1
|
Cail RC, Báez-Cruz FA, Winkelmann DA, Goldman YE, Ostap EM. Dynamics of β-cardiac myosin between the super-relaxed and disordered-relaxed states. J Biol Chem 2025; 301:108412. [PMID: 40118457 PMCID: PMC12023885 DOI: 10.1016/j.jbc.2025.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025] Open
Abstract
The super-relaxed (SRX) state of myosin ATPase activity is critical for striated muscle function, and its dysregulation is linked to cardiomyopathies. It is unclear whether the SRX state exchanges readily with the disordered-relaxed (DRX) state and whether the SRX state directly corresponds to the folded back interacting-heads motif. Using recombinant β-cardiac heavy meromyosin and subfragment 1, which cannot form the interacting-heads motif, we show that the SRX and DRX populations transition at a rate substantially faster than the ATP turnover rate, dependent on myosin head-tail interactions. Some mutations which cause hypertrophic or dilated cardiomyopathies alter the SRX-DRX equilibrium, but not all mutations. The cardiac myosin inhibitor mavacamten slows nucleotide release by an equal factor for both heavy meromyosin and subfragment 1, thus only indirectly influencing the occupancy time of the SRX state. These findings suggest that purified myosins undergo rapid switching between SRX and DRX states, refining our understanding of cardiomyopathy mechanisms.
Collapse
Affiliation(s)
- Robert C Cail
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Faviolla A Báez-Cruz
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donald A Winkelmann
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Yale E Goldman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Pharmacology and Department of Molecular and Cell Biology, University of California, Davis, California, USA
| | - E Michael Ostap
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Cail RC, Baez-Cruz FA, Winkelmann DA, Goldman YE, Michael Ostap E. Dynamics of β-cardiac myosin between the super-relaxed and disordered-relaxed states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.14.628474. [PMID: 39713322 PMCID: PMC11661213 DOI: 10.1101/2024.12.14.628474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The super-relaxed (SRX) state of myosin ATPase activity is critical for striated muscle function, and its dysregulation is linked to cardiomyopathies. It is unclear whether the SRX state exchanges readily with the disordered-relaxed (DRX) state, and whether the SRX state directly corresponds to the folded back interacting-head motif (IHM). Using recombinant β-cardiac heavy meromyosin (HMM) and subfragment 1 (S1), which cannot form the IHM, we show that the SRX and DRX populations are in rapid equilibrium, dependent on myosin head-tail interactions. Some mutations which cause hypertrophic (HCM) or dilated (DCM) cardiomyopathies alter the SRX-DRX equilibrium, but not all mutations. The cardiac myosin inhibitor mavacamten slows nucleotide release by an equal factor for both HMM and S1, thus only indirectly influencing the occupancy time of the SRX state. These findings suggest that purified myosins undergo rapid switching between SRX and DRX states, refining our understanding of cardiomyopathy mechanisms.
Collapse
|
3
|
Turner KL, Vander Top BJ, Kooiker KB, Mohran S, Mandrycky C, McMillen T, Regnier M, Irving TC, Ma W, Tanner BC. The structural and functional effects of myosin regulatory light chain phosphorylation are amplified by increases in sarcomere length and [Ca 2+]. J Physiol 2024; 602:4941-4958. [PMID: 39283968 PMCID: PMC11466700 DOI: 10.1113/jp286802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
Precise regulation of sarcomeric contraction is essential for normal cardiac function. The heart must generate sufficient force to pump blood throughout the body, but either inadequate or excessive force can lead to dysregulation and disease. Myosin regulatory light chain (RLC) is a thick-filament protein that binds to the neck of the myosin heavy chain. Post-translational phosphorylation of RLC (RLC-P) by myosin light chain kinase is known to influence acto-myosin interactions, thereby increasing force production and Ca2+-sensitivity of contraction. Here, we investigated the role of RLC-P on cardiac structure and function as sarcomere length and [Ca2+] were altered. We found that at low, non-activating levels of Ca2+, RLC-P contributed to myosin head disorder, though there were no effects on isometric stress production and viscoelastic stiffness. With increases in sarcomere length and Ca2+-activation, the structural changes due to RLC-P become greater, which translates into greater force production, greater viscoelastic stiffness, slowed myosin detachment rates and altered nucleotide handling. Altogether, these data suggest that RLC-P may alter thick-filament structure by releasing ordered, off-state myosin. These more disordered myosin heads are available to bind actin, which could result in greater force production as Ca2+ levels increase. However, prolonged cross-bridge attachment duration due to slower ADP release could delay relaxation long enough to enable cross-bridge rebinding. Together, this work further elucidates the effects of RLC-P in regulating muscle function, thereby promoting a better understanding of thick-filament regulatory contributions to cardiac function in health and disease. KEY POINTS: Myosin regulatory light chain (RLC) is a thick-filament protein in the cardiac sarcomere that can be phosphorylated (RLC-P), and changes in RLC-P are associated with cardiac dysfunction and disease. This study assesses how RLC-P alters cardiac muscle structure and function at different sarcomere lengths and calcium concentrations. At low, non-activating levels of Ca2+, RLC-P contributed to myofilament disorder, though there were no effects on isometric stress production and viscoelastic stiffness. With increases in sarcomere length and Ca2+-activation, the structural changes due to RLC-P become greater, which translates into greater force production, greater viscoelastic stiffness, slower myosin detachment rate and altered cross-bridge nucleotide handling rates. This work elucidates the role of RLC-P in regulating muscle function and facilitates understanding of thick-filament regulatory protein contributions to cardiac function in health and disease.
Collapse
Affiliation(s)
- Kyrah L. Turner
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Blake J. Vander Top
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Kristina B. Kooiker
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
- Center for Translational Muscle Research, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Saffie Mohran
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Christian Mandrycky
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Tim McMillen
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Michael Regnier
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
- Center for Translational Muscle Research, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Thomas C. Irving
- Department of Biology, Illinois Institute of Technology, Chicago, Illinois
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, Illinois
| | - Weikang Ma
- Department of Biology, Illinois Institute of Technology, Chicago, Illinois
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, Illinois
| | - Bertrand C.W. Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
4
|
Spudich JA, Nandwani N, Robert-Paganin J, Houdusse A, Ruppel KM. Reassessing the unifying hypothesis for hypercontractility caused by myosin mutations in hypertrophic cardiomyopathy. EMBO J 2024; 43:4139-4155. [PMID: 39192034 PMCID: PMC11445530 DOI: 10.1038/s44318-024-00199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Significant advances in structural and biochemical research validate the 9-year-old hypothesis that cardiac hypercontractility seen in patients with hypertrophic cardiomyopathy is primarily caused by sarcomeric mutations that increase the number of myosin molecules available for actin interaction.
Collapse
Affiliation(s)
- James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005, Paris, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005, Paris, France
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Wang Y, Zhao M, Liu X, Xu B, Reddy GR, Jovanovic A, Wang Q, Zhu C, Xu H, Bayne EF, Xiang W, Tilley DG, Ge Y, Tate CG, Feil R, Chiu JC, Bers DM, Xiang YK. Carvedilol Activates a Myofilament Signaling Circuitry to Restore Cardiac Contractility in Heart Failure. JACC Basic Transl Sci 2024; 9:982-1001. [PMID: 39297139 PMCID: PMC11405995 DOI: 10.1016/j.jacbts.2024.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 09/21/2024]
Abstract
Phosphorylation of myofilament proteins critically regulates beat-to-beat cardiac contraction and is typically altered in heart failure (HF). β-Adrenergic activation induces phosphorylation in numerous substrates at the myofilament. Nevertheless, how cardiac β-adrenoceptors (βARs) signal to the myofilament in healthy and diseased hearts remains poorly understood. The aim of this study was to uncover the spatiotemporal regulation of local βAR signaling at the myofilament and thus identify a potential therapeutic target for HF. Phosphoproteomic analysis of substrate phosphorylation induced by different βAR ligands in mouse hearts was performed. Genetically encoded biosensors were used to characterize cyclic adenosine and guanosine monophosphate signaling and the impacts on excitation-contraction coupling induced by β1AR ligands at both the cardiomyocyte and whole-heart levels. Myofilament signaling circuitry was identified, including protein kinase G1 (PKG1)-dependent phosphorylation of myosin light chain kinase, myosin phosphatase target subunit 1, and myosin light chain at the myofilaments. The increased phosphorylation of myosin light chain enhances cardiac contractility, with a minimal increase in calcium (Ca2+) cycling. This myofilament signaling paradigm is promoted by carvedilol-induced β1AR-nitric oxide synthetase 3 (NOS3)-dependent cyclic guanosine monophosphate signaling, drawing a parallel to the β1AR-cyclic adenosine monophosphate-protein kinase A pathway. In patients with HF and a mouse HF model of myocardial infarction, increasing expression and association of NOS3 with β1AR were observed. Stimulating β1AR-NOS3-PKG1 signaling increased cardiac contraction in the mouse HF model. This research has characterized myofilament β1AR-PKG1-dependent signaling circuitry to increase phosphorylation of myosin light chain and enhance cardiac contractility, with a minimal increase in Ca2+ cycling. The present findings raise the possibility of targeting this myofilament signaling circuitry for treatment of patients with HF.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, University of California-Davis, Davis, California, USA
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Meimi Zhao
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, University of California-Davis, Davis, California, USA
| | - Bing Xu
- Department of Pharmacology, University of California-Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | - Gopireddy R. Reddy
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Aleksandra Jovanovic
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Qingtong Wang
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Chaoqun Zhu
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Heli Xu
- Department of Cardiovascular Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Elizabeth F. Bayne
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Wenjing Xiang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Douglas G. Tilley
- Department of Cardiovascular Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Joanna C. Chiu
- Department of Entomology and Nematology, University of California-Davis, Davis, California, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California-Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| |
Collapse
|
6
|
Lee E, May H, Kazmierczak K, Liang J, Nguyen N, Hill JA, Gillette TG, Szczesna-Cordary D, Chang AN. The MYPT2-regulated striated muscle-specific myosin light chain phosphatase limits cardiac myosin phosphorylation in vivo. J Biol Chem 2024; 300:105652. [PMID: 38224947 PMCID: PMC10851227 DOI: 10.1016/j.jbc.2024.105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
The physiological importance of cardiac myosin regulatory light chain (RLC) phosphorylation by its dedicated cardiac myosin light chain kinase has been established in both humans and mice. Constitutive RLC-phosphorylation, regulated by the balanced activities of cardiac myosin light chain kinase and myosin light chain phosphatase (MLCP), is fundamental to the biochemical and physiological properties of myofilaments. However, limited information is available on cardiac MLCP. In this study, we hypothesized that the striated muscle-specific MLCP regulatory subunit, MYPT2, targets the phosphatase catalytic subunit to cardiac myosin, contributing to the maintenance of cardiac function in vivo through the regulation of RLC-phosphorylation. To test this hypothesis, we generated a floxed-PPP1R12B mouse model crossed with a cardiac-specific Mer-Cre-Mer to conditionally ablate MYPT2 in adult cardiomyocytes. Immunofluorescence microscopy using the gene-ablated tissue as a control confirmed the localization of MYPT2 to regions where it overlaps with a subset of RLC. Biochemical analysis revealed an increase in RLC-phosphorylation in vivo. The loss of MYPT2 demonstrated significant protection against pressure overload-induced hypertrophy, as evidenced by heart weight, qPCR of hypertrophy-associated genes, measurements of myocyte diameters, and expression of β-MHC protein. Furthermore, mantATP chase assays revealed an increased ratio of myosin heads distributed to the interfilament space in MYPT2-ablated heart muscle fibers, confirming that RLC-phosphorylation regulated by MLCP, enhances cardiac performance in vivo. Our findings establish MYPT2 as the regulatory subunit of cardiac MLCP, distinct from the ubiquitously expressed canonical smooth muscle MLCP. Targeting MYPT2 to increase cardiac RLC-phosphorylation in vivo may improve baseline cardiac performance, thereby attenuating pathological hypertrophy.
Collapse
Affiliation(s)
- Eunyoung Lee
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Herman May
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nhu Nguyen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph A Hill
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas G Gillette
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Audrey N Chang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Pak Center for Mineral Metabolism and Clinical Research, UTSW Medical Center, Dallas, Texas, USA.
| |
Collapse
|
7
|
Ochala J, Lewis CTA, Beck T, Iwamoto H, Hessel AL, Campbell KS, Pyle WG. Predominant myosin superrelaxed state in canine myocardium with naturally occurring dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2023; 325:H585-H591. [PMID: 37505469 PMCID: PMC11932529 DOI: 10.1152/ajpheart.00369.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Dilated cardiomyopathy (DCM) is a naturally occurring heart failure condition in humans and dogs, notably characterized by a reduced contractility and ejection fraction. As the identification of its underlying cellular and molecular mechanisms remain incomplete, the aim of the present study was to assess whether the molecular motor myosin and its known relaxed conformational states are altered in DCM. For that, we dissected and skinned thin cardiac strips from left ventricle obtained from six DCM Doberman Pinschers and six nonfailing (NF) controls. We then used a combination of Mant-ATP chase experiments and X-ray diffraction to assess both energetic and structural changes of myosin. Using the Mant-ATP chase protocol, we observed that in DCM dogs, the amount of myosin molecules in the ATP-conserving conformational state, also known as superrelaxed (SRX), is significantly increased when compared with NF dogs. This alteration can be rescued by applying EMD-57033, a small molecule activating myosin. Conversely, with X-ray diffraction, we found that in DCM dogs, there is a higher proportion of myosin heads in the vicinity of actin when compared with NF dogs (1,0 to 1,1 intensity ratio). Hence, we observed an uncoupling between energetic (Mant-ATP chase) and structural (X-ray diffraction) data. Taken together, these results may indicate that in the heart of Doberman Pinschers with DCM, myosin molecules are potentially stuck in a nonsequestered but ATP-conserving SRX state, that can be counterbalanced by EMD-57033 demonstrating the potential for a myosin-centered pharmacological treatment of DCM.NEW & NOTEWORTHY The key finding of the present study is that, in left ventricles of dogs with a naturally occurring dilated cardiomyopathy, relaxed myosin molecules favor a nonsequestered superrelaxed state potentially impairing sarcomeric contractility. This alteration is rescuable by applying a small molecule activating myosin known as EMD-57033.
Collapse
Affiliation(s)
- Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Thomas Beck
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiroyuki Iwamoto
- SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Anthony L Hessel
- Institute of Physiology II, University of Muenster, Muenster, Germany
- Accelerated Muscle Biotechnologies, Boston, Massachusetts, United States
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - W Glen Pyle
- IMPART Investigator Team, Dalhousie Medicine, Saint John, New Brunswick, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Hitsumoto T, Tsukamoto O, Matsuoka K, Li J, Liu L, Kuramoto Y, Higo S, Ogawa S, Fujino N, Yoshida S, Kioka H, Kato H, Hakui H, Saito Y, Okamoto C, Inoue H, Hyejin J, Ueda K, Segawa T, Nishimura S, Asano Y, Asanuma H, Tani A, Imamura R, Komagawa S, Kanai T, Takamura M, Sakata Y, Kitakaze M, Haruta JI, Takashima S. Restoration of Cardiac Myosin Light Chain Kinase Ameliorates Systolic Dysfunction by Reducing Superrelaxed Myosin. Circulation 2023; 147:1902-1918. [PMID: 37128901 PMCID: PMC10270284 DOI: 10.1161/circulationaha.122.062885] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cardiac-specific myosin light chain kinase (cMLCK), encoded by MYLK3, regulates cardiac contractility through phosphorylation of ventricular myosin regulatory light chain. However, the pathophysiological and therapeutic implications of cMLCK in human heart failure remain unclear. We aimed to investigate whether cMLCK dysregulation causes cardiac dysfunction and whether the restoration of cMLCK could be a novel myotropic therapy for systolic heart failure. METHODS We generated the knock-in mice (Mylk3+/fs and Mylk3fs/fs) with a familial dilated cardiomyopathy-associated MYLK3 frameshift mutation (MYLK3+/fs) that had been identified previously by us (c.1951-1G>T; p.P639Vfs*15) and the human induced pluripotent stem cell-derived cardiomyocytes from the carrier of the mutation. We also developed a new small-molecule activator of cMLCK (LEUO-1154). RESULTS Both mice (Mylk3+/fs and Mylk3fs/fs) showed reduced cMLCK expression due to nonsense-mediated messenger RNA decay, reduced MLC2v (ventricular myosin regulatory light chain) phosphorylation in the myocardium, and systolic dysfunction in a cMLCK dose-dependent manner. Consistent with this result, myocardium from the mutant mice showed an increased ratio of cardiac superrelaxation/disordered relaxation states that may contribute to impaired cardiac contractility. The phenotypes observed in the knock-in mice were rescued by cMLCK replenishment through the AAV9_MYLK3 vector. Human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation reduced cMLCK expression by 50% and contractile dysfunction, accompanied by an increased superrelaxation/disordered relaxation ratio. CRISPR-mediated gene correction, or cMLCK replenishment by AAV9_MYLK3 vector, successfully recovered cMLCK expression, the superrelaxation/disordered relaxation ratio, and contractile dysfunction. LEUO-1154 increased human cMLCK activity ≈2-fold in the Vmax for ventricular myosin regulatory light chain phosphorylation without affecting the Km. LEUO-1154 treatment of human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation restored the ventricular myosin regulatory light chain phosphorylation level and superrelaxation/disordered relaxation ratio and improved cardiac contractility without affecting calcium transients, indicating that the cMLCK activator acts as a myotrope. Finally, human myocardium from advanced heart failure with a wide variety of causes had a significantly lower MYLK3/PPP1R12B messenger RNA expression ratio than control hearts, suggesting an altered balance between myosin regulatory light chain kinase and phosphatase in the failing myocardium, irrespective of the causes. CONCLUSIONS cMLCK dysregulation contributes to the development of cardiac systolic dysfunction in humans. Our strategy to restore cMLCK activity could form the basis of a novel myotropic therapy for advanced systolic heart failure.
Collapse
Affiliation(s)
- Tatsuro Hitsumoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Osamu Tsukamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Ken Matsuoka
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Junjun Li
- Department of Cardiovascular Surgery (J.L., L.L.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Li Liu
- Department of Cardiovascular Surgery (J.L., L.L.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Yuki Kuramoto
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Shuichiro Higo
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Shou Ogawa
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Noboru Fujino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University. Kanazawa, Ishikawa, Japan (N.F., S.Y., M.T.)
| | - Shohei Yoshida
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University. Kanazawa, Ishikawa, Japan (N.F., S.Y., M.T.)
| | - Hidetaka Kioka
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Hideyuki Hakui
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Yuki Saito
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Chisato Okamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Hijiri Inoue
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Jo Hyejin
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Kyoko Ueda
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Takatsugu Segawa
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Shunsuke Nishimura
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Yoshihiro Asano
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (Y.A.)
| | - Hiroshi Asanuma
- Department of Internal Medicine, Meiji University of Integrative Medicine, Nantan, Kyoto, Japan (H.A.)
| | - Akiyoshi Tani
- Compound Library Screening Center (A.T.), Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Riyo Imamura
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan (R.I.)
| | - Shinsuke Komagawa
- Lead Explorating Units (S.K., T.K., J.-i.H.), Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Toshio Kanai
- Lead Explorating Units (S.K., T.K., J.-i.H.), Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University. Kanazawa, Ishikawa, Japan (N.F., S.Y., M.T.)
| | - Yasushi Sakata
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | | | - Jun-ichi Haruta
- Lead Explorating Units (S.K., T.K., J.-i.H.), Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| |
Collapse
|
9
|
Turner KL, Morris HS, Awinda PO, Fitzsimons DP, Tanner BCW. RLC phosphorylation amplifies Ca2+ sensitivity of force in myocardium from cMyBP-C knockout mice. J Gen Physiol 2023; 155:213841. [PMID: 36715675 PMCID: PMC9930131 DOI: 10.1085/jgp.202213250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/11/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the leading genetic cause of heart disease. The heart comprises several proteins that work together to properly facilitate force production and pump blood throughout the body. Cardiac myosin binding protein-C (cMyBP-C) is a thick-filament protein, and mutations in cMyBP-C are frequently linked with clinical cases of HCM. Within the sarcomere, the N-terminus of cMyBP-C likely interacts with the myosin regulatory light chain (RLC); RLC is a subunit of myosin located within the myosin neck region that modulates contractile dynamics via its phosphorylation state. Phosphorylation of RLC is thought to influence myosin head position along the thick-filament backbone, making it more favorable to bind the thin filament of actin and facilitate force production. However, little is known about how these two proteins interact. We tested the effects of RLC phosphorylation on Ca2+-regulated contractility using biomechanical assays on skinned papillary muscle strips isolated from cMyBP-C KO mice and WT mice. RLC phosphorylation increased Ca2+ sensitivity of contraction (i.e., pCa50) from 5.80 ± 0.02 to 5.95 ± 0.03 in WT strips, whereas RLC phosphorylation increased Ca2+ sensitivity of contraction from 5.86 ± 0.02 to 6.15 ± 0.03 in cMyBP-C KO strips. These data suggest that the effects of RLC phosphorylation on Ca2+ sensitivity of contraction are amplified when cMyBP-C is absent from the sarcomere. This implies that cMyBP-C and RLC act in concert to regulate contractility in healthy hearts, and mutations to these proteins that lead to HCM (or a loss of phosphorylation with disease progression) may disrupt important interactions between these thick-filament regulatory proteins.
Collapse
Affiliation(s)
- Kyrah L Turner
- School of Molecular Biosciences & Neuroscience, Washington State University , Pullman, WA, USA
| | - Haley S Morris
- School of Molecular Biosciences & Neuroscience, Washington State University , Pullman, WA, USA
| | - Peter O Awinda
- Department of Integrative Physiology & Neuroscience, Washington State University , Pullman, WA, USA
| | - Daniel P Fitzsimons
- Department of Animal, Veterinary and Food Sciences, University of Idaho , Moscow, ID, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology & Neuroscience, Washington State University , Pullman, WA, USA
| |
Collapse
|
10
|
Hu T, Kalyanaraman H, Pilz RB, Casteel DE. Phosphatase regulatory subunit MYPT2 knock-out partially compensates for the cardiac dysfunction in mice caused by lack of myosin light chain kinase 3. J Biol Chem 2023; 299:104584. [PMID: 36889588 PMCID: PMC10124902 DOI: 10.1016/j.jbc.2023.104584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Cardiac contraction is modulated by the phosphorylation state of myosin regulatory light chain 2 (MLC-2v). The level of MLC-2v phosphorylation is dependent on the opposing activities of MLC kinases and phosphatases. The predominant MLC phosphatase found in cardiac myocytes contains Myosin Phosphatase Targeting Subunit 2 (MYPT2). Overexpression of MYPT2 in cardiac myocytes results in a decreased level of MLC phosphorylation, reduced left ventricular contraction and induction of hypertrophy; however, the effect of knocking out MYPT2 on cardiac function is unknown. We obtained heterozygous mice containing a MYPT2 null allele from the Mutant Mouse Resource Center. These mice were produced in a C57BL/6N background which lack MLCK3, the main regulatory light chain kinase in cardiac myocytes. We found that mice null for MYPT2 were viable and had no obvious phenotypic abnormality when compared to wild-type mice. Additionally, we determined that wild-type C57BL/6N mice had a low basal level of MLC-2v phosphorylation which was significantly increased when MYPT2 was absent. At 12-weeks, MYPT2 knock-out mice had smaller hearts and showed down-regulation of genes involved in cardiac remodeling. Using cardiac echo, we found that 24-week-old male MYPT2 knock-out mice had decreased heart size with increased fractional shortening compared to their MYPT2 wild-type littermates. Collectively, these studies highlight the important role that MYPT2 plays in cardiac function in vivo and demonstrate that its deletion can partially compensate for the lack of MLCK3.
Collapse
Affiliation(s)
- Tingfei Hu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093.
| |
Collapse
|
11
|
Sevrieva IR, Ponnam S, Yan Z, Irving M, Kampourakis T, Sun YB. Phosphorylation-dependent interactions of myosin-binding protein C and troponin coordinate the myofilament response to protein kinase A. J Biol Chem 2023; 299:102767. [PMID: 36470422 PMCID: PMC9826837 DOI: 10.1016/j.jbc.2022.102767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
PKA-mediated phosphorylation of sarcomeric proteins enhances heart muscle performance in response to β-adrenergic stimulation and is associated with accelerated relaxation and increased cardiac output for a given preload. At the cellular level, the latter translates to a greater dependence of Ca2+ sensitivity and maximum force on sarcomere length (SL), that is, enhanced length-dependent activation. However, the mechanisms by which PKA phosphorylation of the most notable sarcomeric PKA targets, troponin I (cTnI) and myosin-binding protein C (cMyBP-C), lead to these effects remain elusive. Here, we specifically altered the phosphorylation level of cTnI in heart muscle cells and characterized the structural and functional effects at different levels of background phosphorylation of cMyBP-C and with two different SLs. We found Ser22/23 bisphosphorylation of cTnI was indispensable for the enhancement of length-dependent activation by PKA, as was cMyBP-C phosphorylation. This high level of coordination between cTnI and cMyBP-C may suggest coupling between their regulatory mechanisms. Further evidence for this was provided by our finding that cardiac troponin (cTn) can directly interact with cMyBP-C in vitro, in a phosphorylation- and Ca2+-dependent manner. In addition, bisphosphorylation at Ser22/Ser23 increased Ca2+ sensitivity at long SL in the presence of endogenously phosphorylated cMyBP-C. When cMyBP-C was dephosphorylated, bisphosphorylation of cTnI increased Ca2+ sensitivity and decreased cooperativity at both SLs, which may translate to deleterious effects in physiological settings. Our results could have clinical relevance for disease pathways, where PKA phosphorylation of cTnI may be functionally uncoupled from cMyBP-C phosphorylation due to mutations or haploinsufficiency.
Collapse
Affiliation(s)
- Ivanka R Sevrieva
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| | - Saraswathi Ponnam
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Ziqian Yan
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| |
Collapse
|
12
|
Martin AA, Thompson BR, Hahn D, Angulski ABB, Hosny N, Cohen H, Metzger JM. Cardiac Sarcomere Signaling in Health and Disease. Int J Mol Sci 2022; 23:16223. [PMID: 36555864 PMCID: PMC9782806 DOI: 10.3390/ijms232416223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The cardiac sarcomere is a triumph of biological evolution wherein myriad contractile and regulatory proteins assemble into a quasi-crystalline lattice to serve as the central point upon which cardiac muscle contraction occurs. This review focuses on the many signaling components and mechanisms of regulation that impact cardiac sarcomere function. We highlight the roles of the thick and thin filament, both as necessary structural and regulatory building blocks of the sarcomere as well as targets of functionally impactful modifications. Currently, a new focus emerging in the field is inter-myofilament signaling, and we discuss here the important mediators of this mechanism, including myosin-binding protein C and titin. As the understanding of sarcomere signaling advances, so do the methods with which it is studied. This is reviewed here through discussion of recent live muscle systems in which the sarcomere can be studied under intact, physiologically relevant conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Ranu N, Laitila J, Dugdale HF, Mariano J, Kolb JS, Wallgren-Pettersson C, Witting N, Vissing J, Vilchez JJ, Fiorillo C, Zanoteli E, Auranen M, Jokela M, Tasca G, Claeys KG, Voermans NC, Palmio J, Huovinen S, Moggio M, Beck TN, Kontrogianni-Konstantopoulos A, Granzier H, Ochala J. NEB mutations disrupt the super-relaxed state of myosin and remodel the muscle metabolic proteome in nemaline myopathy. Acta Neuropathol Commun 2022; 10:185. [PMID: 36528760 PMCID: PMC9758823 DOI: 10.1186/s40478-022-01491-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Nemaline myopathy (NM) is one of the most common non-dystrophic genetic muscle disorders. NM is often associated with mutations in the NEB gene. Even though the exact NEB-NM pathophysiological mechanisms remain unclear, histological analyses of patients' muscle biopsies often reveal unexplained accumulation of glycogen and abnormally shaped mitochondria. Hence, the aim of the present study was to define the exact molecular and cellular cascade of events that would lead to potential changes in muscle energetics in NEB-NM. For that, we applied a wide range of biophysical and cell biology assays on skeletal muscle fibres from NM patients as well as untargeted proteomics analyses on isolated myofibres from a muscle-specific nebulin-deficient mouse model. Unexpectedly, we found that the myosin stabilizing conformational state, known as super-relaxed state, was significantly impaired, inducing an increase in the energy (ATP) consumption of resting muscle fibres from NEB-NM patients when compared with controls or with other forms of genetic/rare, acquired NM. This destabilization of the myosin super-relaxed state had dynamic consequences as we observed a remodeling of the metabolic proteome in muscle fibres from nebulin-deficient mice. Altogether, our findings explain some of the hitherto obscure hallmarks of NM, including the appearance of abnormal energy proteins and suggest potential beneficial effects of drugs targeting myosin activity/conformations for NEB-NM.
Collapse
Affiliation(s)
- Natasha Ranu
- grid.13097.3c0000 0001 2322 6764Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Jenni Laitila
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.7737.40000 0004 0410 2071The Folkhälsan Institute of Genetics and Department of Medical and Clinical Genetics, Medicum, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Hannah F. Dugdale
- grid.13097.3c0000 0001 2322 6764Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK ,grid.6571.50000 0004 1936 8542School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Jennifer Mariano
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - Justin S. Kolb
- grid.134563.60000 0001 2168 186XDepartment of Cellular and Molecular Medicine, University of Arizona, Tucson, USA
| | - Carina Wallgren-Pettersson
- grid.7737.40000 0004 0410 2071The Folkhälsan Institute of Genetics and Department of Medical and Clinical Genetics, Medicum, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Nanna Witting
- grid.5254.60000 0001 0674 042XCopenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- grid.5254.60000 0001 0674 042XCopenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Juan Jesus Vilchez
- grid.84393.350000 0001 0360 9602Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Chiara Fiorillo
- grid.5606.50000 0001 2151 3065Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, DINOGMI, University of Genoa, Genoa, Italy
| | - Edmar Zanoteli
- grid.11899.380000 0004 1937 0722Department of Neurology, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Mari Auranen
- grid.7737.40000 0004 0410 2071Clinical Neurosciences, University of Helsinki and Helsinki University Hospital, NeurologyHelsinki, Finland
| | - Manu Jokela
- grid.1374.10000 0001 2097 1371Neurology, Clinical Medicine, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XNeurocenter, Turku University Hospital, Turku, Finland ,grid.502801.e0000 0001 2314 6254Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
| | - Giorgio Tasca
- grid.414603.4Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy ,grid.1006.70000 0001 0462 7212John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | - Kristl G. Claeys
- grid.410569.f0000 0004 0626 3338Department of Neurology, University Hospitals Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Nicol C. Voermans
- grid.10417.330000 0004 0444 9382Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johanna Palmio
- grid.502801.e0000 0001 2314 6254Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
| | - Sanna Huovinen
- grid.412330.70000 0004 0628 2985Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Maurizio Moggio
- grid.414818.00000 0004 1757 8749Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Thomas Nyegaard Beck
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Henk Granzier
- grid.134563.60000 0001 2168 186XDepartment of Cellular and Molecular Medicine, University of Arizona, Tucson, USA
| | - Julien Ochala
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Kazmierczak K, Liang J, Gomez-Guevara M, Szczesna-Cordary D. Functional comparison of phosphomimetic S15D and T160D mutants of myosin regulatory light chain exchanged in cardiac muscle preparations of HCM and WT mice. Front Cardiovasc Med 2022; 9:988066. [PMID: 36204565 PMCID: PMC9530205 DOI: 10.3389/fcvm.2022.988066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 12/30/2022] Open
Abstract
In this study, we investigated the rescue potential of two phosphomimetic mutants of the myosin regulatory light chain (RLC, MYL2 gene), S15D, and T160D RLCs. S15D-RLC mimics phosphorylation of the established serine-15 site of the human cardiac RLC. T160D-RLC mimics the phosphorylation of threonine-160, identified by computational analysis as a high-score phosphorylation site of myosin RLC. Cardiac myosin and left ventricular papillary muscle (LVPM) fibers were isolated from a previously generated model of hypertrophic cardiomyopathy (HCM), Tg-R58Q, and Tg-wild-type (WT) mice. Muscle specimens were first depleted of endogenous RLC and then reconstituted with recombinant human cardiac S15D and T160D phosphomimetic RLCs. Preparations reconstituted with recombinant human cardiac WT-RLC and R58Q-RLC served as controls. Mouse myosins were then tested for the actin-activated myosin ATPase activity and LVPM fibers for the steady-state force development and Ca2+-sensitivity of force. The data showed that S15D-RLC significantly increased myosin ATPase activity compared with T160D-RLC or WT-RLC reconstituted preparations. The two S15D and T160D phosphomimetic RLCs were able to rescue Vmax of Tg-R58Q myosin reconstituted with recombinant R58Q-RLC, but the effect of S15D-RLC was more pronounced than T160D-RLC. Low tension observed for R58Q-RLC reconstituted LVPM from Tg-R58Q mice was equally rescued by both phosphomimetic RLCs. In the HCM Tg-R58Q myocardium, the S15D-RLC caused a shift from the super-relaxed (SRX) state to the disordered relaxed (DRX) state, and the number of heads readily available to interact with actin and produce force was increased. At the same time, T160D-RLC stabilized the SRX state at a level similar to R58Q-RLC reconstituted fibers. We report here on the functional superiority of the established S15 phospho-site of the human cardiac RLC vs. C-terminus T160-RLC, with S15D-RLC showing therapeutic potential in mitigating a non-canonical HCM behavior underlined by hypocontractile behavior of Tg-R58Q myocardium.
Collapse
|
15
|
Anfinson M, Fitts RH, Lough JW, James JM, Simpson PM, Handler SS, Mitchell ME, Tomita-Mitchell A. Significance of α-Myosin Heavy Chain ( MYH6) Variants in Hypoplastic Left Heart Syndrome and Related Cardiovascular Diseases. J Cardiovasc Dev Dis 2022; 9:144. [PMID: 35621855 PMCID: PMC9147009 DOI: 10.3390/jcdd9050144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease (CHD) with complex genetic inheritance. HLHS segregates with other left ventricular outflow tract (LVOT) malformations in families, and can present as either an isolated phenotype or as a feature of a larger genetic disorder. The multifactorial etiology of HLHS makes it difficult to interpret the clinical significance of genetic variants. Specific genes have been implicated in HLHS, including rare, predicted damaging MYH6 variants that are present in >10% of HLHS patients, and which have been shown to be associated with decreased transplant-free survival in our previous studies. MYH6 (α-myosin heavy chain, α-MHC) variants have been reported in HLHS and numerous other CHDs, including LVOT malformations, and may provide a genetic link to these disorders. In this paper, we outline the MYH6 variants that have been identified, discuss how bioinformatic and functional studies can inform clinical decision making, and highlight the importance of genetic testing in HLHS.
Collapse
Affiliation(s)
- Melissa Anfinson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.); (J.W.L.)
- Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI 53226, USA; (S.S.H.); (M.E.M.)
| | - Robert H. Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA;
| | - John W. Lough
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.); (J.W.L.)
| | - Jeanne M. James
- Department of Pediatrics, Children’s Mercy, Kansas City, MO 64108, USA;
| | - Pippa M. Simpson
- Department of Pediatrics, Division of Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Stephanie S. Handler
- Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI 53226, USA; (S.S.H.); (M.E.M.)
- Department of Pediatrics, Division of Pediatric Cardiology, Children’s Wisconsin, Milwaukee, WI 53226, USA
| | - Michael E. Mitchell
- Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI 53226, USA; (S.S.H.); (M.E.M.)
- Department of Surgery, Division of Congenital Heart Surgery, Children’s Wisconsin, Milwaukee, WI 53226, USA
| | - Aoy Tomita-Mitchell
- Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI 53226, USA; (S.S.H.); (M.E.M.)
- Department of Surgery, Division of Congenital Heart Surgery, Children’s Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
16
|
Molecular basis of force-pCa relation in MYL2 cardiomyopathy mice: Role of the super-relaxed state of myosin. Proc Natl Acad Sci U S A 2022; 119:2110328119. [PMID: 35177471 PMCID: PMC8872785 DOI: 10.1073/pnas.2110328119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/22/2023] Open
Abstract
Many forms of cardiomyopathy manifest with changes in sarcomeric structure, function, and energetics. We used small-angle X-ray diffraction and myosin super-relaxed (SRX) state approaches to investigate the mechanisms underlying the clinical phenotypes associated with HCM-related D166V (aspartate-to-valine) and DCM-linked D94A (aspartate-to-alanine) mutations in the cardiac myosin RLC (MYL2 gene). Modulation of myosin function through dysregulation of the SRX state was closely coupled with structural rearrangements and the Ca2+ dependence of force development in HCM–D166V mice. The DCM–D94A model favored the SRX state without altering structure/force–pCa relationships. Understanding the regulation of SRX ↔ DRX equilibrium in the normal heart and how it is changed in heart disease may advance future therapeutics of patients suffering from the mutated MYL2 gene. In this study, we investigated the role of the super-relaxed (SRX) state of myosin in the structure–function relationship of sarcomeres in the hearts of mouse models of cardiomyopathy-bearing mutations in the human ventricular regulatory light chain (RLC, MYL2 gene). Skinned papillary muscles from hypertrophic (HCM–D166V) and dilated (DCM–D94A) cardiomyopathy models were subjected to small-angle X-ray diffraction simultaneously with isometric force measurements to obtain the interfilament lattice spacing and equatorial intensity ratios (I11/I10) together with the force-pCa relationship over a full range of [Ca2+] and at a sarcomere length of 2.1 μm. In parallel, we studied the effect of mutations on the ATP-dependent myosin energetic states. Compared with wild-type (WT) and DCM–D94A mice, HCM–D166V significantly increased the Ca2+ sensitivity of force and left shifted the I11/I10-pCa relationship, indicating an apparent movement of HCM–D166V cross-bridges closer to actin-containing thin filaments, thereby allowing for their premature Ca2+ activation. The HCM–D166V model also disrupted the SRX state and promoted an SRX-to-DRX (super-relaxed to disordered relaxed) transition that correlated with an HCM-linked phenotype of hypercontractility. While this dysregulation of SRX ↔ DRX equilibrium was consistent with repositioning of myosin motors closer to the thin filaments and with increased force-pCa dependence for HCM–D166V, the DCM–D94A model favored the energy-conserving SRX state, but the structure/function–pCa data were similar to WT. Our results suggest that the mutation-induced redistribution of myosin energetic states is one of the key mechanisms contributing to the development of complex clinical phenotypes associated with human HCM–D166V and DCM–D94A mutations.
Collapse
|
17
|
Markandran K, Yu H, Song W, Lam DTUH, Madathummal MC, Ferenczi MA. Functional and Molecular Characterisation of Heart Failure Progression in Mice and the Role of Myosin Regulatory Light Chains in the Recovery of Cardiac Muscle Function. Int J Mol Sci 2021; 23:ijms23010088. [PMID: 35008512 PMCID: PMC8745055 DOI: 10.3390/ijms23010088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) as a result of myocardial infarction (MI) is a major cause of fatality worldwide. However, the cause of cardiac dysfunction succeeding MI has not been elucidated at a sarcomeric level. Thus, studying the alterations within the sarcomere is necessary to gain insights on the fundamental mechansims leading to HF and potentially uncover appropriate therapeutic targets. Since existing research portrays regulatory light chains (RLC) to be mediators of cardiac muscle contraction in both human and animal models, its role was further explored In this study, a detailed characterisation of the physiological changes (i.e., isometric force, calcium sensitivity and sarcomeric protein phosphorylation) was assessed in an MI mouse model, between 2D (2 days) and 28D post-MI, and the changes were related to the phosphorylation status of RLCs. MI mouse models were created via complete ligation of left anterior descending (LAD) coronary artery. Left ventricular (LV) papillary muscles were isolated and permeabilised for isometric force and Ca2+ sensitivity measurement, while the LV myocardium was used to assay sarcomeric proteins’ (RLC, troponin I (TnI) and myosin binding protein-C (MyBP-C)) phosphorylation levels and enzyme (myosin light chain kinase (MLCK), zipper interacting protein kinase (ZIPK) and myosin phosphatase target subunit 2 (MYPT2)) expression levels. Finally, the potential for improving the contractility of diseased cardiac papillary fibres via the enhancement of RLC phosphorylation levels was investigated by employing RLC exchange methods, in vitro. RLC phosphorylation and isometric force potentiation were enhanced in the compensatory phase and decreased in the decompensatory phase of HF failure progression, respectively. There was no significant time-lag between the changes in RLC phosphorylation and isometric force during HF progression, suggesting that changes in RLC phosphorylation immediately affect force generation. Additionally, the in vitro increase in RLC phosphorylation levels in 14D post-MI muscle segments (decompensatory stage) enhanced its force of isometric contraction, substantiating its potential in HF treatment. Longitudinal observation unveils potential mechanisms involving MyBP-C and key enzymes regulating RLC phosphorylation, such as MLCK and MYPT2 (subunit of MLCP), during HF progression. This study primarily demonstrates that RLC phosphorylation is a key sarcomeric protein modification modulating cardiac function. This substantiates the possibility of using RLCs and their associated enzymes to treat HF.
Collapse
Affiliation(s)
- Kasturi Markandran
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
| | - Haiyang Yu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
| | - Weihua Song
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
| | - Do Thuy Uyen Ha Lam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
- Laboratory of Precision Disease Therapeutics, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Mufeeda Changaramvally Madathummal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
- A*STAR Microscopy Platform—Electron Microscopy, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Michael A. Ferenczi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
- Brunel Medical School, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
- Correspondence:
| |
Collapse
|
18
|
Microscale thermophoresis suggests a new model of regulation of cardiac myosin function via interaction with cardiac myosin-binding protein C. J Biol Chem 2021; 298:101485. [PMID: 34915024 PMCID: PMC8733265 DOI: 10.1016/j.jbc.2021.101485] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
The cardiac isoform of myosin-binding protein C (cMyBP-C) is a key regulatory protein found in cardiac myofilaments that can control the activation state of both the actin-containing thin and myosin-containing thick filaments. However, in contrast to thin filament–based mechanisms of regulation, the mechanism of myosin-based regulation by cMyBP-C has yet to be defined in detail. To clarify its function in this process, we used microscale thermophoresis to build an extensive interaction map between cMyBP-C and isolated fragments of β-cardiac myosin. We show here that the regulatory N-terminal domains (C0C2) of cMyBP-C interact with both the myosin head (myosin S1) and tail domains (myosin S2) with micromolar affinity via phosphorylation-independent and phosphorylation-dependent interactions of domain C1 and the cardiac-specific m-motif, respectively. Moreover, we show that the interaction sites with the highest affinity between cMyBP-C and myosin S1 are localized to its central domains, which bind myosin with submicromolar affinity. We identified two separate interaction regions in the central C2C4 and C5C7 segments that compete for the same binding site on myosin S1, suggesting that cMyBP-C can crosslink the two myosin heads of a single myosin molecule and thereby stabilize it in the folded OFF state. Phosphorylation of the cardiac-specific m-motif by protein kinase A had no effect on the binding of either the N-terminal or the central segments to the myosin head domain, suggesting this might therefore represent a constitutively bound state of myosin associated with cMyBP-C. Based on our results, we propose a new model of regulation of cardiac myosin function by cMyBP-C.
Collapse
|
19
|
Kampourakis T, Irving M. The regulatory light chain mediates inactivation of myosin motors during active shortening of cardiac muscle. Nat Commun 2021; 12:5272. [PMID: 34489440 PMCID: PMC8421338 DOI: 10.1038/s41467-021-25601-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
The normal function of heart muscle depends on its ability to contract more strongly at longer length. Increased venous filling stretches relaxed heart muscle cells, triggering a stronger contraction in the next beat- the Frank-Starling relation. Conversely, heart muscle cells are inactivated when they shorten during ejection, accelerating relaxation to facilitate refilling before the next beat. Although both effects are essential for the efficient function of the heart, the underlying mechanisms were unknown. Using bifunctional fluorescent probes on the regulatory light chain of the myosin motor we show that its N-terminal domain may be captured in the folded OFF state of the myosin dimer at the end of the working-stroke of the actin-attached motor, whilst its C-terminal domain joins the OFF state only after motor detachment from actin. We propose that sequential folding of myosin motors onto the filament backbone may be responsible for shortening-induced de-activation in the heart.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
- British Heart Foundation Centre of Research Excellence, King's College London, London, UK.
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
- British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| |
Collapse
|
20
|
Isola R, Broccia F, Casti A, Loy F, Isola M, Vargiu R. STZ-diabetic rat heart maintains developed tension amplitude by increasing sarcomere length and crossbridge density. Exp Physiol 2021; 106:1572-1586. [PMID: 33977604 PMCID: PMC8362044 DOI: 10.1113/ep089000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
New Findings What is the central question of this study? In the papillary muscle from type I diabetic rats, does diabetes‐associated altered ventricular function result from changes of acto‐myosin interactions and are these modifications attributable to a possible sarcomere rearrangement? What is the main finding and its importance? For the first time, we showed that type‐I diabetes altered sarcomeric ultrastructure, as seen by transmission electron microscopy, consistent with physiological parameters. The diabetic condition induced slower timing parameters, which is compatible with a diastolic dysfunction. At the sarcomeric level, augmented β‐myosin heavy chain content and increased sarcomere length and crossbridges' number preserve myocardial stroke and could concur to maintain the ejection fraction.
Abstract We investigated whether diabetes‐associated altered ventricular function, in a type I diabetes animal model, results from a modification of acto‐myosin interactions, through the in vitro recording of left papillary muscle mechanical parameters and examination of sarcomere morphology by transmission electron microscopy (TEM). Experiments were performed on streptozotocin‐induced diabetic and age‐matched control female Wistar rats. Mechanical isometric and isotonic indexes and timing parameters were determined. Using Huxley's equations, we calculated mechanics, kinetics and energetics of myosin crossbridges. Sarcomere length and A‐band length were measured on TEM images. Type I and III collagen and β‐myosin heavy chain (MHC) expression were determined by immunoblotting. No variation in resting and developed tension or maximum extent of shortening was evident between groups, but diabetic rats showed lower maximum shortening velocity and prolonged timing parameters. Compared to controls, diabetics also displayed a higher number of crossbridges with lower unitary force. Moreover, no change in type I and III collagen was associated to diabetes, but pathological rats showed a two‐fold enhancement of β‐MHC content and longer sarcomeres and A‐band, detected by ultrastructural morphometry. Overall, these data address whether a preserved systolic function accompanied by an altered diastolic phase results from a recruitment of super‐relaxed myosin heads or the phosphorylation of the regulatory light chain site in myosin. Although the early signs of diabetic cardiomyopathy were well expressed, the striking finding of our study was that, in diabetics, sarcomere modification may be a possible compensatory mechanism that preserves systolic function.
Collapse
Affiliation(s)
- Raffaella Isola
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Francesca Broccia
- Department of Biomedical Sciences, Division of Physiology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Alberto Casti
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Francesco Loy
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Michela Isola
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Romina Vargiu
- Department of Biomedical Sciences, Division of Physiology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| |
Collapse
|
21
|
Regulatory Light Chains in Cardiac Development and Disease. Int J Mol Sci 2021; 22:ijms22094351. [PMID: 33919432 PMCID: PMC8122660 DOI: 10.3390/ijms22094351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/18/2022] Open
Abstract
The role of regulatory light chains (RLCs) in cardiac muscle function has been elucidated progressively over the past decade. The RLCs are among the earliest expressed markers during cardiogenesis and persist through adulthood. Failing hearts have shown reduced RLC phosphorylation levels and that restoring baseline levels of RLC phosphorylation is necessary for generating optimal force of muscle contraction. The signalling mechanisms triggering changes in RLC phosphorylation levels during disease progression remain elusive. Uncovering this information may provide insights for better management of heart failure patients. Given the cardiac chamber-specific expression of RLC isoforms, ventricular RLCs have facilitated the identification of mature ventricular cardiomyocytes, opening up possibilities of regenerative medicine. This review consolidates the standing of RLCs in cardiac development and disease and highlights knowledge gaps and potential therapeutic advancements in targeting RLCs.
Collapse
|
22
|
Stress-dependent activation of myosin in the heart requires thin filament activation and thick filament mechanosensing. Proc Natl Acad Sci U S A 2021; 118:2023706118. [PMID: 33850019 PMCID: PMC8072254 DOI: 10.1073/pnas.2023706118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The efficiency of the heart as a pump depends on an autoregulatory mechanism, the Frank–Starling law of the heart, that potentiates the strength of contraction in response to an increase in ventricular filling. Disruption of this mechanism compromises the ability of the heart to pump blood, potentially leading to heart failure. We used fluorescent probes on myosin in heart muscle cells to investigate the molecular basis of the Frank–Starling mechanism. Our results show that the stronger contraction of heart muscle at longer lengths is due to a calcium-dependent interfilament signaling pathway that links stress sensing in the myosin-containing filaments with calcium activation of the actin-containing filaments. This pathway can potentially be targeted for treating heart failure. Myosin-based regulation in the heart muscle modulates the number of myosin motors available for interaction with calcium-regulated thin filaments, but the signaling pathways mediating the stronger contraction triggered by stretch between heartbeats or by phosphorylation of the myosin regulatory light chain (RLC) remain unclear. Here, we used RLC probes in demembranated cardiac trabeculae to investigate the molecular structural basis of these regulatory pathways. We show that in relaxed trabeculae at near-physiological temperature and filament lattice spacing, the RLC-lobe orientations are consistent with a subset of myosin motors being folded onto the filament surface in the interacting-heads motif seen in isolated filaments. The folded conformation of myosin is disrupted by cooling relaxed trabeculae, similar to the effect induced by maximal calcium activation. Stretch or increased RLC phosphorylation in the physiological range have almost no effect on RLC conformation at a calcium concentration corresponding to that between beats. These results indicate that in near-physiological conditions, the folded myosin motors are not directly switched on by RLC phosphorylation or by the titin-based passive tension at longer sarcomere lengths in the absence of thin filament activation. However, at the higher calcium concentrations that activate the thin filaments, stretch produces a delayed activation of folded myosin motors and force increase that is potentiated by RLC phosphorylation. We conclude that the increased contractility of the heart induced by RLC phosphorylation and stretch can be explained by a calcium-dependent interfilament signaling pathway involving both thin filament sensitization and thick filament mechanosensing.
Collapse
|
23
|
Cao L, Wang Z, Zhang D, Li X, Hou C, Ren C. Phosphorylation of myosin regulatory light chain at Ser17 regulates actomyosin dissociation. Food Chem 2021; 356:129655. [PMID: 33831832 DOI: 10.1016/j.foodchem.2021.129655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 11/19/2022]
Abstract
Phosphorylation of myosin regulatory light chain (MRLC) can regulate muscle contraction and thus affect actomyosin dissociation and meat quality. The objective of this study was to explore the mechanism by how MRLC phosphorylation regulates actomyosin dissociation and thus develop strategies for improving meat quality. Here, the phosphorylation status of MRLC was modulated by myosin light chain kinase and myosin light chain kinase inhibitor. MRLC phosphorylation at Ser17 decreased the kinetic energy and total energy of actomyosin, thus stabilized the structure, facilitating the interaction between myosin and actin; this was one possible way that MRLC phosphorylation at Ser17 negatively affects actomyosin dissociation. Moreover, MRLC phosphorylation at Ser17 was beneficial to the formation of ionic bonds, hydrogen bonds, and hydrophobic interaction between myosin and actin, and was the second possible way that MRLC phosphorylation at Ser17 negatively affects actomyosin dissociation.
Collapse
Affiliation(s)
- Lichuang Cao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark.
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Chi Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| |
Collapse
|
24
|
Schmid M, Toepfer CN. Cardiac myosin super relaxation (SRX): a perspective on fundamental biology, human disease and therapeutics. Biol Open 2021; 10:bio057646. [PMID: 33589442 PMCID: PMC7904003 DOI: 10.1242/bio.057646] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The fundamental basis of muscle contraction 'the sliding filament model' (Huxley and Niedergerke, 1954; Huxley and Hanson, 1954) and the 'swinging, tilting crossbridge-sliding filament mechanism' (Huxley, 1969; Huxley and Brown, 1967) nucleated a field of research that has unearthed the complex and fascinating role of myosin structure in the regulation of contraction. A recently discovered energy conserving state of myosin termed the super relaxed state (SRX) has been observed in filamentous myosins and is central to modulating force production and energy use within the sarcomere. Modulation of myosin function through SRX is a rapidly developing theme in therapeutic development for both cardiovascular disease and infectious disease. Some 70 years after the first discoveries concerning muscular function, modulation of myosin SRX may bring the first myosin targeted small molecule to the clinic, for treating hypertrophic cardiomyopathy (Olivotto et al., 2020). An often monogenic disease HCM afflicts 1 in 500 individuals, and can cause heart failure and sudden cardiac death. Even as we near therapeutic translation, there remain many questions about the governance of muscle function in human health and disease. With this review, we provide a broad overview of contemporary understanding of myosin SRX, and explore the complexities of targeting this myosin state in human disease.This article has an associated Future Leaders to Watch interview with the authors of the paper.
Collapse
Affiliation(s)
- Manuel Schmid
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Christopher N Toepfer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
25
|
Pertici I, Bianchi G, Bongini L, Cojoc D, Taft MH, Manstein DJ, Lombardi V, Bianco P. Muscle myosin performance measured with a synthetic nanomachine reveals a class-specific Ca 2+ -sensitivity of the frog myosin II isoform. J Physiol 2021; 599:1815-1831. [PMID: 33507554 DOI: 10.1113/jp280976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/25/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS A nanomachine made of an ensemble of seven heavy-meromyosin (HMM) fragments of muscle myosin interacting with an actin filament is able to mimic the half-sarcomere generating steady force and constant-velocity shortening. To preserve Ca2+ as a free parameter, the Ca2+ -insensitive gelsolin fragment TL40 is used to attach the correctly oriented actin filament to the laser-trapped bead acting as a force transducer. The new method reveals that the performance of the nanomachine powered by myosin from frog hind-limb muscles depends on [Ca2+ ], an effect mediated by a Ca2+ -binding site in the regulatory light chain of HMM. The Ca2+ -sensitivity is class-specific because the performance of the nanomachine powered by mammalian skeletal muscle myosin is Ca2+ independent. A model simulation is able to interface the nanomachine performance with that of the muscle of origin and provides a molecular explanation of the functional diversity of muscles with different orthologue isoforms of myosin. ABSTRACT An ensemble of seven heavy-meromyosin (HMM) fragments of myosin-II purified from the hindlimb muscles of the frog (Rana esculenta) is used to drive a synthetic nanomachine that pulls an actin filament in the absence of confounding effects of other sarcomeric proteins. In the present version of the nanomachine the +end of the actin filament is attached to the laser trapped bead via the Ca2+ -insensitive gelsolin fragment TL40, making [Ca2+ ] a free parameter. Frog myosin performance in 2 mm ATP is affected by Ca2+ : in 0.1 mm Ca2+ , the isometric steady force (F0 , 15.25 pN) is increased by 50% (P = 0.004) with respect to that in Ca2+ -free solution, the maximum shortening velocity (V0 , 4.6 μm s-1 ) is reduced by 27% (P = 0.46) and the maximum power (Pmax , 7.6 aW) is increased by 21% (P = 0.17). V0 reduction is not significant for the paucity of data at low force, although it is solidified by a similar decrease (33%, P < 0.0001) in the velocity of actin sliding as indicated by an in vitro motility assay (Vf ). The rate of ATP-hydrolysis in solution (φ) exhibits a similar calcium dependence. Ca2+ titration curves for Vf and φ give Kd values of ∼30 μm. All the above mechanical and kinetic parameters are independent of Ca2+ when HMM from rabbit psoas myosin is used, indicating that the Ca2+ -sensitivity is a class-specific property of muscle myosin. A unique multiscale model allows interfacing of the nanomachine performance to that of the muscle of origin and identifies the kinetic steps responsible for the Ca2+ -sensitivity of frog myosin.
Collapse
Affiliation(s)
- Irene Pertici
- PhysioLab, University of Florence, Sesto Fiorentino, FI, Italy
| | - Giulio Bianchi
- PhysioLab, University of Florence, Sesto Fiorentino, FI, Italy
| | - Lorenzo Bongini
- PhysioLab, University of Florence, Sesto Fiorentino, FI, Italy
| | | | - Manuel H Taft
- Institute for Biophysical Chemistry, Fritz-Hartmann-Centre for Medical Research, Medizinische Hochschule Hannover, Hannover, Germany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Fritz-Hartmann-Centre for Medical Research, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Pasquale Bianco
- PhysioLab, University of Florence, Sesto Fiorentino, FI, Italy
| |
Collapse
|
26
|
Creed HA, Tong CW. Preparation and Identification of Cardiac Myofibrils from Whole Heart Samples. Methods Mol Biol 2021; 2319:15-24. [PMID: 34331238 DOI: 10.1007/978-1-0716-1480-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mouse models are extensively studied and well-used to study cardiomyopathies due to the genetic relevance of this model organism and increasing need to identify therapeutic targets. Cardiac myofibril preparation for whole hearts has proved to be an invaluable in vitro method for determining the fundamental molecular mechanisms in heart failure. The technique described below consistently yields intact cardiac myofibrils, which can be used in subsequent techniques such as western blotting, immunofluorescence, and mass spectrometry. Here, we describe a method to optimize the separation and yield of cardiac myofibrils from murine whole tissue samples and preparation for subsequent mass spectrometry. This method allows for quick visual identification of multiple cardiac myofibril proteins.
Collapse
Affiliation(s)
- Heidi A Creed
- Department of Medical Physiology, College of Medicine, Texas A&M University of Health Science Center, Bryan, TX, USA
| | - Carl W Tong
- Department of Medical Physiology, College of Medicine, Texas A&M University of Health Science Center, Bryan, TX, USA.
| |
Collapse
|
27
|
Cao L, Hou C, Hussain Z, Zhang D, Wang Z. Quantitative phosphoproteomics analysis of actomyosin dissociation affected by specific site phosphorylation of myofibrillar protein. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Nayak A, Wang T, Franz P, Steffen W, Chizhov I, Tsiavaliaris G, Amrute-Nayak M. Single-molecule analysis reveals that regulatory light chains fine-tune skeletal myosin II function. J Biol Chem 2020; 295:7046-7059. [PMID: 32273340 DOI: 10.1074/jbc.ra120.012774] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/07/2020] [Indexed: 11/06/2022] Open
Abstract
Myosin II is the main force-generating motor during muscle contraction. Myosin II exists as different isoforms that are involved in diverse physiological functions. One outstanding question is whether the myosin heavy chain (MHC) isoforms alone account for these distinct physiological properties. Unique sets of essential and regulatory light chains (RLCs) are known to assemble with specific MHCs, raising the intriguing possibility that light chains contribute to specialized myosin functions. Here, we asked whether different RLCs contribute to this functional diversification. To this end, we generated chimeric motors by reconstituting the MHC fast isoform (MyHC-IId) and slow isoform (MHC-I) with different light-chain variants. As a result of the RLC swapping, actin filament sliding velocity increased by ∼10-fold for the slow myosin and decreased by >3-fold for the fast myosin. Results from ensemble molecule solution kinetics and single-molecule optical trapping measurements provided in-depth insights into altered chemo-mechanical properties of the myosin motors that affect the sliding speed. Notably, we found that the mechanical output of both slow and fast myosins is sensitive to the RLC isoform. We therefore propose that RLCs are crucial for fine-tuning the myosin function.
Collapse
Affiliation(s)
- Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Tianbang Wang
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Peter Franz
- Institute of Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Walter Steffen
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Igor Chizhov
- Institute of Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Georgios Tsiavaliaris
- Institute of Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
29
|
Sevrieva IR, Brandmeier B, Ponnam S, Gautel M, Irving M, Campbell KS, Sun YB, Kampourakis T. Cardiac myosin regulatory light chain kinase modulates cardiac contractility by phosphorylating both myosin regulatory light chain and troponin I. J Biol Chem 2020; 295:4398-4410. [PMID: 32086378 PMCID: PMC7135997 DOI: 10.1074/jbc.ra119.011945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Heart muscle contractility and performance are controlled by posttranslational modifications of sarcomeric proteins. Although myosin regulatory light chain (RLC) phosphorylation has been studied extensively in vitro and in vivo, the precise role of cardiac myosin light chain kinase (cMLCK), the primary kinase acting upon RLC, in the regulation of cardiomyocyte contractility remains poorly understood. In this study, using recombinantly expressed and purified proteins, various analytical methods, in vitro and in situ kinase assays, and mechanical measurements in isolated ventricular trabeculae, we demonstrate that human cMLCK is not a dedicated kinase for RLC but can phosphorylate other sarcomeric proteins with well-characterized regulatory functions. We show that cMLCK specifically monophosphorylates Ser23 of human cardiac troponin I (cTnI) in isolation and in the trimeric troponin complex in vitro and in situ in the native environment of the muscle myofilament lattice. Moreover, we observed that human cMLCK phosphorylates rodent cTnI to a much smaller extent in vitro and in situ, suggesting species-specific adaptation of cMLCK. Although cMLCK treatment of ventricular trabeculae exchanged with rat or human troponin increased their cross-bridge kinetics, the increase in sensitivity of myofilaments to calcium was significantly blunted by human TnI, suggesting that human cTnI phosphorylation by cMLCK modifies the functional consequences of RLC phosphorylation. We propose that cMLCK-mediated phosphorylation of TnI is functionally significant and represents a critical signaling pathway that coordinates the regulatory states of thick and thin filaments in both physiological and potentially pathophysiological conditions of the heart.
Collapse
Affiliation(s)
- Ivanka R Sevrieva
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| | - Birgit Brandmeier
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| | - Saraswathi Ponnam
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| | - Kenneth S Campbell
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0298
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
30
|
Spudich JA. Three perspectives on the molecular basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Pflugers Arch 2019; 471:701-717. [PMID: 30767072 PMCID: PMC6475635 DOI: 10.1007/s00424-019-02259-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/20/2019] [Indexed: 01/10/2023]
Abstract
Several lines of evidence suggest that the primary effect of hypertrophic cardiomyopathy mutations in human β-cardiac myosin is hypercontractility of the heart, which leads to subsequent hypertrophy, fibrosis, and myofilament disarray. Here, I describe three perspectives on the molecular basis of this hypercontractility. The first is that hypercontractility results from changes in the fundamental parameters of the actin-activated β-cardiac myosin chemo-mechanical ATPase cycle. The second considers that hypercontractility results from an increase in the number of functionally accessible heads in the sarcomere for interaction with actin. The final and third perspective is that load dependence of contractility is affected by cardiomyopathy mutations and small-molecule effectors in a manner that changes the power output of cardiac contraction. Experimental approaches associated with each perspective are described along with concepts of therapeutic approaches that could prove valuable in treating hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
31
|
Yadav S, Kazmierczak K, Liang J, Sitbon YH, Szczesna-Cordary D. Phosphomimetic-mediated in vitro rescue of hypertrophic cardiomyopathy linked to R58Q mutation in myosin regulatory light chain. FEBS J 2018; 286:151-168. [PMID: 30430732 DOI: 10.1111/febs.14702] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/03/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022]
Abstract
Myosin regulatory light chain (RLC) phosphorylation is important for cardiac muscle mechanics/function as well as for the Ca2+ -troponin/tropomyosin regulation of muscle contraction. This study focuses on the arginine to glutamine (R58Q) substitution in the human ventricular RLC (MYL2 gene), linked to malignant hypertrophic cardiomyopathy in humans and causing severe functional abnormalities in transgenic (Tg) R58Q mice, including inhibition of cardiac RLC phosphorylation. Using a phosphomimic recombinant RLC variant where Ser-15 at the phosphorylation site was substituted with aspartic acid (S15D) and placed in the background of R58Q, we aimed to assess whether we could rescue/mitigate R58Q-induced structural/functional abnormalities in vitro. We show rescue of several R58Q-exerted adverse phenotypes in S15D-R58Q-reconstituted porcine cardiac muscle preparations. A low level of maximal isometric force observed for R58Q- versus WT-reconstituted fibers was restored by S15D-R58Q. Significant beneficial effects were also observed on the Vmax of actin-activated myosin ATPase activity in S15D-R58Q versus R58Q-reconstituted myosin, along with its binding to fluorescently labeled actin. We also report that R58Q promotes the OFF state of myosin, both in reconstituted porcine fibers and in Tg mouse papillary muscles, thereby stabilizing the super-relaxed state (SRX) of myosin, characterized by a very low ATP turnover rate. Experiments in S15D-R58Q-reconstituted porcine fibers showed a mild destabilization of the SRX state, suggesting an S15D-mediated shift in disordered-relaxed (DRX)↔SRX equilibrium toward the DRX state of myosin. Our study shows that S15D-phosphomimic can be used as a potential rescue strategy to abrogate/alleviate the RLC mutation-induced phenotypes and is a likely candidate for therapeutic intervention in HCM patients.
Collapse
Affiliation(s)
- Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
32
|
Anderson RL, Trivedi DV, Sarkar SS, Henze M, Ma W, Gong H, Rogers CS, Gorham JM, Wong FL, Morck MM, Seidman JG, Ruppel KM, Irving TC, Cooke R, Green EM, Spudich JA. Deciphering the super relaxed state of human β-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers. Proc Natl Acad Sci U S A 2018; 115:E8143-E8152. [PMID: 30104387 PMCID: PMC6126717 DOI: 10.1073/pnas.1809540115] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in β-cardiac myosin, the predominant motor protein for human heart contraction, can alter power output and cause cardiomyopathy. However, measurements of the intrinsic force, velocity, and ATPase activity of myosin have not provided a consistent mechanism to link mutations to muscle pathology. An alternative model posits that mutations in myosin affect the stability of a sequestered, super relaxed state (SRX) of the protein with very slow ATP hydrolysis and thereby change the number of myosin heads accessible to actin. Here we show that purified human β-cardiac myosin exists partly in an SRX and may in part correspond to a folded-back conformation of myosin heads observed in muscle fibers around the thick filament backbone. Mutations that cause hypertrophic cardiomyopathy destabilize this state, while the small molecule mavacamten promotes it. These findings provide a biochemical and structural link between the genetics and physiology of cardiomyopathy with implications for therapeutic strategies.
Collapse
Affiliation(s)
| | - Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Saswata S Sarkar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Henry Gong
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | | | - Joshua M Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | | - Makenna M Morck
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305
| | - Thomas C Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Roger Cooke
- Department of Biochemistry, University of California, San Francisco, CA 94158
| | | | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305;
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
33
|
Zhang R, Xu Y, Niu H, Tao T, Ban T, Zheng L, Ai J. Lycium barbarum polysaccharides restore adverse structural remodelling and cardiac contractile dysfunction induced by overexpression of microRNA-1. J Cell Mol Med 2018; 22:4830-4839. [PMID: 30117672 PMCID: PMC6156239 DOI: 10.1111/jcmm.13740] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022] Open
Abstract
MicroRNA‐1 (miR‐1) stands out as the most prominent microRNA (miRNA) in regulating cardiac function and has been perceived as a new potential therapeutic target. Lycium barbarum polysaccharides (LBPs) are major active constituents of the traditional Chinese medicine based on L. barbarum. The purpose of this study was to exploit the cardioprotective effect and molecular mechanism of LBPs underlying heart failure. We found that LBPs significantly reduced the expression of myocardial miR‐1. LBPs improved the abnormal ECG and indexes of cardiac functions in P‐V loop detection in transgenic (Tg) mice with miR‐1 overexpression. LBPs recovered morphological changes in sarcomeric assembly, intercalated disc and gap junction. LBPs reversed the reductions of CaM and cMLCK, the proteins targeted by miR‐1. Similar trends were also obtained in their downstream effectors including the phosphorylation of MLC2v and both total level and phosphorylation of CaMKII and cMyBP‐C. Collectively, LBPs restored adverse structural remodelling and improved cardiac contractile dysfunction induced by overexpression of miR‐1. One of the plausible mechanisms was that LBPs down‐regulated miR‐1 expression and consequently reversed miR‐1‐induced repression of target proteins relevant to myocardial contractibility. LBPs could serve as a new, at least a very useful adjunctive, candidate for prevention and therapy of heart failure.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yi Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Huifang Niu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ting Tao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tao Ban
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Linyao Zheng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jing Ai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
34
|
Piazzesi G, Caremani M, Linari M, Reconditi M, Lombardi V. Thick Filament Mechano-Sensing in Skeletal and Cardiac Muscles: A Common Mechanism Able to Adapt the Energetic Cost of the Contraction to the Task. Front Physiol 2018; 9:736. [PMID: 29962967 PMCID: PMC6010558 DOI: 10.3389/fphys.2018.00736] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/28/2018] [Indexed: 11/29/2022] Open
Abstract
A dual regulation of contraction operates in both skeletal and cardiac muscles. The first mechanism, based on Ca2+-dependent structural changes of the regulatory proteins in the thin filament, makes the actin sites available for binding of the myosin motors. The second recruits the myosin heads from the OFF state, in which they are unable to split ATP and bind to actin, in relation to the force during contraction. Comparison of the relevant X-ray diffraction signals marking the state of the thick filament demonstrates that the force feedback that controls the regulatory state of the thick filament works in the same way in skeletal as in cardiac muscles: even if in an isometric tetanus of skeletal muscle force is under the control of the firing frequency of the motor unit, while in a heartbeat force is controlled by the afterload, the stress-sensor switching the motors ON plays the same role in adapting the energetic cost of the contraction to the force. A new aspect of the Frank-Starling law of the heart emerges: independent of the diastolic filling of the ventricle, the number of myosin motors switched ON during systole, and thus the energetic cost of contraction, are tuned to the arterial pressure. Deterioration of the thick-filament regulation mechanism may explain the hyper-contractility related to hypertrophic cardiomyopathy, an inherited heart disease that in 40% of cases is due to mutations in cardiac myosin.
Collapse
Affiliation(s)
| | | | - Marco Linari
- PhysioLab, University of Florence, Florence, Italy
| | | | | |
Collapse
|
35
|
Kampourakis T, Ponnam S, Irving M. Hypertrophic cardiomyopathy mutation R58Q in the myosin regulatory light chain perturbs thick filament-based regulation in cardiac muscle. J Mol Cell Cardiol 2018; 117:72-81. [PMID: 29452157 PMCID: PMC5883317 DOI: 10.1016/j.yjmcc.2018.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 01/25/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is frequently linked to mutations in the protein components of the myosin-containing thick filaments leading to contractile dysfunction and ultimately heart failure. However, the molecular structure-function relationships that underlie these pathological effects remain largely obscure. Here we chose an example mutation (R58Q) in the myosin regulatory light chain (RLC) that is associated with a severe HCM phenotype and combined the results from a wide range of in vitro and in situ structural and functional studies on isolated protein components, myofibrils and ventricular trabeculae to create an extensive map of structure-function relationships. The results can be understood in terms of a unifying hypothesis that illuminates both the effects of the mutation and physiological signaling pathways. R58Q promotes an OFF state of the thick filaments that reduces the number of myosin head domains that are available for actin interaction and ATP utilization. Moreover this mutation uncouples two aspects of length-dependent activation (LDA), the cellular basis of the Frank-Starling relation that couples cardiac output to venous return; R58Q reduces maximum calcium-activated force with no significant effect on myofilament calcium sensitivity. Finally, phosphorylation of R58Q-RLC to levels that may be relevant both physiologically and pathologically restores the regulatory state of the thick filament and the effect of sarcomere length on maximum calcium-activated force and thick filament structure, as well as increasing calcium sensitivity. We conclude that perturbation of thick filament-based regulation may be a common mechanism in the etiology of missense mutation-associated HCM, and that this signaling pathway offers a promising target for the development of novel therapeutics. R58Q mutation in RLC (R58Q-RLC) promotes the myosin filament OFF state. R58Q-RLC reduces active force and perturbs length dependent activation (LDA). Phosphorylation of R58Q-RLC restores myosin filament regulation and LDA. Myosin filament regulation is a target for the development of heart failure drugs.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom.
| | - Saraswathi Ponnam
- Randall Centre for Cell and Molecular Biophysics, British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
36
|
Kampourakis T, Zhang X, Sun YB, Irving M. Omecamtiv mercabil and blebbistatin modulate cardiac contractility by perturbing the regulatory state of the myosin filament. J Physiol 2017; 596:31-46. [PMID: 29052230 PMCID: PMC5746517 DOI: 10.1113/jp275050] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/06/2017] [Indexed: 01/10/2023] Open
Abstract
Key points Omecamtiv mecarbil and blebbistatin perturb the regulatory state of the thick filament in heart muscle. Omecamtiv mecarbil increases contractility at low levels of activation by stabilizing the ON state of the thick filament. Omecamtiv mecarbil decreases contractility at high levels of activation by disrupting the acto‐myosin ATPase cycle. Blebbistatin reduces contractility by stabilizing the thick filament OFF state and inhibiting acto‐myosin ATPase. Thick filament regulation is a promising target for novel therapeutics in heart disease.
Abstract Contraction of heart muscle is triggered by a transient rise in intracellular free calcium concentration linked to a change in the structure of the actin‐containing thin filaments that allows the head or motor domains of myosin from the thick filaments to bind to them and induce filament sliding. It is becoming increasingly clear that cardiac contractility is also regulated through structural changes in the thick filaments, although the molecular mechanisms underlying thick filament regulation are still relatively poorly understood. Here we investigated those mechanisms using small molecules – omecamtiv mecarbil (OM) and blebbistatin (BS) – that bind specifically to myosin and respectively activate or inhibit contractility in demembranated cardiac muscle cells. We measured isometric force and ATP utilization at different calcium and small‐molecule concentrations in parallel with in situ structural changes determined using fluorescent probes on the myosin regulatory light chain in the thick filaments and on troponin C in the thin filaments. The results show that BS inhibits contractility and actin‐myosin ATPase by stabilizing the OFF state of the thick filament in which myosin head domains are more parallel to the filament axis. In contrast, OM stabilizes the ON state of the thick filament, but inhibits contractility at high intracellular calcium concentration by disrupting the actin‐myosin ATPase pathway. The effects of BS and OM on the calcium sensitivity of isometric force and filament structural changes suggest that the co‐operativity of calcium activation in physiological conditions is due to positive coupling between the regulatory states of the thin and thick filaments. Omecamtiv mecarbil and blebbistatin perturb the regulatory state of the thick filament in heart muscle. Omecamtiv mecarbil increases contractility at low levels of activation by stabilizing the ON state of the thick filament. Omecamtiv mecarbil decreases contractility at high levels of activation by disrupting the acto‐myosin ATPase cycle. Blebbistatin reduces contractility by stabilizing the thick filament OFF state and inhibiting acto‐myosin ATPase. Thick filament regulation is a promising target for novel therapeutics in heart disease.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Xuemeng Zhang
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| |
Collapse
|
37
|
Trivedi DV, Adhikari AS, Sarkar SS, Ruppel KM, Spudich JA. Hypertrophic cardiomyopathy and the myosin mesa: viewing an old disease in a new light. Biophys Rev 2017; 10:27-48. [PMID: 28717924 PMCID: PMC5803174 DOI: 10.1007/s12551-017-0274-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
The sarcomere is an exquisitely designed apparatus that is capable of generating force, which in the case of the heart results in the pumping of blood throughout the body. At the molecular level, an ATP-dependent interaction of myosin with actin drives the contraction and force generation of the sarcomere. Over the past six decades, work on muscle has yielded tremendous insights into the workings of the sarcomeric system. We now stand on the cusp where the acquired knowledge of how the sarcomere contracts and how that contraction is regulated can be extended to an understanding of the molecular mechanisms of sarcomeric diseases, such as hypertrophic cardiomyopathy (HCM). In this review we present a picture that combines current knowledge of the myosin mesa, the sequestered state of myosin heads on the thick filament, known as the interacting-heads motif (IHM), their possible interaction with myosin binding protein C (MyBP-C) and how these interactions can be abrogated leading to hyper-contractility, a key clinical manifestation of HCM. We discuss the structural and functional basis of the IHM state of the myosin heads and identify HCM-causing mutations that can directly impact the equilibrium between the 'on state' of the myosin heads (the open state) and the IHM 'off state'. We also hypothesize a role of MyBP-C in helping to maintain myosin heads in the IHM state on the thick filament, allowing release in a graded manner upon adrenergic stimulation. By viewing clinical hyper-contractility as the result of the destabilization of the IHM state, our aim is to view an old disease in a new light.
Collapse
Affiliation(s)
- Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arjun S Adhikari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Saswata S Sarkar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
38
|
MYBPC3 mutations are associated with a reduced super-relaxed state in patients with hypertrophic cardiomyopathy. PLoS One 2017; 12:e0180064. [PMID: 28658286 PMCID: PMC5489194 DOI: 10.1371/journal.pone.0180064] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/08/2017] [Indexed: 11/23/2022] Open
Abstract
The “super-relaxed state” (SRX) of myosin represents a ‘reserve’ of motors in the heart. Myosin heads in the SRX are bound to the thick filament and have a very low ATPase rate. Changes in the SRX are likely to modulate cardiac contractility. We previously demonstrated that the SRX is significantly reduced in mouse cardiomyocytes lacking cardiac myosin binding protein–C (cMyBP-C). Here, we report the effect of mutations in the cMyBP-C gene (MYBPC3) using samples from human patients with hypertrophic cardiomyopathy (HCM). Left ventricular (LV) samples from 11 HCM patients were obtained following myectomy surgery to relieve LV outflow tract obstruction. HCM samples were genotyped as either MYBPC3 mutation positive (MYBPC3mut) or negative (HCMsmn) and were compared to eight non-failing donor hearts. Compared to donors, only MYBPC3mut samples display a significantly diminished SRX, characterised by a decrease in both the number of myosin heads in the SRX and the lifetime of ATP turnover. These changes were not observed in HCMsmn samples. There was a positive correlation (p < 0.01) between the expression of cMyBP-C and the proportion of myosin heads in the SRX state, suggesting cMyBP-C modulates and maintains the SRX. Phosphorylation of the myosin regulatory light chain in MYBPC3mut samples was significantly decreased compared to the other groups, suggesting a potential mechanism to compensate for the diminished SRX. We conclude that by altering both contractility and sarcomeric energy requirements, a reduced SRX may be an important disease mechanism in patients with MYBPC3 mutations.
Collapse
|
39
|
Alamo L, Ware JS, Pinto A, Gillilan RE, Seidman JG, Seidman CE, Padrón R. Effects of myosin variants on interacting-heads motif explain distinct hypertrophic and dilated cardiomyopathy phenotypes. eLife 2017; 6:e24634. [PMID: 28606303 PMCID: PMC5469618 DOI: 10.7554/elife.24634] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Cardiac β-myosin variants cause hypertrophic (HCM) or dilated (DCM) cardiomyopathy by disrupting sarcomere contraction and relaxation. The locations of variants on isolated myosin head structures predict contractility effects but not the prominent relaxation and energetic deficits that characterize HCM. During relaxation, pairs of myosins form interacting-heads motif (IHM) structures that with other sarcomere proteins establish an energy-saving, super-relaxed (SRX) state. Using a human β-cardiac myosin IHM quasi-atomic model, we defined interactions sites between adjacent myosin heads and associated protein partners, and then analyzed rare variants from 6112 HCM and 1315 DCM patients and 33,370 ExAC controls. HCM variants, 72% that changed electrostatic charges, disproportionately altered IHM interaction residues (expected 23%; HCM 54%, p=2.6×10-19; DCM 26%, p=0.66; controls 20%, p=0.23). HCM variant locations predict impaired IHM formation and stability, and attenuation of the SRX state - accounting for altered contractility, reduced diastolic relaxation, and increased energy consumption, that fully characterizes HCM pathogenesis.
Collapse
Affiliation(s)
- Lorenzo Alamo
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute for Medical Sciences, Imperial College London, London, United Kingdom
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Antonio Pinto
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source, Ithaca, United States
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, United States
- Cardiovascular Division, Brigham and Women’s Hospital and Howard Hughes Medical Institute, Boston, United States
| | - Raúl Padrón
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| |
Collapse
|
40
|
The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Nat Struct Mol Biol 2017; 24:525-533. [PMID: 28481356 DOI: 10.1038/nsmb.3408] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/05/2017] [Indexed: 12/12/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is primarily caused by mutations in β-cardiac myosin and myosin-binding protein-C (MyBP-C). Changes in the contractile parameters of myosin measured so far do not explain the clinical hypercontractility caused by such mutations. We propose that hypercontractility is due to an increase in the number of myosin heads (S1) that are accessible for force production. In support of this hypothesis, we demonstrate myosin tail (S2)-dependent functional regulation of actin-activated human β-cardiac myosin ATPase. In addition, we show that both S2 and MyBP-C bind to S1 and that phosphorylation of either S1 or MyBP-C weakens these interactions. Importantly, the S1-S2 interaction is also weakened by four myosin HCM-causing mutations but not by two other mutations. To explain these experimental results, we propose a working structural model involving multiple interactions, including those with myosin's own S2 and MyBP-C, that hold myosin in a sequestered state.
Collapse
|
41
|
Gregorich ZR, Cai W, Lin Z, Chen AJ, Peng Y, Kohmoto T, Ge Y. Distinct sequences and post-translational modifications in cardiac atrial and ventricular myosin light chains revealed by top-down mass spectrometry. J Mol Cell Cardiol 2017; 107:13-21. [PMID: 28427997 DOI: 10.1016/j.yjmcc.2017.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/15/2017] [Indexed: 01/01/2023]
Abstract
Myosin is the principal component of the thick filaments that, through interactions with the actin thin filaments, mediates force production during muscle contraction. Myosin is a hexamer, consisting of two heavy chains, each associated with an essential (ELC) and a regulatory (RLC) light chain, which bind the lever-arm of the heavy chain and play important modulatory roles in striated muscle contraction. Nevertheless, a comprehensive assessment of the sequences of the ELC and RLC isoforms, as well as their post-translational modifications, in the heart remains lacking. Herein, utilizing top-down high-resolution mass spectrometry (MS), we have comprehensively characterized the sequences and N-terminal modifications of the atrial and ventricular isoforms of the myosin light chains from human and swine hearts, as well as the sites of phosphorylation in the swine proteins. In addition to the correction of disparities in the database sequences of the swine proteins, we show for the first time that, whereas the ventricular isoforms of the ELC and RLC are methylated at their N-termini, which is consistent with previous studies, the atrial isoforms of the ELC and RLC from both human and swine are Nα-methylated and Nα-acetylated, respectively. Furthermore, top-down MS with electron capture dissociation enabled localization of the sites of phosphorylation in swine RLC isoforms from the ventricles and atria to Ser14 and Ser22, respectively. Collectively, these results provide new insights into the sequences and modifications of myosin light chain isoforms in the human and swine hearts, which will pave the way for a better understanding of their functional roles in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Zachery R Gregorich
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wenxuan Cai
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Albert J Chen
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Peng
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Takushi Kohmoto
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
42
|
Abstract
The mammalian heart pumps blood through the vessels, maintaining the dynamic equilibrium in a circulatory system driven by two pumps in series. This vital function is based on the fine-tuning of cardiac performance by the Frank-Starling mechanism that relates the pressure exerted by the contracting ventricle (end systolic pressure) to its volume (end systolic volume). At the level of the sarcomere, the structural unit of the cardiac myocytes, the Frank-Starling mechanism consists of the increase in active force with the increase of sarcomere length (length-dependent activation). We combine sarcomere mechanics and micrometer-nanometer-scale X-ray diffraction from synchrotron light in intact ventricular trabeculae from the rat to measure the axial movement of the myosin motors during the diastole-systole cycle under sarcomere length control. We find that the number of myosin motors leaving the off, ATP hydrolysis-unavailable state characteristic of the diastole is adjusted to the sarcomere length-dependent systolic force. This mechanosensing-based regulation of the thick filament makes the energetic cost of the systole rapidly tuned to the mechanical task, revealing a prime aspect of the Frank-Starling mechanism. The regulation is putatively impaired by cardiomyopathy-causing mutations that affect the intramolecular and intermolecular interactions controlling the off state of the motors.
Collapse
|
43
|
Pseudophosphorylation of cardiac myosin regulatory light chain: a promising new tool for treatment of cardiomyopathy. Biophys Rev 2017; 9:57-64. [PMID: 28510043 DOI: 10.1007/s12551-017-0248-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022] Open
Abstract
Many genetic mutations in sarcomeric proteins, including the cardiac myosin regulatory light chain (RLC) encoded by the MYL2 gene, have been implicated in familial cardiomyopathies. Yet, the molecular mechanisms by which these mutant proteins regulate cardiac muscle mechanics in health and disease remain poorly understood. Evidence has been accumulating that RLC phosphorylation has an influential role in striated muscle contraction and, in addition to the conventional modulation via Ca2+ binding to troponin C, it can regulate cardiac muscle function. In this review, we focus on RLC mutations that have been reported to cause cardiomyopathy phenotypes via compromised RLC phosphorylation and elaborate on pseudo-phosphorylation rescue mechanisms. This new methodology has been discussed as an emerging exploratory tool to understand the role of phosphorylation as well as a genetic modality to prevent/rescue cardiomyopathy phenotypes. Finally, we summarize structural effects post-phosphorylation, a phenomenon that leads to an ordered shift in the myosin S1 and RLC conformational equilibrium between two distinct states.
Collapse
|
44
|
Chang AN, Kamm KE, Stull JT. Role of myosin light chain phosphatase in cardiac physiology and pathophysiology. J Mol Cell Cardiol 2016; 101:35-43. [PMID: 27742556 DOI: 10.1016/j.yjmcc.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 11/18/2022]
Abstract
Maintenance of contractile performance of the heart is achieved in part by the constitutive 40% phosphorylation of myosin regulatory light chain (RLC) in sarcomeres. The importance of this extent of RLC phosphorylation for optimal cardiac performance becomes apparent when various mouse models and resultant phenotypes are compared. The absence or attenuation of RLC phosphorylation results in poor performance leading to heart failure, whereas increased RLC phosphorylation is associated with cardiac protection from stresses. Although information is limited, RLC phosphorylation appears compromised in human heart failure which is consistent with data from mouse studies. The extent of cardiac RLC phosphorylation is determined by the balanced activities of cardiac myosin light chain kinases and phosphatases, the regulatory mechanisms of which are now emerging. This review thusly focuses on kinases that may participate in phosphorylating RLC to make the substrate for cardiac myosin light chain phosphatases, in addition to providing perspectives on the family of myosin light chain phosphatases and involved signaling mechanisms. Because biochemical and physiological information about cardiac myosin light chain phosphatase is sparse, such studies represent an emerging area of investigation in health and disease.
Collapse
Affiliation(s)
- Audrey N Chang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Kristine E Kamm
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James T Stull
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
45
|
Nogara L, Naber N, Pate E, Canton M, Reggiani C, Cooke R. Spectroscopic Studies of the Super Relaxed State of Skeletal Muscle. PLoS One 2016; 11:e0160100. [PMID: 27479128 PMCID: PMC4968846 DOI: 10.1371/journal.pone.0160100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/13/2016] [Indexed: 11/18/2022] Open
Abstract
In the super-relaxed state of myosin, ATPase activity is strongly inhibited by binding of the myosin heads to the core of the thick filament in a structure known as the interacting-heads motif. In the disordered relaxed state myosin heads are not bound to the core of the thick filament and have an ATPase rate that is 10 fold greater. In the interacting-heads motif the two regulatory light chains appear to bind to each other. We have made single cysteine mutants of the regulatory light chain, placed both paramagnetic and fluorescent probes on them, and exchanged them into skinned skeletal muscle fibers. Many of the labeled light chains tended to disrupt the stability of the super-relaxed state, and showed spectral changes in the transition from the disordered relaxed state to the super-relaxed state. These data support the putative interface between the two regulatory light chains identified by cryo electron microscopy and show that both the divalent cation bound to the regulatory light chain and the N-terminus of the regulatory light chain play a role in the stability of the super-relaxed state. One probe showed a shift to shorter wavelengths in the super-relaxed state such that a ratio of intensities at 440nm to that at 520nm provided a measure of the population of the super-relaxed state amenable for high throughput screens for finding potential pharmaceuticals. The results provide a proof of concept that small molecules that bind to this region can destabilize the super-relaxed state and provide a method to search for small molecules that do so leading to a potentially effective treatment for Type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Leonardo Nogara
- Dipartimento di Scienze Biomediche, University of Padua, Padua Italy
- * E-mail:
| | - Nariman Naber
- Department of Biochemistry/Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Edward Pate
- Voiland School of Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Marcella Canton
- Dipartimento di Scienze Biomediche, University of Padua, Padua Italy
| | - Carlo Reggiani
- Dipartimento di Scienze Biomediche, University of Padua, Padua Italy
| | - Roger Cooke
- Department of Biochemistry/Biophysics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
46
|
Cardiac myosin light chain is phosphorylated by Ca2+/calmodulin-dependent and -independent kinase activities. Proc Natl Acad Sci U S A 2016; 113:E3824-33. [PMID: 27325775 DOI: 10.1073/pnas.1600633113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The well-known, muscle-specific smooth muscle myosin light chain kinase (MLCK) (smMLCK) and skeletal muscle MLCK (skMLCK) are dedicated protein kinases regulated by an autoregulatory segment C terminus of the catalytic core that blocks myosin regulatory light chain (RLC) binding and phosphorylation in the absence of Ca(2+)/calmodulin (CaM). Although it is known that a more recently discovered cardiac MLCK (cMLCK) is necessary for normal RLC phosphorylation in vivo and physiological cardiac performance, information on cMLCK biochemical properties are limited. We find that a fourth uncharacterized MLCK, MLCK4, is also expressed in cardiac muscle with high catalytic domain sequence similarity with other MLCKs but lacking an autoinhibitory segment. Its crystal structure shows the catalytic domain in its active conformation with a short C-terminal "pseudoregulatory helix" that cannot inhibit catalysis as a result of missing linker regions. MLCK4 has only Ca(2+)/CaM-independent activity with comparable Vmax and Km values for different RLCs. In contrast, the Vmax value of cMLCK is orders of magnitude lower than those of the other three MLCK family members, whereas its Km (RLC and ATP) and KCaM values are similar. In contrast to smMLCK and skMLCK, which lack activity in the absence of Ca(2+)/CaM, cMLCK has constitutive activity that is stimulated by Ca(2+)/CaM. Potential contributions of autoregulatory segment to cMLCK activity were analyzed with chimeras of skMLCK and cMLCK. The constitutive, low activity of cMLCK appears to be intrinsic to its catalytic core structure rather than an autoinhibitory segment. Thus, RLC phosphorylation in cardiac muscle may be regulated by two different protein kinases with distinct biochemical regulatory properties.
Collapse
|
47
|
Meng T, Bu W, Ren X, Chen X, Yu J, Eckenhoff RG, Gao WD. Molecular mechanism of anesthetic-induced depression of myocardial contraction. FASEB J 2016; 30:2915-25. [PMID: 27170289 DOI: 10.1096/fj.201600290rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/26/2016] [Indexed: 01/22/2023]
Abstract
Isoflurane and propofol are known to depress cardiac contraction, but the molecular mechanisms involved are not known. In this study, we determined whether decreasing myofilament Ca(2+) responsiveness underlies anesthesia-induced depression of contraction and uncovered the molecular targets of isoflurane and propofol. Force and intracellular Ca(2+) ([Ca(2+)]i) were measured in rat trabeculae superfused with Krebs-Henseleit solution, with or without propofol or isoflurane. Photoaffinity labeling of myofilament proteins with meta-Azi-propofol (AziPm) and Azi-isoflurane (Azi-iso) and molecular docking were also used. Both propofol and isoflurane dose dependently depressed force from low doses (propofol, 27 ± 6 μM; isoflurane, 1.0 ± 0.1%) to moderate doses (propofol, 87 ± 4 μM; isoflurane, 3.0 ± 0.25%), without significant alteration [Ca(2+)]i During steady-state activations in both intact and skinned preparations, propofol and isoflurane depressed maximum Ca(2+)-activated force and increased the [Ca(2+)]i required for 50% of activation. Myofibrils photolabeled with AziPm and Azi-iso identified myosin, actin, and myosin light chain as targets of the anesthetics. Several adducted residues in those proteins were located in conformationally sensitive regions that underlie contractile function. Thus, propofol and isoflurane decrease force development by directly depressing myofilament Ca(2+) responsiveness and have binding sites in key regions for contraction in both actin and myosin.-Meng, T., Bu, W., Ren, X., Chen, X., Yu, J., Eckenhoff, R. G., Gao, W. D. Molecular mechanism of anesthetic-induced depression of myocardial contraction.
Collapse
Affiliation(s)
- Tao Meng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xianfeng Ren
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Xinzhong Chen
- Department of Cardiac Surgery, Tongji University Medical Center, Wuhan, China; and
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments. Proc Natl Acad Sci U S A 2016; 113:E3039-47. [PMID: 27162358 DOI: 10.1073/pnas.1602776113] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.
Collapse
|
49
|
Yu H, Chakravorty S, Song W, Ferenczi MA. Phosphorylation of the regulatory light chain of myosin in striated muscle: methodological perspectives. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:779-805. [PMID: 27084718 PMCID: PMC5101276 DOI: 10.1007/s00249-016-1128-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 12/18/2022]
Abstract
Phosphorylation of the regulatory light chain (RLC) of myosin modulates cellular functions such as muscle contraction, mitosis, and cytokinesis. Phosphorylation defects are implicated in a number of diseases. Here we focus on striated muscle where changes in RLC phosphorylation relate to diseases such as hypertrophic cardiomyopathy and muscular dystrophy, or age-related changes. RLC phosphorylation in smooth muscle and non-muscle cells are covered briefly where relevant. There is much scientific interest in controlling the phosphorylation levels of RLC in vivo and in vitro in order to understand its physiological function in striated muscles. A summary of available and emerging in vivo and in vitro methods is presented. The physiological role of RLC phosphorylation and novel pathways are discussed to highlight the differences between muscle types and to gain insights into disease processes.
Collapse
Affiliation(s)
- Haiyang Yu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Samya Chakravorty
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Weihua Song
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Michael A Ferenczi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
50
|
Yamaguchi M, Kimura M, Li ZB, Ohno T, Takemori S, Hoh JFY, Yagi N. X-ray diffraction analysis of the effects of myosin regulatory light chain phosphorylation and butanedione monoxime on skinned skeletal muscle fibers. Am J Physiol Cell Physiol 2016; 310:C692-700. [PMID: 26911280 DOI: 10.1152/ajpcell.00318.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/16/2016] [Indexed: 01/04/2023]
Abstract
The phosphorylation of the myosin regulatory light chain (RLC) is an important modulator of skeletal muscle performance and plays a key role in posttetanic potentiation and staircase potentiation of twitch contractions. The structural basis for these phenomena within the filament lattice has not been thoroughly investigated. Using a synchrotron radiation source at SPring8, we obtained X-ray diffraction patterns from skinned rabbit psoas muscle fibers before and after phosphorylation of myosin RLC in the presence of myosin light chain kinase, calmodulin, and calcium at a concentration below the threshold for tension development ([Ca(2+)] = 10(-6.8)M). After phosphorylation, the first myosin layer line slightly decreased in intensity at ∼0.05 nm(-1)along the equatorial axis, indicating a partial loss of the helical order of myosin heads along the thick filament. Concomitantly, the (1,1/1,0) intensity ratio of the equatorial reflections increased. These results provide a firm structural basis for the hypothesis that phosphorylation of myosin RLC caused the myosin heads to move away from the thick filaments towards the thin filaments, thereby enhancing the probability of interaction with actin. In contrast, 2,3-butanedione monoxime (BDM), known to inhibit contraction by impeding phosphate release from myosin, had exactly the opposite effects on meridional and equatorial reflections to those of phosphorylation. We hypothesize that these antagonistic effects are due to the acceleration of phosphate release from myosin by phosphorylation and its inhibition by BDM, the consequent shifts in crossbridge equilibria leading to opposite changes in abundance of the myosin-ADP-inorganic phosphate complex state associated with helical order of thick filaments.
Collapse
Affiliation(s)
- Maki Yamaguchi
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan;
| | - Masako Kimura
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Zhao-Bo Li
- Ludwig Center for Cancer Genetic and Therapeutics, The Johns Hopkins University, Baltimore, Maryland
| | - Tetsuo Ohno
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shigeru Takemori
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Joseph F Y Hoh
- Discipline of Physiology and the Bosch Institute, School of Medical Sciences, Sydney Medical School, The University of Sydney, New South Wales, Australia; and
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| |
Collapse
|