1
|
Ni H, Yang Y, Wang C, Li Z, Liu W, Han Y, Jiang H, Sun H, Li Y, Zhang Y. Multiomics analysis uncovers host-microbiota interactions regulate hybrid vigor traits in geese. Poult Sci 2025; 104:105289. [PMID: 40393267 DOI: 10.1016/j.psj.2025.105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
Economic hybridization represents a predominant breeding strategy for enhancing poultry quality. In this study, we bred hybrid geese (ZF) by crossing Xianghai Flying geese (FG) as paternal lines with Zi geese (ZG) as maternal lines. ZF exhibited integrated superior traits, including increased body weight and breast muscle index, reduced abdominal fat, and improved meat quality (enhanced tenderness, deeper red meat color), with notably higher ileal villus height than parental lines. Integrated phenotypic, transcriptomic, gut microbiome and metabolomic analyses systematically revealed regulatory mechanisms underlying heterosis. The analysis showed 87 differentially expressed genes common between ZF and both parents, mainly enriched in energy metabolism and cytoskeletal and cell adhesion-related pathways. Protein-protein interaction networks revealed KDR, CS, PDHA1, IDH2, and GAPDH as key candidate genes (fold change > 2 and P < 0.0001) regulating the host phenotype. Meanwhile, ZF exhibited microbiome reconfiguration, characterized by the dominance of Bacteroides producing short-chain fatty acids (SCFAs), along with beneficial genera such as Megamonas, Romboutsia, and Subdoligranulum. Additionally, there was a depletion of the pathogenic genus Desulfovibrio. Integrated multi-omics analyses demonstrated that host genes and microbiota interact closely, synergistically governing hybrid vigor traits. The findings provide the first theoretical basis for revealing the potential molecular mechanisms by which the host-gut microbiota interactions regulate hybrid vigor traits in geese.
Collapse
Affiliation(s)
- Hongyu Ni
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Yuwei Yang
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Chengwen Wang
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Zongdi Li
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Wuyang Liu
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Yuxin Han
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Hao Jiang
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Hao Sun
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Yumei Li
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Yonghong Zhang
- College of Animal Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
2
|
Kinose K, Shinoda K, Kawasaki H. Impact of exporter proteins and their engineering on the productivity of Corynebacterium. Appl Microbiol Biotechnol 2025; 109:98. [PMID: 40261395 PMCID: PMC12014714 DOI: 10.1007/s00253-025-13479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025]
Abstract
Enhancing product efflux is crucial in improving fermentative bioproduction. Despite advancements in metabolic engineering guided by the design-build-test-learn cycle, membrane transport engineering of product efflux remains underdeveloped, limiting the efficient production of target chemicals. This review explores the historical findings on product efflux, regardless of passive or active transport, in fermentation engineering, focusing on Corynebacterium species, and highlights the potential of multidrug transporters as valuable screening sources for efflux improvement. Furthermore, the review emphasizes the importance of understanding the machinery of efflux transporters to optimize their functionality. Molecular dynamics simulations are a promising tool for exploring novel strategies to advance fermentation-related processes. These insights provide a framework for overcoming current challenges in membrane transport engineering of product efflux and improving industrial-scale bioproduction. KEY POINTS: • Review of strategies to enhance product efflux in Corynebacterium species. • Multidrug transporters are key tools for optimizing metabolite efflux. • Efflux transporter mechanisms analyzed to improve microbial productivity. • Molecular dynamics simulations employed for understanding transporter mechanisms.
Collapse
Affiliation(s)
- Keita Kinose
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., 50 Kano-Cho, Nagahama, Shiga, 526 - 0804, Japan
| | - Keiko Shinoda
- The Institute of Statistical Mathematics, Research Organization of Information and Systems, 10 - 3 Midori-Cho, Tachikawa, Tokyo, 190 - 8562, Japan
| | - Hisashi Kawasaki
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113 - 8657, Japan.
- Research and Development Division, Kikkoman Corporation, 338 Noda, Noda City, Chiba, 278 - 0037, Japan.
| |
Collapse
|
3
|
Li Z, Wang X, Hu G, Li X, Song W, Wei W, Liu L, Gao C. Engineering metabolic flux for the microbial synthesis of aromatic compounds. Metab Eng 2025; 88:94-112. [PMID: 39724940 DOI: 10.1016/j.ymben.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/10/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Microbial cell factories have emerged as a sustainable alternative to traditional chemical synthesis and plant extraction methods for producing aromatic compounds. However, achieving economically viable production of these compounds in microbial systems remains a significant challenge. This review summarizes the latest advancements in metabolic flux regulation during the microbial production of aromatic compounds, providing an overview of its applications and practical outcomes. Various strategies aimed at improving the utilization of extracellular substrates, enhancing the efficiency of synthetic pathways for target products, and rewiring intracellular metabolic networks to boost the titer, yield, and productivity of aromatic compounds are discussed. Additionally, the persistent challenges in this field and potential solutions are highlighted.
Collapse
Affiliation(s)
- Zhendong Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xianghe Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Dong Y, Chen Z. Accelerated Metabolic Engineering for Industrial Strain Development via the Construction of a Large-Scale Genome Library. ACS Synth Biol 2025; 14:41-56. [PMID: 39680725 DOI: 10.1021/acssynbio.4c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Production of chemicals via metabolic engineering of microbes is becoming highly important for sustainable bioeconomy. Conventional metabolic engineering methodologies typically involve labor-intensive and time-consuming processes of iterative genetic modifications, which are inefficient in identifying new genetic targets for the construction of robust industrial strains on a large scale. To accelerate the creation of efficient microbial cell factories and enhance our insights into cellular metabolism, diverse large-scale genome libraries are emerging as powerful tools, which can be established through multiplex or parallel genome editing, gene expression regulation, and incorporation of evolutionary strategies. In this review, we discuss the latest advancements in the construction of genome-scale libraries as well as their applications within the domain of metabolic engineering. We also address the limitations of various techniques and provide insights into future prospects for the field.
Collapse
Affiliation(s)
- Yufei Dong
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Hu G, Gao C, Li X, song W, Wu J. Microbial engineering for monocyclic aromatic compounds production. FEMS Microbiol Rev 2025; 49:fuaf003. [PMID: 39900471 PMCID: PMC11837758 DOI: 10.1093/femsre/fuaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/13/2025] [Accepted: 02/02/2025] [Indexed: 02/05/2025] Open
Abstract
Aromatic compounds serve pivotal roles in plant physiology and exhibit antioxidative and antimicrobial properties, leading to their widespread application, such as in food preservation and pharmaceuticals. However, direct plant extraction and petrochemical synthesis often struggle to meet current needs due to low yield or facing economic and environmental hurdles. In the past decades, systems metabolic engineering enabled eco-friendly production of various aromatic compounds, with some reaching industrial levels. In this review, we highlight monocyclic aromatic chemicals, which have relatively simple structures and are currently the primary focus of microbial synthesis research. We then discuss systems metabolic engineering at the enzyme, pathway, cellular, and bioprocess levels to improve the production of these chemicals. Finally, we overview the current limitations and potential resolution strategies, aiming to provide reference for future studies on the biosynthesis of aromatic products.
Collapse
Affiliation(s)
- Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Wang F, Cai N, Leng Y, Wu C, Wang Y, Tian S, Zhang C, Xu Q, Peng H, Chen N, Li Y. Metabolic Engineering of Corynebacterium glutamicum for the High-Level Production of l-Valine under Aerobic Conditions. ACS Synth Biol 2024; 13:2861-2872. [PMID: 38946081 DOI: 10.1021/acssynbio.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
l-Valine, an essential amino acid, serves as a valuable compound in various industries. However, engineering strains with both high yield and purity are yet to be delivered for microbial l-valine production. We engineered a Corynebacterium glutamicum strain capable of highly efficient production of l-valine. We initially introduced an acetohydroxy acid synthase mutant from an industrial l-valine producer and optimized a cofactor-balanced pathway, followed by the activation of the nonphosphoenolpyruvate-dependent carbohydrate phosphotransferase system and the introduction of an exogenous Entner-Doudoroff pathway. Subsequently, we weakened anaplerotic pathways, and attenuated the tricarboxylic acid cycle via start codon substitution in icd, encoding isocitrate dehydrogenase. Finally, to balance bacterial growth and l-valine production, an l-valine biosensor-dependent genetic circuit was established to dynamically repress citrate synthase expression. The engineered strain Val19 produced 103 g/L of l-valine with a high yield of 0.35 g/g glucose and a productivity of 2.67 g/L/h. This represents the highest reported l-valine production in C. glutamicum via direct fermentation and exhibits potential for its industrial-scale production, leveraging the advantages of C. glutamicum over other microbes.
Collapse
Affiliation(s)
- Feiao Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ningyun Cai
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanlin Leng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Siyu Tian
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenglin Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huadong Peng
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjun Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
7
|
Tang M, You J, Yang T, Sun Q, Jiang S, Xu M, Pan X, Rao Z. Application of modern synthetic biology technology in aromatic amino acids and derived compounds biosynthesis. BIORESOURCE TECHNOLOGY 2024; 406:131050. [PMID: 38942210 DOI: 10.1016/j.biortech.2024.131050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Aromatic amino acids (AAA) and derived compounds have enormous commercial value with extensive applications in the food, chemical and pharmaceutical fields. Microbial production of AAA and derived compounds is a promising prospect for its environmental friendliness and sustainability. However, low yield and production efficiency remain major challenges for realizing industrial production. With the advancement of synthetic biology, microbial production of AAA and derived compounds has been significantly facilitated. In this review, a comprehensive overview on the current progresses, challenges and corresponding solutions for AAA and derived compounds biosynthesis is provided. The most cutting-edge developments of synthetic biology technology in AAA and derived compounds biosynthesis, including CRISPR-based system, genetically encoded biosensors and synthetic genetic circuits, were highlighted. Finally, future prospects of modern strategies conducive to the biosynthesis of AAA and derived compounds are discussed. This review offers guidance on constructing microbial cell factory for aromatic compound using synthetic biology technology.
Collapse
Affiliation(s)
- Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Tianjin Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Qisheng Sun
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Shuran Jiang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
8
|
Zhang B, Gou K, Xu K, Li Z, Guo X, Wu X. De novo biosynthesis of β-arbutin in Corynebacterium glutamicum via pathway engineering and process optimization. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:88. [PMID: 38918796 PMCID: PMC11197339 DOI: 10.1186/s13068-024-02540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND β-Arbutin, a hydroquinone glucoside found in pears, bearberry leaves, and various plants, exhibits antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. β-Arbutin has wide applications in the pharmaceutical and cosmetic industries. However, the limited availability of high-performance strains limits the biobased production of β-arbutin. RESULTS This study established the β-arbutin biosynthetic pathway in C. glutamicum ATCC13032 by introducing codon-optimized ubiC, MNX1, and AS. Additionally, the production titer of β-arbutin was increased by further inactivation of csm and trpE to impede the competitive metabolic pathway. Further modification of the upstream metabolic pathway and supplementation of UDP-glucose resulted in the final engineered strain, C. glutamicum AR11, which achieved a β-arbutin production titer of 7.94 g/L in the optimized fermentation medium. CONCLUSIONS This study represents the first successful instance of de novo β-arbutin production in C. glutamicum, offering a chassis cell for β-arbutin biosynthesis.
Collapse
Affiliation(s)
- Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| | - Kexin Gou
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Kexin Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Zhimin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Xiaoyan Guo
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| |
Collapse
|
9
|
Tian S, Zhao G, Lv G, Wu C, Su R, Wang F, Wang Z, Liu Y, Chen N, Li Y. Efficient Fermentative Production of d-Alanine and Other d-Amino Acids by Metabolically Engineered Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8039-8051. [PMID: 38545740 DOI: 10.1021/acs.jafc.4c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
d-Amino acids (d-AAs) have wide applications in industries such as pharmaceutical, food, and cosmetics due to their unique properties. Currently, the production of d-AAs has relied on chemical synthesis or enzyme catalysts, and it is challenging to produce d-AAs via direct fermentation from glucose. We observed that Corynebacterium glutamicum exhibits a remarkable tolerance to high concentrations of d-Ala, a crucial characteristic for establishing a successful fermentation process. By optimizing meso-diaminopilmelate dehydrogenases in different C. glutamicum strains and successively deleting l-Ala biosynthetic pathways, we developed an efficient d-Ala fermentation system. The d-Ala titer was enhanced through systems metabolic engineering, which involved strengthening glucose assimilation and pyruvate supply, reducing the formation of organic acid byproducts, and attenuating the TCA cycle. During fermentation in a 5-L bioreactor, a significant accumulation of l-Ala was observed in the broth, which was subsequently diminished by introducing an l-amino acid deaminase. Ultimately, the engineered strain DA-11 produced 85 g/L d-Ala with a yield of 0.30 g/g glucose, accompanied by an optical purity exceeding 99%. The fermentation platform has the potential to be extended for the synthesis of other d-AAs, as demonstrated by the production of d-Val and d-Glu.
Collapse
Affiliation(s)
- Siyu Tian
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Guihong Zhao
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Gengcheng Lv
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Chen Wu
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Rui Su
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Feiao Wang
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Zeting Wang
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yuexiang Liu
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yanjun Li
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| |
Collapse
|
10
|
Li J, Lu X, Zou X, Ye BC. Recent Advances in Microbial Metabolic Engineering for Production of Natural Phenolic Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4538-4551. [PMID: 38377566 DOI: 10.1021/acs.jafc.3c07658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Phenolic acids are important natural bioactive compounds with varied physiological functions. They are extensively used in food, pharmaceutical, cosmetic, and other chemical industries and have attractive market prospects. Compared to plant extraction and chemical synthesis, microbial fermentation for phenolic acid production from renewable carbon sources has significant advantages. This review focuses on the structural information, physiological functions, current applications, and biosynthesis pathways of phenolic acids, especially advances in the development of metabolically engineered microbes for the production of phenolic acids. This review provides useful insights concerning phenolic acid production through metabolic engineering of microbial cell factories.
Collapse
Affiliation(s)
- Jin Li
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiumin Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
11
|
Mutz M, Brüning V, Brüsseler C, Müller M, Noack S, Marienhagen J. Metabolic engineering of Corynebacterium glutamicum for the production of anthranilate from glucose and xylose. Microb Biotechnol 2024; 17:e14388. [PMID: 38206123 PMCID: PMC10832554 DOI: 10.1111/1751-7915.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
Anthranilate and its derivatives are important basic chemicals for the synthesis of polyurethanes as well as various dyes and food additives. Today, anthranilate is mainly chemically produced from petroleum-derived xylene, but this shikimate pathway intermediate could be also obtained biotechnologically. In this study, Corynebacterium glutamicum was engineered for the microbial production of anthranilate from a carbon source mixture of glucose and xylose. First, a feedback-resistant 3-deoxy-arabinoheptulosonate-7-phosphate synthase from Escherichia coli, catalysing the first step of the shikimate pathway, was functionally introduced into C. glutamicum to enable anthranilate production. Modulation of the translation efficiency of the genes for the shikimate kinase (aroK) and the anthranilate phosphoribosyltransferase (trpD) improved product formation. Deletion of two genes, one for a putative phosphatase (nagD) and one for a quinate/shikimate dehydrogenase (qsuD), abolished by-product formation of glycerol and quinate. However, the introduction of an engineered anthranilate synthase (TrpEG) unresponsive to feedback inhibition by tryptophan had the most pronounced effect on anthranilate production. Component I of this enzyme (TrpE) was engineered using a biosensor-based in vivo screening strategy for identifying variants with increased feedback resistance in a semi-rational library of TrpE muteins. The final strain accumulated up to 5.9 g/L (43 mM) anthranilate in a defined CGXII medium from a mixture of glucose and xylose in bioreactor cultivations. We believe that the constructed C. glutamicum variants are not only limited to anthranilate production but could also be suitable for the synthesis of other biotechnologically interesting shikimate pathway intermediates or any other aromatic compound derived thereof.
Collapse
Affiliation(s)
- Mario Mutz
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
- Institute of BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Vincent Brüning
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
| | - Christian Brüsseler
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
| | - Moritz‐Fabian Müller
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
| | - Stephan Noack
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
| | - Jan Marienhagen
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
- Institute of BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
12
|
Wang Y, Bai Y, Zeng Q, Jiang Z, Liu Y, Wang X, Liu X, Liu C, Min W. Recent advances in the metabolic engineering and physiological opportunities for microbial synthesis of L-aspartic acid family amino acids: A review. Int J Biol Macromol 2023; 253:126916. [PMID: 37716660 DOI: 10.1016/j.ijbiomac.2023.126916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
L-aspartic acid, L-threonine, L-isoleucine, l-lysine, and L-methionine constitute the l-aspartate amino acids (AFAAs). Except for L-aspartic acid, these are essential amino acids that cannot be synthesized by humans or animals themselves. E. coli and C. glutamicum are the main model organisms for AFAA production. It is necessary to reconstitute microbial cell factories and the physiological state of industrial fermentation cells for in-depth research into strains with higher AFAA production levels and optimal growth states. Considering that the anabolic pathways of the AFAAs and engineering modifications have rarely been reviewed in the latest progress, this work reviews the central metabolic pathways of two strains and strategies for the metabolic engineering of AFAA synthetic pathways. The challenges posed by microbial physiology in AFAA production and possible strategies to address them, as well as future research directions for constructing strains with high AFAA production levels, are discussed in this review article.
Collapse
Affiliation(s)
- Yusheng Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yunlong Bai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Qi Zeng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Zeyuan Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yuzhe Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
13
|
Lee CH, Kim S, Seo H, Kim KJ. Structural and Biochemical Analysis of 3-Dehydroquinate Dehydratase from Corynebacterium glutamicum. J Microbiol Biotechnol 2023; 33:1595-1605. [PMID: 38151830 PMCID: PMC10772564 DOI: 10.4014/jmb.2305.05018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 12/29/2023]
Abstract
Dehydroquinate dehydratase (DHQD) catalyzes the conversion of 3-dehydroquinic acid (DHQ) into 3-dehydroshikimic acid in the mid stage of the shikimate pathway, which is essential for the biosynthesis of aromatic amino acids and folates. Here, we report two the crystal structures of type II DHQD (CgDHQD) derived from Corynebacterium glutamicum, which is a widely used industrial platform organism. We determined the structures for CgDHQDWT with the citrate at a resolution of 1.80Å and CgDHQDR19A with DHQ complexed forms at a resolution of 2.00 Å, respectively. The enzyme forms a homododecamer consisting of four trimers with three interfacial active sites. We identified the DHQ-binding site of CgDHQD and observed an unusual binding mode of citrate inhibitor in the site with a half-opened lid loop. A structural comparison of CgDHQD with a homolog derived from Streptomyces coelicolor revealed differences in the terminal regions, lid loop, and active site. Particularly, CgDHQD, including some Corynebacterium species, possesses a distinctive residue P105, which is not conserved in other DHQDs at the position near the 5-hydroxyl group of DHQ. Replacements of P105 with isoleucine and valine, conserved in other DHQDs, caused an approximately 70% decrease in the activity, but replacement of S103 with threonine (CgDHQDS103T) caused a 10% increase in the activity. Our biochemical studies revealed the importance of key residues and enzyme kinetics for wild type and CgDHQDS103T, explaining the effect of the variation. This structural and biochemical study provides valuable information for understanding the reaction efficiency that varies due to structural differences caused by the unique sequences of CgDHQD.
Collapse
Affiliation(s)
- Chan Hwi Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sangwoo Kim
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hogyun Seo
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
14
|
Yang L, Li J, Zhang Y, Chen L, Ouyang Z, Liao D, Zhao F, Han S. Characterization of the enzyme kinetics of EMP and HMP pathway in Corynebacterium glutamicum: reference for modeling metabolic networks. Front Bioeng Biotechnol 2023; 11:1296880. [PMID: 38090711 PMCID: PMC10713844 DOI: 10.3389/fbioe.2023.1296880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/13/2023] [Indexed: 04/04/2024] Open
Abstract
The model of intracellular metabolic network based on enzyme kinetics parameters plays an important role in understanding the intracellular metabolic process of Corynebacterium glutamicum, and constructing such a model requires a large number of enzymological parameters. In this work, the genes encoding the relevant enzymes of the EMP and HMP metabolic pathways from Corynebacterium glutamicum ATCC 13032 were cloned, and engineered strains for protein expression with E.coli BL21 and P.pastoris X33 as hosts were constructed. The twelve enzymes (GLK, GPI, TPI, GAPDH, PGK, PMGA, ENO, ZWF, RPI, RPE, TKT, and TAL) were successfully expressed and purified by Ni2+ chelate affinity chromatography in their active forms. In addition, the kinetic parameters (V max, K m, and K cat) of these enzymes were measured and calculated at the same pH and temperature. The kinetic parameters of enzymes associated with EMP and the HMP pathway were determined systematically and completely for the first time in C.glutamicum. These kinetic parameters enable the prediction of key enzymes and rate-limiting steps within the metabolic pathway, and support the construction of a metabolic network model for important metabolic pathways in C.glutamicum. Such analyses and models aid in understanding the metabolic behavior of the organism and can guide the efficient production of high-value chemicals using C.glutamicum as a host.
Collapse
Affiliation(s)
- Liu Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Junyi Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yaping Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Linlin Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhilin Ouyang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Daocheng Liao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Fengguang Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
15
|
Ding Q, Ye C. Microbial engineering for shikimate biosynthesis. Enzyme Microb Technol 2023; 170:110306. [PMID: 37598506 DOI: 10.1016/j.enzmictec.2023.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Shikimate, a precursor to the antiviral drug oseltamivir (Tamiflu®), can influence aromatic metabolites and finds extensive use in antimicrobial, antitumor, and cardiovascular applications. Consequently, various strategies have been developed for chemical synthesis and plant extraction to enhance shikimate biosynthesis, potentially impacting environmental conditions, economic sustainability, and separation and purification processes. Microbial engineering has been developed as an environmentally friendly approach for shikimate biosynthesis. In this review, we provide a comprehensive summary of microbial strategies for shikimate biosynthesis. These strategies primarily include chassis construction, biochemical optimization, pathway remodelling, and global regulation. Furthermore, we discuss future perspectives on shikimate biosynthesis and emphasize the importance of utilizing advanced metabolic engineering tools to regulate microbial networks for constructing robust microbial cell factories.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life Sciences, Anhui University, Hefei 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
16
|
Kurpejović E, Wibberg D, Bastem GM, Burgardt A, Busche T, Kaya FEA, Dräger A, Wendisch VF, Akbulut BS. Can Genome Sequencing Coupled to Flux Balance Analyses Offer Precision Guidance for Industrial Strain Development? The Lessons from Carbon Trafficking in Corynebacterium glutamicum ATCC 21573. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:434-443. [PMID: 37707996 DOI: 10.1089/omi.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Systems biology tools offer new prospects for industrial strain selection. For bacteria that are significant for industrial applications, whole-genome sequencing coupled to flux balance analysis (FBA) can help unpack the complex relationships between genome mutations and carbon trafficking. This work investigates the l-tyrosine (l-Tyr) overproducing model system Corynebacterium glutamicum ATCC 21573 with an eye to more rational and precision strain development. Using genome-wide mutational analysis of C. glutamicum, we identified 27,611 single nucleotide polymorphisms and 479 insertion/deletion mutations. Mutations in the carbon uptake machinery have led to phosphotransferase system-independent routes as corroborated with FBA. Mutations within the central carbon metabolism of C. glutamicum impaired the carbon flux, as evidenced by the lower growth rate. The entry to and flow through the tricarboxylic acid cycle was affected by mutations in pyruvate and α-ketoglutarate dehydrogenase complexes, citrate synthase, and isocitrate dehydrogenase. FBA indicated that the estimated flux through the shikimate pathway became larger as the l-Tyr production rate increased. In addition, protocatechuate export was probabilistically impossible, which could have contributed to the l-Tyr accumulation. Interestingly, aroG and cg0975, which have received previous attention for aromatic amino acid overproduction, were not mutated. From the branch point molecule, prephenate, the change in the promoter region of pheA could be an influential contributor. In summary, we suggest that genome sequencing coupled with FBA is well poised to offer rational guidance for industrial strain development, as evidenced by these findings on carbon trafficking in C. glutamicum ATCC 21573.
Collapse
Affiliation(s)
- Eldin Kurpejović
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Arthur Burgardt
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Medical School East Westphalia-Lippe, Bielefeld University, Bielefeld, Germany
| | - Fatma Ece Altinisik Kaya
- Department of Bioengineering, Marmara University, Istanbul, Turkey
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Andreas Dräger
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
17
|
Bo T, Wu C, Wang Z, Jiang H, Wang F, Chen N, Li Y. Multiple Metabolic Engineering Strategies to Improve Shikimate Titer in Escherichia coli. Metabolites 2023; 13:747. [PMID: 37367905 DOI: 10.3390/metabo13060747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Shikimate is a valuable chiral precursor for synthesizing oseltamivir (Tamiflu®) and other chemicals. High production of shikimate via microbial fermentation has attracted increasing attention to overcome the unstable and expensive supply of shikimate extracted from plant resources. The current cost of microbial production of shikimate via engineered strains is still unsatisfactory, and thus more metabolic strategies need to be investigated to further increase the production efficiency. In this study, we first constructed a shikimate E. coli producer through the application of the non-phosphoenolpyruvate: carbohydrate phosphotransferase system (non-PTS) glucose uptake pathway, the attenuation of the shikimate degradation metabolism, and the introduction of a mutant of feedback-resistant 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase. Inspired by the natural presence of bifunctional 3-dehydroquinate dehydratase (DHD)-shikimate dehydrogenase (SDH) enzyme in plants, we then designed an artificial fusion protein of DHD-SDH to decrease the accumulation of the byproduct 3-dehydroshikimate (DHS). Subsequently, a repressed shikimate kinase (SK) mutant was selected to promote shikimate accumulation without the supplementation of expensive aromatic substances. Furthermore, EsaR-based quorum sensing (QS) circuits were employed to regulate the metabolic flux distribution between cell growth and product synthesis. The final engineered strain dSA10 produced 60.31 g/L shikimate with a yield of 0.30 g/g glucose in a 5 L bioreactor.
Collapse
Affiliation(s)
- Taidong Bo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zeting Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hao Jiang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Feiao Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjun Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
18
|
Yan W, Cao Z, Ding M, Yuan Y. Design and construction of microbial cell factories based on systems biology. Synth Syst Biotechnol 2023; 8:176-185. [PMID: 36874510 PMCID: PMC9979088 DOI: 10.1016/j.synbio.2022.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Environmental sustainability is an increasingly important issue in industry. As an environmentally friendly and sustainable way, constructing microbial cell factories to produce all kinds of valuable products has attracted more and more attention. In the process of constructing microbial cell factories, systems biology plays a crucial role. This review summarizes the recent applications of systems biology in the design and construction of microbial cell factories from four perspectives, including functional genes/enzymes discovery, bottleneck pathways identification, strains tolerance improvement and design and construction of synthetic microbial consortia. Systems biology tools can be employed to identify functional genes/enzymes involved in the biosynthetic pathways of products. These discovered genes are introduced into appropriate chassis strains to build engineering microorganisms capable of producing products. Subsequently, systems biology tools are used to identify bottleneck pathways, improve strains tolerance and guide design and construction of synthetic microbial consortia, resulting in increasing the yield of engineered strains and constructing microbial cell factories successfully.
Collapse
Affiliation(s)
- Wenlong Yan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Zhibei Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
19
|
Mindt M, Ferrer L, Bosch D, Cankar K, Wendisch VF. De novo tryptophanase-based indole production by metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 2023; 107:1621-1634. [PMID: 36786915 PMCID: PMC10006044 DOI: 10.1007/s00253-023-12397-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
Indole has an increasing interest in the flavor and fragrance industry. It is used in dairy products, tea drinks, and fine fragrances due to its distinct floral odor typical of jasmine blossoms. The current production of indole based on isolation from coal tar is non-sustainable and its isolation from plants is often unprofitable due to low yields. To offer an alternative to the conventional production, biosynthesis of indole has been studied recently. A glucose-based indole production was achieved by employing the Corynebacterium glutamicum tryptophan synthase α-subunit (TrpA) or indole-3-glycerol phosphate lyase (IGL) from wheat Triticum aestivum in a genetically-engineered C. glutamicum strain. In addition, a highly efficient bioconversion process using C. glutamicum heterologously expressing tryptophanase gene (tnaA) from Providencia rettgeri as a biocatalyst was developed. In this work, de novo indole production from glucose was enabled by expressing the P. rettgeri tnaA in a tryptophan-producing C. glutamicum strain. By metabolic engineering of a C. glutamicum shikimate accumulating base strain, tryptophan production of 2.14 ± 0.02 g L-1 was achieved. Introduction of the tryptophanase form P. rettgeri enabled indole production, but to low titers, which could be improved by sequestering indole into the water-immiscible solvent tributyrin during fermentation and a titer of 1.38 ± 0.04 g L-1 was achieved. The process was accelerated by decoupling growth from production increasing the volumetric productivity about 4-fold to 0.08 g L-1 h-1. KEY POINTS: • Efficient de novo indole production via tryptophanases from glucose • Increased indole titers by product sequestration and improved precursor supply • Decoupling growth from production accelerated indole production.
Collapse
Affiliation(s)
- Melanie Mindt
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands.,Axxence Aromatic GmbH, Emmerich am Rhein, Germany
| | - Lenny Ferrer
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany.,Translational Pharmacology, Faculty of Medicine OWL, Bielefeld University, Bielefeld, Germany
| | - Dirk Bosch
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Katarina Cankar
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands.
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
20
|
Kurpejović E, Burgardt A, Bastem GM, Junker N, Wendisch VF, Sariyar Akbulut B. Metabolic engineering of Corynebacterium glutamicum for l-tyrosine production from glucose and xylose. J Biotechnol 2023; 363:8-16. [PMID: 36566842 DOI: 10.1016/j.jbiotec.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Microbial production of aromatic compounds is an attractive and sustainable biotechnological approach. With this motivation, here metabolic engineering of Corynebacterium glutamicum for l-tyrosine (l-Tyr) overproduction was attempted by pushing the carbon flux more towards l-Tyr. Translational start codon exchanges of prephenate dehydratase (pheA), anthranilate synthase (trpE), and phenylalanine aminotransferase (pat) genes revealed that reduced expression of pheA was the major contributor to increased l-Tyr titer while codon exchange in trpE was effective to a lower extent. Overexpression of aroE and qsuC, encoding shikimate dehydrogenase and 3-dehydroquinate dehydratase, respectively, and of dapC (cg1253), which is predicted to encode prephenate aminotransferase, were futile to increase l-Tyr titer. Similarly, deletion of the qsuABD gene cluster had also not enhanced titer. As for increasing precursor supply, deletion of ptsG of glucose uptake and overexpression of inositol permease (iolT2) and glucokinase (glcK) were not effective, but with utilization of xylose, enabled by overexpression of xylose isomerase (xylA) and xylulokinase (xylB), titer improved. Highest l-Tyr titer using the construct was 3.1 g/L on glucose and 3.6 g/L on a 1:3 (w/v) mixture of glucose and xylose. This result displays the potential of the constructed strain to produce l-Tyr from lignocellulosic renewable carbon sources.
Collapse
Affiliation(s)
- Eldin Kurpejović
- Department of Bioengineering, Marmara University, Kadıköy, 34722 Istanbul, Turkey
| | - Arthur Burgardt
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Gülsüm Merve Bastem
- Department of Bioengineering, Marmara University, Kadıköy, 34722 Istanbul, Turkey
| | - Nora Junker
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | | |
Collapse
|
21
|
Sheng Q, Yi L, Zhong B, Wu X, Liu L, Zhang B. Shikimic acid biosynthesis in microorganisms: Current status and future direction. Biotechnol Adv 2023; 62:108073. [PMID: 36464143 DOI: 10.1016/j.biotechadv.2022.108073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Shikimic acid (SA), a hydroaromatic natural product, is used as a chiral precursor for organic synthesis of oseltamivir (Tamiflu®, an antiviral drug). The process of microbial production of SA has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Corynebacterium glutamicum (141.2 g/L) and Escherichia coli (87 g/L) laid a solid foundation for the microbial fermentation production of SA. However, its industrial application is restricted by limitations such as the lack of fermentation tests for industrial-scale and the requirement of growth-limiting factors, antibiotics, and inducers. Therefore, the development of SA biosensors and dynamic molecular switches, as well as genetic modification strategies and optimization of the fermentation process based on omics technology could improve the performance of SA-producing strains. In this review, recent advances in the development of SA-producing strains, including genetic modification strategies, metabolic pathway construction, and biosensor-assisted evolution, are discussed and critically reviewed. Finally, future challenges and perspectives for further reinforcing the development of robust SA-producing strains are predicted, providing theoretical guidance for the industrial production of SA.
Collapse
Affiliation(s)
- Qi Sheng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingxin Yi
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Zhong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
22
|
Li Z, Gao C, Ye C, Guo L, Liu J, Chen X, Song W, Wu J, Liu L. Systems engineering of Escherichia coli for high-level shikimate production. Metab Eng 2023; 75:1-11. [PMID: 36328295 DOI: 10.1016/j.ymben.2022.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
To further increase the production efficiency of microbial shikimate, a valuable compound widely used in the pharmaceutical and chemical industries, ten key target genes contributing to shikimate production were identified by exploiting the enzyme constraint model ec_iML1515, and subsequently used for promoting metabolic flux towards shikimate biosynthesis in the tryptophan-overproducing strain Escherichia coli TRP0. The engineered E. coli SA05 produced 78.4 g/L shikimate via fed-batch fermentation. Deletion of quinate dehydrogenase and introduction of the hydroaromatic equilibration-alleviating shikimate dehydrogenase mutant AroET61W/L241I reduced the contents of byproducts quinate (7.5 g/L) and 3-dehydroshikimic acid (21.4 g/L) by 89.1% and 52.1%, respectively. Furthermore, a high concentration shikimate responsive promoter PrpoS was recruited to dynamically regulate the expression of the tolerance target ProV to enhance shikimate productivity by 23.2% (to 2 g/L/h). Finally, the shikimate titer was increased to 126.4 g/L, with a yield of 0.50 g/g glucose and productivity of 2.63 g/L/h, using a 30-L fermenter and the engineered strain E. coli SA09. This is, to the best of our knowledge, the highest reported shikimate titer and productivity in E. coli.
Collapse
Affiliation(s)
- Zhendong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
23
|
Kataoka N, Matsutani M, Matsushita K, Yakushi T. Stepwise metabolic engineering of Corynebacterium glutamicum for the production of phenylalanine. J GEN APPL MICROBIOL 2022. [PMID: 35989300 DOI: 10.2323/jgam.2022.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Corynebacterium glutamicum was metabolically engineered to produce phenylalanine, a valuable aromatic amino acid that can be used as a raw material in the food and pharmaceutical industries. First, a starting phenylalanine-producer was constructed by overexpressing tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase and phenylalanine- and tyrosine-insensitive bifunctional enzyme chorismate mutase prephenate dehydratase from Escherichia coli, followed by the inactivation of enzymes responsible for the formation of dihydroxyacetone and the consumption of shikimate pathway-related compounds. Second, redirection of the carbon flow from tyrosine to phenylalanine was attempted by deleting of the tyrA gene encoding prephenate dehydrogenase, which catalyzes the committed step for tyrosine biosynthesis from prephenate. However, suppressor mutants were generated, and two mutants were isolated and examined for phenylalanine production and genome sequencing. The suppressor mutant harboring an amino acid exchange (L180R) on RNase J, which was experimentally proven to lead to a loss of function of the enzyme, showed significantly enhanced production of phenylalanine. Finally, modifications of phosphoenolpyruvate-pyruvate metabolism were investigated, revealing that the inactivation of either phosphoenolpyruvate carboxylase or pyruvate carboxylase, which are enzymes of the anaplerotic pathway, is an effective means for improving phenylalanine production. The resultant strain, harboring a phosphoenolpyruvate carboxylase deficiency, synthesized 50.7 mM phenylalanine from 444 mM glucose. These results not only provided new insights into the practical mutations in constructing a phenylalanine-producing C. glutamicum but also demonstrated the creation of a potential strain for the biosynthesis of phenylalanine-derived compounds represented by plant secondary metabolites.
Collapse
Affiliation(s)
- Naoya Kataoka
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University.,Department of Biological Science, Faculty of Agriculture, Yamaguchi University.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University
| | | | - Kazunobu Matsushita
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University.,Department of Biological Science, Faculty of Agriculture, Yamaguchi University.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University
| | - Toshiharu Yakushi
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University.,Department of Biological Science, Faculty of Agriculture, Yamaguchi University.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University
| |
Collapse
|
24
|
Cho JS, Kim GB, Eun H, Moon CW, Lee SY. Designing Microbial Cell Factories for the Production of Chemicals. JACS AU 2022; 2:1781-1799. [PMID: 36032533 PMCID: PMC9400054 DOI: 10.1021/jacsau.2c00344] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 05/24/2023]
Abstract
The sustainable production of chemicals from renewable, nonedible biomass has emerged as an essential alternative to address pressing environmental issues arising from our heavy dependence on fossil resources. Microbial cell factories are engineered microorganisms harboring biosynthetic pathways streamlined to produce chemicals of interests from renewable carbon sources. The biosynthetic pathways for the production of chemicals can be defined into three categories with reference to the microbial host selected for engineering: native-existing pathways, nonnative-existing pathways, and nonnative-created pathways. Recent trends in leveraging native-existing pathways, discovering nonnative-existing pathways, and designing de novo pathways (as nonnative-created pathways) are discussed in this Perspective. We highlight key approaches and successful case studies that exemplify these concepts. Once these pathways are designed and constructed in the microbial cell factory, systems metabolic engineering strategies can be used to improve the performance of the strain to meet industrial production standards. In the second part of the Perspective, current trends in design tools and strategies for systems metabolic engineering are discussed with an eye toward the future. Finally, we survey current and future challenges that need to be addressed to advance microbial cell factories for the sustainable production of chemicals.
Collapse
Affiliation(s)
- Jae Sung Cho
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- BioProcess
Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Gi Bae Kim
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Hyunmin Eun
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Cheon Woo Moon
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- BioProcess
Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
25
|
Ding Q, Li Z, Guo L, Song W, Wu J, Chen X, Liu L, Gao C. Engineering Escherichia coli asymmetry distribution-based synthetic consortium for shikimate production. Biotechnol Bioeng 2022; 119:3230-3240. [PMID: 35982023 DOI: 10.1002/bit.28211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022]
Abstract
Microbial consortia constitute a promising tool for achieving high-value chemical bio-production. However, customizing the consortium ratio remains challenging. Herein, an asymmetry distribution-based synthetic consortium (ADSC) was developed to switch cell phenotypes using shikimate synthesis for proof of concept. First, the cell pole-organizing protein PopZ was screened as a mediator of asymmetric protein distribution in Escherichia coli. The ADSC was then constructed to incorporate PopZ-mediated asymmetry distribution and a TetR-based transcription repression switch to achieve the dynamical control of microbial population ratio. Finally, the ADSC was used to decouple cell growth from shikimate synthesis by effectively coordinating the ratio of growing cells and production cells at the consortium level, thereby increasing shikimate titer to 30.1 g/L in the 7.5-L bioreactor with a minimal medium. This titer was further improved to 82.5 g/L when using rich medium fermentation. Our results illustrate a novel approach to control consortium structure through ADSC-mediated regulation, highlighting its potential as an efficient strategy for controlling metabolic state in microbes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.,School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Zhendong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
26
|
Metabolic Engineering of Shikimic Acid Biosynthesis Pathway for the Production of Shikimic Acid and Its Branched Products in Microorganisms: Advances and Prospects. Molecules 2022; 27:molecules27154779. [PMID: 35897952 PMCID: PMC9332510 DOI: 10.3390/molecules27154779] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The shikimate pathway is a necessary pathway for the synthesis of aromatic compounds. The intermediate products of the shikimate pathway and its branching pathway have promising properties in many fields, especially in the pharmaceutical industry. Many important compounds, such as shikimic acid, quinic acid, chlorogenic acid, gallic acid, pyrogallol, catechol and so on, can be synthesized by the shikimate pathway. Among them, shikimic acid is the key raw material for the synthesis of GS4104 (Tamiflu®), an inhibitor of neuraminidase against avian influenza virus. Quininic acid is an important intermediate for synthesis of a variety of raw chemical materials and drugs. Gallic acid and catechol receive widespread attention as pharmaceutical intermediates. It is one of the hotspots to accumulate many kinds of target products by rationally modifying the shikimate pathway and its branches in recombinant strains by means of metabolic engineering. This review considers the effects of classical metabolic engineering methods, such as central carbon metabolism (CCM) pathway modification, key enzyme gene modification, blocking the downstream pathway on the shikimate pathway, as well as several expansion pathways and metabolic engineering strategies of the shikimate pathway, and expounds the synthetic biology in recent years in the application of the shikimate pathway and the future development direction.
Collapse
|
27
|
Xu KX, Xue MG, Li Z, Ye BC, Zhang B. Recent Progress on Feasible Strategies for Arbutin Production. Front Bioeng Biotechnol 2022; 10:914280. [PMID: 35615473 PMCID: PMC9125391 DOI: 10.3389/fbioe.2022.914280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Arbutin is a hydroquinone glucoside and a natural product present in various plants. Arbutin potently inhibits melanin formation. This property has been exploited in whitening cosmetics and pharmaceuticals. Arbutin production relies mainly on chemical synthesis. The multi-step and complicated process can compromise product purity. With the increasing awareness of sustainable development, the current research direction prioritizes environment-friendly, biobased arbutin production. In this review, current strategies for arbutin production are critically reviewed, with a focus on plant extraction, chemical synthesis, biotransformation, and microbial fermentation. Furthermore, the bottlenecks and perspectives for future direction on arbutin biosynthesis are discussed.
Collapse
Affiliation(s)
- Ke-Xin Xu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resource, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Meng-Ge Xue
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resource, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Zhimin Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resource, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Bang-Ce Ye
- College of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resource, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
28
|
Cofactor Self-Sufficient Whole-Cell Biocatalysts for the Relay-Race Synthesis of Shikimic Acid. FERMENTATION 2022. [DOI: 10.3390/fermentation8050229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Shikimic acid (SA) is a key intermediate in the aromatic amino-acid biosynthetic pathway, as well as an important precursor for synthesizing many valuable antiviral drugs. The asymmetric reduction of 3-dehydroshikimic acid (DHS) to SA is catalyzed by shikimate dehydrogenase (AroE) using NADPH as the cofactor; however, the intracellular NADPH supply limits the biosynthetic capability of SA. Glucose dehydrogenase (GDH) is an efficient enzyme which is typically used for NAD(P)H regeneration in biocatalytic processes. In this study, a series of NADPH self-sufficient whole-cell biocatalysts were constructed, and the biocatalyst co-expressing Bmgdh–aroE showed the highest conversion rate for the reduction of DHS to SA. Then, the preparation of whole-cell biocatalysts by fed-batch fermentation without supplementing antibiotics was developed on the basis of the growth-coupled l-serine auxotroph. After optimizing the whole-cell biocatalytic conditions, a titer of 81.6 g/L SA was obtained from the supernatant of fermentative broth in 98.4% yield (mol/mol) from DHS with a productivity of 40.8 g/L/h, and cofactor NADP+ or NADPH was not exogenously supplemented during the whole biocatalytic process. The efficient relay-race synthesis of SA from glucose by coupling microbial fermentation with a biocatalytic process was finally achieved. This work provides an effective strategy for the biosynthesis of fine chemicals that are difficult to obtain through de novo biosynthesis from renewable feedstocks, as well as for biocatalytic studies that strictly rely on NAD(P)H regeneration.
Collapse
|
29
|
Mindt M, Beyraghdar Kashkooli A, Suarez-Diez M, Ferrer L, Jilg T, Bosch D, Martins Dos Santos V, Wendisch VF, Cankar K. Production of indole by Corynebacterium glutamicum microbial cell factories for flavor and fragrance applications. Microb Cell Fact 2022; 21:45. [PMID: 35331232 PMCID: PMC8944080 DOI: 10.1186/s12934-022-01771-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
Background The nitrogen containing aromatic compound indole is known for its floral odor typical of jasmine blossoms. Due to its characteristic scent, it is frequently used in dairy products, tea drinks and fine fragrances. The demand for natural indole by the flavor and fragrance industry is high, yet, its abundance in essential oils isolated from plants such as jasmine and narcissus is low. Thus, there is a strong demand for a sustainable method to produce food-grade indole. Results Here, we established the biotechnological production of indole upon l-tryptophan supplementation in the bacterial host Corynebacterium glutamicum. Heterologous expression of the tryptophanase gene from E. coli enabled the conversion of supplemented l-tryptophan to indole. Engineering of the substrate import by co-expression of the native aromatic amino acid permease gene aroP increased whole-cell biotransformation of l-tryptophan to indole by two-fold. Indole production to 0.2 g L−1 was achieved upon feeding of 1 g L−1l-tryptophan in a bioreactor cultivation, while neither accumulation of side-products nor loss of indole were observed. To establish an efficient and robust production process, new tryptophanases were recruited by mining of bacterial sequence databases. This search retrieved more than 400 candidates and, upon screening of tryptophanase activity, nine new enzymes were identified as most promising. The highest production of indole in vivo in C. glutamicum was achieved based on the tryptophanase from Providencia rettgeri. Evaluation of several biological aspects identified the product toxicity as major bottleneck of this conversion. In situ product recovery was applied to sequester indole in a food-grade organic phase during the fermentation to avoid inhibition due to product accumulation. This process enabled complete conversion of l-tryptophan and an indole product titer of 5.7 g L−1 was reached. Indole partitioned to the organic phase which contained 28 g L−1 indole while no other products were observed indicating high indole purity. Conclusions The bioconversion production process established in this study provides an attractive route for sustainable indole production from tryptophan in C. glutamicum. Industrially relevant indole titers were achieved within 24 h and indole was concentrated in the organic layer as a pure product after the fermentation. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01771-y.
Collapse
Affiliation(s)
- Melanie Mindt
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands.,Axxence Aromatic GmbH, Emmerich am Rhein, Germany
| | - Arman Beyraghdar Kashkooli
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Lenny Ferrer
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Tatjana Jilg
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Dirk Bosch
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Vitor Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.,Laboratory of Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Katarina Cankar
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
30
|
Kawaguchi H, Takada K, Elkasaby T, Pangestu R, Toyoshima M, Kahar P, Ogino C, Kaneko T, Kondo A. Recent advances in lignocellulosic biomass white biotechnology for bioplastics. BIORESOURCE TECHNOLOGY 2022; 344:126165. [PMID: 34695585 DOI: 10.1016/j.biortech.2021.126165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulosic biomass has great potential as an inedible feedstock for bioplastic synthesis, although its use is still limited compared to current edible feedstocks of glucose and starch. This review focuses on recent advances in the production of biopolymers and biomonomers from lignocellulosic feedstocks with downstream processing and chemical polymer syntheses. In microbial production, four routes composed of existing poly (lactic acid) and polyhydroxyalkanoates (PHAs) and the emerging biomonomers of itaconic acid and aromatic compounds were presented to review present challenges and future perspectives, focusing on the use of lignocellulosic feedstocks. Recently, advances in purification technologies decreased the number of processes and their environmental burden. Additionally, the unique structures and high-performance of emerging lignocellulose-based bioplastics have expanded the possibilities for the use of bioplastics. The sequence of processes provides insight into the emerging technologies that are needed for the practical use of bioplastics made from lignocellulosic biomass.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kenji Takada
- Energy and Environmental Area, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Taghreed Elkasaby
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Botany Department, Faculty of Science, Mansoura University, 60 Elgomhoria st, Mansoura 35516, Egypt
| | - Radityo Pangestu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, West Java 16911, Indonesia
| | - Masakazu Toyoshima
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tatsuo Kaneko
- Energy and Environmental Area, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Biomass Engineering Research Division, RIKEN, 1-7-22 Suehiro, Turumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
31
|
Kawaguchi H, Hasunuma T, Ohnishi Y, Sazuka T, Kondo A, Ogino C. Enhanced production of γ-amino acid 3-amino-4-hydroxybenzoic acid by recombinant Corynebacterium glutamicum under oxygen limitation. Microb Cell Fact 2021; 20:228. [PMID: 34949178 PMCID: PMC8697445 DOI: 10.1186/s12934-021-01714-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background Bio-based aromatic compounds are of great interest to the industry, as commercial production of aromatic compounds depends exclusively on the unsustainable use of fossil resources or extraction from plant resources. γ-amino acid 3-amino-4-hydroxybenzoic acid (3,4-AHBA) serves as a precursor for thermostable bioplastics. Results Under aerobic conditions, a recombinant Corynebacterium glutamicum strain KT01 expressing griH and griI genes derived from Streptomyces griseus produced 3,4-AHBA with large amounts of amino acids as by-products. The specific productivity of 3,4-AHBA increased with decreasing levels of dissolved oxygen (DO) and was eightfold higher under oxygen limitation (DO = 0 ppm) than under aerobic conditions (DO ≥ 2.6 ppm). Metabolic profiles during 3,4-AHBA production were compared at three different DO levels (0, 2.6, and 5.3 ppm) using the DO-stat method. Results of the metabolome analysis revealed metabolic shifts in both the central metabolic pathway and amino acid metabolism at a DO of < 33% saturated oxygen. Based on this metabolome analysis, metabolic pathways were rationally designed for oxygen limitation. An ldh deletion mutant, with the loss of lactate dehydrogenase, exhibited 3.7-fold higher specific productivity of 3,4-AHBA at DO = 0 ppm as compared to the parent strain KT01 and produced 5.6 g/L 3,4-AHBA in a glucose fed-batch culture. Conclusions Our results revealed changes in the metabolic state in response to DO concentration and provided insights into oxygen supply during fermentation and the rational design of metabolic pathways for improved production of related amino acids and their derivatives. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01714-z.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Takashi Sazuka
- Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Biomass Engineering Research Division, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Chiaki Ogino
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
32
|
An N, Chen X, Sheng H, Wang J, Sun X, Yan Y, Shen X, Yuan Q. Rewiring the microbial metabolic network for efficient utilization of mixed carbon sources. J Ind Microbiol Biotechnol 2021; 48:6313286. [PMID: 34215883 PMCID: PMC8788776 DOI: 10.1093/jimb/kuab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/26/2021] [Indexed: 11/14/2022]
Abstract
Carbon sources represent the most dominant cost factor in the industrial biomanufacturing of products. Thus, it has attracted much attention to seek cheap and renewable feedstocks, such as lignocellulose, crude glycerol, methanol, and carbon dioxide, for biosynthesis of value-added compounds. Co-utilization of these carbon sources by microorganisms not only can reduce the production cost but also serves as a promising approach to improve the carbon yield. However, co-utilization of mixed carbon sources usually suffers from a low utilization rate. In the past few years, the development of metabolic engineering strategies to enhance carbon source co-utilization efficiency by inactivation of carbon catabolite repression has made significant progress. In this article, we provide informative and comprehensive insights into the co-utilization of two or more carbon sources including glucose, xylose, arabinose, glycerol, and C1 compounds, and we put our focus on parallel utilization, synergetic utilization, and complementary utilization of different carbon sources. Our goal is not only to summarize strategies of co-utilization of carbon sources, but also to discuss how to improve the carbon yield and the titer of target products.
Collapse
Affiliation(s)
- Ning An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huakang Sheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
33
|
Escalante A, Mendoza-Flores R, Gosset G, Bolívar F. The aminoshikimic acid pathway in bacteria as source of precursors for the synthesis of antibacterial and antiviral compounds. J Ind Microbiol Biotechnol 2021; 48:6347350. [PMID: 34374768 PMCID: PMC8788734 DOI: 10.1093/jimb/kuab053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
The aminoshikimic acid (ASA) pathway comprises a series of reactions resulting in the synthesis of 3-amino-5-hydroxybenzoic acid (AHBA), present in bacteria such as Amycolatopsis mediterranei and Streptomyces. AHBA is the precursor for synthesizing the mC7N units, the characteristic structural component of ansamycins and mitomycins antibiotics, compounds with important antimicrobial and anticancer activities. Furthermore, aminoshikimic acid, another relevant intermediate of the ASA pathway, is an attractive candidate for a precursor for oseltamivir phosphate synthesis, the most potent anti-influenza neuraminidase inhibitor treatment of both seasonal and pandemic influenza. This review discusses the relevance of the key intermediate AHBA as a scaffold molecule to synthesize diverse ansamycins and mitomycins. We describe the structure and control of the expression of the model biosynthetic cluster rif in A. mediterranei to synthesize ansamycins and review several current pharmaceutical applications of these molecules. Additionally, we discuss some relevant strategies developed for overproducing these chemicals, focusing on the relevance of the ASA pathway intermediates kanosamine, AHAB, and ASA.
Collapse
Affiliation(s)
- Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Rubén Mendoza-Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| |
Collapse
|
34
|
Chai M, Deng C, Chen Q, Lu W, Liu Y, Li J, Du G, Lv X, Liu L. Synthetic Biology Toolkits and Metabolic Engineering Applied in Corynebacterium glutamicum for Biomanufacturing. ACS Synth Biol 2021; 10:3237-3250. [PMID: 34855356 DOI: 10.1021/acssynbio.1c00355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Corynebacterium glutamicum is an important workhorse in industrial white biotechnology. It has been widely applied in the producing processes of amino acids, fuels, and diverse value-added chemicals. With the continuous disclosure of genetic regulation mechanisms, various strategies and technologies of synthetic biology were used to design and construct C. glutamicum cells for biomanufacturing and bioremediation. This study mainly aimed to summarize the design and construction strategies of C. glutamicum-engineered strains, which were based on genomic modification, synthetic biological device-assisted metabolic flux optimization, and directed evolution-based engineering. Then, taking two important bioproducts (N-acetylglucosamine and hyaluronic acid) as examples, the applications of C. glutamicum cell factories were introduced. Finally, we discussed the current challenges and future development trends of C. glutamicum-engineered strain construction.
Collapse
Affiliation(s)
- Meng Chai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Chen Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Qi Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Wei Lu
- Shandong Runde Biotechnology Co., Ltd., Tai’an 271000, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
35
|
Ding Q, Liu Y, Hu G, Guo L, Gao C, Chen X, Chen W, Chen J, Liu L. Engineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production. BIORESOUR BIOPROCESS 2021; 8:118. [PMID: 38650289 PMCID: PMC10992329 DOI: 10.1186/s40643-021-00470-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
Microbial organelles are a promising model to promote cellular functions for the production of high-value chemicals. However, the concentrations of enzymes and nanoparticles are limited by the contact surface in single Escherichia coli cells. Herein, the definition of contact surface is to improve the amylase and CdS nanoparticles concentration for enhancing the substrate starch and cofactor NADH utilization. In this study, two biofilm-based strategies were developed to improve the contact surface for the production of shikimate and L-malate. First, the contact surface of E. coli was improved by amylase self-assembly with a blue light-inducible biofilm-based SpyTag/SpyCatcher system. This system increased the glucose concentration by 20.7% and the starch-based shikimate titer to 50.96 g L-1, which showed the highest titer with starch as substrate. Then, the contact surface of E. coli was improved using a biofilm-based CdS-biohybrid system by light-driven system, which improved the NADH concentration by 83.3% and increased the NADH-dependent L-malate titer to 45.93 g L-1. Thus, the biofilm-based strategies can regulate cellular functions to increase the efficiency of microbial cell factories based on the optogenetics, light-driven, and metabolic engineering.
Collapse
Affiliation(s)
- Qiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yadi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
36
|
Park E, Kim HJ, Seo SY, Lee HN, Choi SS, Lee SJ, Kim ES. Shikimate Metabolic Pathway Engineering in Corynebacterium glutamicum. J Microbiol Biotechnol 2021; 31:1305-1310. [PMID: 34373439 PMCID: PMC9705862 DOI: 10.4014/jmb.2106.06009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022]
Abstract
Shikimate is a key high-demand metabolite for synthesizing valuable antiviral drugs, such as the anti-influenza drug, oseltamivir (Tamiflu). Microbial-based strategies for shikimate production have been developed to overcome the unstable and expensive supply of shikimate derived from traditional plant extraction processes. In this study, a microbial cell factory using Corynebacterium glutamicum was designed to overproduce shikimate in a fed-batch culture system. First, the shikimate kinase gene (aroK) responsible for converting shikimate to the next step was disrupted to facilitate the accumulation of shikimate. Several genes encoding the shikimate bypass route, such as dehydroshikimate dehydratase (QsuB), pyruvate kinase (Pyk1), and quinate/shikimate dehydrogenase (QsuD), were disrupted sequentially. An artificial operon containing several shikimate pathway genes, including aroE, aroB, aroF, and aroG were overexpressed to maximize the glucose uptake and intermediate flux. The rationally designed shikimate-overproducing C. glutamicum strain grown in an optimized medium produced approximately 37.3 g/l of shikimate in 7-L fed-batch fermentation. Overall, rational cell factory design and culture process optimization for the microbial-based production of shikimate will play a key role in complementing traditional plant-derived shikimate production processes.
Collapse
Affiliation(s)
- Eunhwi Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Hye-Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Seung-Yeul Seo
- STR Biotech Co., Ltd., Chuncheon 24232, Republic of Korea
| | - Han-Na Lee
- STR Biotech Co., Ltd., Chuncheon 24232, Republic of Korea
| | - Si-Sun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Sang Joung Lee
- STR Biotech Co., Ltd., Chuncheon 24232, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea,Corresponding author Phone: 82-32-860-8318 Fax: 82-32-872-4046 E-mail:
| |
Collapse
|
37
|
Nakazawa S, Imaichi O, Kogure T, Kubota T, Toyoda K, Suda M, Inui M, Ito K, Shirai T, Araki M. History-Driven Genetic Modification Design Technique Using a Domain-Specific Lexical Model for the Acceleration of DBTL Cycles for Microbial Cell Factories. ACS Synth Biol 2021; 10:2308-2317. [PMID: 34351735 DOI: 10.1021/acssynbio.1c00234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of microbes for conducting bioprocessing via synthetic biology involves design-build-test-learn (DBTL) cycles. To aid the designing step, we developed a computational technique that suggests next genetic modifications on the basis of relatedness to the user's design history of genetic modifications accumulated through former DBTL cycles conducted by the user. This technique, which comprehensively retrieves well-known designs related to the history, involves searching text for previous literature and then mining genes that frequently co-occur in the literature with those modified genes. We further developed a domain-specific lexical model that weights literature that is more related to the domain of metabolic engineering to emphasize genes modified for bioprocessing. Our technique made a suggestion by using a history of creating a Corynebacterium glutamicum strain producing shikimic acid that had 18 genetic modifications. Inspired by the suggestion, eight genes were considered by biologists for further modification, and modifying four of these genes proved experimentally efficient in increasing the production of shikimic acid. These results indicated that our proposed technique successfully utilized the former cycles to suggest relevant designs that biologists considered worth testing. Comprehensive retrieval of well-tested designs will help less-experienced researchers overcome the entry barrier as well as inspire experienced researchers to formulate design concepts that have been overlooked or suspended. This technique will aid DBTL cycles by feeding histories back to the next genetic design, thereby complementing the designing step.
Collapse
Affiliation(s)
- Shiori Nakazawa
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
| | - Osamu Imaichi
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
| | - Takahisa Kogure
- Research Institute of Innovative Technology for Earth, 9-2, Kizugawadai, Kizugawa-shi, Kyoto 619-0292, Japan
| | - Takeshi Kubota
- Research Institute of Innovative Technology for Earth, 9-2, Kizugawadai, Kizugawa-shi, Kyoto 619-0292, Japan
| | - Koichi Toyoda
- Research Institute of Innovative Technology for Earth, 9-2, Kizugawadai, Kizugawa-shi, Kyoto 619-0292, Japan
| | - Masako Suda
- Research Institute of Innovative Technology for Earth, 9-2, Kizugawadai, Kizugawa-shi, Kyoto 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for Earth, 9-2, Kizugawadai, Kizugawa-shi, Kyoto 619-0292, Japan
| | - Kiyoto Ito
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
| | - Tomokazu Shirai
- Riken, 1-6 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 240-0035, Japan
| | - Michihiro Araki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8638, Japan
| |
Collapse
|
38
|
Kuriya Y, Inoue M, Yamamoto M, Murata M, Araki M. Knowledge extraction from literature and enzyme sequences complements FBA analysis in metabolic engineering. Biotechnol J 2021; 16:e2000443. [PMID: 34516717 DOI: 10.1002/biot.202000443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/10/2022]
Abstract
Flux balance analysis (FBA) using genome-scale metabolic model (GSM) is a useful method for improving the bio-production of useful compounds. However, FBA often does not impose important constraints such as nutrients uptakes, by-products excretions and gases (oxygen and carbon dioxide) transfers. Furthermore, important information on metabolic engineering such as enzyme amounts, activities, and characteristics caused by gene expression and enzyme sequences is basically not included in GSM. Therefore, simple FBA is often not sufficient to search for metabolic manipulation strategies that are useful for improving the production of target compounds. In this study, we proposed a method using literature and enzyme search to complement the FBA-based metabolic manipulation strategies. As a case study, this method was applied to shikimic acid production by Corynebacterium glutamicum to verify its usefulness. As unique strategies in literature-mining, overexpression of the transcriptional regulator SugR and gene disruption related to by-products productions were complemented. In the search for alternative enzyme sequences, it was suggested that those candidates are searched for from various species based on features captured by deep learning, which are not simply homologous to amino acid sequences of the base enzymes.
Collapse
Affiliation(s)
- Yuki Kuriya
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Mai Inoue
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Masaki Yamamoto
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Masahiro Murata
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Michihiro Araki
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan.,Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
39
|
Design and construction of an artificial pathway for biosynthesis of acetaminophen in Escherichia coli. Metab Eng 2021; 68:26-33. [PMID: 34487838 DOI: 10.1016/j.ymben.2021.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022]
Abstract
Acetaminophen (AAP) is one of the most commonly used drug ingredients that possesses antipyretic and analgesic effects. As an unnatural chemical, AAP is commercially produced by chemical processes using petroleum-derived carbohydrates, such as phenol, as raw materials, which is unsustainable and eco-unfriendly. In this study, we report design and construction of an artificial biosynthetic pathway for de novo production of AAP from simple carbon source. By exploring and expanding the substrate repertoire of natural enzymes, we identified and characterized a novel p-aminobenzoic acid (p-ABA) monooxygenase and an p-aminophenol (p-AP) N-acetyltransferase, which enabled the bacterial production of AAP from p-ABA. Then, we constructed an p-ABA over-producer by screening of p-ABA synthases and enhancing glutamine availability, resulting in 836.43 mg/L p-ABA in shake flasks in E. coli. Subsequent assembly of the entire biosynthetic pathway permitted the de novo production of AAP from glycerol for the first time. Finally, pathway engineering by dynamically regulating the expression of pathway genes via a temperature-inducible controller enabled production enhancement of AAP with a titer of 120.03 mg/L. This work not only constructs a microbial platform for AAP production, but also demonstrates design and construction of artificial biosynthetic pathways via discovering novel bioreactions based on existing enzymes.
Collapse
|
40
|
Nakamura K, Nagaki K, Matsutani M, Adachi O, Kataoka N, Ano Y, Theeragool G, Matsushita K, Yakushi T. Relocation of dehydroquinate dehydratase to the periplasmic space improves dehydroshikimate production with Gluconobacter oxydans strain NBRC3244. Appl Microbiol Biotechnol 2021; 105:5883-5894. [PMID: 34390353 DOI: 10.1007/s00253-021-11476-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
3-Dehydroshikimate (3-DHS) is a key intermediate for the synthesis of various compounds, including the antiviral drug oseltamivir. The Gluconobacter oxydans strain NBRC3244 intrinsically oxidizes quinate to produce 3-dehydroquinate (3-DHQ) in the periplasmic space. Even though a considerable activity is detected in the recombinant G. oxydans homologously overexpressing type II dehydroquinate dehydratase (DHQase) encoded in the aroQ gene at a pH where it grows, an alkaline shift of the culture medium is required for 3-DHS production in the middle of cultivation. Here, we attempted to adopt type I DHQase encoded in the aroD gene of Gluconacetobacter diazotrophicus strain PAL5 because the type I DHQase works optimally at weak acid, which is preferable for growth conditions of G. oxydans. In addition, we anticipated that subcellular localization of DHQase is the cytoplasm, and therefore, transports of 3-DHQ and 3-DHS across the cytoplasmic membrane are rate-limiting steps in the biotransformation. The Sec- and TAT-dependent signal sequences for secretion were attached to the N terminus of AroD to change the subcellular localization. G. oxydans that expresses the TAT-AroD derivative achieved 3-DHS production at a tenfold higher rate than the reference strain that expresses wild-type AroD even devoid of alkaline shift. Enzyme activity with the intact cell suspension and signal sequence cleavage supported the relocation of AroD to the periplasmic space. The present study suggests that the relocation of DHQase improves 3-DHS production in G. oxydans and represents a proof of concept for the potential of enzyme relocation in metabolic engineering. KEY POINTS: • Type-I dehydroquinate dehydratase (DHQase) was expressed in Gluconobacter oxydans. • Cytoplasmic DHQase was relocated to the periplasmic space in G. oxydans. • Relocation of DHQase in G. oxydans improved 3-dehydroshikimate production.
Collapse
Affiliation(s)
- Kentaro Nakamura
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Kakeru Nagaki
- Joint Degree Program of Kasetsart University and Yamaguchi University, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Minenosuke Matsutani
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 753-8515, Yamaguchi, Japan
| | - Osao Adachi
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Naoya Kataoka
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Yoshitaka Ano
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, 796-8566, Japan
| | - Gunjana Theeragool
- Joint Degree Program of Kasetsart University and Yamaguchi University, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kazunobu Matsushita
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Toshiharu Yakushi
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan. .,Joint Degree Program of Kasetsart University and Yamaguchi University, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan. .,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan. .,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
41
|
He Y, Huang Y, Xu Z, Xie W, Luo Y, Li F, Zhu X, Shi X. Stereodivergent Syntheses of All Stereoisomers of (−)‐Shikimic Acid: Development of a Chiral Pool for the Diverse Polyhydroxy‐cyclohexenoid (or ‐cyclohexanoid) Bioactive Molecules. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yun‐Gang He
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education School of Pharmacy East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Yong‐Kang Huang
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education School of Pharmacy East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Zhang‐Li Xu
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education School of Pharmacy East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Wen‐Jing Xie
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education School of Pharmacy East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Yong‐Qiang Luo
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education School of Pharmacy East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Feng‐Lei Li
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education School of Pharmacy East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Xing‐Liang Zhu
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education School of Pharmacy East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Xiao‐Xin Shi
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education School of Pharmacy East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| |
Collapse
|
42
|
Labib M, Görtz J, Brüsseler C, Kallscheuer N, Gätgens J, Jupke A, Marienhagen J, Noack S. Metabolic and process engineering for microbial production of protocatechuate with Corynebacterium glutamicum. Biotechnol Bioeng 2021; 118:4414-4427. [PMID: 34343343 DOI: 10.1002/bit.27909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 11/10/2022]
Abstract
3,4-Dihydroxybenzoate (protocatechuate, PCA) is a phenolic compound naturally found in edible vegetables and medicinal herbs. PCA is of high interest in the chemical industry and has wide potential for pharmaceutical applications. We designed and constructed a novel Corynebacterium glutamicum strain to enable the efficient utilization of d-xylose for microbial production of PCA. Shake flask cultivation of the engineered strain showed a maximum PCA titer of 62.1 ± 12.1 mM (9.6 ± 1.9 g L-1 ) from d-xylose as the primary carbon and energy source. The corresponding yield was 0.33 C-mol PCA per C-mol d-xylose, which corresponds to 38% of the maximum theoretical yield. Under growth-decoupled bioreactor conditions, a comparable PCA titer and a total amount of 16.5 ± 1.1 g PCA could be achieved when d-glucose and d-xylose were combined as orthogonal carbon substrates for biocatalyst provision and product synthesis, respectively. Downstream processing of PCA was realized via electrochemically induced crystallization by taking advantage of the pH-dependent properties of PCA. This resulted in a maximum final purity of 95.4%. The established PCA production process represents a highly sustainable approach, which will serve as a blueprint for the bio-based production of other hydroxybenzoic acids from alternative sugar feedstocks.
Collapse
Affiliation(s)
- Mohamed Labib
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jonas Görtz
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Aachener Verfahrenstechnik - Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, Germany
| | - Christian Brüsseler
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Nicolai Kallscheuer
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jochem Gätgens
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Jupke
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Aachener Verfahrenstechnik - Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
43
|
Becker J, Wittmann C. Metabolic Engineering of
Corynebacterium glutamicum. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Lee HN, Seo SY, Kim HJ, Park JH, Park E, Choi SS, Lee SJ, Kim ES. Artificial cell factory design for shikimate production in Escherichia coli. J Ind Microbiol Biotechnol 2021; 48:6316114. [PMID: 34227672 PMCID: PMC8788726 DOI: 10.1093/jimb/kuab043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/26/2021] [Indexed: 11/13/2022]
Abstract
Shikimate is a key intermediate in high-demand for synthesizing valuable antiviral drugs, such as the anti-influenza drug, oseltamivir (Tamiflu®). Microbial-based shikimate production strategies have been developed to overcome the unstable and expensive supply of shikimate derived from traditional plant extraction processes. Although shikimate biosynthesis has been reported in several engineered bacterial species, the shikimate production yield is still unsatisfactory. This study designed an Escherichia coli cell factory and optimized the fed-batch culture process to achieve a high titer of shikimate production. Using the previously constructed dehydroshikimate (DHS)-overproducing E. coli strain, two genes (aroK and aroL) responsible for converting shikimate to the next step were disrupted to facilitate shikimate accumulation. The genes with negative effects on shikimate biosynthesis, including tyrR, ptsG, and pykA, were disrupted. In contrast, several shikimate biosynthetic pathway genes, including aroB, aroD, aroF, aroG, and aroE, were overexpressed to maximize the glucose uptake and intermediate flux. The shiA involved in shikimate transport was disrupted, and the tktA involved in the accumulation of both PEP and E4P was overexpressed. The rationally designed shikimate-overproducing E. coli strain grown in an optimized medium produced approximately 101 g/L of shikimate in 7-L fed-batch fermentation, which is the highest level of shikimate production reported thus far. Overall, rational cell factory design and culture process optimization for microbial-based shikimate production will play a key role in complementing traditional plant-derived shikimate production processes.
Collapse
Affiliation(s)
- Han-Na Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.,STR Biotech Co., Ltd., Bioplaza 4-3, 56, Soyanggang-ro, Chuncheon-si, Gangwon-do 24232, Republic of Korea
| | - Seung-Yeul Seo
- STR Biotech Co., Ltd., Bioplaza 4-3, 56, Soyanggang-ro, Chuncheon-si, Gangwon-do 24232, Republic of Korea
| | - Hey-Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Ji-Hoon Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Eunhwi Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Si-Sun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Sang Joung Lee
- STR Biotech Co., Ltd., Bioplaza 4-3, 56, Soyanggang-ro, Chuncheon-si, Gangwon-do 24232, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
45
|
Li W, Shen X, Wang J, Sun X, Yuan Q. Engineering microorganisms for the biosynthesis of dicarboxylic acids. Biotechnol Adv 2021; 48:107710. [PMID: 33582180 DOI: 10.1016/j.biotechadv.2021.107710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/26/2020] [Accepted: 02/02/2021] [Indexed: 01/02/2023]
Abstract
Dicarboxylic acids (DCAs) are important commodity chemicals which have been widely applied in polymer, food and pharmaceutical industries. Biosynthesis of DCAs from renewable carbon sources represents a promising alternative to chemical synthesis. Over the years, the recombinant strains have been constructed to produce an increasing number of DCAs. In this review, recent advances on the microbial synthesis of various DCAs have been summarized and categorized into three groups: the tricarboxylic acid cycle-derived, lysine metabolism-related, and aromatic compounds degradation-derived DCAs. We focused mainly on the metabolic engineering and synthetic biology strategies for improving the production efficiency, including metabolic flux analysis, fine-tuning of gene expression, cofactor balancing, metabolic compartmentalization, dynamic regulation and co-culture to regulate the production at multiple levels. The current challenges and perspectives have also been discussed.
Collapse
Affiliation(s)
- Wenna Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
46
|
Castillo Alfonso F, Vigueras-Ramírez G, Rosales-Colunga LM, Del Monte-Martínez A, Olivares Hernández R. Propionate as the preferred carbon source to produce 3-indoleacetic acid in B. subtilis: comparative flux analysis using five carbon sources. Mol Omics 2021; 17:554-564. [PMID: 33972977 DOI: 10.1039/d1mo00039j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
3-Indoleacetic acid (IAA) is a phytohormone that promotes plant root growth, improving the use of nutrients and crop yield and it is been reported that bacteria of the genus Bacillus are capable of producing this phytohormone under various growth conditions. Considering this metabolic capability, in this work, Bacillus subtilis was cultivated in five different carbon sources: glucose, acetate, propionate, citrate and glycerol; and l-tryptophan (Trp) was used as an inducer for the IAA production. Based on the experimental results it was observed that the highest growth rate was achieved using glucose as a carbon source (μ = 0.12 h-1) and the lowest value was for citrate (μ = 0.08 h-1). On the other hand, the highest IAA production was obtained using propionate Yp/s = 0.975 (gIAA gTrp-1) and the lowest was when glucose was the substrate Yp/s = 0.803 (gIAA gTrp-1). In order to explore the metabolism and understand these differences, the experimental data was used to calculate the flux distribution using the genomic-scale metabolic model of Bacillus subtilis. Performing a comparative analysis it is observed that the fluxes towards precursors increase when propionate is the carbon source.
Collapse
Affiliation(s)
- Freddy Castillo Alfonso
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa, Ciudad de Mexico, 05348, Mexico
| | - Gabriel Vigueras-Ramírez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa, Ciudad de Mexico, 05348, Mexico.
| | - Luis Manuel Rosales-Colunga
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Dr Manuel Nava 8, Zona Universitaria, 78290, San Luis Potosí, S.L.P, Mexico
| | - Alberto Del Monte-Martínez
- Centro de Estudios de Proteínas, Univerisdad de La Habana, Calle 25 #455, e/J e I, vedado, 10400, Havana, Cuba
| | - Roberto Olivares Hernández
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa, Ciudad de Mexico, 05348, Mexico.
| |
Collapse
|
47
|
Li J, Ye BC. Metabolic engineering of Pseudomonas putida KT2440 for high-yield production of protocatechuic acid. BIORESOURCE TECHNOLOGY 2021; 319:124239. [PMID: 33254462 DOI: 10.1016/j.biortech.2020.124239] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Protocatechuic acid (PCA) has been widely utilized in conventional pharmaceutical, cosmetic and functional food industries. Currently, chemical synthesis and solvent extraction are the main methods for commercial production, indicating several disadvantages. In this study, we developed a method for the biosynthesis of PCA in Pseudomonas putida KT2440 in high yield. First, we developed constitutive promoters with different expression intensities for fine-tuned gene expression. Second, we improved the biosynthesis of "natural" PCA in P. putida KT2440 via multilevel metabolic engineering strategies: overexpression of rate-limiting enzymes, removal of negative regulators, attenuation of pathway competition, and enhancement of precursor supply. Finally, by further bioprocess engineering efforts, the best-producing strain reached a titer of 12.5 g/L PCA from glucose at 72 h in a shake flask and 21.7 g/L in fed-batch fermentation without antibiotic pressure. This was the highest PCA titer from glucose using metabolically engineered microbial cell factories reported to date.
Collapse
Affiliation(s)
- Jin Li
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
48
|
Kogure T, Suda M, Hiraga K, Inui M. Protocatechuate overproduction by Corynebacterium glutamicum via simultaneous engineering of native and heterologous biosynthetic pathways. Metab Eng 2020; 65:232-242. [PMID: 33238211 DOI: 10.1016/j.ymben.2020.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 10/22/2022]
Abstract
Protocatechuic acid (3, 4-dihydroxybenzoic acid, PCA) is a natural bioactive phenolic acid potentially valuable as a pharmaceutical raw material owing to its diverse pharmacological activities. Corynebacterium glutamicum forms PCA as a key intermediate in a native pathway to assimilate shikimate/quinate through direct conversion of the shikimate pathway intermediate 3-dehydroshikimate (DHS), which is catalyzed by qsuB-encoded DHS dehydratase (the DHS pathway). PCA can also be formed via an alternate pathway extending from chorismate by introducing heterologous chorismate pyruvate lyase that converts chorismate into 4-hydroxybenzoate (4-HBA), which is then converted into PCA catalyzed by endogenous 4-HBA 3-hydroxylase (the 4-HBA pathway). In this study, we generated three plasmid-free C. glutamicum strains overproducing PCA based on the markerless chromosomal recombination by engineering each or both of the above mentioned two PCA-biosynthetic pathways combined with engineering of the host metabolism to enhance the shikimate pathway flux and to block PCA consumption. Aerobic growth-arrested cell reactions were performed using the resulting engineered strains, which revealed that strains dependent on either the DHS or 4-HBA pathway as the sole PCA-biosynthetic route produced 43.8 and 26.2 g/L of PCA from glucose with a yield of 35.3% and 10.0% (mol/mol), respectively, indicating that PCA production through the DHS pathway is significantly efficient compared to that produced through the 4-HBA pathway. Remarkably, a strain simultaneously using both DHS and 4-HBA pathways achieved the highest reported PCA productivity of 82.7 g/L with a yield of 32.8% (mol/mol) from glucose in growth-arrested cell reaction. These results indicated that simultaneous engineering of both DHS and 4-HBA pathways is an efficient method for PCA production. The generated PCA-overproducing strain is plasmid-free and does not require supplementation of aromatic amino acids and vitamins due to the intact shikimate pathway, thereby representing a promising platform for the industrial bioproduction of PCA and derived chemicals from renewable sugars.
Collapse
Affiliation(s)
- Takahisa Kogure
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.
| | - Masako Suda
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.
| | - Kazumi Hiraga
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan; Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.
| |
Collapse
|
49
|
Niu FX, He X, Huang YB, Liu JZ. Biosensor-Guided Atmospheric and Room-Temperature Plasma Mutagenesis and Shuffling for High-Level Production of Shikimic Acid from Sucrose in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11765-11773. [PMID: 33030899 DOI: 10.1021/acs.jafc.0c05253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Here, we first developed a combined strain improvement strategy of biosensor-guided atmospheric and room-temperature plasma mutagenesis and genome shuffling. Application of this strategy resulted in a 2.7-fold increase in the production of shikimic acid (SA) and a 2.0-fold increase in growth relative to those of the starting strain. Whole-cell resequencing of the shuffled strain and confirmation using CRISPRa/CRISPRi revealed that some membrane protein-related mutant genes are identified as being closely related to the higher SA titer. The engineered shuffling strain produced 18.58 ± 0.56 g/L SA from glucose with a yield of 68% (mol/mol) by fed-batch whole-cell biocatalysis, achieving 79% of the theoretical maximum. Sucrose-utilizing Escherichia coli was engineered for SA production by introducing Mannheimia succiniciproducens β-fructofuranosidase gene. The resulting sucrose-utilizing E. coli strain produced 24.64 ± 0.32 g/L SA from sucrose with a yield of 1.42 mol/mol by fed-batch whole-cell biocatalysis, achieving 83% of the theoretical maximum.
Collapse
Affiliation(s)
- Fu-Xing Niu
- Institute of Synthetic Biology, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin He
- Institute of Synthetic Biology, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuan-Bin Huang
- Institute of Synthetic Biology, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian-Zhong Liu
- Institute of Synthetic Biology, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
50
|
Sato N, Kishida M, Nakano M, Hirata Y, Tanaka T. Metabolic Engineering of Shikimic Acid-Producing Corynebacterium glutamicum From Glucose and Cellobiose Retaining Its Phosphotransferase System Function and Pyruvate Kinase Activities. Front Bioeng Biotechnol 2020; 8:569406. [PMID: 33015020 PMCID: PMC7511668 DOI: 10.3389/fbioe.2020.569406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/19/2020] [Indexed: 01/23/2023] Open
Abstract
The production of aromatic compounds by microbial production is a promising and sustainable approach for producing biomolecules for various applications. We describe the metabolic engineering of Corynebacterium glutamicum to increase its production of shikimic acid. Shikimic acid and its precursor-consuming pathways were blocked by the deletion of the shikimate kinase, 3-dehydroshikimate dehydratase, shikimate dehydratase, and dihydroxyacetone phosphate phosphatase genes. Plasmid-based expression of shikimate pathway genes revealed that 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase, encoded by aroG, and DHQ synthase, encoded by aroB, are key enzymes for shikimic acid production in C. glutamicum. We constructed a C. glutamicum strain with aroG, aroB and aroE3 integrated. This strain produced 13.1 g/L of shikimic acid from 50 g/L of glucose, a yield of 0.26 g-shikimic acid/g-glucose, and retained both its phosphotransferase system and its pyruvate kinase activity. We also endowed β-glucosidase secreting ability to this strain. When cellobiose was used as a carbon source, the strain produced shikimic acid at 13.8 g/L with the yield of 0.25 g-shikimic acid/g-glucose (1 g of cellobiose corresponds to 1.1 g of glucose). These results demonstrate the feasibility of producing shikimic acid and its derivatives using an engineered C. glutamicum strain from cellobiose as well as glucose.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Mayumi Kishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Mariko Nakano
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| |
Collapse
|