardoso VG, Gonçalves GL, Costa-Pessoa JM, Thieme K, Lins BB, Casare FAM, de Ponte MC, Camara NOS, Oliveira-Souza M. Angiotensin II-induced podocyte apoptosis is mediated by endoplasmic reticulum stress/PKC-δ/p38 MAPK pathway activation and trough increased Na +/H + exchanger isoform 1 activity. BMC Nephrol 2018; 19:179. [PMID: 30005635 PMCID: PMC6043975 DOI: 10.1186/s12882-018-0968-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 06/26/2018] [Indexed: 11/12/2022] Open
Abstract
Background Angiotensin II (Ang II) contributes to the progression of renal diseases associated with proteinuria and glomerulosclerosis mainly by inducing podocyte apoptosis. In the present study, we investigated whether the chronic effects of Ang II via AT1 receptor (AT1R) would result in endoplasmic reticulum (ER) stress/PKC-delta/p38 MAPK stimulation, and consequently podocyte apoptosis. Methods Wistar rats were treated with Ang II (200 ng·kg−1·min−1, 42 days) and or losartan (10 mg·kg−1·day−1, 14 days). Immortalized mouse podocyte were treated with 1 μM Ang II and/or losartan (1 μM) or SB203580 (0.1 μM) (AT1 receptor antagonist and p38 MAPK inhibitor) for 24 h. Kidney sections and cultured podocytes were used to evaluate protein expression by immunofluorescence and immunoblotting. Apoptosis was evaluated by flow cytometry and intracellular pH (pHi) was analyzed using microscopy combined with the fluorescent probe BCECF/AM. Results Compared with controls, Ang II via AT1R increased chaperone GRP 78/Bip protein expression in rat glomeruli (p < 0.001) as well as in podocyte culture (p < 0.01); increased phosphorylated eIf2-α (p < 0.05), PKC-delta (p < 0.01) and p38 MAPK (p < 0.001) protein expression. Furthermore, Ang II induced p38 MAPK-mediated late apoptosis and increased the Bax/Bcl-2 ratio (p < 0.001). Simultaneously, Ang II via AT1R induced p38 MAPK-NHE1-mediated increase of pHi recovery rate after acid loading. Conclusion Together, our results indicate that Ang II-induced podocyte apoptosis is associated with AT1R/ER stress/PKC-delta/p38 MAPK axis and enhanced NHE1-mediated pHi recovery rate.
Collapse
Affiliation(s)
- Vanessa Gerolde Cardoso
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Guilherme Lopes Gonçalves
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Juliana Martins Costa-Pessoa
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Karina Thieme
- Laboratory of Carbohydrates and Radioimmunoassays (LIM-18), Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruna Bezerra Lins
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Fernando Augusto Malavazzi Casare
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Mariana Charleaux de Ponte
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Niels Olsen Saraiva Camara
- Laboratory for Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Oliveira-Souza
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
48
|
Meng W, Zhou D, Li C, Wang G, Huang L, Cheng Z. A polyclonal antibody against extracellular loops 1 of chNHE1 blocks avian leukosis virus subgroup J infection. Res Vet Sci 2018; 118:477-483. [PMID: 29747134 DOI: 10.1016/j.rvsc.2018.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 11/16/2022]
Abstract
Avian leukosis virus subgroup J (ALV-J), an oncogenic retrovirus, induces myelocytomas and other various tumors, leading to great economical losses in poultry industry. It is a great challenge to develop effective preventive methods for ALV-J control due to its antigenic variations in the variable regions of envelope. In present study, we generated a mouse polyclonal antibody targeting the first extracellular loop (ECL1) of chicken Na+/H+ exchanger isoform 1 (chNHE1), the receptor of ALV-J, to block ALV-J infection in vitro and in vivo. In ALV-J infected DF-1 cells, chNHE1 expression and the intracellular pH (pHi) were up-regulated with "wave" pattern, indicating that the disequilibrium of ALV-J infected cells associated with chNHE1. Next, we validated that ALV-J infection was significantly blocked with time dependent after treating with anti-ECL1 antibody and accordingly the pHi value were recovered, indicating the blockage of ALV-J infection did not affect Na+/H+ exchange. Furthermore, in anti-ECL1 antibody treatment chickens that infected by ALV-J, weight gain and immune organs were recovered, and viral loads were significantly decreased, and the tissue injury and inflammation were reduced significantly from 21 to 35 days of age. The study demonstrated that anti-ECL1 antibody effectively blocks ALV-J infection without affecting Na+/H+ exchange, and sheds light on a novel strategy for retroviruses control.
Collapse
Affiliation(s)
- Wei Meng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Chengui Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Guihua Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Libo Huang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
49
|
Compartmentation of Natriuretic Peptide Signalling in Cardiac Myocytes: Effects on Cardiac Contractility and Hypertrophy. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-54579-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
|
50
|
Pohjoismäki JL, Goffart S. The role of mitochondria in cardiac development and protection. Free Radic Biol Med 2017; 106:345-354. [PMID: 28216385 DOI: 10.1016/j.freeradbiomed.2017.02.032] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/27/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022]
Abstract
Mitochondria are essential for the development as well as maintenance of the myocardium, the most energy consuming tissue in the human body. Mitochondria are not only a source of ATP energy but also generators of reactive oxygen species (ROS), that cause oxidative damage, but also regulate physiological processes such as the switch from hyperplastic to hypertrophic growth after birth. As excess ROS production and oxidative damage are associated with cardiac pathology, it is not surprising that much of the research focused on the deleterious aspects of free radicals. However, cardiomyocytes are naturally highly adapted against repeating oxidative insults, with evidence suggesting that moderate and acute ROS exposure has beneficial consequences for mitochondrial maintenance and cardiac health. Antioxidant defenses, mitochondrial quality control, mtDNA maintenance mechanisms as well as mitochondrial fusion and fission improve mitochondrial function and cardiomyocyte survival under stress conditions. As these adaptive processes can be induced, promoting mitohormesis or mitochondrial biogenesis using controlled ROS exposure could provide a promising strategy to increase cardiomyocyte survival and prevent pathological remodeling of the myocardium.
Collapse
Affiliation(s)
- Jaakko L Pohjoismäki
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland.
| | - Steffi Goffart
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland
| |
Collapse
|