1
|
Zhang T, Shi C, Ye Z, Deng J, Gu M, Chen Z, Huang L, Su X, Chang Z. Crystal structure combined with metabolomics and biochemical studies indicates that FAM3A participates in fatty acid beta-oxidation upon binding of acyl-L-carnitine. Biochem Biophys Res Commun 2024; 735:150481. [PMID: 39111121 DOI: 10.1016/j.bbrc.2024.150481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 11/05/2024]
Abstract
As the first member of the family with sequence similarity 3 (FAM3), FAM3A promotes synthesis of ATP in mitochondria of hepatic cells and cells from other organs. Dysregulations of FAM3A are involved in the development of diabetes and nonalcoholic fatty liver disease (NAFLD). So far, the molecule mechanism under the physiological and pathological functions of FAM3A is largely unexplored. Here, we determined the crystal structure of FAM3A at high resolution of 1.38Å, complexed with an unknown-source compound which was characterized through metabolomics and confirmed as methacholine by thermal shift assay and surface plasmon resonance (SPR). Exploration for natural ligands of FAM3A was conducted through the same molecular interaction assays. The observed binding of acyl-L-carnitine molecules indicated FAM3A participating in fatty acid beta-oxidation. Knockdown and rescue assays coupled with fatty acid oxidation determination confirmed the role of FAM3A in beta-oxidation. This investigation reveals the molecular mechanism for the biological function of FAM3A and would provide basis for identifying drug target for treatment of diabetes and NAFLD.
Collapse
Affiliation(s)
- Tianzhuo Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Chao Shi
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhaoyang Ye
- State Key Laboratory of Protein and Plant Gene Research and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Jie Deng
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Mingyue Gu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhangxin Chen
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lixin Huang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xiaodong Su
- State Key Laboratory of Protein and Plant Gene Research and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
| | - Zhenzhan Chang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
2
|
Li X, Yuan F, Xiong Y, Tang Y, Li Z, Ai J, Miao J, Ye W, Zhou S, Wu Q, Wang X, Xu D, Li J, Huang J, Chen Q, Shen W, Liu Y, Hou FF, Zhou L. FAM3A plays a key role in protecting against tubular cell pyroptosis and acute kidney injury. Redox Biol 2024; 74:103225. [PMID: 38875957 PMCID: PMC11226986 DOI: 10.1016/j.redox.2024.103225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Acute kidney injury (AKI) is in high prevalence worldwide but with no therapeutic strategies. Programmed cell death in tubular epithelial cells has been reported to accelerate a variety of AKI, but the major pathways and underlying mechanisms are not defined. Herein, we identified that pyroptosis was responsible for AKI progression and related to ATP depletion in renal tubular cells. We found that FAM3A, a mitochondrial protein that assists ATP synthesis, was decreased and negatively correlated with tubular cell injury and pyroptosis in both mice and patients with AKI. Knockout of FAM3A worsened kidney function decline, increased macrophage and neutrophil cell infiltration, and facilitated tubular cell pyroptosis in ischemia/reperfusion injury model. Conversely, FAM3A overexpression alleviated tubular cell pyroptosis, and inhibited kidney injury in ischemic AKI. Mechanistically, FAM3A promoted PI3K/AKT/NRF2 signaling, thus blocking mitochondrial reactive oxygen species (mt-ROS) accumulation. NLRP3 inflammasome sensed the overload of mt-ROS and then activated Caspase-1, which cleaved GSDMD, pro-IL-1β, and pro-IL-18 into their mature forms to mediate pyroptosis. Of interest, NRF2 activator alleviated the pro-pyroptotic effects of FAM3A depletion, whereas the deletion of NRF2 blocked the anti-pyroptotic function of FAM3A. Thus, our study provides new mechanisms for AKI progression and demonstrates that FAM3A is a potential therapeutic target for treating AKI.
Collapse
Affiliation(s)
- Xiaolong Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feifei Yuan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yabing Xiong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Tang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhiru Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Ai
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenting Ye
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiemei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiewu Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiurong Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Hu CQ, Hou T, Xiang R, Li X, Li J, Wang TT, Liu WJ, Hou S, Wang D, Zhao QH, Yu XX, Xu M, Liu XK, Chi YJ, Yang JC. PANX1-mediated ATP release confers FAM3A's suppression effects on hepatic gluconeogenesis and lipogenesis. Mil Med Res 2024; 11:41. [PMID: 38937853 PMCID: PMC11210080 DOI: 10.1186/s40779-024-00543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Extracellular adenosine triphosphate (ATP) is an important signal molecule. In previous studies, intensive research had revealed the crucial roles of family with sequence similarity 3 member A (FAM3A) in controlling hepatic glucolipid metabolism, islet β cell function, adipocyte differentiation, blood pressure, and other biological and pathophysiological processes. Although mitochondrial protein FAM3A plays crucial roles in the regulation of glucolipid metabolism via stimulating ATP release to activate P2 receptor pathways, its mechanism in promoting ATP release in hepatocytes remains unrevealed. METHODS db/db, high-fat diet (HFD)-fed, and global pannexin 1 (PANX1) knockout mice, as well as liver sections of individuals, were used in this study. Adenoviruses and adeno-associated viruses were utilized for in vivo gene overexpression or inhibition. To evaluate the metabolic status in mice, oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT), insulin tolerance test (ITT), and magnetic resonance imaging (MRI) were conducted. Protein-protein interactions were determined by coimmunoprecipitation with mass spectrometry (MS) assays. RESULTS In livers of individuals and mice with steatosis, the expression of ATP-permeable channel PANX1 was increased (P < 0.01). Hepatic PANX1 overexpression ameliorated the dysregulated glucolipid metabolism in obese mice. Mice with hepatic PANX1 knockdown or global PANX1 knockout exhibited disturbed glucolipid metabolism. Restoration of hepatic PANX1 rescued the metabolic disorders of PANX1-deficient mice (P < 0.05). Mechanistically, ATP release is mediated by the PANX1-activated protein kinase B-forkhead box protein O1 (Akt-FOXO1) pathway to inhibit gluconeogenesis via P2Y receptors in hepatocytes. PANX1-mediated ATP release also activated calmodulin (CaM) (P < 0.01), which interacted with c-Jun N-terminal kinase (JNK) to inhibit its activity, thereby deactivating the transcription factor activator protein-1 (AP1) and repressing fatty acid synthase (FAS) expression and lipid synthesis (P < 0.05). FAM3A stimulated the expression of PANX1 via heat shock factor 1 (HSF1) in hepatocytes (P < 0.05). Notably, FAM3A overexpression failed to promote ATP release, inhibit the expression of gluconeogenic and lipogenic genes, and suppress gluconeogenesis and lipid deposition in PANX1-deficient hepatocytes and livers. CONCLUSIONS PANX1-mediated release of ATP plays a crucial role in maintaining hepatic glucolipid homeostasis, and it confers FAM3A's suppressive effects on hepatic gluconeogenesis and lipogenesis.
Collapse
Affiliation(s)
- Cheng-Qing Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital/National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Tao Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Li
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Tian-Tian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Wen-Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Di Wang
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China
| | - Qing-He Zhao
- Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiao-Xing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital/Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Beijing, 100191, China
| | - Xing-Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, the First Hospital of Jilin University, Changchun, 130061, China.
| | - Yu-Jing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China.
- Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China.
| | - Ji-Chun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China.
- Department of Cardiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
4
|
Zhang Q, Shen L, Ruan H, Huang Z. cGAS-STING signaling in cardiovascular diseases. Front Immunol 2024; 15:1402817. [PMID: 38803502 PMCID: PMC11128581 DOI: 10.3389/fimmu.2024.1402817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Sterile inflammation, characterized by a persistent chronic inflammatory state, significantly contributes to the progression of various diseases such as autoimmune, metabolic, neurodegenerative, and cardiovascular disorders. Recent evidence has increasingly highlighted the intricate connection between inflammatory responses and cardiovascular diseases, underscoring the pivotal role of the Stimulator of Interferon Genes (STING). STING is crucial for the secretion of type I interferon (IFN) and proinflammatory cytokines in response to cytosolic nucleic acids, playing a vital role in the innate immune system. Specifically, research has underscored the STING pathway involvement in unregulated inflammations, where its aberrant activation leads to a surge in inflammatory events, enhanced IFN I responses, and cell death. The primary pathway triggering STING activation is the cyclic GMP-AMP synthase (cGAS) pathway. This review delves into recent findings on STING and the cGAS-STING pathways, focusing on their regulatory mechanisms and impact on cardiovascular diseases. It also discusses the latest advancements in identifying antagonists targeting cGAS and STING, and concludes by assessing the potential of cGAS or STING inhibitors as treatments for cardiovascular diseases.
Collapse
Affiliation(s)
- Qianxin Zhang
- Department of Cardiology, The People’s Hospital of Yuhuan, Taizhou, Zhejiang, China
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijuan Shen
- Department of Cardiology, The People’s Hospital of Yuhuan, Taizhou, Zhejiang, China
| | - Hongbiao Ruan
- Department of Cardiology, The People’s Hospital of Yuhuan, Taizhou, Zhejiang, China
| | - Zhouqing Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Lei C, Kan H, Xian X, Chen W, Xiang W, Song X, Wu J, Yang D, Zheng Y. FAM3A reshapes VSMC fate specification in abdominal aortic aneurysm by regulating KLF4 ubiquitination. Nat Commun 2023; 14:5360. [PMID: 37660071 PMCID: PMC10475135 DOI: 10.1038/s41467-023-41177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 08/24/2023] [Indexed: 09/04/2023] Open
Abstract
Reprogramming of vascular smooth muscle cell (VSMC) differentiation plays an essential role in abdominal aortic aneurysm (AAA). However, the underlying mechanisms are still unclear. We explore the expression of FAM3A, a newly identified metabolic cytokine, and whether and how FAM3A regulates VSMC differentiation in AAA. We discover that FAM3A is decreased in the aortas and plasma in AAA patients and murine models. Overexpression or supplementation of FAM3A significantly attenuate the AAA formation, manifested by maintenance of the well-differentiated VSMC status and inhibition of VSMC transformation toward macrophage-, chondrocyte-, osteogenic-, mesenchymal-, and fibroblast-like cell subpopulations. Importantly, FAM3A induces KLF4 ubiquitination and reduces its phosphorylation and nuclear localization. Here, we report FAM3A as a VSMC fate-shaping regulator in AAA and reveal the underlying mechanism associated with KLF4 ubiquitination and stability, which may lead to the development of strategies based on FAM3A to restore VSMC homeostasis in AAA.
Collapse
Affiliation(s)
- Chuxiang Lei
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Haoxuan Kan
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Xiangyu Xian
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Wenlin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Wenxuan Xiang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Xiaohong Song
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Jianqiang Wu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing, 100193, China.
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
6
|
Yang L, Du B, Zhang S, Wang M. FAM3A mediates the phenotypic switch of human aortic smooth muscle cells stimulated with oxidised low-density lipoprotein by influencing the PI3K-AKT pathway. In Vitro Cell Dev Biol Anim 2023; 59:431-442. [PMID: 37474885 DOI: 10.1007/s11626-023-00775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/26/2023] [Indexed: 07/22/2023]
Abstract
Family with sequence similarity 3 member A (FAM3A) is a multifunctional protein that is related to the pathological process of various disorders. FAM3A is reportedly able to affect the phenotypic change of vascular smooth muscle cells under a hypertensive state. Whether FAM3A mediates the phenotypic switch of vascular smooth muscle cells under an atherosclerotic state remains unaddressed. This work investigated the roles and mechanisms of FAM3A in mediating the phenotypic switch of human aortic smooth muscle cells (HASMCs) stimulated with oxidised low-density lipoprotein (ox-LDL) in vitro. FAM3A expression was elevated in HASMCs following ox-LDL treatment. FAM3A silencing led to a suppressive effect on ox-LDL-provoked proliferation, migration and inflammation of HASMCs, whereas FAM3A overexpression had an opposite effect. Ox-LDL elicited a change in HASMCs from a contractile phenotype to a synthetic phenotype, which was inhibited by FAM3A silencing or enhanced by FAM3A overexpression. Further investigation elucidated that FAM3A silencing repressed and FAM3A overexpression promoted ox-LDL-induced activation of the PI3K-AKT pathway in HASMCs. Reactivation of AKT reversed the suppressive effect of FAM3A silencing on the ox-LDL-induced phenotypic switch of HASMCs. Restraining AKT blocked the promoting effect of FAM3A overexpression on the ox-LDL-induced phenotypic switch of HASMCs. In summary, this work elucidates that FAM3A mediates the ox-LDL-induced phenotypic switch of HASMCs by influencing the PI3K-AKT pathway, indicating a potential role for FAM3A in atherosclerosis.
Collapse
Affiliation(s)
- Lei Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, Shaanxi Province, 710038, People's Republic of China
| | - Baoshun Du
- Second Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Shitao Zhang
- Department of Neurosurgery, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province, 710018, People's Republic of China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, Shaanxi Province, 710038, People's Republic of China.
| |
Collapse
|
7
|
Yan H, Meng Y, Li X, Xiang R, Hou S, Wang J, Wang L, Yu X, Xu M, Chi Y, Yang J. FAM3A maintains metabolic homeostasis by interacting with F1-ATP synthase to regulate the activity and assembly of ATP synthase. Metabolism 2023; 139:155372. [PMID: 36470472 DOI: 10.1016/j.metabol.2022.155372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Reduced mitochondrial ATP synthase (ATPS) capacity plays crucial roles in the pathogenesis of metabolic disorders. However, there is currently no effective strategy for synchronously stimulating the expressions of ATPS key subunits to restore its assembly. This study determined the roles of mitochondrial protein FAM3A in regulating the activity and assembly of ATPS in hepatocytes. FAM3A is localized in mitochondrial matrix, where it interacts with F1-ATPS to initially activate ATP synthesis and release, and released ATP further activates P2 receptor-Akt-CREB pathway to induce FOXD3 expression. FOXD3 synchronously stimulates the transcriptions of ATPS key subunits and assembly genes to increase its assembly and capacity, augmenting ATP synthesis and inhibiting ROS production. FAM3A, FOXD3 and ATPS expressions were reduced in livers of diabetic mice and NAFLD patients. FOXD3 expression, ATPS capacity and ATP content were reduced in various tissues of FAM3A-deficient mice with dysregulated glucose and lipid metabolism. Hepatic FOXD3 activation increased ATPS assembly to ameliorate dysregulated glucose and lipid metabolism in obese mice. Hepatic FOXD3 inhibition or knockout reduced ATPS capacity to aggravate HFD-induced hyperglycemia and steatosis. In conclusion, FAM3A is an active ATPS component, and regulates its activity and assembly by activating FOXD3. Activating FAM3A-FOXD3 axis represents a viable strategy for restoring ATPS assembly to treat metabolic disorders.
Collapse
Affiliation(s)
- Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoxing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Beijing 100191, China
| | - Yujing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
8
|
Song Q, Gao Q, Chen T, Wen T, Wu P, Luo X, Chen QY. FAM3A Ameliorates Brain Impairment Induced by Hypoxia-Ischemia in Neonatal Rat. Cell Mol Neurobiol 2023; 43:251-264. [PMID: 34853925 PMCID: PMC9813043 DOI: 10.1007/s10571-021-01172-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/14/2021] [Indexed: 01/12/2023]
Abstract
Hypoxia-ischemia (HI) during crucial periods of brain formation can lead to changes in brain morphology, propagation of neuronal stimuli, and permanent neurodevelopmental impairment, which can have profound effects on cognitive function later in life. FAM3A, a subgroup of family with sequence similarity 3 (FAM3) gene family, is ubiquitously expressed in almost all cells. Overexpression of FAM3A has been evidenced to reduce hyperglycemia via the PI3K/Akt signaling pathway and protect mitochondrial function in neuronal HT22 cells. This study aims to evaluate the protective role of FAM3A in HI-induced brain impairment. Experimentally, maternal rats underwent uterine artery bilateral ligation to induce neonatal HI on day 14 of gestation. At 6 weeks of age, cognitive development assessments including NSS, wire grip, and water maze were carried out. The animals were then sacrificed to assess cerebral mitochondrial function as well as levels of FAM3A, TNF-α and IFN-γ. Results suggest that HI significantly reduced FAM3A expression in rat brain tissues, and that overexpression of FAM3A through lentiviral transduction effectively improved cognitive and motor functions in HI rats as reflected by improved NSS evaluation, cerebral water content, limb strength, as well as spatial learning and memory. At the molecular level, overexpression of FAM3A was able to promote ATP production, balance mitochondrial membrane potential, and reduce levels of pro-inflammatory cytokines TNF-α and IFN-γ. We conclude that FAM3A overexpression may have a protective effect on neuron morphology, cerebral mitochondrial as well as cognitive function. Created with Biorender.com.
Collapse
Affiliation(s)
- Qing Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Qingying Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
- The Third Affiliated Hospital of Xi'an Medical University, Xi'an, 710049, Shaanxi, China
| | - Taotao Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Ting Wen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Peng Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| |
Collapse
|
9
|
Liu X, Hou S, Xiang R, Hu C, Chen Z, Li N, Yan H, Yu X, Li X, Chi Y, Yang J. Imipramine activates FAM3A-FOXA2-CPT2 pathway to ameliorate hepatic steatosis. Metabolism 2022; 136:155292. [PMID: 35995281 DOI: 10.1016/j.metabol.2022.155292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 10/31/2022]
Abstract
Mitochondrial FAM3A has been revealed to be a viable target for treating diabetes and nonalcoholic fatty liver disease (NAFLD). However, its distinct mechanism in ameliorating hepatic steatosis remained unrevealed. High-throughput RNA sequencing revealed that carnitine palmityl transferase 2 (CPT2), one of the key enzymes for lipid oxidation, is the downstream molecule of FAM3A signaling pathway in hepatocytes. Intensive study demonstrated that FAM3A-induced ATP release activated P2 receptor to promote the translocation of calmodulin (CaM) from cytoplasm into nucleus, where it functioned as a co-activator of forkhead box protein A2 (FOXA2) to promote the transcription of CPT2, increasing free fatty acid oxidation and reducing lipid deposition in hepatocytes. Furthermore, antidepressant imipramine activated FAM3A-ATP-P2 receptor-CaM-FOXA2-CPT2 pathway to reduce lipid deposition in hepatocytes. In FAM3A-deficient hepatocytes, imipramine failed to activate CaM-FOXA2-CPT2 axis to increase lipid oxidation. Imipramine administration significantly ameliorated hepatic steatosis, hyperglycemia and obesity of obese mice mainly by activating FAM3A-ATP-CaM-FOXA2-CPT2 pathway in liver and thermogenesis in brown adipose tissue (BAT). In FAM3A-deficient mice fed on high-fat-diet, imipramine treatment failed to correct the dysregulated lipid and glucose metabolism, and activate thermogenesis in BAT. In conclusion, imipramine activates FAM3A-ATP-CaM-FOXA2-CPT2 pathway to ameliorate steatosis. For depressive patients complicated with metabolic disorders, imipramine may be recommended in priority as antidepressive drug.
Collapse
Affiliation(s)
- Xiangyang Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Chengqing Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Zhenzhen Chen
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Na Li
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Xiaoxing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yujing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
10
|
Du Y, Zhang H, Nie X, Qi Y, Shi S, Han Y, Zhou W, He C, Wang L. Link between sterile inflammation and cardiovascular diseases: Focus on cGAS-STING pathway in the pathogenesis and therapeutic prospect. Front Cardiovasc Med 2022; 9:965726. [PMID: 36072862 PMCID: PMC9441773 DOI: 10.3389/fcvm.2022.965726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Sterile inflammation characterized by unresolved chronic inflammation is well established to promote the progression of multiple autoimmune diseases, metabolic disorders, neurodegenerative diseases, and cardiovascular diseases, collectively termed as sterile inflammatory diseases. In recent years, substantial evidence has revealed that the inflammatory response is closely related to cardiovascular diseases. Cyclic guanosine monophosphate–adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway which is activated by cytoplasmic DNA promotes the activation of interferon regulatory factor 3 (IRF3) or nuclear factor-κB (NF-κB), thus leading to upregulation of the levels of inflammatory factors and interferons (IFNs). Therefore, studying the role of inflammation caused by cGAS-STING pathway in cardiovascular diseases could provide a new therapeutic target for cardiovascular diseases. This review focuses on that cGAS-STING-mediated inflammatory response in the progression of cardiovascular diseases and the prospects of cGAS or STING inhibitors for treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yao Du
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hui Zhang
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Nie
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yajun Qi
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Shi Shi
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yingying Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenchen Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chaoyong He
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Chaoyong He
| | - Lintao Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
- Lintao Wang
| |
Collapse
|
11
|
Yan H, Chen Z, Zhang H, Yang W, Liu X, Meng Y, Xiang R, Wu Z, Ye J, Chi Y, Yang J. Intracellular ATP Signaling Contributes to FAM3A-Induced PDX1 Upregulation in Pancreatic Beta Cells. Exp Clin Endocrinol Diabetes 2021; 130:498-508. [PMID: 34592773 PMCID: PMC9377833 DOI: 10.1055/a-1608-0607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
FAM3A is a recently identified mitochondrial protein that stimulates
pancreatic-duodenal homeobox 1 (PDX1) and insulin expressions by promoting ATP
release in islet β cells. In this study, the role of intracellular ATP
in FAM3A-induced PDX1 expression in pancreatic β cells was further
examined. Acute FAM3A inhibition using siRNA transfection in mouse pancreatic
islets significantly reduced PDX1 expression, impaired insulin secretion, and
caused glucose intolerance in normal mice.
In vitro
, FAM3A overexpression
elevated both intracellular and extracellular ATP contents and promoted PDX1
expression and insulin secretion. FAM3A-induced increase in cellular calcium
(Ca
2+
) levels, PDX1 expression, and insulin secretion,
while these were significantly repressed by inhibitors of P2 receptors or the
L-type Ca
2+
channels. FAM3A-induced PDX1 expression was
abolished by a calmodulin inhibitor. Likewise, FAM3A-induced β-cell
proliferation was also inhibited by a P2 receptor inhibitor and an L-type
Ca
2+
channels inhibitor. Both intracellular and
extracellular ATP contributed to FAM3A-induced PDX1 expression, insulin
secretion, and proliferation of pancreatic β cells.
Collapse
Affiliation(s)
- Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Zhenzhen Chen
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Haizeng Zhang
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiangyang Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Zhe Wu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Jingjing Ye
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
12
|
Chen Z, Liu X, Luo Y, Wang J, Meng Y, Sun L, Chang Y, Cui Q, Yang J. Repurposing Doxepin to Ameliorate Steatosis and Hyperglycemia by Activating FAM3A Signaling Pathway. Diabetes 2020; 69:1126-1139. [PMID: 32312868 PMCID: PMC7243289 DOI: 10.2337/db19-1038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/13/2020] [Indexed: 01/07/2023]
Abstract
Mitochondrial protein FAM3A suppresses hepatic gluconeogenesis and lipogenesis. This study aimed to screen drug(s) that activates FAM3A expression and evaluate its effect(s) on hyperglycemia and steatosis. Drug-repurposing methodology predicted that antidepressive drug doxepin was among the drugs that potentially activated FAM3A expression. Doxepin was further validated to stimulate the translocation of transcription factor HNF4α from the cytoplasm into the nucleus, where it promoted FAM3A transcription to enhance ATP synthesis, suppress gluconeogenesis, and reduce lipid deposition in hepatocytes. HNF4α antagonism or FAM3A deficiency blunted doxepin-induced suppression on gluconeogenesis and lipid deposition in hepatocytes. Doxepin administration attenuated hyperglycemia, steatosis, and obesity in obese diabetic mice with upregulated FAM3A expression in liver and brown adipose tissues (BAT). Notably, doxepin failed to correct dysregulated glucose and lipid metabolism in FAM3A-deficient mice fed on high-fat diet. Doxepin's effects on ATP production, Akt activation, gluconeogenesis, and lipogenesis repression were also blunted in FAM3A-deficient mouse livers. In conclusion, FAM3A is a therapeutic target for diabetes and steatosis. Antidepressive drug doxepin activates FAM3A signaling pathways in liver and BAT to improve hyperglycemia and steatosis of obese diabetic mice. Doxepin might be preferentially recommended as an antidepressive drug in potential treatment of patients with diabetes complicated with depression.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, China
| | - Xiangyang Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Yanjin Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Yongsheng Chang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Qinghua Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
13
|
Xiang R, Chen J, Li S, Yan H, Meng Y, Cai J, Cui Q, Yang Y, Xu M, Geng B, Yang J. VSMC-Specific Deletion of FAM3A Attenuated Ang II-Promoted Hypertension and Cardiovascular Hypertrophy. Circ Res 2020; 126:1746-1759. [PMID: 32279581 DOI: 10.1161/circresaha.119.315558] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RATIONALE Dysregulated purinergic signaling transduction plays important roles in the pathogenesis of cardiovascular diseases. However, the role and mechanism of vascular smooth muscle cell (VSMC)-released ATP in the regulation of blood pressure, and the pathogenesis of hypertension remain unknown. FAM3A (family with sequence similarity 3 member A) is a new mitochondrial protein that enhances ATP production and release. High expression of FAM3A in VSMC suggests it may play a role in regulating vascular constriction and blood pressure. OBJECTIVE To determine the role and mechanism of FAM3A-ATP signaling pathway in VSMCs in the regulation of blood pressure and the pathogenesis of hypertension. METHODS AND RESULTS In the media layer of hypertensive rat and mouse arteries, and the internal mammary artery of hypertensive patients, FAM3A expression was increased. VSMC-specific deletion of FAM3A reduced vessel contractility and blood pressure levels in mice. Moreover, deletion of FAM3A in VSMC attenuated Ang II (angiotensin II)-induced vascular constriction and remodeling, hypertension, and cardiac hypertrophy in mice. In cultured VSMCs, Ang II activated HSF1 (heat shock factor 1) to stimulate FAM3A expression, activating ATP-P2 receptor pathway to promote the change of VSMCs from contractile phenotype to proliferative phenotype. In the VSMC layer of spontaneously hypertensive rat arteries, Ang II-induced hypertensive mouse arteries and the internal mammary artery of hypertensive patients, HSF1 expression was increased. Treatment with HSF1 inhibitor reduced artery contractility and ameliorated hypertension of spontaneously hypertensive rats. CONCLUSIONS FAM3A is an important regulator of vascular constriction and blood pressure. Overactivation of HSF1-FAM3A-ATP signaling cascade in VSMCs plays important roles in Ang II-induced hypertension and cardiovascular diseases. Inhibitors of HSF1 could be potentially used to treat hypertension.
Collapse
Affiliation(s)
- Rui Xiang
- From the Department of Physiology and Pathophysiology (R.X., J. Chen, H.Y., Y.M., J.Y.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| | - Ji Chen
- From the Department of Physiology and Pathophysiology (R.X., J. Chen, H.Y., Y.M., J.Y.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| | - Shuangyue Li
- Hypertension Center, Fuwai Hospital, CAMS&PUMC. State Key Laboratory of Cardiovascular Disease (S.L., J. Cai, B.G.)
| | - Han Yan
- From the Department of Physiology and Pathophysiology (R.X., J. Chen, H.Y., Y.M., J.Y.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| | - Yuhong Meng
- From the Department of Physiology and Pathophysiology (R.X., J. Chen, H.Y., Y.M., J.Y.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| | - Jun Cai
- Hypertension Center, Fuwai Hospital, CAMS&PUMC. State Key Laboratory of Cardiovascular Disease (S.L., J. Cai, B.G.)
| | - Qinghua Cui
- Department of Biomedical Informatics (Q.C.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| | - Yan Yang
- Department of Surgery, Fuwai Hospital, CAMS&PUMC (Y.Y.)
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.X.)
| | - Bin Geng
- Hypertension Center, Fuwai Hospital, CAMS&PUMC. State Key Laboratory of Cardiovascular Disease (S.L., J. Cai, B.G.)
| | - Jichun Yang
- From the Department of Physiology and Pathophysiology (R.X., J. Chen, H.Y., Y.M., J.Y.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| |
Collapse
|
14
|
Yang W, Chi Y, Meng Y, Chen Z, Xiang R, Yan H, Yang J. FAM3A plays crucial roles in controlling PDX1 and insulin expressions in pancreatic beta cells. FASEB J 2020; 34:3915-3931. [PMID: 31944392 DOI: 10.1096/fj.201902368rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 11/11/2022]
Abstract
So far, the mechanism that links mitochondrial dysfunction to PDX1 inhibition in the pathogenesis of pancreatic β cell dysfunction under diabetic condition remains largely unclear. This study determined the role of mitochondrial protein FAM3A in regulating PDX1 expression in pancreatic β cells using gain- and loss-of function methods in vitro and in vivo. Within pancreas, FAM3A is highly expressed in β, α, δ, and pp cells of islets. Islet FAM3A expression was correlated with insulin expression under physiological and diabetic conditions. Mice with specific knockout of FAM3A in islet β cells exhibited markedly blunted insulin secretion and glucose intolerance. FAM3A-deficient islets showed significant decrease in PDX1 expression, and insulin expression and secretion. FAM3A overexpression upregulated PDX1 and insulin expressions, and augmented insulin secretion in cultured islets and β cells. Mechanistically, FAM3A enhanced ATP production to elevate cellular Ca2+ level and promote insulin secretion. Furthermore, FAM3A-induced ATP release activated CaM to function as a co-activator of FOXA2, stimulating PDX1 gene transcription. In conclusion, FAM3A plays crucial roles in controlling PDX1 and insulin expressions in pancreatic β cells. Inhibition of FAM3A will trigger mitochondrial dysfunction to repress PDX1 and insulin expressions.
Collapse
Affiliation(s)
- Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Zhenzhen Chen
- State Key Laboratory of Cardiovascular Disease, Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
15
|
Yan S, Jiang C, Li H, Li D, Dong W. FAM3A protects chondrocytes against interleukin-1β-induced apoptosis through regulating PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun 2019; 516:209-214. [PMID: 31208715 DOI: 10.1016/j.bbrc.2019.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
Chondrocyte death due to apoptosis is central for osteoarthritis (OA) pathogenesis. The family with sequence similarity 3A (FAM3A) is a mitochondrial protein that plays an important role for cellular adaptation to stress and cell survival. Yet, whether FAM3A is associated with chondrocyte apoptosis and OA pathogenesis remains uncharacterized. In this study, we found that FAM3A expression was downregulated in cartilage tissue from an experimental OA mouse model. Besides, FAM3A expression was also reduced in chondrocytes treated with interleukin-1β (IL-1β), an inflammatory cytokine that promotes cartilage degradation. Moreover, we discovered that FAM3A attenuated chondrocyte apoptosis induced by IL-1β treatment in vitro, suggesting a protective effect of FAM3A against chondrocyte apoptosis. Moreover, mechanistically, FAM3A activated PI3K/Akt/mTOR pathway in IL-1β-treated chondrocytes, and blockade of PI3K/Akt/mTOR pathway with specific inhibitors, wortmannin and LY294002, diminished FAM3A effect on IL-1β-induced chondrocyte apoptosis, hence demonstrating that FAM3A attenuates IL-1β-induced chondrocyte apoptosis through activating the pro-survival PI3K/Akt/mTOR pathway. In conclusion, our study may identify FAM3A as a potential regulator of chondrocyte apoptosis involved in OA pathogenesis.
Collapse
Affiliation(s)
- Song Yan
- Bone and Joint Surgery, Shenzhen Baoan Shiyan People's Hospital, China
| | - Changqing Jiang
- Department of Sports Medicine, Peking University Shenzhen Hospital, China
| | - Hong Li
- Department of General Surgery, People's Hospital of Baoan District, China
| | - Deyan Li
- Bone and Joint Surgery, Shenzhen Baoan Shiyan People's Hospital, China
| | - Wei Dong
- Bone and Joint Surgery, Shenzhen Baoan Shiyan People's Hospital, China.
| |
Collapse
|
16
|
Davidson SM. FAM3A - A mitochondrial route to the stimulation of angiogenesis? EBioMedicine 2019; 43:3-4. [PMID: 31029586 PMCID: PMC6562064 DOI: 10.1016/j.ebiom.2019.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/17/2019] [Indexed: 12/05/2022] Open
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, WC1E 6HX London, United Kingdom.
| |
Collapse
|
17
|
Sala D, Cunningham TJ, Stec MJ, Etxaniz U, Nicoletti C, Dall'Agnese A, Puri PL, Duester G, Latella L, Sacco A. The Stat3-Fam3a axis promotes muscle stem cell myogenic lineage progression by inducing mitochondrial respiration. Nat Commun 2019; 10:1796. [PMID: 30996264 PMCID: PMC6470137 DOI: 10.1038/s41467-019-09746-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolic reprogramming is an active regulator of stem cell fate choices, and successful stem cell differentiation in different compartments requires the induction of oxidative phosphorylation. However, the mechanisms that promote mitochondrial respiration during stem cell differentiation are poorly understood. Here we demonstrate that Stat3 promotes muscle stem cell myogenic lineage progression by stimulating mitochondrial respiration in mice. We identify Fam3a, a cytokine-like protein, as a major Stat3 downstream effector in muscle stem cells. We demonstrate that Fam3a is required for muscle stem cell commitment and skeletal muscle development. We show that myogenic cells secrete Fam3a, and exposure of Stat3-ablated muscle stem cells to recombinant Fam3a in vitro and in vivo rescues their defects in mitochondrial respiration and myogenic commitment. Together, these findings indicate that Fam3a is a Stat3-regulated secreted factor that promotes muscle stem cell oxidative metabolism and differentiation, and suggests that Fam3a is a potential tool to modulate cell fate choices.
Collapse
Affiliation(s)
- David Sala
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Thomas J Cunningham
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Michael J Stec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Usue Etxaniz
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Chiara Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Alessandra Dall'Agnese
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA
- IRCCS, Fondazione Santa Lucia, Rome, 00142, Italy
| | - Gregg Duester
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Lucia Latella
- IRCCS, Fondazione Santa Lucia, Rome, 00142, Italy
- Institute of Translational Pharmacology, National Research Council of Italy, Via Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
18
|
Xu W, Liang M, Zhang Y, Huang K, Wang C. Endothelial FAM3A positively regulates post-ischaemic angiogenesis. EBioMedicine 2019; 43:32-42. [PMID: 31000420 PMCID: PMC6562148 DOI: 10.1016/j.ebiom.2019.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/03/2019] [Accepted: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
Background Angiogenesis improves reperfusion to the ischaemic tissue after vascular obstruction. The underlying molecular mechanisms of post-ischaemic angiogenesis are not clear. FAM3A belongs to the family with sequence similarity 3 (FAM3) genes, but its biological function in endothelial cells in regards to vascular diseases is not well understood. Methods Gain- and loss-of-function methods by adenovirus or associated-adenovirus (AAV) in different models were applied to investigate the effects of FAM3A on endothelial angiogenesis. Endothelial angiogenesis was analysed by tube formation, migration and proliferation in vitro, and the blood flow and capillary density in a hind limb ischaemic model in vivo. Findings Endothelial FAM3A expression is downregulated under hypoxic conditions. Overexpression of FAM3A promotes, but depletion of FAM3A suppresses, endothelial tube formation, proliferation and migration. Utilizing the mouse hind limb ischaemia model, we also observe that FAM3A overexpression can improve blood perfusion and increase capillary density, whereas FAM3A knockdown has the opposite effects. Mechanistically, mitochondrial FAM3A increases adenosine triphosphate (ATP) production and secretion; ATP binds to P2 receptors and then upregulates cytosolic free Ca2+ levels. Increased intracellular Ca2+ levels enhance phosphorylation of the transcriptional factor cAMP response element binding protein (CREB) and its recruitment to the VEGFA promoter, thus activating VEGFA transcription and the final endothelial angiogenesis. Interpretation In summary, our data demonstrate that FAM3A positively regulates angiogenesis through activation of VEGFA transcription, suggesting that FAM3A may constitute a novel molecular therapeutic target for ischaemic vascular disease.
Collapse
Affiliation(s)
- Wenjing Xu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Zhang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Yang W, Feng B, Meng Y, Wang J, Geng B, Cui Q, Zhang H, Yang Y, Yang J. FAM3C-YY1 axis is essential for TGFβ-promoted proliferation and migration of human breast cancer MDA-MB-231 cells via the activation of HSF1. J Cell Mol Med 2019; 23:3464-3475. [PMID: 30887707 PMCID: PMC6484506 DOI: 10.1111/jcmm.14243] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/22/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
Family with sequence similarity three member C (FAM3C) (interleukin‐like EMT inducer [ILEI]), heat shock factor 1 (HSF1) and Ying‐Yang 1 (YY1) have been independently reported to be involved in the pathogenesis of various cancers. However, whether they are coordinated to trigger the development of cancer remains unknown. This study determined the role and mechanism of YY1 and HSF1 in FAM3C‐induced proliferation and migration of breast cancer cells. In human MDA‐MB‐231 breast cancer cell line, transforming growth factor‐β (TGFβ) up‐regulated FAM3C, HSF1 and YY1 expressions. FAM3C overexpression promoted the proliferation and migration of MDA‐MB‐231 cells with YY1 and HSF1 up‐regulation, whereas FAM3C silencing exerted the opposite effects. FAM3C inhibition repressed TGFβ‐induced HSF1 activation, and proliferation and migration of breast cancer cells. YY1 was shown to directly activate HSF1 transcription to promote the proliferation and migration of breast cancer cells. YY1 silencing blunted FAM3C‐ and TGFβ‐triggered activation of HSF1‐Akt‐Cyclin D1 pathway, and proliferation and migration of breast cancer cells. Inhibition of HSF1 blocked TGFβ‐, FAM3C‐ and YY1‐induced proliferation and migration of breast cancer cells. YY1 and HSF1 had little effect on FAM3C expression. Similarly, inhibition of HSF1 also blunted FAM3C‐ and TGFβ‐promoted proliferation and migration of human breast cancer BT‐549 cells. In human breast cancer tissues, FAM3C, YY1 and HSF1 protein expressions were increased. In conclusion, FAM3C activated YY1‐HSF1 signalling axis to promote the proliferation and migration of breast cancer cells. Furthermore, novel FAM3C‐YY1‐HSF1 pathway plays an important role in TGFβ‐triggered proliferation and migration of human breast cancer MDA‐MB‐231 cells.
Collapse
Affiliation(s)
- Weili Yang
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Biaoqi Feng
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Yuhong Meng
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Junpei Wang
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Bin Geng
- State Key Laboratory of Cardiovascular Disease, Hypertension Center, Fuwai Hospital, Peking University Health Science Center, CAMS & PUMC, Beijing, China
| | - Qinghua Cui
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jichun Yang
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
20
|
Zeng P, Chen J, Meng Y, Zhou Y, Yang J, Cui Q. Defining Essentiality Score of Protein-Coding Genes and Long Noncoding RNAs. Front Genet 2018; 9:380. [PMID: 30356729 PMCID: PMC6189311 DOI: 10.3389/fgene.2018.00380] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022] Open
Abstract
Measuring the essentiality of genes is critically important in biology and medicine. Here we proposed a computational method, GIC (Gene Importance Calculator), which can efficiently predict the essentiality of both protein-coding genes and long noncoding RNAs (lncRNAs) based on only sequence information. For identifying the essentiality of protein-coding genes, GIC outperformed well-established computational scores. In an independent mouse lncRNA dataset, GIC also achieved an exciting performance (AUC = 0.918). In contrast, the traditional computational methods are not applicable to lncRNAs. Moreover, we explored several potential applications of GIC score. Firstly, we revealed a correlation between gene GIC score and research hotspots of genes. Moreover, GIC score can be used to evaluate whether a gene in mouse is representative for its homolog in human by dissecting its cross-species difference. This is critical for basic medicine because many basic medical studies are performed in animal models. Finally, we showed that GIC score can be used to identify candidate genes from a transcriptomics study. GIC is freely available at http://www.cuilab.cn/gic/.
Collapse
Affiliation(s)
- Pan Zeng
- School of Basic Medical Sciences, MOE Key Lab of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Centre for Noncoding RNA Medicine, Peking University, Beijing, China
| | - Ji Chen
- School of Basic Medical Sciences, MOE Key Lab of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Centre for Noncoding RNA Medicine, Peking University, Beijing, China
| | - Yuhong Meng
- School of Basic Medical Sciences, MOE Key Lab of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Centre for Noncoding RNA Medicine, Peking University, Beijing, China
| | - Yuan Zhou
- School of Basic Medical Sciences, MOE Key Lab of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Centre for Noncoding RNA Medicine, Peking University, Beijing, China
| | - Jichun Yang
- School of Basic Medical Sciences, MOE Key Lab of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Centre for Noncoding RNA Medicine, Peking University, Beijing, China
| | - Qinghua Cui
- School of Basic Medical Sciences, MOE Key Lab of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Centre for Noncoding RNA Medicine, Peking University, Beijing, China
| |
Collapse
|
21
|
Novel Targets for Treating Ischemia-Reperfusion Injury in the Liver. Int J Mol Sci 2018; 19:ijms19051302. [PMID: 29701719 PMCID: PMC5983804 DOI: 10.3390/ijms19051302] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022] Open
Abstract
Liver ischemia-reperfusion injury (IRI) is a major complication of hemorrhagic shock, liver transplantation, and other liver surgeries. It is one of the leading causes for post-surgery hepatic dysfunction, always leading to morbidity and mortality. Several strategies, such as low-temperature reperfusion and ischemic preconditioning, are useful for ameliorating liver IRI in animal models. However, these methods are difficult to perform in clinical surgeries. It has been reported that the activation of peroxisome proliferator activated receptor gamma (PPARγ) protects the liver against IRI, but with unidentified direct target gene(s) and unclear mechanism(s). Recently, FAM3A, a direct target gene of PPARγ, had been shown to mediate PPARγ’s protective effects in liver IRI. Moreover, noncoding RNAs, including LncRNAs and miRNAs, had also been reported to play important roles in the process of hepatic IRI. This review briefly discussed the roles and mechanisms of several classes of important molecules, including PPARγ, FAM3A, miRNAs, and LncRNAs, in liver IRI. In particular, oral administration of PPARγ agonists before liver surgery or liver transplantation to activate hepatic FAM3A pathways holds great promise for attenuating human liver IRI.
Collapse
|
22
|
Chen Z, Wang J, Yang W, Chen J, Meng Y, Geng B, Cui Q, Yang J. FAM3A mediates PPARγ's protection in liver ischemia-reperfusion injury by activating Akt survival pathway and repressing inflammation and oxidative stress. Oncotarget 2018; 8:49882-49896. [PMID: 28562339 PMCID: PMC5564815 DOI: 10.18632/oncotarget.17805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
FAM3A is a novel mitochondrial protein, and its biological function remains largely unknown. This study determined the role and mechanism of FAM3A in liver ischemia-reperfusion injury (IRI). In mouse liver after IRI, FAM3A expression was increased. FAM3A-deficient mice exhibited exaggerated liver damage with increased serum levels of AST, ALT, MPO, MDA and oxidative stress when compared with WT mice after liver IRI. FAM3A-deficient mouse livers had a decrease in ATP content, Akt activity and anti-apoptotic protein expression with an increase in apoptotic protein expression, inflammation and oxidative stress when compared WT mouse livers after IRI. Rosiglitazone pretreatment protected against liver IRI in wild type mice but not in FAM3A-deficient mice. In cultured hepatocytes, FAM3A overexpression protected against, whereas FAM3A deficiency exaggerated oxidative stress-induced cell death. FAM3A upregulation or FAM3A overexpression inhibited hypoxia/reoxygenation-induced activation of apoptotic gene and hepatocyte death in P2 receptor-dependent manner. FAM3A deficiency blunted rosiglitazone's beneficial effects on Akt activation and cell survival in cultured hepatocytes. Collectively, FAM3A protects against liver IRI by activating Akt survival pathways, repressing inflammation and attenuating oxidative stress. Moreover, the protective effects of PPARγ agonist(s) on liver IRI are dependent on FAM3A-ATP-Akt pathway.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China.,Department of Biomedical Informatics, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Junpei Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ji Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Bin Geng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
23
|
Zhang X, Yang W, Wang J, Meng Y, Guan Y, Yang J. FAM3 gene family: A promising therapeutical target for NAFLD and type 2 diabetes. Metabolism 2018; 81:71-82. [PMID: 29221790 DOI: 10.1016/j.metabol.2017.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/08/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and diabetes are severe public health issues worldwide. The Family with sequence similarity 3 (FAM3) gene family consists of four members designated as FAM3A, FAM3B, FAM3C and FAM3D, respectively. Recently, there had been increasing evidence that FAM3A, FAM3B and FAM3C are important regulators of glucose and lipid metabolism. FAM3A expression is reduced in the livers of diabetic rodents and NAFLD patients. Hepatic FAM3A restoration activates ATP-P2 receptor-Akt and AMPK pathways to attenuate steatosis and hyperglycemia in obese diabetic mice. FAM3C expression is also reduced in the liver under diabetic condition. FAM3C is a new hepatokine that activates HSF1-CaM-Akt pathway and represses mTOR-SREBP1-FAS pathway to suppress hepatic gluconeogenesis and lipogenesis. In contrast, hepatic expression of FAM3B, also called PANDER, is increased under obese state. FAM3B promotes hepatic lipogenesis and gluconeogenesis by repressing Akt and AMPK activities, and activating lipogenic pathway. Under obese state, the imbalance among hepatic FAM3A, FAM3B and FAM3C signaling networks plays important roles in the pathogenesis of NAFLD and type 2 diabetes. This review briefly discussed the latest research progress on the roles and mechanisms of FAM3A, FAM3B and FAM3C in the regulation of hepatic glucose and lipid metabolism.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
24
|
Zhu Q, Ni XQ, Lu WW, Zhang JS, Ren JL, Wu D, Chen Y, Zhang LS, Yu YR, Tang CS, Qi YF. Intermedin reduces neointima formation by regulating vascular smooth muscle cell phenotype via cAMP/PKA pathway. Atherosclerosis 2017; 266:212-222. [PMID: 29053988 DOI: 10.1016/j.atherosclerosis.2017.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/13/2017] [Accepted: 10/06/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND AIMS Vascular smooth muscle cell (VSMC) dedifferentiation contributes to neointima formation, which results in various vascular disorders. Intermedin (IMD), a cardiovascular paracrine/autocrine polypeptide, is involved in maintaining circulatory homeostasis. However, whether IMD protects against neointima formation remains largely unknown. The purpose of this study is to investigate the role of IMD in neointima formation and the possible mechanism. METHODS IMD1-53 (100ng/kg/h) or saline water was used on rat carotid-artery balloon-injury model. The mouse left common carotid-artery ligation-injury model was established using IMD-transgenic and C57BL/6J mice. Immunohistochemistry and immunofluorescence staining was used to detect the protein expression in rat carotid arteries. Radioimmunoassay was used to determine the serum IMD level. The hematoxylin andeosin staining was used for carotid arteries morphological testing. In vitro, for rat primary cultured VSMC phenotype transition, proliferation and migration assays, platelet-derived growth factor-BB (PDGF-BB) reagent and IMD1-53 peptide were added to the culture media at the final concentration of 20 ng/mL and 10-7mol/L respectively. Quantification of VSMC proliferation involved MTT and BrdU assay and migration was detected by wound-healing assay. Western blot and realtime PCR were used to detect the protein and mRNA levels of tissues or cells. RESULTS With the rat carotid-artery balloon-injury model, IMD was significantly downregulated in injured arteries and plasma. Exogenous IMD1-53 greatly inhibited neointima formation and prevented VSMC from switching to a synthetic phenotype. With the left common carotid-artery ligation-injury model, IMD-transgenic mice showed less neointima formation than C57BL/6J mice. PDGF-BB reduced IMD mRNA expression in rat primary cultured VSMCs but increased that of its receptors, calcitonin receptor-like receptor or receptor activity-modifying proteins. Furthermore, PDGF-BB promoted VSMC proliferation and migration and transformed VSMCs to the synthetic phenotype, which was reversed with IMD1-53 treatment. Mechanistically, IMD1-53 maintained the contractile VSMC phenotype via the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway. CONCLUSIONS IMD attenuated neointima formation both in the rat model of carotid-artery balloon injury and mouse model of common carotid-artery ligation injury. IMD protection may be mediated by maintaining a VSMC contractile phenotype via the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Qing Zhu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xian-Qiang Ni
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Wei-Wei Lu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jin-Sheng Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Di Wu
- The Peking University Aerospace School of Clinical Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yan-Rong Yu
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chao-Shu Tang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
25
|
Liu D, Wu M, Du Q, Ding Z, Qian M, Tong Z, Xu W, Zhang L, Chang H, Wang Y, Huang C, Lin D. The apolipoprotein A-I mimetic peptide, D-4F, restrains neointimal formation through heme oxygenase-1 up-regulation. J Cell Mol Med 2017; 21:3810-3820. [PMID: 28767201 PMCID: PMC5706511 DOI: 10.1111/jcmm.13290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 05/27/2017] [Indexed: 12/21/2022] Open
Abstract
D‐4F, an apolipoprotein A‐I (apoA‐I) mimetic peptide, possesses distinctly anti‐atherogenic effects. However, the biological functions and mechanisms of D‐4F on the hyperplasia of vascular smooth muscle cells (VSMCs) remain unclear. This study aimed to determine its roles in the proliferation and migration of VSMCs. In vitro, D‐4F inhibited VSMC proliferation and migration induced by ox‐LDL in a dose‐dependent manner. D‐4F up‐regulated heme oxygenase‐1 (HO‐1) expression in VSMCs, and the PI3K/Akt/AMP‐activated protein kinase (AMPK) pathway was involved in these processes. HO‐1 down‐regulation with siRNA or inhibition with zinc protoporphyrin (Znpp) impaired the protective effects of D‐4F on the oxidative stress and the proliferation and migration of VSMCs. Moreover, down‐regulation of ATP‐binding cassette transporter A1 (ABCA1) abolished the activation of Akt and AMPK, the up‐regulation of HO‐1 and the anti‐oxidative effects of D‐4F. In vivo, D‐4F restrained neointimal formation and oxidative stress of carotid arteries in balloon‐injured Sprague Dawley rats. And inhibition of HO‐1 with Znpp decreased the inhibitory effects of D‐4F on neointimal formation and ROS production in arteries. In conclusion, D‐4F inhibited VSMC proliferation and migration in vitro and neointimal formation in vivo through HO‐1 up‐regulation, which provided a novel prophylactic and therapeutic strategy for anti‐restenosis of arteries.
Collapse
Affiliation(s)
- Donghui Liu
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Mengzhang Wu
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China.,Union Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qian Du
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Zhenzhen Ding
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China.,Union Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Mingming Qian
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Zijia Tong
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China.,Union Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wenqi Xu
- High-field NMR Research Center, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Le Zhang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - He Chang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Yan Wang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Caihua Huang
- Department of Physical Education, Xiamen University of Technology, Xiamen, China
| | - Donghai Lin
- High-field NMR Research Center, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
26
|
Chi Y, Li J, Li N, Chen Z, Ma L, Peng W, Pan X, Li M, Yu W, He X, Geng B, Cui Q, Liu Y, Yang J. FAM3A enhances adipogenesis of 3T3-L1 preadipocytes via activation of ATP-P2 receptor-Akt signaling pathway. Oncotarget 2017; 8:45862-45873. [PMID: 28515350 PMCID: PMC5542233 DOI: 10.18632/oncotarget.17578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 04/23/2017] [Indexed: 12/14/2022] Open
Abstract
FAM3A plays important roles in regulating hepatic glucose/lipid metabolism and the proliferation of VSMCs. This study determined the role and mechanism of FAM3A in the adipogenesis of 3T3-L1 preadipocytes. During the adipogenesis of 3T3-L1 preadipocytes, FAM3A expression was significantly increased. FAM3A overexpression enhanced 3T3-L1 preadipocyte adipogenesis with increased phosphorylated Akt (pAkt) level, whereas FAM3A silencing inhibited 3T3-L1 preadipocyte adipogenesis with reduced pAkt level. Moreover, FAM3A silencing reduced the expression and secretion of adipokines in 3T3-L1 cells. FAM3A protein is mainly located in mitochondrial fraction of 3T3-L1 cells and mouse adipose tissue. FAM3A overexpression increased, whereas FAM3A silencing decreased ATP production in 3T3-L1 preadipocytes. FAM3A-induced adipogenesis of 3T3-L1 preadipocytes was blunted by inhibitor of P2 receptor. In white adipose tissues of db/db and HFD-fed obese mice, FAM3A expression was reduced. One-month rosiglitazone administration upregulated FAM3A expression, and increased cellular ATP content and pAkt level in white adipose tissues of normal and obese mice. In conclusion, FAM3A enhances the adipogenesis of preadipocytes by activating ATP-P2 receptor-Akt pathway. Under obese condition, a decrease in FAM3A expression in adipose tissues plays important roles in the development of adipose dysfunction and type 2 diabetes.
Collapse
Affiliation(s)
- Yujing Chi
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Jing Li
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Na Li
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Liping Ma
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Weikang Peng
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Xiuying Pan
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Mei Li
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Weidong Yu
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Xiangjun He
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Bin Geng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Yulan Liu
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| |
Collapse
|
27
|
Cao T, Yang D, Zhang X, Wang Y, Qiao Z, Gao L, Liang Y, Yu B, Zhang P. FAM3D inhibits glucagon secretion via MKP1-dependent suppression of ERK1/2 signaling. Cell Biol Toxicol 2017; 33:457-466. [PMID: 28247283 DOI: 10.1007/s10565-017-9387-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 02/13/2017] [Indexed: 12/28/2022]
Abstract
Dysregulated glucagon secretion is a hallmark of type 2 diabetes (T2D). To date, few effective therapeutic agents target on deranged glucagon secretion. Family with sequence similarity 3 member D (FAM3D) is a novel gut-derived cytokine-like protein, and its secretion timing is contrary to that of glucagon. However, the roles of FAM3D in metabolic disorder and its biological functions are largely unknown. In the present study, we investigated whether FAM3D modulates glucagon production in mouse pancreatic alpha TC1 clone 6 (αTC1-6) cells. Glucagon secretion, prohormone convertase 2 (PC2) activity, and mitogen-activated protein kinase (MAPK) pathway were assessed. Exogenous FAM3D inhibited glucagon secretion, PC2 activity, as well as extracellular-regulated protein kinase 1/2 (ERK1/2) signaling and induced MAPK phosphatase 1 (MKP1) expression. Moreover, knockdown of MKP1 and inhibition of ERK1/2 abolished and potentiated the inhibitory effect of FAM3D on glucagon secretion, respectively. Taken together, FAM3D inhibits glucagon secretion via MKP1-dependent suppression of ERK1/2 signaling. These results provide rationale for developing the therapeutic potential of FAM3D for dysregulated glucagon secretion and T2D.
Collapse
Affiliation(s)
- Ting Cao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Dan Yang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiong Zhang
- Department of Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yueqian Wang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Zhengdong Qiao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Lili Gao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Yongjun Liang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Bo Yu
- Department of Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| | - Peng Zhang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
- Department of Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| |
Collapse
|
28
|
Bendre A, Büki KG, Määttä JA. Fam3c modulates osteogenic differentiation by down-regulating Runx2. Differentiation 2016; 93:50-57. [PMID: 27914282 DOI: 10.1016/j.diff.2016.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/04/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022]
Abstract
Fam3c, a cytokine-like protein, is a member of the Fam3 family (family with sequence similarity 3) and has been implicated to play a crucial role in Epithelial-to- mesenchymal transition (EMT) and subsequent metastasis during cancer progression. A few independent genome-wide association studies on different population cohorts predicted the gene locus of Fam3c to be associated with bone mineral density and fractures. In this study, we examined the role of Fam3c during osteoblast differentiation. Fam3c was found to be expressed during osteogenic differentiation of both primary bone marrow stromal cells and MC3T3-E1 pre-osteoblasts. In differentiating osteoblasts, knockdown of Fam3c increased alkaline phosphatase expression and activity whereas overexpression of Fam3c reduced it. Furthermore, overexpression of Fam3c caused reduction of Runx2 expression at both mRNA and protein levels. Fam3c was localized in the cytoplasm and it was not secreted outside the cell during osteoblast differentiation and therefore, may function intracellularly. Furthermore, Fam3c and TGF-β1 were found to regulate each other reciprocally. Our findings therefore suggest a functional role of Fam3c in the regulation of osteoblast differentiation.
Collapse
Affiliation(s)
- Ameya Bendre
- Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Kalman G Büki
- Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Jorma A Määttä
- Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Turku, Finland.
| |
Collapse
|
29
|
FAM3A attenuates ER stress-induced mitochondrial dysfunction and apoptosis via CHOP-Wnt pathway. Neurochem Int 2016; 94:82-9. [DOI: 10.1016/j.neuint.2016.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022]
|
30
|
Mindin regulates vascular smooth muscle cell phenotype and prevents neointima formation. Clin Sci (Lond) 2015; 129:129-45. [PMID: 25751394 DOI: 10.1042/cs20140679] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the present study, using diverse in vitro and in vivo models, we revealed that mindin is a novel modulator of VSMC phenotype and neointima formation in an AKT-dependent manner in response to vascular injury.
Collapse
|