1
|
Ouyang J, Wu D, Gan Y, Tang Y, Wang H, Huang J. Unraveling the metabolic‒epigenetic nexus: a new frontier in cardiovascular disease treatment. Cell Death Dis 2025; 16:183. [PMID: 40102393 PMCID: PMC11920384 DOI: 10.1038/s41419-025-07525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/16/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
Cardiovascular diseases are the leading causes of death worldwide. However, there are still shortcomings in the currently employed treatment methods for these diseases. Therefore, exploring the molecular mechanisms underlying cardiovascular diseases is an important avenue for developing new treatment strategies. Previous studies have confirmed that metabolic and epigenetic alterations are often involved in cardiovascular diseases across patients. Moreover, metabolic and epigenetic factors interact with each other and affect the progression of cardiovascular diseases in a coordinated manner. Lactylation is a novel posttranslational modification (PTM) that links metabolism with epigenetics and affects disease progression. Therefore, analyzing the crosstalk between cellular metabolic and epigenetic factors in cardiovascular diseases is expected to provide insights for the development of new treatment strategies. The purpose of this review is to describe the relationship between metabolic and epigenetic factors in heart development and cardiovascular diseases such as heart failure, myocardial infarction, and atherosclerosis, with a focus on acylation and methylation, and to propose potential therapeutic measures.
Collapse
Affiliation(s)
- Jun Ouyang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Deping Wu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yumei Gan
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuming Tang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China.
| | - Jiangnan Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Jyotirmaya SS, Rath S, Dandapat J. Redox imbalance driven epigenetic reprogramming and cardiovascular dysfunctions: phytocompounds for prospective epidrugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156380. [PMID: 39827814 DOI: 10.1016/j.phymed.2025.156380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are the major contributor to global mortality and are gaining incremental attention following the COVID-19 outbreak. Epigenetic events such as DNA methylation, histone modifications, and non-coding RNAs have a significant impact on the incidence and onset of CVDs. Altered redox status is one of the major causative factors that regulate epigenetic pathways linked to CVDs. Various bioactive phytocompounds used in alternative therapies including Traditional Chinese Medicines (TCM) regulate redox balance and epigenetic phenomena linked to CVDs. Phytocompound-based medications are in the limelight for the development of cost-effective drugs with the least side effects, which will have immense therapeutic applications. PURPOSE This review comprehends certain risk factors associated with CVDs and triggered by oxidative stress-driven epigenetic remodelling. Further, it critically evaluates the pharmacological efficacy of phytocompounds as inhibitors of HAT/HDAC and DNMTs as well as miRNAs regulator that lowers the incidence of CVDs, aiming for new candidates as prospective epidrugs. METHODS PRISMA flow approach has been adopted for systematic literature review. Different Journals, computational databases, search engines such as Google Scholar, PubMed, Science Direct, Scopus, and ResearchGate were used to collect online information for literature survey. Statistical information collected from the World Health Organization (WHO) site (https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)) and the American Heart Association of Heart Disease and Stroke reported the international and national status of CVDs. RESULTS The meta-analysis of various studies is elucidated in the literature, shedding light on major risk factors such as socioeconomic parameters, which contribute highly to redox imbalance, epigenetic modulations, and CVDs. Going forward, redox imbalance driven epigenetic regulations include changes in DNA methylation status, histone modifications and non-coding RNAs expression pattern which further regulates global as well as promoter modification of various transcription factors leading to the onset of CVDs. Further, the role of various bioactive compounds used in herbal medicine, including TCM for redox regulation and epigenetic modifications are discussed. Pharmacological safety doses and different phases of clinical trials of these phytocompounds are elaborated on, which shed light on the acceptance of these phytocompounds as prospective drugs. CONCLUSION This review suggests a strong linkage between therapeutic and preventive measures against CVDs by targeting redox imbalance-driven epigenetic reprogramming using phytocompounds as prospective epidrugs. Future in-depth research is required to evaluate the possible molecular mechanisms behind the phytocompound-mediated epigenetic reprogramming and oxidative stress management during CVD progression.
Collapse
Affiliation(s)
| | - Suvasmita Rath
- Post-graduate Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India.; Centre of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar,751004, Odisha, India
| | - Jagneshwar Dandapat
- Post-graduate Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India.; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India..
| |
Collapse
|
3
|
Beloborodova NV, Fedotcheva NI. Influence of the Microbial Metabolite Acetyl Phosphate on Mitochondrial Functions Under Conditions of Exogenous Acetylation and Alkalization. Metabolites 2024; 14:703. [PMID: 39728484 DOI: 10.3390/metabo14120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Acetyl phosphate (AcP) is a microbial intermediate involved in the central bacterial metabolism. In bacteria, it also functions as a donor of acetyl and phosphoryl groups in the nonenzymatic protein acetylation and signal transduction. In host, AcP was detected as an intermediate of the pyruvate dehydrogenase complex, and its appearance in the blood was considered as an indication of mitochondrial breakdown. In vitro experiments showed that AcP is a powerful agent of nonenzymatic acetylation of proteins. The influence of AcP on isolated mitochondria has not been previously studied. METHODS In this work, we tested the influence of AcP on the opening of the mitochondrial permeability transition pore (mPTP), respiration, and succinate dehydrogenase (SDH) activity under neutral and alkaline conditions stimulating the nonenzymatic acetylation using polarographic, cation-selective, and spectrophotometric methods. RESULTS It was found that AcP slowed down the opening of the mPTP by calcium ions and decreased the efficiency of oxidative phosphorylation and the activity of SDH. These effects were observed only at neutral pH, whereas alkaline pH by itself caused a decrease in these functions to a much greater extent than AcP. AcP at a concentration of 0.5-1 mM decreased the respiratory control and the swelling rate by 20-30%, while alkalization decreased them twofold, thereby masking the effect of AcP. Presumably, the acetylation of adenine nucleotide translocase involved in both the opening of mPTP and oxidative phosphorylation underlies these changes. The intermediate electron carrier phenazine methosulfate (PMS), removing SDH inhibition at the ubiquinone-binding site, strongly activated SDH under alkaline conditions and, partially, in the presence of AcP. It can be assumed that AcP weakly inhibits the oxidation of succinate, while alkalization slows down the electron transfer from the substrate to the acceptor. CONCLUSIONS The results show that both AcP and alkalization, by promoting nonmetabolic and nonenzymatic acetylation from the outside, retard mitochondrial functions.
Collapse
Affiliation(s)
- Natalia V Beloborodova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Petrovka St., 25-2, Moscow 107031, Russia
| | - Nadezhda I Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya St., 3, Pushchino 142290, Russia
| |
Collapse
|
4
|
Coluccino G, Negro A, Filippi A, Bean C, Muraca VP, Gissi C, Canetti D, Mimmi MC, Zamprogno E, Ciscato F, Acquasaliente L, De Filippis V, Comelli M, Carraro M, Rasola A, Gerle C, Bernardi P, Corazza A, Lippe G. N-terminal cleavage of cyclophilin D boosts its ability to bind F-ATP synthase. Commun Biol 2024; 7:1486. [PMID: 39528709 PMCID: PMC11555324 DOI: 10.1038/s42003-024-07172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Cyclophilin (CyP) D is a regulator of the mitochondrial F-ATP synthase. Here we report the discovery of a form of CyPD lacking the first 10 (mouse) or 13 (human) N-terminal residues (ΔN-CyPD), a protein region with species-specific features. NMR studies on recombinant human full-length CyPD (FL-CyPD) and ΔN-CyPD form revealed that the N-terminus is highly flexible, in contrast with the rigid globular part. We have studied the interactions of FL and ΔN-CyPD with F-ATP synthase at the OSCP subunit, a site where CyPD binding inhibits catalysis and favors the transition of the enzyme complex to the permeability transition pore. At variance from FL-CyPD, ΔN-CyPD binds OSCP in saline media, indicating that the N-terminus substantially decreases the binding affinity for OSCP. We also provide evidence that calpain 1 is responsible for generation of ΔN-CyPD in cells. Altogether, our work suggests the existence of a novel mechanism of modulation of CyPD through cleavage of its N-terminus that may have significant pathophysiological implications.
Collapse
Affiliation(s)
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Antonio Filippi
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Camilla Bean
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | | | - Clarissa Gissi
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Diana Canetti
- Centre for Amyloidosis, Division of Medicine, University College London, London, NW32PF, UK
| | - Maria Chiara Mimmi
- Centre for Inherited Cardiovascular Diseases, IRCCS San Matteo Hospital Foundation, 27100, Pavia, Italy
| | - Elisa Zamprogno
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Francesco Ciscato
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Institute of Neuroscience, National Research Council (CNR), 35131, Padova, Italy
| | - Laura Acquasaliente
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131, Padova, Italy
| | - Vincenzo De Filippis
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131, Padova, Italy
| | - Marina Comelli
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Michela Carraro
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Christoph Gerle
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, Hyogo, Japan
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | | | - Giovanna Lippe
- Department of Medicine, University of Udine, 33100, Udine, Italy.
| |
Collapse
|
5
|
Zhao X, Wang Z, Wang L, Jiang T, Dong D, Sun M. The PINK1/Parkin signaling pathway-mediated mitophagy: a forgotten protagonist in myocardial ischemia/reperfusion injury. Pharmacol Res 2024; 209:107466. [PMID: 39419133 DOI: 10.1016/j.phrs.2024.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Myocardial ischemia causes extensive damage, further exacerbated by reperfusion, a phenomenon called myocardial ischemia/reperfusion injury (MIRI). Nowadays, the pathological mechanisms of MIRI have received extensive attention. Oxidative stress, multiple programmed cell deaths, inflammation and others are all essential pathological mechanisms contributing to MIRI. Mitochondria are the energy supply centers of cells. Numerous studies have found that abnormal mitochondrial function is an essential "culprit" of MIRI, and mitophagy mediated by the phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1)/Parkin signaling pathway is an integral part of maintaining mitochondrial function. Therefore, exploring the association between the PINK1/Parkin signaling pathway-mediated mitophagy and MIRI is crucial. This review will mainly summarize the crucial role of the PINK1/Parkin signaling pathway-mediated mitophagy in MIR-induced several pathological mechanisms and various potential interventions that affect the PINK1/Parkin signaling pathway-mediated mitophagy, thus ameliorating MIRI.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China.
| | - Zheng Wang
- School of Medicine, Qilu Institute of Technology, Jinan 250200, China.
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110033, China.
| | - Tao Jiang
- Rehabilitation Medicine Center, The Second Hospital of Shandong University, Jinan 250033, China.
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China.
| |
Collapse
|
6
|
Dikalova A, Fehrenbach D, Mayorov V, Panov A, Ao M, Lantier L, Amarnath V, Lopez MG, Billings FT, Sack MN, Dikalov S. Mitochondrial CypD Acetylation Promotes Endothelial Dysfunction and Hypertension. Circ Res 2024; 134:1451-1464. [PMID: 38639088 PMCID: PMC11116043 DOI: 10.1161/circresaha.123.323596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Nearly half of adults have hypertension, a major risk factor for cardiovascular disease. Mitochondrial hyperacetylation is linked to hypertension, but the role of acetylation of specific proteins is not clear. We hypothesized that acetylation of mitochondrial CypD (cyclophilin D) at K166 contributes to endothelial dysfunction and hypertension. METHODS To test this hypothesis, we studied CypD acetylation in patients with essential hypertension, defined a pathogenic role of CypD acetylation in deacetylation mimetic CypD-K166R mutant mice and endothelial-specific GCN5L1 (general control of amino acid synthesis 5 like 1)-deficient mice using an Ang II (angiotensin II) model of hypertension. RESULTS Arterioles from hypertensive patients had 280% higher CypD acetylation coupled with reduced Sirt3 (sirtuin 3) and increased GCN5L1 levels. GCN5L1 regulates mitochondrial protein acetylation and promotes CypD acetylation, which is counteracted by mitochondrial deacetylase Sirt3. In human aortic endothelial cells, GCN5L1 depletion prevents superoxide overproduction. Deacetylation mimetic CypD-K166R mice were protected from vascular oxidative stress, endothelial dysfunction, and Ang II-induced hypertension. Ang II-induced hypertension increased mitochondrial GCN5L1 and reduced Sirt3 levels resulting in a 250% increase in GCN5L1/Sirt3 ratio promoting CypD acetylation. Treatment with mitochondria-targeted scavenger of cytotoxic isolevuglandins (mito2HOBA) normalized GCN5L1/Sirt3 ratio, reduced CypD acetylation, and attenuated hypertension. The role of mitochondrial acetyltransferase GCN5L1 in the endothelial function was tested in endothelial-specific GCN5L1 knockout mice. Depletion of endothelial GCN5L1 prevented Ang II-induced mitochondrial oxidative stress, reduced the maladaptive switch of vascular metabolism to glycolysis, prevented inactivation of endothelial nitric oxide, preserved endothelial-dependent relaxation, and attenuated hypertension. CONCLUSIONS These data support the pathogenic role of CypD acetylation in endothelial dysfunction and hypertension. We suggest that targeting cytotoxic mitochondrial isolevuglandins and GCN5L1 reduces CypD acetylation, which may be beneficial in cardiovascular disease.
Collapse
Affiliation(s)
- Anna Dikalova
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | - Mingfang Ao
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | | - Sergey Dikalov
- Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
7
|
Paccalet A, Badawi S, Pillot B, Augeul L, Mechtouff L, Harhous Z, Gouriou Y, Paillard M, Breuilly M, Amaz C, Varillon Y, Leboube S, Brun C, Prieur C, Rioufol G, Mewton N, Ovize M, Bidaux G, Bochaton T, Crola Da Silva C. Deleterious Anti-Inflammatory Macrophage Recruitment in Early Post-Infarction Phase: Unraveling the IL-6/MCP-1/STAT3 Axis. JACC Basic Transl Sci 2024; 9:593-604. [PMID: 38984050 PMCID: PMC11228110 DOI: 10.1016/j.jacbts.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 07/11/2024]
Abstract
Using a translational approach with an ST-segment myocardial infarction (STEMI) cohort and mouse model of myocardial infarction, we highlighted the role of the secreted IL-6 and MCP-1 cytokines and the STAT3 pathway in heart macrophage recruitment and activation. Cardiac myocytes secrete IL-6 and MCP-1 in response to hypoxic stress, leading to a recruitment and/or polarization of anti-inflammatory macrophages via the STAT3 pathway. In our preclinical model of myocardial infarction, neutralization of IL-6 and MCP-1 or STAT3 pathway reduced infarct size. Together, our data demonstrate that anti-inflammatory macrophages can be deleterious in the acute phase of STEMI.
Collapse
Affiliation(s)
- Alexandre Paccalet
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Sally Badawi
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Bruno Pillot
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Lionel Augeul
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Laura Mechtouff
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Zeina Harhous
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Yves Gouriou
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Mélanie Paillard
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Marine Breuilly
- CIQLE, LyMIC, LABEX CORTEX, Université Claude Bernard Lyon 1, Structure Fédérative de Recherche santé Lyon-Est CNRS UAR3453/Inserm US7, Lyon, France
| | - Camille Amaz
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Yvonne Varillon
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Simon Leboube
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Camille Brun
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Cyril Prieur
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Gilles Rioufol
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Nathan Mewton
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
- Intensive Cardiological Care Division, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, Bron, France
| | - Michel Ovize
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Gabriel Bidaux
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Thomas Bochaton
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Claire Crola Da Silva
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| |
Collapse
|
8
|
Yuan J, Zhao J, Qin Y, Zhang Y, Wang A, Ma R, Han M, Hui Y, Guo S, Ning X, Sun S. The protective mechanism of SIRT3 and potential therapy in acute kidney injury. QJM 2024; 117:247-255. [PMID: 37354530 DOI: 10.1093/qjmed/hcad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Indexed: 06/26/2023] Open
Abstract
Acute kidney injury (AKI) is a complex clinical syndrome with a poor short-term prognosis, which increases the risk of the development of chronic kidney diseases and end-stage kidney disease. However, the underlying mechanism of AKI remains to be fully elucidated, and effective prevention and therapeutic strategies are still lacking. Given the enormous energy requirements for filtration and absorption, the kidneys are rich in mitochondria, which are unsurprisingly involved in the onset or progression of AKI. Accumulating evidence has recently documented that Sirtuin 3 (SIRT3), one of the most prominent deacetylases highly expressed in the mitochondria, exerts a protective effect on AKI. SIRT3 protects against AKI by regulating energy metabolism, inhibiting oxidative stress, suppressing inflammation, ameliorating apoptosis, inhibiting early-stage fibrosis and maintaining mitochondrial homeostasis. Besides, a number of SIRT3 activators have exhibited renoprotective properties both in animal models and in vitro experiments, but have not yet been applied to clinical practice, indicating a promising therapeutic approach. In this review, we unravel and summarize the recent advances in SIRT3 research and the potential therapy of SIRT3 activators in AKI.
Collapse
Affiliation(s)
- Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Nephrology, 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, 050011, China
| | - Yumeng Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, 710021, China
| | - Anjing Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, 710021, China
| | - Rui Ma
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Mei Han
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, 710021, China
| | - Yueqing Hui
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuxian Guo
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
9
|
Liu Y, Wei H, Li J. A review on SIRT3 and its natural small molecule activators as a potential Preventive and therapeutic target. Eur J Pharmacol 2024; 963:176155. [PMID: 37914065 DOI: 10.1016/j.ejphar.2023.176155] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Sirtuins (SIRTs) were originally characterized by yeast Sir2 as a lifespan regulator that is conserved in all three structural domains of bacteria, archaea and eukaryotes and belong to histone deacetylases consisting of seven members (SIRT1-SIRT7). Surprisingly, SIRTs have been shown to play important regulatory roles in almost all cellular functions, including mitochondrial biogenesis, oxidative stress, inflammation, cell growth, energy metabolism, neural function, and stress resistance. Among the SIRT members, sirtuin 3 (SIRT3) is one of the most important deacetylases that regulates the mitochondrial acetylation and plays a role in pathological processes, such as metabolism, DNA repair, oxidative stress, apoptosis and ferroptosis. Therefore, SIRT3 is considered as a potential target for the treatment of a variety of pathological diseases, including metabolic diseases, neurodegenerative diseases, age-related diseases and others. Furthermore, the isolation, screening, and development of SIRT3 signaling agonists, especially from natural products, have become a widely investigated objective. This paper describes the structure of SIRT3 protein, discusses the pathological process of SIRT3-mediated acetylation modification, and reviews the role of SIRT3 in diseases, SIRT3 activators and its related disease studies.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
10
|
Lu K, Li X, Wu J. Sirtuin 3 is required for the dexmedetomidine-mediated alleviation of inflammation and oxidative stress in nephritis. Immun Inflamm Dis 2024; 12:e1135. [PMID: 38270316 PMCID: PMC10777884 DOI: 10.1002/iid3.1135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/23/2023] [Accepted: 12/17/2023] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Although sirtuin 3 (SIRT3) is known to be involved in dexmedetomidine (DEX)-mediated alleviation of renal ischemia and reperfusion injury, the influence of the association between DEX and SIRT3 on nephritis development remains unclear. In this study, the role of SIRT3 in DEX-mediated amelioration of inflammation and oxidative stress in nephritis as well as the possible underlying mechanism were explored in vivo and in vitro. METHODS An animal model of glomerulonephritis was generated by injecting mice with interferon-alpha (IFNα)-expressing adenoviruses, and periodic acid-Schiff staining was then used to reveal pathogenicity-related changes in the renal tissue. Additionally, human embryonic kidney cells (HEK293) and renal mesangial cells (RMCs) were treated with IFNα to establish cell models of inflammation in vitro. RESULTS DEX administration alleviated glomerulonephritis in the animal model and upregulated SIRT3 expression in the renal tissue. SIRT3 knockdown inhibited the renoprotective effects of DEX against nephritis. IFNα induced inflammation, oxidative stress, and apoptosis in the RMCs and HEK293 cells and reduced their growth, as evidenced by the evaluation of cytokine levels (enzyme-linked immunosorbent assay), reactive oxygen species generation, catalase and superoxide dismutase activities, nuclear factor-erythroid factor 2-related factor 2/heme oxygenase-1 signal transduction, apoptotic cell proportion, and cell viability. In addition to promoting SIRT3 expression, DEX inhibited IFNα-induced inflammation, oxidative stress, and apoptosis in these cells and promoted their viability. SIRT3 knockdown partially reversed the beneficial effects of DEX on RMCs and HEK293 cells. CONCLUSIONS Our results suggest that DEX exhibits renoprotective activity during nephritis progression, protecting renal cells against inflammatory injury by promoting SIRT3 expression.
Collapse
Affiliation(s)
- Kai Lu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Xinlong Li
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Jie Wu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
11
|
Qin S, Ren YC, Liu JY, Chen WB, Fu B, Zheng J, Fu XY. ANXA1sp attenuates sepsis-induced myocardial injury by promoting mitochondrial biosynthesis and inhibiting oxidative stress and autophagy via SIRT3 upregulation. Kaohsiung J Med Sci 2024; 40:35-45. [PMID: 37877496 DOI: 10.1002/kjm2.12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Sepsis-induced myocardial injury is one of the most difficult complications of sepsis in intensive care units. Annexin A1 (ANXA1) short peptide (ANXA1sp) protects organs during the perioperative period. However, the protective effect of ANXA1sp against sepsis-induced myocardial injury remains unclear. We aimed to explore the protective effects and mechanisms of ANXA1sp against sepsis-induced myocardial injury both in vitro and in vivo. Cellular and animal models of myocardial injury in sepsis were established with lipopolysaccharide. The cardiac function of mice was assessed by high-frequency echocardiography. Elisa assay detected changes in inflammatory mediators and markers of myocardial injury. Western blotting detected autophagy and mitochondrial biosynthesis-related proteins. Autophagic flux changes were observed by confocal microscopy, and autophagosomes were evaluated by TEM. ATP, SOD, ROS, and MDA levels were also detected.ANXA1sp pretreatment enhanced the 7-day survival rate, improved cardiac function, and reduced TNF-α, IL-6, IL-1β, CK-MB, cTnI, and LDH levels. ANXA1sp significantly increased the expression of sirtuin-3 (SIRT3), mitochondrial biosynthesis-related proteins peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), and mitochondrial transcription factor A (TFAM). ANXA1sp increased mitochondrial membrane potential (△Ψm), ATP, and SOD, and decreased ROS, autophagy flux, the production of autophagosomes per unit area, and MDA levels. The protective effect of ANXA1sp decreased significantly after SIRT3 silencing in vitro and in vivo, indicating that the key factor in ANXA1sp's protective role is the upregulation of SIRT3. In summary, ANXA1sp attenuated sepsis-induced myocardial injury by upregulating SIRT3 to promote mitochondrial biosynthesis and inhibit oxidative stress and autophagy.
Collapse
Affiliation(s)
- Song Qin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Ying-Cong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Jun-Ya Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Wen-Bo Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Bao Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Jie Zheng
- Department of anesthesiology, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Xiao-Yun Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| |
Collapse
|
12
|
Kamel R, Baetz D, Gueguen N, Lebeau L, Barbelivien A, Guihot AL, Allawa L, Gallet J, Beaumont J, Ovize M, Henrion D, Reynier P, Mirebeau-Prunier D, Prunier F, Tamareille S. Kynurenic Acid: A Novel Player in Cardioprotection against Myocardial Ischemia/Reperfusion Injuries. Pharmaceuticals (Basel) 2023; 16:1381. [PMID: 37895852 PMCID: PMC10610491 DOI: 10.3390/ph16101381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Myocardial infarction is one of the leading causes of mortality worldwide; hence, there is an urgent need to discover novel cardioprotective strategies. Kynurenic acid (KYNA), a metabolite of the kynurenine pathway, has been previously reported to have cardioprotective effects. However, the mechanisms by which KYNA may be protective are still unclear. The current study addressed this issue by investigating KYNA's cardioprotective effect in the context of myocardial ischemia/reperfusion. METHODS H9C2 cells and rats were exposed to hypoxia/reoxygenation or myocardial infarction, respectively, in the presence or absence of KYNA. In vitro, cell death was quantified using flow cytometry analysis of propidium iodide staining. In vivo, TTC-Evans Blue staining was performed to evaluate infarct size. Mitochondrial respiratory chain complex activities were measured using spectrophotometry. Protein expression was evaluated by Western blot, and mRNA levels by RT-qPCR. RESULTS KYNA treatment significantly reduced H9C2-relative cell death as well as infarct size. KYNA did not exhibit any effect on the mitochondrial respiratory chain complex activity. SOD2 mRNA levels were increased by KYNA. A decrease in p62 protein levels together with a trend of increase in PARK2 may mark a stimulation of mitophagy. Additionally, ERK1/2, Akt, and FOXO3α phosphorylation levels were significantly reduced after the KYNA treatment. Altogether, KYNA significantly reduced myocardial ischemia/reperfusion injuries in both in vitro and in vivo models. CONCLUSION Here we show that KYNA-mediated cardioprotection was associated with enhanced mitophagy and antioxidant defense. A deeper understanding of KYNA's cardioprotective mechanisms is necessary to identify promising novel therapeutic targets and their translation into the clinical arena.
Collapse
Affiliation(s)
- Rima Kamel
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Delphine Baetz
- Laboratoire CarMeN, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, F-69500 Bron, France; (D.B.); (M.O.)
| | - Naïg Gueguen
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Lucie Lebeau
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Agnès Barbelivien
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Anne-Laure Guihot
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Louwana Allawa
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Jean Gallet
- Service de Cardiologie, CHU Angers, F-49000 Angers, France;
| | - Justine Beaumont
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Michel Ovize
- Laboratoire CarMeN, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, F-69500 Bron, France; (D.B.); (M.O.)
- Service d’Explorations Fonctionnelles Cardiovasculaires & CIC de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, F-69000 Lyon, France
| | - Daniel Henrion
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Pascal Reynier
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Delphine Mirebeau-Prunier
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Fabrice Prunier
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
- Service de Cardiologie, CHU Angers, F-49000 Angers, France;
| | - Sophie Tamareille
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| |
Collapse
|
13
|
Tessier N, Ducrozet M, Dia M, Badawi S, Chouabe C, Crola Da Silva C, Ovize M, Bidaux G, Van Coppenolle F, Ducreux S. TRPV1 Channels Are New Players in the Reticulum-Mitochondria Ca 2+ Coupling in a Rat Cardiomyoblast Cell Line. Cells 2023; 12:2322. [PMID: 37759544 PMCID: PMC10529771 DOI: 10.3390/cells12182322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The Ca2+ release in microdomains formed by intercompartmental contacts, such as mitochondria-associated endoplasmic reticulum membranes (MAMs), encodes a signal that contributes to Ca2+ homeostasis and cell fate control. However, the composition and function of MAMs remain to be fully defined. Here, we focused on the transient receptor potential vanilloid 1 (TRPV1), a Ca2+-permeable ion channel and a polymodal nociceptor. We found TRPV1 channels in the reticular membrane, including some at MAMs, in a rat cardiomyoblast cell line (SV40-transformed H9c2) by Western blotting, immunostaining, cell fractionation, and proximity ligation assay. We used chemical and genetic probes to perform Ca2+ imaging in four cellular compartments: the endoplasmic reticulum (ER), cytoplasm, mitochondrial matrix, and mitochondrial surface. Our results showed that the ER Ca2+ released through TRPV1 channels is detected at the mitochondrial outer membrane and transferred to the mitochondria. Finally, we observed that prolonged TRPV1 modulation for 30 min alters the intracellular Ca2+ equilibrium and influences the MAM structure or the hypoxia/reoxygenation-induced cell death. Thus, our study provides the first evidence that TRPV1 channels contribute to MAM Ca2+ exchanges.
Collapse
Affiliation(s)
- Nolwenn Tessier
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Mallory Ducrozet
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Maya Dia
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Sally Badawi
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Christophe Chouabe
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Claire Crola Da Silva
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Michel Ovize
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Hôpital Louis Pradel, Services d’Explorations Fonctionnelles Cardiovasculaires et CIC de Lyon, 69394 Lyon, France
| | - Gabriel Bidaux
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Fabien Van Coppenolle
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Sylvie Ducreux
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| |
Collapse
|
14
|
Coluccino G, Muraca VP, Corazza A, Lippe G. Cyclophilin D in Mitochondrial Dysfunction: A Key Player in Neurodegeneration? Biomolecules 2023; 13:1265. [PMID: 37627330 PMCID: PMC10452829 DOI: 10.3390/biom13081265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in numerous complex diseases. Understanding the molecular mechanisms by which the "powerhouse of the cell" turns into the "factory of death" is an exciting yet challenging task that can unveil new therapeutic targets. The mitochondrial matrix protein CyPD is a peptidylprolyl cis-trans isomerase involved in the regulation of the permeability transition pore (mPTP). The mPTP is a multi-conductance channel in the inner mitochondrial membrane whose dysregulated opening can ultimately lead to cell death and whose involvement in pathology has been extensively documented over the past few decades. Moreover, several mPTP-independent CyPD interactions have been identified, indicating that CyPD could be involved in the fine regulation of several biochemical pathways. To further enrich the picture, CyPD undergoes several post-translational modifications that regulate both its activity and interaction with its clients. Here, we will dissect what is currently known about CyPD and critically review the most recent literature about its involvement in neurodegenerative disorders, focusing on Alzheimer's Disease and Parkinson's Disease, supporting the notion that CyPD could serve as a promising therapeutic target for the treatment of such conditions. Notably, significant efforts have been made to develop CyPD-specific inhibitors, which hold promise for the treatment of such complex disorders.
Collapse
Affiliation(s)
- Gabriele Coluccino
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (V.P.M.); (A.C.)
| | | | | | - Giovanna Lippe
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (V.P.M.); (A.C.)
| |
Collapse
|
15
|
Luo Z, Yao J, Wang Z, Xu J. Mitochondria in endothelial cells angiogenesis and function: current understanding and future perspectives. J Transl Med 2023; 21:441. [PMID: 37407961 DOI: 10.1186/s12967-023-04286-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Endothelial cells (ECs) angiogenesis is the process of sprouting new vessels from the existing ones, playing critical roles in physiological and pathological processes such as wound healing, placentation, ischemia/reperfusion, cardiovascular diseases and cancer metastasis. Although mitochondria are not the major sites of energy source in ECs, they function as important biosynthetic and signaling hubs to regulate ECs metabolism and adaptations to local environment, thus affecting ECs migration, proliferation and angiogenic process. The understanding of the importance and potential mechanisms of mitochondria in regulating ECs metabolism, function and the process of angiogenesis has developed in the past decades. Thus, in this review, we discuss the current understanding of mitochondrial proteins and signaling molecules in ECs metabolism, function and angiogeneic signaling, to provide new and therapeutic targets for treatment of diverse cardiovascular and angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Zhen Luo
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Zhe Wang
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianxiong Xu
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China.
| |
Collapse
|
16
|
Yu D, Zhang P, Xu C, Hu Y, Liang Y, Li M. Microplitis bicoloratus Bracovirus Promotes Cyclophilin D-Acetylation at Lysine 125 That Correlates with Apoptosis during Insect Immunosuppression. Viruses 2023; 15:1491. [PMID: 37515179 PMCID: PMC10383377 DOI: 10.3390/v15071491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclophilin D (CypD) is regulated during the innate immune response of insects. However, the mechanism by which CypD is activated under innate immunosuppression is not understood. Microplitis bicoloratus bracovirus (MbBV), a symbiotic virus in the parasitoid wasp, Microplitis bicoloratus, suppresses innate immunity in parasitized Spodoptera litura. Here, we demonstrate that MbBV promotes the CypD acetylation of S. litura, resulting in an immunosuppressive phenotype characterized by increased apoptosis of hemocytes and MbBV-infected cells. Under MbBV infection, the inhibition of CypD acetylation significantly rescued the apoptotic cells induced by MbBV, and the point-mutant fusion proteins of CypDK125R-V5 were deacetylated. The CypD-V5 fusion proteins were acetylated in MbBV-infected cells. Deacetylation of CypDK125R-V5 can also suppress the MbBV-induced increase in apoptosis. These results indicate that CypD is involved in the MbBV-suppressed innate immune response via the CypD-acetylation pathway and S. litura CypD is acetylated on K125.
Collapse
Affiliation(s)
- Dan Yu
- Yunnan International Joint Laboratory of Virology & Immunology, School of Life Sciences, Yunnan University, Kunming 650500, China
- Yunnan Provincial Medical Investment Management Group Co., Ltd., Kunming 650500, China
| | - Pan Zhang
- Yunnan International Joint Laboratory of Virology & Immunology, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Cuixian Xu
- Yunnan International Joint Laboratory of Virology & Immunology, School of Life Sciences, Yunnan University, Kunming 650500, China
- School of Health, Yunnan Technology and Business University, Kunming 650500, China
| | - Yan Hu
- Yunnan International Joint Laboratory of Virology & Immunology, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yaping Liang
- Yunnan International Joint Laboratory of Virology & Immunology, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Ming Li
- Yunnan International Joint Laboratory of Virology & Immunology, School of Life Sciences, Yunnan University, Kunming 650500, China
| |
Collapse
|
17
|
Li G, Qin H, Zhou M, Zhang T, Zhang Y, Ding H, Xu L, Song J. Knockdown of SIRT3 perturbs protective effects of irisin against bone loss in diabetes and periodontitis. Free Radic Biol Med 2023; 200:11-25. [PMID: 36863620 DOI: 10.1016/j.freeradbiomed.2023.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
A well-recognized risk factor for periodontitis, diabetes mellitus (DM) aggravates periodontal disease with increasing alveolar bone loss. As a novel myokine, irisin is closely linked with bone metabolism. Nonetheless, the effects of irisin on periodontitis under diabetic conditions and the underlying mechanisms remain poorly understood. Here, we showed that local irisin treatment ameliorates alveolar bone loss and oxidative stress, increases SIRT3 expression within periodontal tissues of our experimentally-induced diabetes and periodontitis (DP) rat models. By culturing the periodontal ligament cells (PDLCs) in vitro, we found that irisin could partially rescue inhibited cell viability, mitigate accumulated intracellular oxidative stress, ameliorate mitochondrial dysfunctions, and restore disturbed osteogenic and osteoclastogenic capacities of PDLCs when exposed to high glucose and pro-inflammatory stimulation. Furthermore, lentivirus-mediated SIRT3 knockdown was employed to unravel the underlying mechanism by which SIRT3 mediated irisin's beneficial effects on PDLCs. Meanwhile, in SIRT3-deficient mice, irisin treatment did not protect against alveolar bone destruction and oxidative stress accumulation in DP models, which underlined the crucial role of SIRT3 in mediating the positive effects of irisin on DP. Our findings, for the first time, revealed that irisin attenuates alveolar bone loss and oxidative stress via activation of the SIRT3 signaling cascade, and highlighted its therapeutic potential for the treatment of DP.
Collapse
Affiliation(s)
- Guangyue Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Han Qin
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Mengjiao Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tingwei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yang Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Huifen Ding
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Ling Xu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
18
|
Zhou L, Sun J, Yang T, Wang S, Shan T, Gu L, Chen J, Wei T, Zhao D, Du C, Bao Y, Wang H, Lu X, Sun H, Lv M, Yang D, Wang L. Improved methodology for efficient establishment of the myocardial ischemia-reperfusion model in pigs through the median thoracic incision. J Biomed Res 2023:1-11. [PMID: 37088562 PMCID: PMC10387751 DOI: 10.7555/jbr.36.20220189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To investigate the feasibility and effectiveness of establishing porcine ischemia-reperfusion models by ligating the left anterior descending (LAD) coronary artery, we first randomly divided 16 male Bama pigs into a sham group and a model group. After anesthesia, we separated the arteries and veins. Subsequently, we rapidly located the LAD coronary artery at the beginning of its first diagonal branch through a mid-chest incision. Then, we loosened and released the ligation line after five minutes of pre-occlusion. Finally, we ligated the LAD coronary artery in situ two minutes later and loosened the ligature 60 min after ischemia. Compared with the sham group, electrocardiogram showed multiple continuous lead ST-segment elevations, and ultrasound cardiogram showed significantly lower ejection fraction and left ventricular fractional shortening at one hour and seven days post-operation in the model group. Twenty-four hours after the operation, cardiac troponin T and creatine kinase-MB isoenzyme levels significantly increased in the model group, compared with the sham group. Hematoxylin and eosin staining showed the presence of many inflammatory cells infiltrating the interstitium of the myocardium in the model group but not in the sham group. Masson staining revealed a significant increase in infarct size in the ischemia/reperfusion group. All eight pigs in the model group recovered with normal sinus heart rates, and the survival rate was 100%. In conclusion, the method can provide an accurate and stable large animal model for preclinical research on ischemia/reperfusion with a high success rate and homogeneity of the myocardial infarction area.
Collapse
Affiliation(s)
- Liuhua Zhou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiateng Sun
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tongtong Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Sibo Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tiankai Shan
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lingfeng Gu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiawen Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tianwen Wei
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Di Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chong Du
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yulin Bao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hao Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaohu Lu
- Department of Cardiac surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Haoliang Sun
- Department of Cardiac surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Meng Lv
- Medical Experimental Animal Center, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Di Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Liansheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
19
|
Bernardi P, Carraro M, Lippe G. The mitochondrial permeability transition: Recent progress and open questions. FEBS J 2022; 289:7051-7074. [PMID: 34710270 PMCID: PMC9787756 DOI: 10.1111/febs.16254] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 01/13/2023]
Abstract
Major progress has been made in defining the basis of the mitochondrial permeability transition, a Ca2+ -dependent permeability increase of the inner membrane that has puzzled mitochondrial research for almost 70 years. Initially considered an artefact of limited biological interest by most, over the years the permeability transition has raised to the status of regulator of mitochondrial ion homeostasis and of druggable effector mechanism of cell death. The permeability transition is mediated by opening of channel(s) modulated by matrix cyclophilin D, the permeability transition pore(s) (PTP). The field has received new impulse (a) from the hypothesis that the PTP may originate from a Ca2+ -dependent conformational change of F-ATP synthase and (b) from the reevaluation of the long-standing hypothesis that it originates from the adenine nucleotide translocator (ANT). Here, we provide a synthetic account of the structure of ANT and F-ATP synthase to discuss potential and controversial mechanisms through which they may form high-conductance channels; and review some intriguing findings from the wealth of early studies of PTP modulation that still await an explanation. We hope that this review will stimulate new experiments addressing the many outstanding problems, and thus contribute to the eventual solution of the puzzle of the permeability transition.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaItaly
| | - Michela Carraro
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaItaly
| | | |
Collapse
|
20
|
SIRT3-Mediated CypD-K166 Deacetylation Alleviates Neuropathic Pain by Improving Mitochondrial Dysfunction and Inhibiting Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4722647. [PMID: 36092157 PMCID: PMC9458368 DOI: 10.1155/2022/4722647] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/21/2022] [Accepted: 08/17/2022] [Indexed: 12/29/2022]
Abstract
Numerous studies have shown that mitochondrial dysfunction manifested by increased mitochondrial permeability transition pore (mPTP) opening and reactive oxygen species (ROS) level, and decreased mitochondrial membrane potential (MMP) plays an important role in the development of neuropathic pain. Sirtuin3 (SIRT3), a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase, has been shown to inhibit mitochondrial oxidative stress. However, the role of SIRT3 in neuropathic pain is unclear. In this study, we found that the protein and mRNA levels of SIRT3 were significantly downregulated in the spinal cords of spared nerve injury- (SNI-) induced neuropathic pain mice, while overexpression of spinal SIRT3 reversed SNI-induced pain hypersensitivity. Further study showed that SIRT3 overexpression reduced the acetylation level of lysine 166 (K166) on cyclophilin D (CypD), the regulatory component of the mPTP, inhibited the mPTP opening, decreased ROS and malondialdehyde (MDA) levels, and increased MMP and manganese superoxide dismutase (MnSOD) in SNI mice. Point mutation of K166 to arginine on CypD (CypD-K166R) abrogated SNI-induced mitochondrial dysfunction and neuropathic pain in mice. Moreover, inhibiting mPTP opening by cyclosporin A (CsA) improved mitochondrial function and neuropathic pain in SNI mice. Together, these data show that SIRT3 is necessary to prevent neuropathic pain by deacetylating CypD-K166 and further improving mitochondrial dysfunction. This study may shed light on a potential drug target for the treatment of neuropathic pain.
Collapse
|
21
|
Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2022; 7:200. [PMID: 35752619 PMCID: PMC9233709 DOI: 10.1038/s41392-022-01055-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
Epigenetics is closely related to cardiovascular diseases. Genome-wide linkage and association analyses and candidate gene approaches illustrate the multigenic complexity of cardiovascular disease. Several epigenetic mechanisms, such as DNA methylation, histone modification, and noncoding RNA, which are of importance for cardiovascular disease development and regression. Targeting epigenetic key enzymes, especially the DNA methyltransferases, histone methyltransferases, histone acetylases, histone deacetylases and their regulated target genes, could represent an attractive new route for the diagnosis and treatment of cardiovascular diseases. Herein, we summarize the knowledge on epigenetic history and essential regulatory mechanisms in cardiovascular diseases. Furthermore, we discuss the preclinical studies and drugs that are targeted these epigenetic key enzymes for cardiovascular diseases therapy. Finally, we conclude the clinical trials that are going to target some of these processes.
Collapse
|
22
|
Sautchuk R, Kalicharan BH, Escalera-Rivera K, Jonason JH, Porter GA, Awad HA, Eliseev RA. Transcriptional regulation of cyclophilin D by BMP/Smad signaling and its role in osteogenic differentiation. eLife 2022; 11:e75023. [PMID: 35635445 PMCID: PMC9191891 DOI: 10.7554/elife.75023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/27/2022] [Indexed: 11/26/2022] Open
Abstract
Cyclophilin D (CypD) promotes opening of the mitochondrial permeability transition pore (MPTP) which plays a key role in both cell physiology and pathology. It is, therefore, beneficial for cells to tightly regulate CypD and MPTP but little is known about such regulation. We have reported before that CypD is downregulated and MPTP deactivated during differentiation in various tissues. Herein, we identify BMP/Smad signaling, a major driver of differentiation, as a transcriptional regulator of the CypD gene, Ppif. Using osteogenic induction of mesenchymal lineage cells as a BMP/Smad activation-dependent differentiation model, we show that CypD is in fact transcriptionally repressed during this process. The importance of such CypD downregulation is evidenced by the negative effect of CypD 'rescue' via gain-of-function on osteogenesis both in vitro and in a mouse model. In sum, we characterized BMP/Smad signaling as a regulator of CypD expression and elucidated the role of CypD downregulation during cell differentiation.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
| | - Brianna H Kalicharan
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
| | | | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Pathology, University of RochesterRochesterUnited States
| | - George A Porter
- Department of Pediatrics, Division of Cardiology, University of RochesterRochesterUnited States
| | - Hani A Awad
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Pathology, University of RochesterRochesterUnited States
- Department of Pharmacology & Physiology, University of RochesterRochesterUnited States
| |
Collapse
|
23
|
Yang Y, Wang W, Tian Y, Shi J. Sirtuin 3 and mitochondrial permeability transition pore (mPTP): A systematic review. Mitochondrion 2022; 64:103-111. [PMID: 35346868 DOI: 10.1016/j.mito.2022.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/26/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
Abstract
Mitochondrial permeability transition pore (mPTP) is a channel that opens at the inner mitochondrial membrane under conditions of stress. Sirtuin 3 (Sirt3) is a mitochondrial deacetylase known to play a major role in stress resistance and a regulatory role in cell death. This systematic review aims to elucidate the role of Sirt3 in mPTP inhibition. Electronic databases, including PubMed, EMBASE, Web of Science and Cochrane Library were searched up to May 2020. Original studies that investigated the relationship between Sirt3 and mPTP were included. Two reviewers independently extracted data on study characteristics, methods and outcomes. A total of 194 articles were found. Twenty-nine articles, which met criteria were included in the systematic review. Twenty-three studies provided evidence of the inhibitory effect of Sirt3 on the mPTP aperture. This review summarizes up-to-date evidence of the protective and inhibitory role of Sirt3 through deacetylating Cyclophilin D (CypD) on the mPTP aperture. Furthermore, we discuss the implications of this effect in disease.
Collapse
Affiliation(s)
- Yaping Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; China National Clinical Research Center for Neurological Diseases, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weiping Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ye Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; China National Clinical Research Center for Neurological Diseases, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiong Shi
- China National Clinical Research Center for Neurological Diseases, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
24
|
Molecular mechanisms and consequences of mitochondrial permeability transition. Nat Rev Mol Cell Biol 2022; 23:266-285. [PMID: 34880425 DOI: 10.1038/s41580-021-00433-y] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 12/29/2022]
Abstract
Mitochondrial permeability transition (mPT) is a phenomenon that abruptly causes the flux of low molecular weight solutes (molecular weight up to 1,500) across the generally impermeable inner mitochondrial membrane. The mPT is mediated by the so-called mitochondrial permeability transition pore (mPTP), a supramolecular entity assembled at the interface of the inner and outer mitochondrial membranes. In contrast to mitochondrial outer membrane permeabilization, which mostly activates apoptosis, mPT can trigger different cellular responses, from the physiological regulation of mitophagy to the activation of apoptosis or necrosis. Although there are several molecular candidates for the mPTP, its molecular nature remains contentious. This lack of molecular data was a significant setback that prevented mechanistic insight into the mPTP, pharmacological targeting and the generation of informative animal models. In recent years, experimental evidence has highlighted mitochondrial F1Fo ATP synthase as a participant in mPTP formation, although a molecular model for its transition to the mPTP is still lacking. Recently, the resolution of the F1Fo ATP synthase structure by cryogenic electron microscopy led to a model for mPTP gating. The elusive molecular nature of the mPTP is now being clarified, marking a turning point for understanding mitochondrial biology and its pathophysiological ramifications. This Review provides an up-to-date reference for the understanding of the mammalian mPTP and its cellular functions. We review current insights into the molecular mechanisms of mPT and validated observations - from studies in vivo or in artificial membranes - on mPTP activity and functions. We end with a discussion of the contribution of the mPTP to human disease. Throughout the Review, we highlight the multiple unanswered questions and, when applicable, we also provide alternative interpretations of the recent discoveries.
Collapse
|
25
|
Bai Y, Yang Y, Cui B, Lin D, Wang Z, Ma J. Temporal Effect of Melatonin Posttreatment on Anoxia/Reoxygenation Injury in H9c2 Cells. Cell Biol Int 2022; 46:637-648. [PMID: 34989460 DOI: 10.1002/cbin.11759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/06/2021] [Accepted: 01/01/2022] [Indexed: 11/07/2022]
Abstract
Melatonin has been proven to reduce myocardial ischemia-reperfusion (MI/R) injury. However, in most studies, melatonin was administered prior to MI/R, thus, the results lack clinical significance in patients with acute myocardial infarction. We hypothesize that melatonin posttreatment at different times has different curative effects. Administered of Melatonin (150 μM) at different times after the onset of reoxygenation (t=-15, 0, 5, 10, 15, 30 min). Cellular apoptosis, oxidative stress and mitochondrial function were assessed. Mitophagy-related protein levels, the mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) activity were also measured. A/R injury upregulated mitophagy, which was associated with increased cellular apoptosis, oxidative stress and mitochondrial dysfunction. Melatonin posttreatment (t= -15, 0, 5, 10, 15, 30 min) significantly inhibited excessive mitophagy after A/R injury, reduced cellular apoptosis and oxidative stress, restored mitochondrial function and MMP, and restrained mPTP opening. The therapeutic time window in which melatonin posttreatment protected H9c2 cells against A/R injury was large (from -15 to 30 min after the onset of reperfusion), but the earlier the melatonin administration was, the better its protective effect was. This mechanism is likely due to a reduction in mPTP activity and MMP collapse, which lead to the inhibition of mitophagy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yanli Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Boqun Cui
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Zhaoqi Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| |
Collapse
|
26
|
Melis N, Carcy R, Rubera I, Cougnon M, Duranton C, Tauc M, Pisani DF. Akt Inhibition as Preconditioning Treatment to Protect Kidney Cells against Anoxia. Int J Mol Sci 2021; 23:ijms23010152. [PMID: 35008578 PMCID: PMC8745656 DOI: 10.3390/ijms23010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/15/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Lesions issued from the ischemia/reperfusion (I/R) stress are a major challenge in human pathophysiology. Of human organs, the kidney is highly sensitive to I/R because of its high oxygen demand and poor regenerative capacity. Previous studies have shown that targeting the hypusination pathway of eIF5A through GC7 greatly improves ischemic tolerance and can be applied successfully to kidney transplants. The protection process correlates with a metabolic shift from oxidative phosphorylation to glycolysis. Because the protein kinase B Akt is involved in ischemic protective mechanisms and glucose metabolism, we looked for a link between the effects of GC7 and Akt in proximal kidney cells exposed to anoxia or the mitotoxic myxothiazol. We found that GC7 treatment resulted in impaired Akt phosphorylation at the Ser473 and Thr308 sites, so the effects of direct Akt inhibition as a preconditioning protocol on ischemic tolerance were investigated. We evidenced that Akt inhibitors provide huge protection for kidney cells against ischemia and myxothiazol. The pro-survival effect of Akt inhibitors, which is reversible, implied a decrease in mitochondrial ROS production but was not related to metabolic changes or an antioxidant defense increase. Therefore, the inhibition of Akt can be considered as a preconditioning treatment against ischemia.
Collapse
Affiliation(s)
- Nicolas Melis
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Romain Carcy
- Université Côte d’Azur, CNRS, LP2M, 06103 Nice, France; (R.C.); (I.R.); (M.C.); (C.D.); (M.T.)
- CHU Nice, Hôpital Pasteur 2, Service de Réanimation Polyvalente et Service de Réanimation des Urgences Vitales, 06103 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Isabelle Rubera
- Université Côte d’Azur, CNRS, LP2M, 06103 Nice, France; (R.C.); (I.R.); (M.C.); (C.D.); (M.T.)
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Marc Cougnon
- Université Côte d’Azur, CNRS, LP2M, 06103 Nice, France; (R.C.); (I.R.); (M.C.); (C.D.); (M.T.)
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Christophe Duranton
- Université Côte d’Azur, CNRS, LP2M, 06103 Nice, France; (R.C.); (I.R.); (M.C.); (C.D.); (M.T.)
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Michel Tauc
- Université Côte d’Azur, CNRS, LP2M, 06103 Nice, France; (R.C.); (I.R.); (M.C.); (C.D.); (M.T.)
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Didier F. Pisani
- Université Côte d’Azur, CNRS, LP2M, 06103 Nice, France; (R.C.); (I.R.); (M.C.); (C.D.); (M.T.)
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
- Correspondence:
| |
Collapse
|
27
|
Watroba M, Szukiewicz D. Sirtuins at the Service of Healthy Longevity. Front Physiol 2021; 12:724506. [PMID: 34899370 PMCID: PMC8656451 DOI: 10.3389/fphys.2021.724506] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Sirtuins may counteract at least six hallmarks of organismal aging: neurodegeneration, chronic but ineffective inflammatory response, metabolic syndrome, DNA damage, genome instability, and cancer incidence. Moreover, caloric restriction is believed to slow down aging by boosting the activity of some sirtuins through activating adenosine monophosphate-activated protein kinase (AMPK), thus raising the level of intracellular nicotinamide adenine dinucleotide (NAD+) by stimulating NAD+ biosynthesis. Sirtuins and their downstream effectors induce intracellular signaling pathways related to a moderate caloric restriction within cells, mitigating reactive oxygen species (ROS) production, cell senescence phenotype (CSP) induction, and apoptosis as forms of the cellular stress response. Instead, it can promote DNA damage repair and survival of cells with normal, completely functional phenotypes. In this review, we discuss mechanisms of sirtuins action toward cell-conserving phenotype associated with intracellular signaling pathways related to moderate caloric restriction, as well as some tissue-specific functions of sirtuins, especially in the central nervous system, heart muscle, skeletal muscles, liver, kidneys, white adipose tissue, hematopoietic system, and immune system. In this context, we discuss the possibility of new therapeutic approaches.
Collapse
Affiliation(s)
- Mateusz Watroba
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Szukiewicz
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
28
|
Sirtuin1 and Sirtuin3 gene polymorphisms and acute myocardial infarction susceptibility. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Tubeimoside I Ameliorates Myocardial Ischemia-Reperfusion Injury through SIRT3-Dependent Regulation of Oxidative Stress and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5577019. [PMID: 34795840 PMCID: PMC8595016 DOI: 10.1155/2021/5577019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/13/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a phenomenon that reperfusion leads to irreversible damage to the myocardium and increases mortality in acute myocardial infarction (AMI) patients. There is no effective drug to treat MIRI. Tubeimoside I (TBM) is a triterpenoid saponin purified from Chinese traditional medicine tubeimu. In this study, 4 mg/kg TBM was given to mice intraperitoneally at 15 min after ischemia. And TBM treatment improved postischemic cardiac function, decreased infarct size, diminished lactate dehydrogenase release, ameliorated oxidative stress, and reduced apoptotic index. Notably, ischemia-reperfusion induced a significant decrease in cardiac SIRT3 expression and activity, while TBM treatment upregulated SIRT3's expression and activity. However, the cardioprotective effects of TBM were largely abolished by a SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). This suggests that SIRT3 plays an essential role in TBM's cardioprotective effects. In vitro, TBM also protected H9c2 cells against simulated ischemia/reperfusion (SIR) injury by attenuating oxidative stress and apoptosis, and siSIRT3 diminished its protective effects. Taken together, our results demonstrate for the first time that TBM protects against MIRI through SIRT3-dependent regulation of oxidative stress and apoptosis. TBM might be a potential drug candidate for MIRI treatment.
Collapse
|
30
|
Carrer A, Laquatra C, Tommasin L, Carraro M. Modulation and Pharmacology of the Mitochondrial Permeability Transition: A Journey from F-ATP Synthase to ANT. Molecules 2021; 26:molecules26216463. [PMID: 34770872 PMCID: PMC8587538 DOI: 10.3390/molecules26216463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022] Open
Abstract
The permeability transition (PT) is an increased permeation of the inner mitochondrial membrane due to the opening of the PT pore (PTP), a Ca2+-activated high conductance channel involved in Ca2+ homeostasis and cell death. Alterations of the PTP have been associated with many pathological conditions and its targeting represents an incessant challenge in the field. Although the modulation of the PTP has been extensively explored, the lack of a clear picture of its molecular nature increases the degree of complexity for any target-based approach. Recent advances suggest the existence of at least two mitochondrial permeability pathways mediated by the F-ATP synthase and the ANT, although the exact molecular mechanism leading to channel formation remains elusive for both. A full comprehension of this to-pore conversion will help to assist in drug design and to develop pharmacological treatments for a fine-tuned PT regulation. Here, we will focus on regulatory mechanisms that impinge on the PTP and discuss the relevant literature of PTP targeting compounds with particular attention to F-ATP synthase and ANT.
Collapse
|
31
|
Chen J, Zhang Y, Gao J, Li T, Gan X, Yu H. Sirtuin 3 deficiency exacerbates age-related periodontal disease. J Periodontal Res 2021; 56:1163-1173. [PMID: 34591326 PMCID: PMC9293453 DOI: 10.1111/jre.12930] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 02/05/2023]
Abstract
Background Sirtuin 3 (SIRT3), a mitochondrial NAD+‐dependent deacetylase, has received much attention for its effect on metabolism and aging. However, the role of SIRT3 in periodontal disease remains unknown. Objective This study aimed to investigate the functional role of SIRT3 in age‐related periodontal disease and underlying mechanisms. Methods Sixteen mice were randomly assigned into four groups: the young wild type (WT), the aged WT, the young SIRT3‐knockout (KO), and the aged SIRT3‐KO. SIRT3 and cyclophilin D (CypD) expression and protein lysine acetylation levels in alveolar bones were detected by western blot. The bone architecture and the distance of CEJ‐ABC were assessed using micro‐CT and HE staining. The osteoclast number was observed through tartrate‐resistant acid phosphatase (TRAP) staining. Mitochondrial morphology in SIRT3 knockdown MC3T3‐E1 osteoblastic cells was analyzed by Immunofluorescence staining. In gingival tissues, the NAD+/NADH ratio was measured, and oxidative stress was detected by MitoSOX staining, HO‐1 staining, and MnSOD expression. Mitochondrial biogenesis was measured by PGC‐1α expression and oxygen consumption rate (OCR). Results In parallel with the imbalanced NAD+/NADH ratio, the SIRT3 expression was significantly decreased in the alveolar bones of the aged mice, accompanied by a global elevation of protein acetylation levels. The aged SIRT3‐KO group showed the highest rate of bone resorption and the largest number of TRAP‐positive osteoclasts among the four groups. Moreover, the reactive oxygen species level was up‐regulated in the young and the aged SIRT3‐KO groups. SIRT3 deficiency promoted mitochondrial fission and increased the CypD expression. Furthermore, the lack of SIRT3 reduced the PGC‐1α expression in gingival tissues and exhibited a significant reduction in maximal OCR. Conclusion Reduced SIRT3 abundance contributes to aged‐related periodontal disease via the exacerbation of oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Junsheng Chen
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Yarong Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Gao
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Li
- West China-Washington Mitochondria and Metabolism Center and Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueqi Gan
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Ketema EB, Lopaschuk GD. Post-translational Acetylation Control of Cardiac Energy Metabolism. Front Cardiovasc Med 2021; 8:723996. [PMID: 34409084 PMCID: PMC8365027 DOI: 10.3389/fcvm.2021.723996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Perturbations in myocardial energy substrate metabolism are key contributors to the pathogenesis of heart diseases. However, the underlying causes of these metabolic alterations remain poorly understood. Recently, post-translational acetylation-mediated modification of metabolic enzymes has emerged as one of the important regulatory mechanisms for these metabolic changes. Nevertheless, despite the growing reports of a large number of acetylated cardiac mitochondrial proteins involved in energy metabolism, the functional consequences of these acetylation changes and how they correlate to metabolic alterations and myocardial dysfunction are not clearly defined. This review summarizes the evidence for a role of cardiac mitochondrial protein acetylation in altering the function of major metabolic enzymes and myocardial energy metabolism in various cardiovascular disease conditions.
Collapse
Affiliation(s)
- Ezra B Ketema
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
33
|
Wang C, Wang Y, Shen L. Mitochondrial proteins in heart failure: The role of deacetylation by SIRT3. Pharmacol Res 2021; 172:105802. [PMID: 34363948 DOI: 10.1016/j.phrs.2021.105802] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022]
Abstract
Heart failure (HF) is still the leading cause of death worldwide, occurring with a variety of complex mechanisms. However, most intervention for HF do not directly target the pathological mechanisms underlying cell damage in failing cardiomyocytes. Mitochondria are involved in many physiological processes, which is an important guarantee for normal heart function. Mitochondrial dysfunction is considered to be the critical node of the development of HF. Strict modulation of the mitochondrial function can ameliorate the myocardial injury and protect cardiac function. Acetylation plays an important role in mitochondrial protein homeostasis, and SIRT3, the most important deacetylation protein in mitochondria, is involved in the maintenance of mitochondrial function. SIRT3 can delay the progression of HF by improving mitochondrial function. Herein we summarize the interaction between SIRT3 and proteins related to mitochondrial function including oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), mitochondrial biosynthesis, mitochondrial quality control. In addition, we also sum up the effects of this interaction on HF and the research progress of treatments targeting SIRT3, so as to find potential HF therapeutic for clinical use in the future.
Collapse
Affiliation(s)
- Chunfang Wang
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renming Road, Changsha, Hunan 410011, PR China.
| | - Yating Wang
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renming Road, Changsha, Hunan 410011, PR China.
| | - Li Shen
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renming Road, Changsha, Hunan 410011, PR China.
| |
Collapse
|
34
|
Wang K, Li Y, Qiang T, Chen J, Wang X. Role of epigenetic regulation in myocardial ischemia/reperfusion injury. Pharmacol Res 2021; 170:105743. [PMID: 34182132 DOI: 10.1016/j.phrs.2021.105743] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 12/30/2022]
Abstract
Nowadays acute myocardial infarction (AMI) is a serious cardiovascular disease threatening the human life and health worldwide. The most effective treatment is to quickly restore coronary blood flow through revascularization. However, timely revascularization may lead to reperfusion injury, thereby reducing the clinical benefits of revascularization. At present, no effective treatment is available for myocardial ischemia/reperfusion injury. Emerging evidence indicates that epigenetic regulation is closely related to the pathogenesis of myocardial ischemia/reperfusion injury, indicating that epigenetics may serve as a novel therapeutic target to ameliorate or prevent ischemia/reperfusion injury. This review aimed to briefly summarize the role of histone modification, DNA methylation, noncoding RNAs, and N6-methyladenosine (m6A) methylation in myocardial ischemia/reperfusion injury, with a view to providing new methods and ideas for the research and treatment of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Keyan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China
| | - Yiping Li
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China
| | - Tingting Qiang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China
| | - Jie Chen
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China
| | - Xiaolong Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China.
| |
Collapse
|
35
|
Resveratrol Prevents Right Ventricle Dysfunction, Calcium Mishandling, and Energetic Failure via SIRT3 Stimulation in Pulmonary Arterial Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9912434. [PMID: 34239697 PMCID: PMC8238598 DOI: 10.1155/2021/9912434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vessel remodeling; however, its severity and impact on survival depend on right ventricular (RV) failure. Resveratrol (RES), a polyphenol found in red wine, exhibits cardioprotective effects on RV dysfunction in PAH. However, most literature has focused on RES protective effect on lung vasculature; recent finding indicates that RES has a cardioprotective effect independent of pulmonary arterial pressure on RV dysfunction, although the underlying mechanism in RV has not been determined. Therefore, this study is aimed at evaluating sirtuin-3 (SIRT3) modulation by RES in RV using a monocrotaline- (MC-) induced PAH rat model. Myocyte function was evaluated by confocal microscopy as cell contractility, calcium signaling, and mitochondrial membrane potential (ΔΨm); cell energetics was assessed by high-resolution respirometry, and western blot and immunoprecipitation evaluated posttranslational modifications. PAH significantly affects mitochondrial function in RV; PAH is prone to mitochondrial permeability transition pore (mPTP) opening, thus decreasing the mitochondrial membrane potential. The compromised cellular energetics affects cardiomyocyte function by decreasing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) activity and delaying myofilament unbinding, disrupting cell relaxation. RES partially protects mitochondrial integrity by deacetylating cyclophilin-D, a critical component of the mPTP, increasing SIRT3 expression and activity and preventing mPTP opening. The preserved energetic capability rescues cell relaxation by maintaining SERCA activity. Avoiding Ca2+ transient and cell contractility mismatch by preserving mitochondrial function describes, for the first time, impairment in excitation-contraction-energetics coupling in RV failure. These results highlight the importance of mitochondrial energetics and mPTP in PAH.
Collapse
|
36
|
Role of Oxidative Stress in Reperfusion following Myocardial Ischemia and Its Treatments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6614009. [PMID: 34055195 PMCID: PMC8149218 DOI: 10.1155/2021/6614009] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/21/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Myocardial ischemia is a disease with high morbidity and mortality, for which reperfusion is currently the standard intervention. However, the reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MI/RI). Oxidative stress is one of the most important pathological mechanisms in reperfusion injury, which causes apoptosis, autophagy, inflammation, and some other damage in cardiomyocytes through multiple pathways, thus causing irreversible cardiomyocyte damage and cardiac dysfunction. This article reviews the pathological mechanisms of oxidative stress involved in reperfusion injury and the interventions for different pathways and targets, so as to form systematic treatments for oxidative stress-induced myocardial reperfusion injury and make up for the lack of monotherapy.
Collapse
|
37
|
Bai Y, Yang Y, Gao Y, Lin D, Wang Z, Ma J. Melatonin postconditioning ameliorates anoxia/reoxygenation injury by regulating mitophagy and mitochondrial dynamics in a SIRT3-dependent manner. Eur J Pharmacol 2021; 904:174157. [PMID: 33971181 DOI: 10.1016/j.ejphar.2021.174157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/17/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Ischaemia/reperfusion (I/R) injury is accompanied by excessive mitochondrial autophagy (mitophagy) and an imbalance in mitochondrial dynamics. Melatonin has been reported to alleviate I/R injury by regulating mitophagy and mitochondrial dynamics. However, the underlying mechanism associated with this activity is not fully understood. The goal of the present study was to investigate whether and how melatonin administration at the beginning of reoxygenation exerts protective effects by regulating mitophagy and mitochondrial dynamics. H9c2 cells were transfected with sirtuin 3 (SIRT3)-targeting siRNA and then subjected to anoxia/reoxygenation (A/R) injury, with melatonin (150 μM) administered at the onset of reoxygenation. Biomarkers related to cellular apoptosis, oxidative stress, mitochondrial function, mitophagy and mitochondrial dynamics were assessed, and the expression and activity of SIRT3 was also measured. Mitochondrial fission and mitophagy were activated after A/R injury and were accompanied by cellular apoptosis, oxidative stress, and mitochondrial dysfunction. However, melatonin postconditioning inhibited excessive mitochondrial fission and mitophagy, promoted mitochondrial fusion, restored mitochondrial function and reduced cellular apoptosis, and the mitophagy inhibitor 3-methyladenine (3-MA) also attenuated A/R-induced apoptosis. Moreover, the A/R-induced decreases in SIRT3 and manganese superoxide dismutase (SOD2) activities were ameliorated by melatonin. However, SIRT3 silencing abolished the beneficial effects of melatonin, eliminated the inhibitory effects of melatonin on mitochondrial fission and mitophagy, and reversed the melatonin-induced increase in SOD2 activity. These results indicate that melatonin postconditioning protects H9c2 cells from A/R injury by inhibiting excessive mitophagy and maintaining the balance of mitochondrial fission and fusion in a SIRT3-dependent manner.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yanli Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yafen Gao
- Department of Anesthesiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Zhaoqi Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China.
| |
Collapse
|
38
|
Doblado L, Lueck C, Rey C, Samhan-Arias AK, Prieto I, Stacchiotti A, Monsalve M. Mitophagy in Human Diseases. Int J Mol Sci 2021; 22:3903. [PMID: 33918863 PMCID: PMC8069949 DOI: 10.3390/ijms22083903] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mitophagy is a selective autophagic process, essential for cellular homeostasis, that eliminates dysfunctional mitochondria. Activated by inner membrane depolarization, it plays an important role during development and is fundamental in highly differentiated post-mitotic cells that are highly dependent on aerobic metabolism, such as neurons, muscle cells, and hepatocytes. Both defective and excessive mitophagy have been proposed to contribute to age-related neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, metabolic diseases, vascular complications of diabetes, myocardial injury, muscle dystrophy, and liver disease, among others. Pharmacological or dietary interventions that restore mitophagy homeostasis and facilitate the elimination of irreversibly damaged mitochondria, thus, could serve as potential therapies in several chronic diseases. However, despite extraordinary advances in this field, mainly derived from in vitro and preclinical animal models, human applications based on the regulation of mitochondrial quality in patients have not yet been approved. In this review, we summarize the key selective mitochondrial autophagy pathways and their role in prevalent chronic human diseases and highlight the potential use of specific interventions.
Collapse
Affiliation(s)
- Laura Doblado
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Lueck
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Rey
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Alejandro K. Samhan-Arias
- Department of Biochemistry, Universidad Autónoma de Madrid e Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| | - Ignacio Prieto
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Isaac Peral 42, 28015 Madrid, Spain;
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, Universita’ Degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| |
Collapse
|
39
|
DRP1 haploinsufficiency attenuates cardiac ischemia/reperfusion injuries. PLoS One 2021; 16:e0248554. [PMID: 33765018 PMCID: PMC7993837 DOI: 10.1371/journal.pone.0248554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/01/2021] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial dynamics is a possible modulator of myocardial ischemia/reperfusion injuries (IRI). We previously reported that mice partially deficient in the fusion protein OPA1 exhibited higher IRI. Therefore, we investigated whether deficiency in the fission protein DRP1 encoded by Dnm1l gene would affect IRI in Dnm1l+/- mouse. After baseline characterization of the Dnm1l+/- mice heart, using echocardiography, electron microscopy, and oxygraphy, 3-month-old Dnm1l+/- and wild type (WT) mice were exposed to myocardial ischemia/reperfusion (I/R). The ischemic area-at-risk (AAR) and area of necrosis (AN) were delimited, and the infarct size was expressed by AN/AAR. Proteins involved in mitochondrial dynamics and autophagy were analyzed before and after I/R. Mitochondrial permeability transition pore (mPTP) opening sensitivity was assessed after I/R. Heart weight and left ventricular function were not significantly different in 3-, 6- and 12-month-old Dnm1l+/- mice than in WT. The cardiac DRP1 protein expression levels were 60% lower, whereas mitochondrial area and lipid degradation were significantly higher in Dnm1l+/- mice than in WT, though mitochondrial respiratory parameters and mPTP opening did not significantly differ. Following I/R, the infarct size was significantly smaller in Dnm1l+/- mice than in WT (34.6±3.1% vs. 44.5±3.3%, respectively; p<0.05) and the autophagic markers, LC3 II and P62 were significantly increased compared to baseline condition in Dnm1l+/- mice only. Altogether, data indicates that increasing fusion by means of Dnm1l deficiency was associated with protection against IRI, without alteration in cardiac or mitochondrial functions at basal conditions. This protection mechanism due to DRP1 haploinsufficiency increases the expression of autophagic markers.
Collapse
|
40
|
Rottenberg H, Hoek JB. The Mitochondrial Permeability Transition: Nexus of Aging, Disease and Longevity. Cells 2021; 10:cells10010079. [PMID: 33418876 PMCID: PMC7825081 DOI: 10.3390/cells10010079] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
The activity of the mitochondrial permeability transition pore, mPTP, a highly regulated multi-component mega-channel, is enhanced in aging and in aging-driven degenerative diseases. mPTP activity accelerates aging by releasing large amounts of cell-damaging reactive oxygen species, Ca2+ and NAD+. The various pathways that control the channel activity, directly or indirectly, can therefore either inhibit or accelerate aging or retard or enhance the progression of aging-driven degenerative diseases and determine lifespan and healthspan. Autophagy, a catabolic process that removes and digests damaged proteins and organelles, protects the cell against aging and disease. However, the protective effect of autophagy depends on mTORC2/SKG1 inhibition of mPTP. Autophagy is inhibited in aging cells. Mitophagy, a specialized form of autophagy, which retards aging by removing mitochondrial fragments with activated mPTP, is also inhibited in aging cells, and this inhibition leads to increased mPTP activation, which is a major contributor to neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. The increased activity of mPTP in aging turns autophagy/mitophagy into a destructive process leading to cell aging and death. Several drugs and lifestyle modifications that enhance healthspan and lifespan enhance autophagy and inhibit the activation of mPTP. Therefore, elucidating the intricate connections between pathways that activate and inhibit mPTP, in the context of aging and degenerative diseases, could enhance the discovery of new drugs and lifestyle modifications that slow aging and degenerative disease.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge street, New Hope, PA 18938, USA
- Correspondence: ; Tel.: +1-267-614-5588
| | - Jan B. Hoek
- MitoCare Center, Department of Anatomy, Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
41
|
Amanakis G, Sun J, Fergusson MM, McGinty S, Liu C, Molkentin JD, Murphy E. Cysteine 202 of cyclophilin D is a site of multiple post-translational modifications and plays a role in cardioprotection. Cardiovasc Res 2021; 117:212-223. [PMID: 32129829 PMCID: PMC7797215 DOI: 10.1093/cvr/cvaa053] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS Cyclophilin-D is a well-known regulator of the mitochondrial permeability transition pore (PTP), the main effector of cardiac ischaemia/reperfusion injury. However, the binding of CypD to the PTP is poorly understood. Cysteine 202 (C202) of CypD is highly conserved among species and can undergo redox-sensitive post-translational modifications. We investigated whether C202 regulates the opening of PTP. METHODS AND RESULTS We developed a knock-in mouse model using CRISPR where CypD-C202 was mutated to a serine (C202S). Infarct size is reduced in CypD-C202S Langendorff perfused hearts compared to wild type (WT). Cardiac mitochondria from CypD-C202S mice also have higher calcium retention capacity compared to WT. Therefore, we hypothesized that oxidation of C202 might target CypD to the PTP. Indeed, isolated cardiac mitochondria subjected to oxidative stress exhibit less binding of CypD-C202S to the proposed PTP component F1F0-ATP-synthase. We previously found C202 to be S-nitrosylated in ischaemic preconditioning. Cysteine residues can also undergo S-acylation, and C202 matched an S-acylation motif. S-acylation of CypD-C202 was assessed using a resin-assisted capture (Acyl-RAC). WT hearts are abundantly S-acylated on CypD C202 under baseline conditions indicating that S-acylation on C202 per se does not lead to PTP opening. CypD C202S knock-in hearts are protected from ischaemia/reperfusion injury suggesting further that lack of CypD S-acylation at C202 is not detrimental (when C is mutated to S) and does not induce PTP opening. However, we find that ischaemia leads to de-acylation of C202 and that calcium overload in isolated mitochondria promotes de-acylation of CypD. Furthermore, a high bolus of calcium in WT cardiac mitochondria displaces CypD from its physiological binding partners and possibly renders it available for interaction with the PTP. CONCLUSIONS Taken together the data suggest that with ischaemia CypD is de-acylated at C202 allowing the free cysteine residue to undergo oxidation during the first minutes of reperfusion which in turn targets it to the PTP.
Collapse
Affiliation(s)
- Georgios Amanakis
- Cardiovascular Branch, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - Junhui Sun
- Cardiovascular Branch, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - Maria M Fergusson
- Cardiovascular Branch, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - Shane McGinty
- Cardiovascular Branch, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Liu
- Transgenic Core Facility, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - Jeffery D Molkentin
- Division of Molecular and Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Elizabeth Murphy
- Cardiovascular Branch, NHLBI, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Dexmedetomidine Ameliorates Hippocampus Injury and Cognitive Dysfunction Induced by Hepatic Ischemia/Reperfusion by Activating SIRT3-Mediated Mitophagy and Inhibiting Activation of the NLRP3 Inflammasome in Young Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7385458. [PMID: 34493950 PMCID: PMC8418694 DOI: 10.1155/2020/7385458] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/01/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Hepatic ischemia-reperfusion (HIR) has been proven to trigger oxidative stress and pyroptosis in the hippocampus. Sirtuin 3 (SIRT3) is an essential mitochondrial protein deacetylase regulating oxidative stress and mitophagy. Dexmedetomidine (Dex) has been demonstrated to confer neuroprotection in different brain injury models. However, whether the protective effects of Dex following HIR are orchestrated by activation of SIRT3-mediated mitophagy and inhibition of NOD-like receptor protein 3 (NLRP3) inflammasome activation remains unknown. Herein, two-week-old rats were treated with Dex or a selective SIRT3 inhibitor (3-TYP)/autophagy inhibitor (3-MA) and then subjected to HIR. The results revealed that Dex treatment effectively attenuated neuroinflammation and cognitive deficits via upregulating SIRT3 expression and activity. Furthermore, Dex treatment inhibited the activation of NLRP3 inflammasome, while 3-TYP and 3-MA eliminated the protective effects of Dex, suggesting that SIRT3-mediated mitophagy executes the protective effects of Dex. Moreover, 3-TYP treatment downregulated the expression level of SIRT3 downstream proteins: forkhead-box-protein 3α (FOXO3α), superoxide dismutase 2 (SOD2), peroxiredoxin 3 (PRDX3), and cyclophilin D (CYP-D), which were barely influenced by 3-MA treatment. Notably, both 3-TYP and 3-MA were able to offset the antioxidative and antiapoptosis effects of Dex, indicating that SIRT3-mediated mitophagy may be the last step and the major pathway executing the neuroprotective effects of Dex. In conclusion, Dex inhibits HIR-induced NLRP3 inflammasome activation mainly by triggering SIRT3-mediated mitophagy.
Collapse
|
43
|
Wang Q, Wei S, Li L, Qiu J, Zhou S, Shi C, Shi Y, Zhou H, Lu L. TGR5 deficiency aggravates hepatic ischemic/reperfusion injury via inhibiting SIRT3/FOXO3/HIF-1ɑ pathway. Cell Death Discov 2020; 6:116. [PMID: 33298860 PMCID: PMC7604280 DOI: 10.1038/s41420-020-00347-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is responsible for liver injury during hepatic resection and liver transplantation. The plasma membrane-bound G protein-coupled bile acid receptor (TGR5) could regulate immune response in multiple liver diseases. Nevertheless, the underlying role of TGR5 in hepatic I/R injury remains largely unknown. This study aimed to investigate the potential mechanism of TGR5 in hepatic I/R injury. Wild-type (WT) and TGR5 knockout (TGR5KO) mice were used to perform hepatic I/R, and macrophages were isolated from mice for in vitro experiments. The results demonstrated that knockout of TGR5 in mice significantly exacerbated liver injury and inflammatory response. TGR5KO mice infused with WT macrophages showed relieved liver injury. Further study revealed that TGR5 knockout inhibited sirtuin 3 (SIRT3) and forkhead box O3 (FOXO3) expression. In vitro experiments indicated that SIRT3 inhibited acetylation, ubiquitination and degradation of FOXO3. FOXO3 inhibited HIF-1α transcription by binding to its promoter. TGR5 knockout inhibited SIRT3 expression, thus promoted the acetylation, ubiquitination, and degradation of FOXO3, which resulted in increased HIF-1α transcription and macrophages proinflammatory response. Collectively, TGR5 plays a critical protective role in hepatic I/R injury. FOXO3 deacetylation mediated by SIRT3 can attenuate hepatic I/R injury. TGR5 deficiency aggravates hepatic I/R injury via inhibiting SIRT3/FOXO3/HIF-1α pathway.
Collapse
Affiliation(s)
- Qi Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Song Wei
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Lei Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jiannan Qiu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Shun Zhou
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Chengyu Shi
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Yong Shi
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Haoming Zhou
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.
| | - Ling Lu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China. .,School of Medicine, Southeast University, Nanjing, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China. .,State Key Laboratory of Reproductive Medicine, Nanjing, China.
| |
Collapse
|
44
|
A systematic review of post-translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165992. [PMID: 33091565 DOI: 10.1016/j.bbadis.2020.165992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
The mitochondrial permeability transition pore (mPTP) opening is involved in the pathophysiology of multiple cardiac diseases, such as ischemia/reperfusion injury and heart failure. A growing number of evidence provided by proteomic screening techniques has demonstrated the role of post-translational modifications (PTMs) in several key components of the pore in response to changes in the extra/intracellular environment and bioenergetic demand. This could lead to a fine, complex regulatory mechanism that, under pathological conditions, can shift the state of mitochondrial functions and, thus, the cell's fate. Understanding the complex relationship between these PTMs is still under investigation and can provide new, promising therapeutic targets and treatment approaches. This review, using a systematic review of the literature, presents the current knowledge on PTMs of the mPTP and their role in health and cardiac disease.
Collapse
|
45
|
Wang S, Zhang J, Deng X, Zhao Y, Xu K. Advances in characterization of SIRT3 deacetylation targets in mitochondrial function. Biochimie 2020; 179:1-13. [PMID: 32898647 DOI: 10.1016/j.biochi.2020.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
The homeostasis of mitochondrial functional state is intimately in relation with SIRT3 (sirtuin3). SIRT3, the deacetylase mainly anchored in mitochondria, acts as a modulator of metabolic regulation via manipulating the activity and function of downstream targets at post-translational modification levels. The features of energy sensing and ADP-ribose transference of SIRT3 have also been reported. Recently, accumulating SIRT3-focusing evidences have suggested its complicated role in a series of adverse events such as metabolic disorders, aging-related diseases, coupled with tumors, in which SIRT3 regulates the progress of corresponding biochemical reactions by targeting key mediators. By systematically summarizing the downstream deacetylated proteins of the SIRT3 axis, this review aims to give a comprehensive introduction to the main metabolic pathways and diseases of the molecules involved in acetylation modification, which is expected to provide a direction for further exploration of the pathogenesis and therapeutic targets of the above diseases.
Collapse
Affiliation(s)
- Shuhan Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junli Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoling Deng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajuan Zhao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Keshu Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
46
|
Hurst S, Gonnot F, Dia M, Crola Da Silva C, Gomez L, Sheu SS. Phosphorylation of cyclophilin D at serine 191 regulates mitochondrial permeability transition pore opening and cell death after ischemia-reperfusion. Cell Death Dis 2020; 11:661. [PMID: 32814770 PMCID: PMC7438327 DOI: 10.1038/s41419-020-02864-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
The mitochondrial permeability transition pore (mPTP) plays a critical role in the pathogenesis of cardiovascular diseases, including ischemia/reperfusion injury. Although the pore structure is still unresolved, the mechanism through which cyclophilin D (CypD) regulates mPTP opening is the subject of intensive studies. While post-translational modifications of CypD have been shown to modulate pore opening, specific phosphorylation sites of CypD have not yet been identified. We hypothesized here that phosphorylation of CypD on a serine residue controls mPTP opening and subsequent cell death at reperfusion. We combined in silico analysis with in vitro and genetic manipulations to determine potential CypD phosphorylation sites and their effect on mitochondrial function and cell death. Importantly, we developed an in vivo intramyocardial adenoviral strategy to assess the effect of the CypD phosphorylation event on infarct size. Our results show that although CypD can potentially be phosphorylated at multiple serine residues, only the phosphorylation status at S191 directly impacts the ability of CypD to regulate the mPTP. Protein-protein interaction strategies showed that the interaction between CypD and oligomycin sensitivity-conferring protein (OSCP) was reduced by 45% in the phosphoresistant S191A mutant, whereas it was increased by 48% in the phosphomimetic S191E mutant cells. As a result, the phosphoresistant CypD S191A mutant was protected against 18 h starvation whereas cell death was significantly increased in phosphomimetic S191E group, associated with mitochondrial respiration alteration and ROS production. As in vivo proof of concept, in S191A phosphoresistant rescued CypD-KO mice developed significantly smaller infarct as compared to WT whereas infarct size was drastically increased in S191E phosphomimetic rescued mice. We conclude that CypD phosphorylation at S191 residue leads to its binding to OSCP and thus sensitizes mPTP opening for the subsequent cell death.
Collapse
Affiliation(s)
- Stephen Hurst
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Fabrice Gonnot
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Maya Dia
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Claire Crola Da Silva
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Ludovic Gomez
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500, Bron, France.
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
47
|
Amanakis G, Murphy E. Cyclophilin D: An Integrator of Mitochondrial Function. Front Physiol 2020; 11:595. [PMID: 32625108 PMCID: PMC7311779 DOI: 10.3389/fphys.2020.00595] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Cyclophilin D (CypD) is a mitochondrial peptidyl-prolyl cis-trans isomerase, well-known for regulating the mitochondrial permeability transition pore (PTP), a nonspecific large conductance pore whose opening leads to cell death and has been implicated in ischemia/reperfusion injury in multiple organs, in neurodegenerative disorders, and in muscular dystrophies. While the main target of CypD is a matter of ongoing research, inhibiting CypD protects in models of those diseases making it an interesting therapeutic target. The present review focuses on post-translational modifications of CypD that have been identified by recent studies, which can alter the regulation of the PTP and contribute to understanding the mechanisms of action of CypD.
Collapse
Affiliation(s)
- Georgios Amanakis
- Cardiovascular Branch, NHLBI, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
48
|
Zuurbier CJ, Bertrand L, Beauloye CR, Andreadou I, Ruiz‐Meana M, Jespersen NR, Kula‐Alwar D, Prag HA, Eric Botker H, Dambrova M, Montessuit C, Kaambre T, Liepinsh E, Brookes PS, Krieg T. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med 2020; 24:5937-5954. [PMID: 32384583 PMCID: PMC7294140 DOI: 10.1111/jcmm.15180] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/13/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Reducing infarct size during a cardiac ischaemic-reperfusion episode is still of paramount importance, because the extension of myocardial necrosis is an important risk factor for developing heart failure. Cardiac ischaemia-reperfusion injury (IRI) is in principle a metabolic pathology as it is caused by abruptly halted metabolism during the ischaemic episode and exacerbated by sudden restart of specific metabolic pathways at reperfusion. It should therefore not come as a surprise that therapy directed at metabolic pathways can modulate IRI. Here, we summarize the current knowledge of important metabolic pathways as therapeutic targets to combat cardiac IRI. Activating metabolic pathways such as glycolysis (eg AMPK activators), glucose oxidation (activating pyruvate dehydrogenase complex), ketone oxidation (increasing ketone plasma levels), hexosamine biosynthesis pathway (O-GlcNAcylation; administration of glucosamine/glutamine) and deacetylation (activating sirtuins 1 or 3; administration of NAD+ -boosting compounds) all seem to hold promise to reduce acute IRI. In contrast, some metabolic pathways may offer protection through diminished activity. These pathways comprise the malate-aspartate shuttle (in need of novel specific reversible inhibitors), mitochondrial oxygen consumption, fatty acid oxidation (CD36 inhibitors, malonyl-CoA decarboxylase inhibitors) and mitochondrial succinate metabolism (malonate). Additionally, protecting the cristae structure of the mitochondria during IR, by maintaining the association of hexokinase II or creatine kinase with mitochondria, or inhibiting destabilization of FO F1 -ATPase dimers, prevents mitochondrial damage and thereby reduces cardiac IRI. Currently, the most promising and druggable metabolic therapy against cardiac IRI seems to be the singular or combined targeting of glycolysis, O-GlcNAcylation and metabolism of ketones, fatty acids and succinate.
Collapse
Affiliation(s)
- Coert J. Zuurbier
- Department of AnesthesiologyLaboratory of Experimental Intensive Care and AnesthesiologyAmsterdam Infection & ImmunityAmsterdam Cardiovascular SciencesAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Luc Bertrand
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Christoph R. Beauloye
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
- Cliniques Universitaires Saint‐LucBrusselsBelgium
| | - Ioanna Andreadou
- Laboratory of PharmacologyFaculty of PharmacyNational and Kapodistrian University of AthensAthensGreece
| | - Marisol Ruiz‐Meana
- Department of CardiologyHospital Universitari Vall d’HebronVall d’Hebron Institut de Recerca (VHIR)CIBER‐CVUniversitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red‐CVMadridSpain
| | | | | | - Hiran A. Prag
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Hans Eric Botker
- Department of CardiologyAarhus University HospitalAarhus NDenmark
| | - Maija Dambrova
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Christophe Montessuit
- Department of Pathology and ImmunologyUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Tuuli Kaambre
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Edgars Liepinsh
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Paul S. Brookes
- Department of AnesthesiologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Thomas Krieg
- Department of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
49
|
Al-Mawla R, Ducrozet M, Tessier N, Païta L, Pillot B, Gouriou Y, Villedieu C, Harhous Z, Paccalet A, Crola Da Silva C, Ovize M, Bidaux G, Ducreux S, Van Coppenolle F. Acute Induction of Translocon-Mediated Ca 2+ Leak Protects Cardiomyocytes Against Ischemia/Reperfusion Injury. Cells 2020; 9:cells9051319. [PMID: 32466308 PMCID: PMC7290748 DOI: 10.3390/cells9051319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
During myocardial infarction, dysregulation of Ca2+ homeostasis between the reticulum, mitochondria, and cytosol occurs in cardiomyocytes and leads to cell death. Ca2+ leak channels are thought to be key regulators of the reticular Ca2+ homeostasis and cell survival. The present study aimed to determine whether a particular reticular Ca2+ leak channel, the translocon, also known as translocation channel, could be a relevant target against ischemia/reperfusion-mediated heart injury. To achieve this objective, we first used an intramyocardial adenoviral strategy to express biosensors in order to assess Ca2+ variations in freshly isolated adult mouse cardiomyocytes to show that translocon is a functional reticular Ca2+ leak channel. Interestingly, translocon activation by puromycin mobilized a ryanodine receptor (RyR)-independent reticular Ca2+ pool and did not affect the excitation–concentration coupling. Second, puromycin pretreatment decreased mitochondrial Ca2+ content and slowed down the mitochondrial permeability transition pore (mPTP) opening and the rate of cytosolic Ca2+ increase during hypoxia. Finally, this translocon pre-activation also protected cardiomyocytes after in vitro hypoxia reoxygenation and reduced infarct size in mice submitted to in vivo ischemia-reperfusion. Altogether, our report emphasizes the role of translocon in cardioprotection and highlights a new paradigm in cardioprotection by functionally uncoupling the RyR-dependent Ca2+ stores and translocon-dependent Ca2+ stores.
Collapse
Affiliation(s)
- Ribal Al-Mawla
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Mallory Ducrozet
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Nolwenn Tessier
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Lucille Païta
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Bruno Pillot
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Yves Gouriou
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Camille Villedieu
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Zeina Harhous
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Alexandre Paccalet
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Claire Crola Da Silva
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Michel Ovize
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
- Cardiovascular functional explorations, Louis Pradel hospital, Hospices Civils de Lyon, 69677 Lyon, France
| | - Gabriel Bidaux
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Sylvie Ducreux
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
- Correspondence:
| | - Fabien Van Coppenolle
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| |
Collapse
|
50
|
Limb Ischemic Postconditioning Alleviates Postcardiac Arrest Syndrome through the Inhibition of Mitochondrial Permeability Transition Pore Opening in a Porcine Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9136097. [PMID: 32382579 PMCID: PMC7182969 DOI: 10.1155/2020/9136097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 03/30/2020] [Indexed: 11/18/2022]
Abstract
Objective Previously, the opening of mitochondrial permeability transition pore (mPTP) was confirmed to play a key role in the pathophysiology of postcardiac arrest syndrome (PCAS). Recently, we demonstrated that limb ischemic postconditioning (LIpostC) alleviated cardiac and cerebral injuries after cardiac arrest and resuscitation. In this study, we investigated whether LIpostC would alleviate the severity of PCAS through inhibiting mPTP opening. Methods Twenty-four male domestic pigs weighing 37 ± 2 kg were randomly divided into three groups: control, LIpostC, and LIpostC+atractyloside (Atr, the mPTP opener). Atr (10 mg/kg) was intravenously injected 30 mins prior to the induction of cardiac arrest. The animals were subjected to 10 mins of untreated ventricular fibrillation and 5 mins of cardiopulmonary resuscitation. Coincident with the beginning of cardiopulmonary resuscitation, LIpostC was induced by four cycles of 5 mins of limb ischemia and then 5 mins of reperfusion. The resuscitated animals were monitored for 4 hrs and observed for an additional 68 hrs. Results After resuscitation, systemic inflammation and multiple organ injuries were observed in all resuscitated animals. However, postresuscitation systemic inflammation was significantly milder in the LIpostC group than in the control group. Myocardial, lung, and brain injuries after resuscitation were significantly improved in the LIpostC group compared to the control group. Nevertheless, pretreatment with Atr abolished all the protective effects induced by LIpostC. Conclusion LIpostC significantly alleviated the severity of PCAS, in which the protective mechanism was associated with the inhibition of mPTP opening.
Collapse
|