1
|
Liu X, Park H, Ackermann YS, Avérous L, Ballerstedt H, Besenmatter W, Blázquez B, Bornscheuer UT, Branson Y, Casey W, de Lorenzo V, Dong W, Floehr T, Godoy MS, Ji Y, Jupke A, Klankermayer J, León DS, Liu L, Liu X, Liu Y, Manoli MT, Martínez-García E, Narancic T, Nogales J, O'Connor K, Osterthun O, Perrin R, Prieto MA, Pollet E, Sarbu A, Schwaneberg U, Su H, Tang Z, Tiso T, Wang Z, Wei R, Welsing G, Wierckx N, Wolter B, Xiao G, Xing J, Zhao Y, Zhou J, Tan T, Blank LM, Jiang M, Chen GQ. Exploring biotechnology for plastic recycling, degradation and upcycling for a sustainable future. Biotechnol Adv 2025; 81:108544. [PMID: 40024585 DOI: 10.1016/j.biotechadv.2025.108544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The persistent demand for plastic commodities, inadequate recycling infrastructure, and pervasive environmental contamination due to plastic waste present a formidable global challenge. Recycling, degradation and upcycling are the three most important ways to solve the problem of plastic pollution. Sequential enzymatic and microbial degradation of mechanically and chemically pre-treated plastic waste can be orchestrated, followed by microbial conversion into value-added chemicals and polymers through mixed culture systems. Furthermore, plastics-degrading enzymes can be optimized through protein engineering to enhance their specific binding capacities, stability, and catalytic efficiency across a broad spectrum of polymer substrates under challenging high salinity and temperature conditions. Also, the production and formulation of enzyme mixtures can be fine-tuned to suit specific waste compositions, facilitating their effective deployment both in vitro, in vivo and in combination with chemical technologies. Here, we emphasized the comprehensive strategy leveraging microbial processes to transform mixed plastics of fossil-derived polymers such as PP, PE, PU, PET, and PS, most notably polyesters, in conjunction with potential biodegradable alternatives such as PLA and PHA. Any residual material resistant to enzymatic degradation can be reintroduced into the process loop following appropriate physicochemical treatment.
Collapse
Affiliation(s)
- Xu Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; PhaBuilder Biotechnology Co. Ltd, Shunyi District, Beijing 101309, China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | | | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Hendrik Ballerstedt
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | - Blas Blázquez
- Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Uwe T Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Yannick Branson
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - William Casey
- Bioplastech Ltd., Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - Víctor de Lorenzo
- Environmental Synthetic Biology Laboratory, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Tilman Floehr
- Everwave GmbH, Strüverweg 116, 52070 Aachen, Germany
| | - Manuel S Godoy
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - Yu Ji
- Institute of Biotechnology (BIOTEC), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Andreas Jupke
- Fluid Process Engineering, Aachen Process Technology (AVT), RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Jürgen Klankermayer
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - David San León
- Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Luo Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xianrui Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yizhi Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Maria T Manoli
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - Esteban Martínez-García
- Environmental Synthetic Biology Laboratory, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Tanja Narancic
- BiOrbic Bioeconomy SFI Research Centre, and School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Juan Nogales
- Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Kevin O'Connor
- BiOrbic Bioeconomy SFI Research Centre, and School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Ole Osterthun
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Rémi Perrin
- SOPREMA, Direction R&D, 14 Rue Saint Nazaire, 67100 Strasbourg, France
| | - M Auxiliadora Prieto
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Alexandru Sarbu
- SOPREMA, Direction R&D, 14 Rue Saint Nazaire, 67100 Strasbourg, France
| | - Ulrich Schwaneberg
- Institute of Biotechnology (BIOTEC), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zequn Tang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Till Tiso
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Zishuai Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ren Wei
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Gina Welsing
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Birger Wolter
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Gang Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jianmin Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering (IPE), Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Beijing 100190, PR China
| | - Yilin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; State Key Lab of Green Biomanufacturing, Beijing, China.
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Lab of Green Biomanufacturing, Beijing, China.
| |
Collapse
|
2
|
Weldon M, Ganguly S, Euler C. Co-consumption for plastics upcycling: A perspective. Metab Eng Commun 2025; 20:e00253. [PMID: 39802937 PMCID: PMC11717657 DOI: 10.1016/j.mec.2024.e00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/21/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
The growing plastics end-of-life crisis threatens ecosystems and human health globally. Microbial plastic degradation and upcycling have emerged as potential solutions to this complex challenge, but their industrial feasibility and limitations thereon have not been fully characterized. In this perspective paper, we review literature describing both plastic degradation and transformation of plastic monomers into value-added products by microbes. We aim to understand the current feasibility of combining these into a single, closed-loop process. Our analysis shows that microbial plastic degradation is currently the rate-limiting step to "closing the loop", with reported rates that are orders of magnitude lower than those of pathways to upcycle plastic degradation products. We further find that neither degradation nor upcycling have been demonstrated at rates sufficiently high to justify industrialization at present. As a potential way to address these limitations, we suggest more investigation into mixotrophic approaches, showing that those which leverage the unique properties of plastic degradation products such as ethylene glycol might improve rates sufficiently to motivate industrial process development.
Collapse
Affiliation(s)
- Michael Weldon
- Department of Chemical Engineering, University of Waterloo, Canada
| | - Sanniv Ganguly
- Department of Chemical Engineering, University of Waterloo, Canada
| | - Christian Euler
- Department of Chemical Engineering, University of Waterloo, Canada
| |
Collapse
|
3
|
Tibocha-Bonilla JD, Gandhi V, Lieng C, Moyne O, Santibáñez-Palominos R, Zengler K. Model of metabolism and gene expression predicts proteome allocation in Pseudomonas putida. NPJ Syst Biol Appl 2025; 11:55. [PMID: 40413180 PMCID: PMC12103522 DOI: 10.1038/s41540-025-00521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/20/2025] [Indexed: 05/27/2025] Open
Abstract
The genome-scale model of metabolism and gene expression (ME-model) for Pseudomonas putida KT2440, iPpu1676-ME, provides a comprehensive representation of biosynthetic costs and proteome allocation. Compared to a metabolic-only model, iPpu1676-ME significantly expands on gene expression, macromolecular assembly, and cofactor utilization, enabling accurate growth predictions without additional constraints. Multi-omics analysis using RNA sequencing and ribosomal profiling data revealed translational prioritization in P. putida, with core pathways, such as nicotinamide biosynthesis and queuosine metabolism, exhibiting higher translational efficiency, while secondary pathways displayed lower priority. Notably, the ME-model significantly outperformed the M-model in alignment with multi-omics data, thereby validating its predictive capacity. Thus, iPpu1676-ME offers valuable insights into P. putida's proteome allocation and presents a powerful tool for understanding resource allocation in this industrially relevant microorganism.
Collapse
Affiliation(s)
- Juan D Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Vishant Gandhi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| | - Chloe Lieng
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Oriane Moyne
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | | | - Karsten Zengler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA.
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0403, USA.
- Program in Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0418, USA.
| |
Collapse
|
4
|
Foka K, Ferousi C, Topakas E. Polyester-derived monomers as microbial feedstocks: Navigating the landscape of polyester upcycling. Biotechnol Adv 2025; 82:108589. [PMID: 40354902 DOI: 10.1016/j.biotechadv.2025.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/10/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
Since their large-scale adoption in the early 20th century, plastics have become indispensable to modern life. However, inadequate disposal and recycling methods have led to severe environmental consequences. While traditional end-of-life plastics management had predominantly relied on landfilling, a paradigm shift towards recycling and valorization emerged in the 1970s, leading to the development of various, mostly mechanochemical, recycling strategies, together with the more recent approach of biological depolymerization and upcycling. Plastic upcycling, which converts plastic waste into higher-value products, is gaining attention as a sustainable strategy to reduce environmental impact and reliance on virgin materials. Microbial plastic upcycling relies on efficient depolymerization methods to generate monomeric substrates, which are subsequently metabolized by native or engineered microbial systems yielding valuable bioproducts. This review focuses on the second phase of microbial polyester upcycling, examining the intracellular metabolic pathways that enable the assimilation and bioconversion of polyester-derived monomers into industrially relevant compounds. Both biodegradable and non-biodegradable polyesters with commercial significance are considered, with emphasis on pure monomeric feedstocks to elucidate intracellular carbon assimilation pathways. Understanding these metabolic processes provides a foundation for future metabolic engineering efforts, aiming to optimize microbial systems for efficient bioconversion of mixed plastic hydrolysates into valuable bioproducts.
Collapse
Affiliation(s)
- Katerina Foka
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece.
| | - Christina Ferousi
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece.
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece.
| |
Collapse
|
5
|
Senatore VG, Reķēna A, Mapelli V, Lahtvee PJ, Branduardi P. Ethylene glycol metabolism in the oleaginous yeast Rhodotorula toruloides. Appl Microbiol Biotechnol 2025; 109:114. [PMID: 40338313 PMCID: PMC12062128 DOI: 10.1007/s00253-025-13504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/05/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
The agro-food chain produces an impressive amount of waste, which includes not only lignocellulosic biomass, but also plastic, used for both protective films and packaging. Thanks to advances in enzymatic hydrolysis, it is now possible to imagine an upcycling that valorizes each waste through microbial fermentation. With this goal in mind, we first explored the ability of the oleaginous red yeast Rhodotorula toruloides to catabolize ethylene glycol (EG), obtained by the hydrolysis of polyethylene terephthalate (PET), in the presence of glucose in batch bioreactor experiments. Secondly, we focused on the physiology of EG catabolism in the presence of xylose as a sole carbon source, and in a mixture of glucose and xylose. Our results show that EG is metabolized to glycolic acid (GA) in all tested conditions. Remarkably, we report for the first time that the consumption of EG improves xylose bioprocess, possibly alleviating a cofactor imbalance by regenerating NAD(P)H. Consumption of EG in the presence of glucose started after the onset of the nitrogen limitation phase, while no significant differences were observed with the control; a 100% mol mol-1 yield of GA was obtained, which has never been reported for yeasts. Finally, a putative EG oxidative pathway was proposed by in silico analyses supported with the existing omics data. Our results propose R. toruloides as a promising candidate for the production of GA from EG that could be exploited simultaneously for the sustainable production of microbial oils from residual hemicellulosic biomasses. KEY POINTS: • Ethylene glycol (EG) is not assimilated as a carbon source by Rhodotorula toruloides • With glucose, EG is oxidized to glycolic acid (GA) with a yield of 100% (mol mol-1) • With xylose, EG to GA is associated with improved growth and xylose uptake rate.
Collapse
Affiliation(s)
- Vittorio Giorgio Senatore
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Alīna Reķēna
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, Estonia
| | - Valeria Mapelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Petri-Jaan Lahtvee
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, Estonia
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
6
|
Orimaco R, Donnelly P, Sexton S, McLoughlin A, Kelly S, O'Connor KE, Wierckx N, Narančić T. Characterisation and Harnessing of 5-Hydroxymethylfurfural Metabolism in Pseudomonas umsongensis GO16 for the Production of 2,5-Furandicarboxylic Acid. Microb Biotechnol 2025; 18:e70159. [PMID: 40346906 PMCID: PMC12064950 DOI: 10.1111/1751-7915.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/18/2025] [Accepted: 04/27/2025] [Indexed: 05/12/2025] Open
Abstract
In the search for biobased alternatives to traditional fossil plastics, 2,5-furandicarboxylic acid (FDCA) represents a potential substitute to terephthalic acid (TPA), a monomer of the ubiquitous polyester, polyethylene terephthalate (PET). Pseudomonas umsongensis GO16, which can metabolise TPA and ethylene glycol (EG), can also oxidise 5-hydroxymethylfurfural (HMF), a precursor to FDCA. The enzymes involved in the oxidation to FDCA, PsfA and PsfG, were identified and characterised. Deletion of FDCA decarboxylase HmfF involved in the conversion of FDCA to furoic acid, and subsequently to a central metabolic intermediate, 2-ketoglutarate, allowed for the accumulation of FDCA. GO16 ΔhmfF cells were grown on glycerol, TPA, EG or mock PET hydrolysate, and the catalyst was then used for the biotransformation of HMF to FDCA. When TPA was used as a growth substrate and to power the biotransformation, the transport of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) into the cytoplasm represented a rate-limiting step in HMF oxidation. De-bottlenecking transport limitations through in trans overexpression of the HMFCA transporter (HmfT) along with the PsfA aldehyde dehydrogenase and PsfG alcohol dehydrogenase allowed 100% conversion of 50 mM HMF to FDCA within 24 h when TPA, EG or mock PET hydrolysate were used to grow the biocatalyst and subsequently to power the biotransformation. This expands the repertoire of valuable products obtained from engineered P. umsongensis GO16 in the strategy to bio-upcycle post-consumer PET.
Collapse
Affiliation(s)
- Rhys Orimaco
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
- BiOrbic ‐ Bioeconomy Research CentreIreland, University College DublinDublin 4Ireland
| | - Pauric Donnelly
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
- BiOrbic ‐ Bioeconomy Research CentreIreland, University College DublinDublin 4Ireland
| | - Seán Sexton
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| | - Aoife McLoughlin
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| | - Sophie Kelly
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| | - Kevin E. O'Connor
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
- BiOrbic ‐ Bioeconomy Research CentreIreland, University College DublinDublin 4Ireland
| | - Nick Wierckx
- Institute of bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum JülichJülichGermany
| | - Tanja Narančić
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
- BiOrbic ‐ Bioeconomy Research CentreIreland, University College DublinDublin 4Ireland
| |
Collapse
|
7
|
Pardo I, Manoli MT, Capel S, Calonge-García A, Prieto MA. Enzymatic recycling and microbial upcycling for a circular plastics bioeconomy. Curr Opin Biotechnol 2025; 93:103307. [PMID: 40311164 DOI: 10.1016/j.copbio.2025.103307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
Since the 1950s, plastics have become commodity materials that are present in virtually every aspect of our daily lives. However, the current economic model of plastics is fundamentally linear, with less than 10% of plastics returning to the value chain at their end of life. In recent years, efforts have been dedicated to develop new technologies that can change this model to a circular economy for plastics, including enzymatic recycling and biological upcycling to value-added products. Here, we will review recent advances made in this rapidly evolving field and discuss how further development of these technologies could contribute to reduce the share of postconsumer plastic waste that is diverted toward landfilling and incineration.
Collapse
Affiliation(s)
- Isabel Pardo
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain; Interdisciplinary Platform SusPlast, CSIC, Spain.
| | - Maria T Manoli
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain; Interdisciplinary Platform SusPlast, CSIC, Spain
| | - Susana Capel
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain; Interdisciplinary Platform SusPlast, CSIC, Spain
| | - Alba Calonge-García
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain; Interdisciplinary Platform SusPlast, CSIC, Spain
| | - M Auxiliadora Prieto
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain; Interdisciplinary Platform SusPlast, CSIC, Spain
| |
Collapse
|
8
|
Guo W, Shi Z, Yu X, Duan J. Biodegradation of PET by Deep-Sea Pseudomonas chengduensis BC1815 through Utilization of Ethylene Glycol Monomer for Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8027-8036. [PMID: 40252025 DOI: 10.1021/acs.est.5c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
An important environmental issue is the pollution caused by poly(ethylene terephthalate) (PET) and the emitted monomers terephthalic acid (TPA) and ethylene glycol (EG). The TPA biodegradation pathway has been well documented for the microbial biodegradation and assimilation of PET; however, the PET biodegradation process by marine microorganisms via the EG biodegradation pathway is less understood. Here, we demonstrate how the marine bacteria Pseudomonas chengduensis BC1815's membrane-anchored PET esterase (OF113_10420) breaks down PET. We also explain the characteristics of this enzyme and demonstrate that the strain assimilates PET via the EG biodegradation pathway. In addition to depolymerizing PET, PET esterase (OF113_10420) hydrolyzes BHET and MHET to generate EG more efficiently in alkaline circumstances. It has been discovered that P. chengduensis BC1815 cells exhibiting surface-displayed PET esterase (OF113_10420) have the potential to function as cell biocatalysts for the breakdown of PET. Additionally, we look into the microbial communities that have PET esterase linked to the EG biodegradation pathway, primarily those belonging to the phyla Proteobacteria and Actinobacteriota. Consequently, research on the microbial absorption and biodegradation of PET via the EG metabolism route increases our knowledge of the bioremediation of PET pollution in the marine environment and contributes to our understanding of the environmental destiny of PET pollutants in the marine environment.
Collapse
Affiliation(s)
- Wenbin Guo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - Zhengguang Shi
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
| | - Xue Yu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
| | - Jingjing Duan
- College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
9
|
Frazão CJR, Wagner N, Nguyen TAS, Walther T. Construction of a synthetic metabolic pathway for biosynthesis of threonine from ethylene glycol. Metab Eng 2025; 88:50-62. [PMID: 39672460 DOI: 10.1016/j.ymben.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Ethylene glycol is a promising substrate for bioprocesses which can be derived from widely abundant CO2 or plastic waste. In this work, we describe the construction of an eight-step synthetic metabolic pathway enabling carbon-conserving biosynthesis of threonine from ethylene glycol. This route extends the previously disclosed synthetic threose-dependent glycolaldehyde assimilation (STEGA) pathway for the synthesis of 2-oxo-4-hydroxybutyrate with three additional reaction steps catalyzed by homoserine transaminase, homoserine kinase, and threonine synthase. We first validated the functionality of the new pathway in an Escherichia coli strain auxotrophic for threonine, which was also employed for discovering a better-performing D-threose dehydrogenase enzyme activity. Subsequently, we transferred the pathway to producer strains and used 13C-tracer experiments to improve threonine biosynthesis starting from glycolaldehyde. Finally, extending the pathway for ethylene glycol assimilation resulted in the production of up to 6.5 mM (or 0.8 g L-1) threonine by optimized E. coli strains at a yield of 0.10 mol mol-1 (corresponding to 20 % of the theoretical yield).
Collapse
Affiliation(s)
- Cláudio J R Frazão
- Institute of Natural Materials Technology, TU Dresden, 01062, Dresden, Germany
| | - Nils Wagner
- Institute of Natural Materials Technology, TU Dresden, 01062, Dresden, Germany
| | - T A Stefanie Nguyen
- Institute of Natural Materials Technology, TU Dresden, 01062, Dresden, Germany
| | - Thomas Walther
- Institute of Natural Materials Technology, TU Dresden, 01062, Dresden, Germany.
| |
Collapse
|
10
|
de Witt J, Luthe T, Wiechert J, Jensen K, Polen T, Wirtz A, Thies S, Frunzke J, Wynands B, Wierckx N. Upcycling of polyamides through chemical hydrolysis and engineered Pseudomonas putida. Nat Microbiol 2025; 10:667-680. [PMID: 39929973 PMCID: PMC11879879 DOI: 10.1038/s41564-025-01929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/08/2025] [Indexed: 03/06/2025]
Abstract
Aliphatic polyamides, or nylons, are widely used in the textile and automotive industry due to their high durability and tensile strength, but recycling rates are below 5%. Chemical recycling of polyamides is possible but typically yields mixtures of monomers and oligomers which hinders downstream purification. Here, Pseudomonas putida KT2440 was engineered to metabolize C6-polyamide monomers such as 6-aminohexanoic acid, ε-caprolactam and 1,6-hexamethylenediamine, guided by adaptive laboratory evolution. Heterologous expression of nylonases also enabled P. putida to metabolize linear and cyclic nylon oligomers derived from chemical polyamide hydrolysis. RNA sequencing and reverse engineering revealed the metabolic pathways for these non-natural substrates. To demonstrate microbial upcycling, the phaCAB operon from Cupriavidus necator was heterologously expressed to enable production of polyhydroxybutyrate (PHB) from PA6 hydrolysates. This study presents a microbial host for the biological conversion, in combination with chemical hydrolysis, of polyamide monomers and mixed polyamids hydrolysates to a value-added product.
Collapse
Affiliation(s)
- Jan de Witt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Tom Luthe
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Johanna Wiechert
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | | | - Tino Polen
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Thies
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
11
|
Chacón M, Alvarez-Gonzalez G, Gosalvitr P, Berepiki A, Fisher K, Cuéllar-Franca R, Dixon N. Complex waste stream valorization through combined enzymatic hydrolysis and catabolic assimilation by Pseudomonas putida. Trends Biotechnol 2025; 43:647-672. [PMID: 39638703 DOI: 10.1016/j.tibtech.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
Biogenic waste-derived feedstocks for production of fuels, chemicals, and materials offer great potential supporting the transition to net-zero and greater circularity. However, such feedstocks are heterogeneous and subject to geographical and seasonal variability. Here, we show that, through careful strain selection and metabolic engineering, Pseudomonas putida can be employed to permit efficient co-utilization of highly heterogeneous substrate compositions derived from hydrolyzed mixed municipal-like waste fractions (food, plastic, organic, paper, cardboard, and textiles) for growth and synthesis of exemplar bioproducts. Design of experiments was employed to explore the combinatorial space of nine waste-derived monomers, displaying robust catabolic efficiency regardless of substrate composition. Prospective Life-Cycle Assessment (LCA) and Life-Cycle Costing (LCC) illustrated the climate change (CC) and economic advantages of biomanufacturing compared with conventional waste treatment options, demonstrating a 41-62% potential reduction in CC impact. This work demonstrates the potential for expanding treatment strategies for mixed waste to include engineered microbes.
Collapse
Affiliation(s)
- Micaela Chacón
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Guadalupe Alvarez-Gonzalez
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Piya Gosalvitr
- Department of Chemical Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Adokiye Berepiki
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Karl Fisher
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Rosa Cuéllar-Franca
- Department of Chemical Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
12
|
Werner AZ, Avina YSC, Johnsen J, Bratti F, Alt HM, Mohamed ET, Clare R, Mand TD, Guss AM, Feist AM, Beckham GT. Adaptive laboratory evolution and genetic engineering improved terephthalate utilization in Pseudomonas putida KT2440. Metab Eng 2025; 88:196-205. [PMID: 39701409 DOI: 10.1016/j.ymben.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Poly (ethylene terephthalate) (PET) is one of the most ubiquitous plastics and can be depolymerized through biological and chemo-catalytic routes to its constituent monomers, terephthalic acid (TPA) and ethylene glycol (EG). TPA and EG can be re-synthesized into PET for closed-loop recycling or microbially converted into higher-value products for open-loop recycling. Here, we expand on our previous efforts engineering and applying Pseudomonas putida KT2440 for PET conversion by employing adaptive laboratory evolution (ALE) to improve TPA catabolism. Three P. putida strains with varying degrees of metabolic engineering for EG catabolism underwent an automation-enabled ALE campaign on TPA, a TPA and EG mixture, and glucose as a control. ALE increased the growth rate on TPA and TPA-EG mixtures by 4.1- and 3.5-fold, respectively, in approximately 350 generations. Evolved isolates were collected at the midpoints and endpoints of 39 independent ALE experiments, and growth rates were increased by 0.15 and 0.20 h-1 on TPA and a TPA-EG, respectively, in the best performing isolates. Whole-genome re-sequencing identified multiple converged mutations, including loss-of-function mutations to global regulators gacS, gacA, and turA along with large duplication and intergenic deletion events that impacted the heterologously-expressed tphABII catabolic genes. Reverse engineering of these targets confirmed causality, and a strain with all three regulators deleted and second copies of tphABII and tpaK displayed improved TPA utilization compared to the base strain. Taken together, an iterative strain engineering process involving heterologous pathway engineering, ALE, whole genome sequencing, and genome editing identified five genetic interventions that improve P. putida growth on TPA, aimed at developing enhanced whole-cell biocatalysts for PET upcycling.
Collapse
Affiliation(s)
- Allison Z Werner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Young-Saeng C Avina
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Josefin Johnsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Felicia Bratti
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Hannah M Alt
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Elsayed T Mohamed
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Rita Clare
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Thomas D Mand
- BOTTLE Consortium, Golden, CO, USA; Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN, USA
| | - Adam M Guss
- BOTTLE Consortium, Golden, CO, USA; Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN, USA
| | - Adam M Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark; Department of Bioengineering, University of California, San Diego, CA, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA.
| |
Collapse
|
13
|
Diao J, Tian Y, Hu Y, Moon TS. Producing multiple chemicals through biological upcycling of waste poly(ethylene terephthalate). Trends Biotechnol 2025; 43:620-646. [PMID: 39581772 DOI: 10.1016/j.tibtech.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
Poly(ethylene terephthalate) (PET) waste is of low degradability in nature, and its mismanagement threatens numerous ecosystems. To combat the accumulation of waste PET in the biosphere, PET bio-upcycling, which integrates chemical pretreatment to produce PET-derived monomers with their microbial conversion into value-added products, has shown promise. The recently discovered Rhodococcus jostii RPET strain can metabolically degrade terephthalic acid (TPA) and ethylene glycol (EG) as sole carbon sources, and it has been developed into a microbial chassis for PET upcycling. However, the scarcity of synthetic biology tools, specifically designed for this non-model microbe, limits the development of a microbial cell factory for expanding the repertoire of bioproducts from postconsumer PET. Herein, we describe the development of potent genetic tools for RPET, including two inducible and titratable expression systems for tunable gene expression, along with serine integrase-based recombinational tools (SIRT) for genome editing. Using these tools, we systematically engineered the RPET strain to ultimately establish microbial supply chains for producing multiple chemicals, including lycopene, lipids, and succinate, from postconsumer PET waste bottles, achieving the highest titer of lycopene ever reported thus far in RPET [i.e., 22.6 mg/l of lycopene, ~10 000-fold higher than that of the wild-type (WT) strain]. This work highlights the great potential of plastic upcycling as a generalizable means of sustainable production of diverse chemicals.
Collapse
Affiliation(s)
- Jinjin Diao
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130, USA.
| | - Yuxin Tian
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130, USA; Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Yifeng Hu
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130, USA
| | - Tae Seok Moon
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130, USA; Division of Biology and Biomedical Sciences, Washington University in St Louis, St Louis, MO 63130, USA; Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Senatore VG, Masotti F, Milanesi R, Ceccarossi S, Maestroni L, Serra I, Branduardi P. Challenges in elucidating ethylene glycol metabolism in Saccharomyces cerevisiae. FEMS Yeast Res 2025; 25:foaf006. [PMID: 39919757 PMCID: PMC11878538 DOI: 10.1093/femsyr/foaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 02/09/2025] Open
Abstract
Polyethylene terephthalate (PET) is one of the most used polymers in the packaging industry; enzymatic recycling is emerging as a sustainable strategy to deal with waste PET, producing the virgin monomers terephthalic acid and ethylene glycol (EG). These monomers can be feedstocks for further microbial transformations. While EG metabolism has been uncovered in bacteria, in yeast the pathway for the oxidation to glycolic acid (GA) has only been proposed, but never experimentally elucidated. In this work, we investigated in Saccharomyces cerevisiae the potential contribution to this metabolism of two endogenous genes, YLL056C (a putative alcohol dehydrogenase) and GOR1 (glyoxylate reductase). Secondly, the possible role of alcohol dehydrogenases (ADHs) was considered, too. Finally, two heterologous genes (gox0313 from Gluconobacter oxydans and AOX1 from Komagataella phaffii) were expressed with the intent to push EG oxidation toward GA. Our main findings revealed that (i) Gor1, Yll056c, and ADHs are not involved in EG oxidation and (ii) the bottleneck of the catabolism is the first step in the pathway, due to the endogenous mechanisms for aldehyde detoxification. Multiomics studies are required to completely elucidate the pathway for EG catabolism, while further engineering directed toward relieving the bottleneck is needed to fully unleash the potential of yeasts for the upcycling of EG to GA.
Collapse
Affiliation(s)
- Vittorio Giorgio Senatore
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Fiorella Masotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Riccardo Milanesi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Sofia Ceccarossi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
| | - Letizia Maestroni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Immacolata Serra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
15
|
Lee H, Diao J, Tian Y, Guleria R, Lee E, Smith A, Savage M, Yeh D, Roberson L, Blenner M, Tang YJ, Moon TS. Developing an alternative medium for in-space biomanufacturing. Nat Commun 2025; 16:728. [PMID: 39819985 PMCID: PMC11739595 DOI: 10.1038/s41467-025-56088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
In-space biomanufacturing provides a sustainable solution to facilitate long-term, self-sufficient human habitation in extraterrestrial environments. However, its dependence on Earth-supplied feedstocks renders in-space biomanufacturing economically nonviable. Here, we develop a process termed alternative feedstock-driven in-situ biomanufacturing (AF-ISM) to alleviate dependence on Earth-based resupply of feedstocks. Specifically, we investigate three alternative feedstocks (AF)-Martian and Lunar regolith, post-consumer polyethylene terephthalate, and fecal waste-to develop an alternative medium for lycopene production using Rhodococcus jostii PET strain S6 (RPET S6). Our results show that RPET S6 could directly utilize regolith simulant particles as mineral replacements, while the addition of anaerobically pretreated fecal waste synergistically supported its cell growth. Additionally, lycopene production using AF under microgravity conditions achieved levels comparable to those on Earth. Furthermore, an economic analysis shows significant lycopene production cost reductions using AF-ISM versus conventional methods. Overall, this work highlights the viability of AF-ISM for in-space biomanufacturing.
Collapse
Affiliation(s)
- Hakyung Lee
- Washington University in St. Louis, Saint Louis, MO, USA
| | - Jinjin Diao
- Washington University in St. Louis, Saint Louis, MO, USA.
| | - Yuxin Tian
- Washington University in St. Louis, Saint Louis, MO, USA
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, USA
| | | | - Eunseo Lee
- Washington University in St. Louis, Saint Louis, MO, USA
| | | | - Millie Savage
- Lincoln University of Missouri, Jefferson City, MO, USA
| | - Daniel Yeh
- University of South Florida, Tampa, FL, USA
| | - Luke Roberson
- National Aeronautics and Space Administration, John F. Kennedy Space Center, Merritt Island, FL, USA
| | | | - Yinjie J Tang
- Washington University in St. Louis, Saint Louis, MO, USA.
| | - Tae Seok Moon
- Washington University in St. Louis, Saint Louis, MO, USA.
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, USA.
| |
Collapse
|
16
|
Feng CQ, Chen XQ, Huang QS, Zhao XM, Chen S, Xu KW, Wu J, Yan ZF. Screening and engineering of lycopene-producing strain Rhodococcus jostii for bio-upcycling of poly(ethylene terephthalate) waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178168. [PMID: 39708736 DOI: 10.1016/j.scitotenv.2024.178168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Poly(ethylene terephthalate) (PET) is a widely used plastic, but its improper disposal has caused serious environmental pollution. The development of bioconversion for PET waste into high-value chemicals has gained significant attention as an innovative solution. In this study, a novel guided screening strategy involving mixed-bacteria fermentation and partitioned purification (MBF) was proposed to first successful isolate Rhodococcus jostii LETBE 8896, a strain capable of naturally producing 4 μg/L of lycopene from PET hydrolysate. Transcriptomic analysis identified the methylerythritol 4-phosphate (MEP) pathway as key to lycopene biosynthesis, with IspG identified as a critical regulatory enzyme. R. jostii with ispG overexpression enhanced lycopene production, with 819 μg/L in the simulated PET hydrolysate and 650 μg/L in the PET hydrolysate. Additionally, the use of butylated hydroxytoluene (BHT) as an antioxidant significantly improved lycopene production at 1 L scale level, achieving a maximum yield of 1865 μg/L with a molar conversion rate of 50.36 % from the PET hydrolysate, the highest reported for PET hydrolysate to date. These findings highlight the dual potential of R. jostii as a chassis strain for high-value chemical production and as a sustainable solution for PET upcycling. This study provides a novel approach to plastic waste management, contributing to the circular economy and global sustainability goals.
Collapse
Affiliation(s)
- Chu-Qi Feng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Center of Technology Innovation for Dairy, Hohhot 010100, China
| | - Xiao-Qian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Qing-Song Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiao-Min Zhao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Sheng Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Ke-Wei Xu
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zheng-Fei Yan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
17
|
Dar MA, Palsania P, Satya S, Dashora M, Bhat OA, Parveen S, Patidar SK, Kaushik G. Microplastic pollution: A global perspective in surface waters, microbial degradation, and corresponding mechanism. MARINE POLLUTION BULLETIN 2025; 210:117344. [PMID: 39615341 DOI: 10.1016/j.marpolbul.2024.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Plastics are incredibly useful materials that have many benefits for both society and individual daily lives. However, the extensive utilization of plastic and plastic-derived products has led to plastic pollution in various environmental compartments across the world at alarming levels. Due to different biogeochemical processes, this plastic waste is broken down into tiny, omnipresent, and long-lasting fragments known as microplastics (<5 mm), which are causing great concern among scientists. Microplastics tend to bioaccumulate, contain toxic chemicals, and have other pollutants and pathogens adsorbed on their surface, thus having adverse effects on organisms. Globally dispersed, microplastics can now be found in almost every environmental niche. Therefore, the purpose of this paper is to give an overview of the research that has been done on this topic, summarize the evidence of microplastic pollution in surface waters, and discuss the analytical summary of recent findings on the microbial degradation of microplastics and effects of various parameters on its degradation as well as the potential degradation mechanism of microplastics. A summary of the most recent and relevant literature is provided on microplastic pollution and microorganisms that can break down various microplastics are classified according to their types including bacteria, fungi, and algae. The environmental factors influencing microplastic degradation and the associated degradation effects are therefore generalized. Additionally, a brief discussion of the mechanism underlying the microbial-mediated degradation of microplastics is provided. This review serves as a reference for upcoming research looking into efficient ways to reduce microplastic pollution.
Collapse
Affiliation(s)
- Mohd Ashraf Dar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Preksha Palsania
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Shalni Satya
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Milap Dashora
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Ommer Ahad Bhat
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Sana Parveen
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Shailesh Kumar Patidar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Garima Kaushik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
18
|
Song Q, Zhang Y, Ju C, Zhao T, Meng Q, Cong J. Microbial strategies for effective microplastics biodegradation: Insights and innovations in environmental remediation. ENVIRONMENTAL RESEARCH 2024; 263:120046. [PMID: 39313172 DOI: 10.1016/j.envres.2024.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs), diminutive yet ubiquitous fragments arising from the degradation of plastic waste, pervade environmental matrices, posing substantial risks to ecological systems and trophic dynamics. This review meticulously examines the origins, distribution, and biological impacts of MPs, with an incisive focus on elucidating the molecular and cellular mechanisms underpinning their toxicity. We highlight the indispensable role of microbial consortia and enzymatic pathways in the oxidative degradation of MPs, offering insights into enhanced biodegradation processes facilitated by innovative pretreatment methodologies. Central to our discourse is the interplay between MPs and biota, emphasizing the detoxification capabilities of microbial metabolisms and enzymatic functions in ameliorating MPs' deleterious effects. Additionally, we address the practical implementations of MP biodegradation in environmental remediation, advocating for intensified research to unravel the complex biodegradation pathways and to forge effective strategies for the expeditious elimination of MPs from diverse ecosystems. This review not only articulates the pervasive challenges posed by MPs but also positions microbial strategies at the forefront of remedial interventions, thereby paving the way for groundbreaking advancements in environmental conservation.
Collapse
Affiliation(s)
- Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Cuiping Ju
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
19
|
Hu Y, Tian Y, Zou C, Moon TS. The current progress of tandem chemical and biological plastic upcycling. Biotechnol Adv 2024; 77:108462. [PMID: 39395608 DOI: 10.1016/j.biotechadv.2024.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/31/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Each year, millions of tons of plastics are produced for use in such applications as packaging, construction, and textiles. While plastic is undeniably useful and convenient, its environmental fate and transport have raised growing concerns about waste and pollution. However, the ease and low cost of producing virgin plastic have so far made conventional plastic recycling economically unattractive. Common contaminants in plastic waste and shortcomings of the recycling processes themselves typically mean that recycled plastic products are of relatively low quality in some cases. The high cost and high energy requirements of typical recycling operations also reduce their economic benefits. In recent years, the bio-upcycling of chemically treated plastic waste has emerged as a promising alternative to conventional plastic recycling. Unlike recycling, bio-upcycling uses relatively mild process conditions to economically transform pretreated plastic waste into value-added products. In this review, we first provide a précis of the general methodology and limits of conventional plastic recycling. Then, we review recent advances in hybrid chemical/biological upcycling methods for different plastics, including polyethylene terephthalate, polyurethane, polyamide, polycarbonate, polyethylene, polypropylene, polystyrene, and polyvinyl chloride. For each kind of plastic, we summarize both the pretreatment methods for making the plastic bio-available and the microbial chassis for degrading or converting the treated plastic waste to value-added products. We also discuss both the limitations of upcycling processes for major plastics and their potential for bio-upcycling.
Collapse
Affiliation(s)
- Yifeng Hu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Yuxin Tian
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Chenghao Zou
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States; Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States.
| |
Collapse
|
20
|
Balola A, Ferreira S, Rocha I. From plastic waste to bioprocesses: Using ethylene glycol from polyethylene terephthalate biodegradation to fuel Escherichia coli metabolism and produce value-added compounds. Metab Eng Commun 2024; 19:e00254. [PMID: 39720189 PMCID: PMC11667706 DOI: 10.1016/j.mec.2024.e00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Polyethylene Terephthalate (PET) is a petroleum-based plastic polymer that, by design, can last decades, if not hundreds of years, when released into the environment through plastic waste leakage. In the pursuit of sustainable solutions to plastic waste recycling and repurposing, the enzymatic depolymerization of PET has emerged as a promising green alternative. However, the metabolic potential of the resulting PET breakdown molecules, such as the two-carbon (C2) molecule ethylene glycol (EG), remains largely untapped. Here, we review and discuss the current state of research regarding existing natural and synthetic microbial pathways that enable the assimilation of EG as a carbon and energy source for Escherichia coli. Leveraging the metabolic versatility of E. coli, we explore the viability of this widely used industrial strain in harnessing EG as feedstock for the synthesis of target value-added compounds via metabolic and protein engineering strategies. Consequently, we assess the potential of EG as a versatile alternative to conventional carbon sources like glucose, facilitating the closure of the loop between the highly available PET waste and the production of valuable biochemicals. This review explores the interplay between PET biodegradation and EG metabolism, as well as the key challenges and opportunities, while offering perspectives and suggestions for propelling advancements in microbial EG assimilation for circular economy applications.
Collapse
Affiliation(s)
- Alexandra Balola
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Sofia Ferreira
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Isabel Rocha
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
21
|
Rezaei Z, Dinani AS, Moghimi H. Cutting-edge developments in plastic biodegradation and upcycling via engineering approaches. Metab Eng Commun 2024; 19:e00256. [PMID: 39687771 PMCID: PMC11647663 DOI: 10.1016/j.mec.2024.e00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The increasing use of plastics has resulted in the production of high quantities of plastic waste that pose a serious risk to the environment. The upcycling of plastics into value-added products offers a potential solution for resolving the plastics environmental crisis. Recently, various microorganisms and their enzymes have been identified for their ability to degrade plastics effectively. Furthermore, many investigations have revealed the application of plastic monomers as carbon sources for bio-upcycling to generate valuable materials such as biosurfactants, bioplastics, and biochemicals. With the advancement in the fields of synthetic biology and metabolic engineering, the construction of high-performance microbes and enzymes for plastic removal and bio-upcycling can be achieved. Plastic valorization can be optimized by improving uptake and conversion efficiency, engineering transporters and enzymes, metabolic pathway reconstruction, and also using a chemo-biological hybrid approach. This review focuses on engineering approaches for enhancing plastic removal and the methods of depolymerization and upcycling processes of various microplastics. Additionally, the major challenges and future perspectives for facilitating the development of a sustainable circular plastic economy are highlighted.
Collapse
Affiliation(s)
- Zeinab Rezaei
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Soleimani Dinani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
22
|
Shimizu T, Suzuki K, Inui M. A mycofactocin-associated dehydrogenase is essential for ethylene glycol metabolism by Rhodococcus jostii RHA1. Appl Microbiol Biotechnol 2024; 108:58. [PMID: 38175243 DOI: 10.1007/s00253-023-12966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Ethylene glycol is an industrially important diol in many manufacturing processes and a building block of polymers, such as poly(ethylene terephthalate). In this study, we found that a mycolic acid-containing bacterium Rhodococcus jostii RHA1 can grow with ethylene glycol as a sole source of carbon and energy. Deletion of a putative glycolate dehydrogenase gene (RHA1_ro03227) abolished growth with ethylene glycol, indicating that ethylene glycol is assimilated via glycolate in R. jostii RHA1. Transcriptome sequencing and gene deletion analyses revealed that a gene homologous to mycofactocin (MFT)-associated dehydrogenase (RHA1_ro06057), hereafter referred to as EgaA, is essential for ethylene glycol assimilation. Furthermore, egaA deletion also negatively affected the utilization of ethanol, 1-propanol, propylene glycol, and 1-butanol, suggesting that EgaA is involved in the utilization of various alcohols in R. jostii RHA1. Deletion of MFT biosynthetic genes abolished growth with ethylene glycol, indicating that MFT is the physiological electron acceptor of EgaA. Further genetic studies revealed that a putative aldehyde dehydrogenase (RHA1_ro06081) is a major aldehyde dehydrogenase in ethylene glycol metabolism by R. jostii RHA1. KEY POINTS: • Rhodococcus jostii RHA1 can assimilate ethylene glycol via glycolate • A mycofactocin-associated dehydrogenase is involved in the oxidation of ethylene glycol • An aldehyde dehydrogenase gene is important for the ethylene glycol assimilation.
Collapse
Affiliation(s)
- Tetsu Shimizu
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa-Shi, Kyoto, 619-0292, Japan
| | - Kai Suzuki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, 630-0192, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa-Shi, Kyoto, 619-0292, Japan.
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, 630-0192, Japan.
| |
Collapse
|
23
|
Gates EG, Crook N. The biochemical mechanisms of plastic biodegradation. FEMS Microbiol Rev 2024; 48:fuae027. [PMID: 39500541 PMCID: PMC11644497 DOI: 10.1093/femsre/fuae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/23/2024] [Accepted: 11/02/2024] [Indexed: 12/15/2024] Open
Abstract
Since the invention of the first synthetic plastic, an estimated 12 billion metric tons of plastics have been manufactured, 70% of which was produced in the last 20 years. Plastic waste is placing new selective pressures on humans and the organisms we depend on, yet it also places new pressures on microorganisms as they compete to exploit this new and growing source of carbon. The limited efficacy of traditional recycling methods on plastic waste, which can leach into the environment at low purity and concentration, indicates the utility of this evolving metabolic activity. This review will categorize and discuss the probable metabolic routes for each industrially relevant plastic, rank the most effective biodegraders for each plastic by harmonizing and reinterpreting prior literature, and explain the experimental techniques most often used in plastic biodegradation research, thus providing a comprehensive resource for researchers investigating and engineering plastic biodegradation.
Collapse
Affiliation(s)
- Ethan G Gates
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, United States
| | - Nathan Crook
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, United States
| |
Collapse
|
24
|
Hernández-Sancho JM, Boudigou A, Alván-Vargas MVG, Freund D, Arnling Bååth J, Westh P, Jensen K, Noda-García L, Volke DC, Nikel PI. A versatile microbial platform as a tunable whole-cell chemical sensor. Nat Commun 2024; 15:8316. [PMID: 39333077 PMCID: PMC11436707 DOI: 10.1038/s41467-024-52755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Biosensors are used to detect and quantify chemicals produced in industrial microbiology with high specificity, sensitivity, and portability. Most biosensors, however, are limited by the need for transcription factors engineered to recognize specific molecules. In this study, we overcome the limitations typically associated with traditional biosensors by engineering Pseudomonas putida for whole-cell sensing of a variety of chemicals. Our approach integrates fluorescent reporters with synthetic auxotrophies within central metabolism that can be complemented by target analytes in growth-coupled setups. This platform enables the detection of a wide array of structurally diverse chemicals under various conditions, including co-cultures of producer cell factories and sensor strains. We also demonstrate the applicability of this versatile biosensor platform for monitoring complex biochemical processes, including plastic degradation by either purified hydrolytic enzymes or engineered bacteria. This microbial system provides a rapid, sensitive, and readily adaptable tool for monitoring cell factory performance and for environmental analyzes.
Collapse
Affiliation(s)
- Javier M Hernández-Sancho
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Arnaud Boudigou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maria V G Alván-Vargas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dekel Freund
- Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Jenny Arnling Bååth
- Department of Biotechnology and Biomedicine Interfacial Enzymology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine Interfacial Enzymology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Lianet Noda-García
- Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
25
|
Chi J, Wang P, Ma Y, Zhu X, Zhu L, Chen M, Bi C, Zhang X. Engineering Escherichia coli for utilization of PET degraded ethylene glycol as sole feedstock. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:121. [PMID: 39272202 PMCID: PMC11401383 DOI: 10.1186/s13068-024-02568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
From both economic and environmental perspectives, ethylene glycol, the principal constituent in the degradation of PET, emerges as an optimal feedstock for microbial cell factories. Traditional methods for constructing Escherichia coli chassis cells capable of utilizing ethylene glycol as a non-sugar feedstock typically involve overexpressing the genes fucO and aldA. However, these approaches have not succeeded in enabling the exclusive use of ethylene glycol as the sole source of carbon and energy for growth. Through ultraviolet radiation-induced mutagenesis and subsequent laboratory adaptive evolution, an EG02 strain emerged from E. coli MG1655 capable of utilizing ethylene glycol as its sole carbon and energy source, demonstrating an uptake rate of 8.1 ± 1.3 mmol/gDW h. Comparative transcriptome analysis guided reverse metabolic engineering, successfully enabling four wild-type E. coli strains to metabolize ethylene glycol exclusively. This was achieved through overexpression of the gcl, hyi, glxR, and glxK genes. Notably, the engineered E. coli chassis cells efficiently metabolized the 87 mM ethylene glycol found in PET enzymatic degradation products following 72 h of fermentation. This work presents a practical solution for recycling ethylene glycol from PET waste degradation products, demonstrating that simply adding M9 salts can effectively convert them into viable raw materials for E. coli cell factories. Our findings also emphasize the significant roles of genes associated with the glycolate and glyoxylate degradation I pathway in the metabolic utilization of ethylene glycol, an aspect frequently overlooked in previous research.
Collapse
Affiliation(s)
- Junxi Chi
- College of Biological Engineering, Dalian Polytechnic University, Dalian, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Pengju Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yidan Ma
- College of Biological Engineering, Dalian Polytechnic University, Dalian, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xingmiao Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Leilei Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ming Chen
- College of Biological Engineering, Dalian Polytechnic University, Dalian, China.
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
26
|
Yan W, Qi X, Cao Z, Yao M, Ding M, Yuan Y. Biotransformation of ethylene glycol by engineered Escherichia coli. Synth Syst Biotechnol 2024; 9:531-539. [PMID: 38645974 PMCID: PMC11031724 DOI: 10.1016/j.synbio.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
There has been extensive research on the biological recycling of PET waste to address the issue of plastic waste pollution, with ethylene glycol (EG) being one of the main components recovered from this process. Therefore, finding ways to convert PET monomer EG into high-value products is crucial for effective PET waste recycling. In this study, we successfully engineered Escherichia coli to utilize EG and produce glycolic acid (GA), expecting to facilitate the biological recycling of PET waste. The engineered E. coli, able to utilize 10 g/L EG to produce 1.38 g/L GA within 96 h, was initially constructed. Subsequently, strategies based on overexpression of key enzymes and knock-out of the competing pathways are employed to enhance EG utilization along with GA biosynthesis. An engineered E. coli, characterized by the highest GA production titer and substrate conversion rate, was obtained. The GA titer increased to 5.1 g/L with a yield of 0.75 g/g EG, which is the highest level in the shake flake experiments. Transcriptional level analysis and metabolomic analysis were then conducted, revealing that overexpression of key enzymes and knock-out of the competing pathways improved the metabolic flow in the EG utilization. The improved metabolic flow also leads to accelerated synthesis and metabolism of amino acids.
Collapse
Affiliation(s)
- Wenlong Yan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Xinhua Qi
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Zhibei Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Mingdong Yao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Mingzhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
27
|
Peoples LM, Isanta-Navarro J, Bras B, Hand BK, Rosenzweig F, Elser JJ, Church MJ. Physiology, fast and slow: bacterial response to variable resource stoichiometry and dilution rate. mSystems 2024; 9:e0077024. [PMID: 38980051 PMCID: PMC11334502 DOI: 10.1128/msystems.00770-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Microorganisms grow despite imbalances in the availability of nutrients and energy. The biochemical and elemental adjustments that bacteria employ to sustain growth when these resources are suboptimal are not well understood. We assessed how Pseudomonas putida KT2440 adjusts its physiology at differing dilution rates (to approximate growth rates) in response to carbon (C), nitrogen (N), and phosphorus (P) stress using chemostats. Cellular elemental and biomolecular pools were variable in response to different limiting resources at a slow dilution rate of 0.12 h-1, but these pools were more similar across treatments at a faster rate of 0.48 h-1. At slow dilution rates, limitation by P and C appeared to alter cell growth efficiencies as reflected by changes in cellular C quotas and rates of oxygen consumption, both of which were highest under P- and lowest under C- stress. Underlying these phenotypic changes was differential gene expression of terminal oxidases used for ATP generation that allows for increased energy generation efficiency. In all treatments under fast dilution rates, KT2440 formed aggregates and biofilms, a physiological response that hindered an accurate assessment of growth rate, but which could serve as a mechanism that allows cells to remain in conditions where growth is favorable. Our findings highlight the ways that microorganisms dynamically adjust their physiology under different resource supply conditions, with distinct mechanisms depending on the limiting resource at slow growth and convergence toward an aggregative phenotype with similar compositions under conditions that attempt to force fast growth. IMPORTANCE All organisms experience suboptimal growth conditions due to low nutrient and energy availability. Their ability to survive and reproduce under such conditions determines their evolutionary fitness. By imposing suboptimal resource ratios under different dilution rates on the model organism Pseudomonas putida KT2440, we show that this bacterium dynamically adjusts its elemental composition, morphology, pools of biomolecules, and levels of gene expression. By examining the ability of bacteria to respond to C:N:P imbalance, we can begin to understand how stoichiometric flexibility manifests at the cellular level and impacts the flow of energy and elements through ecosystems.
Collapse
Affiliation(s)
- Logan M. Peoples
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Jana Isanta-Navarro
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Benedicta Bras
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Brian K. Hand
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Frank Rosenzweig
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - James J. Elser
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Matthew J. Church
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| |
Collapse
|
28
|
Roccor R, Wolf ME, Liu J, Eltis LD. The catabolism of ethylene glycol by Rhodococcus jostii RHA1 and its dependence on mycofactocin. Appl Environ Microbiol 2024; 90:e0041624. [PMID: 38837369 PMCID: PMC11267921 DOI: 10.1128/aem.00416-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
Ethylene glycol (EG) is a widely used industrial chemical with manifold applications and also generated in the degradation of plastics such as polyethylene terephthalate. Rhodococcus jostii RHA1 (RHA1), a potential biocatalytic chassis, grows on EG. Transcriptomic analyses revealed four clusters of genes potentially involved in EG catabolism: the mad locus, predicted to encode mycofactocin-dependent alcohol degradation, including the catabolism of EG to glycolate; two GCL clusters, predicted to encode glycolate and glyoxylate catabolism; and the mft genes, predicted to specify mycofactocin biosynthesis. Bioinformatic analyses further revealed that the mad and mft genes are widely distributed in mycolic acid-producing bacteria such as RHA1. Neither ΔmadA nor ΔmftC RHA1 mutant strains grew on EG but grew on acetate. In resting cell assays, the ΔmadA mutant depleted glycolaldehyde but not EG from culture media. These results indicate that madA encodes a mycofactocin-dependent alcohol dehydrogenase that initiates EG catabolism. In contrast to some mycobacterial strains, the mad genes did not appear to enable RHA1 to grow on methanol as sole substrate. Finally, a strain of RHA1 adapted to grow ~3× faster on EG contained an overexpressed gene, aldA2, predicted to encode an aldehyde dehydrogenase. When incubated with EG, this strain accumulated lower concentrations of glycolaldehyde than RHA1. Moreover, ecotopically expressed aldA2 increased RHA1's tolerance for EG further suggesting that glycolaldehyde accumulation limits growth of RHA1 on EG. Overall, this study provides insights into the bacterial catabolism of small alcohols and aldehydes and facilitates the engineering of Rhodococcus for the upgrading of plastic waste streams.IMPORTANCEEthylene glycol (EG), a two-carbon (C2) alcohol, is produced in high volumes for use in a wide variety of applications. There is burgeoning interest in understanding and engineering the bacterial catabolism of EG, in part to establish circular economic routes for its use. This study identifies an EG catabolic pathway in Rhodococcus, a genus of bacteria well suited for biocatalysis. This pathway is responsible for the catabolism of methanol, a C1 feedstock, in related bacteria. Finally, we describe strategies to increase the rate of degradation of EG by increasing the transformation of glycolaldehyde, a toxic metabolic intermediate. This work advances the development of biocatalytic strategies to transform C2 feedstocks.
Collapse
Affiliation(s)
- Raphael Roccor
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan E. Wolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay D. Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Shimizu T, Inui M. Novel aspects of ethylene glycol catabolism. Appl Microbiol Biotechnol 2024; 108:369. [PMID: 38861200 PMCID: PMC11166783 DOI: 10.1007/s00253-024-13179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
Ethylene glycol (EG) is an industrially important two-carbon diol used as a solvent, antifreeze agent, and building block of polymers such as poly(ethylene terephthalate) (PET). Recently, the use of EG as a starting material for the production of bio-fuels or bio-chemicals is gaining attention as a sustainable process since EG can be derived from materials not competing with human food stocks including CO2, syngas, lignocellulolytic biomass, and PET waste. In order to design and construct microbial process for the conversion of EG to value-added chemicals, microbes capable of catabolizing EG such as Escherichia coli, Pseudomonas putida, Rhodococcus jostii, Ideonella sakaiensis, Paracoccus denitrificans, and Acetobacterium woodii are candidates of chassis for the construction of synthetic pathways. In this mini-review, we describe EG catabolic pathways and catabolic enzymes in these microbes, and further review recent advances in microbial conversion of EG to value-added chemicals by means of metabolic engineering. KEY POINTS: • Ethylene glycol is a potential next-generation feedstock for sustainable industry. • Microbial conversion of ethylene glycol to value-added chemicals is gaining attention. • Ethylene glycol-utilizing microbes are useful as chassis for synthetic pathways.
Collapse
Affiliation(s)
- Tetsu Shimizu
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa-shi, Kyoto, 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa-shi, Kyoto, 619-0292, Japan.
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan.
| |
Collapse
|
30
|
Yang J, Li Z, Xu Q, Liu W, Gao S, Qin P, Chen Z, Wang A. Towards carbon neutrality: Sustainable recycling and upcycling strategies and mechanisms for polyethylene terephthalate via biotic/abiotic pathways. ECO-ENVIRONMENT & HEALTH 2024; 3:117-130. [PMID: 38638172 PMCID: PMC11021832 DOI: 10.1016/j.eehl.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 04/20/2024]
Abstract
Polyethylene terephthalate (PET), one of the most ubiquitous engineering plastics, presents both environmental challenges and opportunities for carbon neutrality and a circular economy. This review comprehensively addressed the latest developments in biotic and abiotic approaches for PET recycling/upcycling. Biotically, microbial depolymerization of PET, along with the biosynthesis of reclaimed monomers [terephthalic acid (TPA), ethylene glycol (EG)] to value-added products, presents an alternative for managing PET waste and enables CO2 reduction. Abiotically, thermal treatments (i.e., hydrolysis, glycolysis, methanolysis, etc.) and photo/electrocatalysis, enabled by catalysis advances, can depolymerize or convert PET/PET monomers in a more flexible, simple, fast, and controllable manner. Tandem abiotic/biotic catalysis offers great potential for PET upcycling to generate commodity chemicals and alternative materials, ideally at lower energy inputs, greenhouse gas emissions, and costs, compared to virgin polymer fabrication. Remarkably, over 25 types of upgraded PET products (e.g., adipic acid, muconic acid, catechol, vanillin, and glycolic acid, etc.) have been identified, underscoring the potential of PET upcycling in diverse applications. Efforts can be made to develop chemo-catalytic depolymerization of PET, improve microbial depolymerization of PET (e.g., hydrolysis efficiency, enzymatic activity, thermal and pH level stability, etc.), as well as identify new microorganisms or hydrolases capable of degrading PET through computational and machine learning algorithms. Consequently, this review provides a roadmap for advancing PET recycling and upcycling technologies, which hold the potential to shape the future of PET waste management and contribute to the preservation of our ecosystems.
Collapse
Affiliation(s)
- Jiaqi Yang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiongying Xu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenzong Liu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shuhong Gao
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhenglin Chen
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
31
|
Wan C, Huang S, Li M, Zhang L, Yuan Y, Zhao X, Wu C. Towards zero excess sludge discharge with built-in ozonation for wastewater biological treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171798. [PMID: 38521252 DOI: 10.1016/j.scitotenv.2024.171798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/25/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
In this study, a biological treatment process, which used a built-in ozonation bypass to achieve sludge reduction, was built to treat the industrial antifreeze production wastewater (mainly composed of ethylene glycol). The results indicated there is a positive correlation between ozone dosage and sludge reduction. At the laboratory level, the MLSS in the system can be stably controlled at around 3400 mg MLSS L-1 under the dosage of 0.18 g O3 g-1 MLSS. Ozonation can increase the compactness of sludge flocs (fractal dimension increased from 1.89 to 1.92). Ozone destroys microbial cell membranes and alters the structure of sludge flocs through direct oxidation through electrophilic reactions. It leads to the release of intracellular polysaccharides, proteins, and other biological macromolecules in microorganisms, thereby promoting the implicit growth of microbial populations. Some bacteria such as g_Pseudomonas, g_Gemmobacter, etc. have strong ethylene glycol degradation ability and tolerance to ozonation. The removal of ethylene glycol includes the glyoxylate cycle, glycine serine carbon cycle, and the glutamate-cysteine ligase pathway of assimilation. Gene KatG and gpx may be key factors in improving microbial tolerance to ozonation. The comprehensive evaluation from the perspectives of cost and carbon emission shows that choosing ozone cracking-implicit growth in wastewater treatment systems has significant cost advantages and application value.
Collapse
Affiliation(s)
- Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| | - Shiyun Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Min Li
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lei Zhang
- School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yue Yuan
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaomeng Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Changyong Wu
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
32
|
Manoli MT, Gargantilla-Becerra Á, Del Cerro Sánchez C, Rivero-Buceta V, Prieto MA, Nogales J. A model-driven approach to upcycling recalcitrant feedstocks in Pseudomonas putida by decoupling PHA production from nutrient limitation. Cell Rep 2024; 43:113979. [PMID: 38517887 DOI: 10.1016/j.celrep.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/29/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
Bacterial polyhydroxyalkanoates (PHAs) have emerged as promising eco-friendly alternatives to petroleum-based plastics since they are synthesized from renewable resources and offer exceptional properties. However, their production is limited to the stationary growth phase under nutrient-limited conditions, requiring customized strategies and costly two-phase bioprocesses. In this study, we tackle these challenges by employing a model-driven approach to reroute carbon flux and remove regulatory constraints using synthetic biology. We construct a collection of Pseudomonas putida-overproducing strains at the expense of plastics and lignin-related compounds using growth-coupling approaches. PHA production was successfully achieved during growth phase, resulting in the production of up to 46% PHA/cell dry weight while maintaining a balanced carbon-to-nitrogen ratio. Our strains are additionally validated under an upcycling scenario using enzymatically hydrolyzed polyethylene terephthalate as a feedstock. These findings have the potential to revolutionize PHA production and address the global plastic crisis by overcoming the complexities of traditional PHA production bioprocesses.
Collapse
Affiliation(s)
- Maria-Tsampika Manoli
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Álvaro Gargantilla-Becerra
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain; 3Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| | - Carlos Del Cerro Sánchez
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Virginia Rivero-Buceta
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - M Auxiliadora Prieto
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| | - Juan Nogales
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain; 3Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain; CNB DNA Biofoundry (CNBio), CSIC, Madrid, Spain.
| |
Collapse
|
33
|
Weiland F, Kohlstedt M, Wittmann C. Biobased de novo synthesis, upcycling, and recycling - the heartbeat toward a green and sustainable polyethylene terephthalate industry. Curr Opin Biotechnol 2024; 86:103079. [PMID: 38422776 DOI: 10.1016/j.copbio.2024.103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Polyethylene terephthalate (PET) has revolutionized the industrial sector because of its versatility, with its predominant uses in the textiles and packaging materials industries. Despite the various advantages of this polymer, its synthesis is, unfavorably, tightly intertwined with nonrenewable fossil resources. Additionally, given its widespread use, accumulating PET waste poses a significant environmental challenge. As a result, current research in the areas of biological recycling, upcycling, and de novo synthesis is intensifying. Biological recycling involves the use of micro-organisms or enzymes to breakdown PET into monomers, offering a sustainable alternative to traditional recycling. Upcycling transforms PET waste into value-added products, expanding its potential application range and promoting a circular economy. Moreover, studies of cascading biological and chemical processes driven by microbial cell factories have explored generating PET using renewable, biobased feedstocks such as lignin. These avenues of research promise to mitigate the environmental footprint of PET, underlining the importance of sustainable innovations in the industry.
Collapse
Affiliation(s)
- Fabia Weiland
- Institute of Systems Biotechnology, Saarland University, Germany
| | | | | |
Collapse
|
34
|
Ackermann YS, de Witt J, Mezzina MP, Schroth C, Polen T, Nikel PI, Wynands B, Wierckx N. Bio-upcycling of even and uneven medium-chain-length diols and dicarboxylates to polyhydroxyalkanoates using engineered Pseudomonas putida. Microb Cell Fact 2024; 23:54. [PMID: 38365718 PMCID: PMC10870600 DOI: 10.1186/s12934-024-02310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Bio-upcycling of plastics is an emerging alternative process that focuses on extracting value from a wide range of plastic waste streams. Such streams are typically too contaminated to be effectively processed using traditional recycling technologies. Medium-chain-length (mcl) diols and dicarboxylates (DCA) are major products of chemically or enzymatically depolymerized plastics, such as polyesters or polyethers. In this study, we enabled the efficient metabolism of mcl-diols and -DCA in engineered Pseudomonas putida as a prerequisite for subsequent bio-upcycling. We identified the transcriptional regulator GcdR as target for enabling metabolism of uneven mcl-DCA such as pimelate, and uncovered amino acid substitutions that lead to an increased coupling between the heterologous β-oxidation of mcl-DCA and the native degradation of short-chain-length DCA. Adaptive laboratory evolution and subsequent reverse engineering unravelled two distinct pathways for mcl-diol metabolism in P. putida, namely via the hydroxy acid and subsequent native β-oxidation or via full oxidation to the dicarboxylic acid that is further metabolized by heterologous β-oxidation. Furthermore, we demonstrated the production of polyhydroxyalkanoates from mcl-diols and -DCA by a single strain combining all required metabolic features. Overall, this study provides a powerful platform strain for the bio-upcycling of complex plastic hydrolysates to polyhydroxyalkanoates and leads the path for future yield optimizations.
Collapse
Affiliation(s)
- Yannic S Ackermann
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Jan de Witt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Mariela P Mezzina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christoph Schroth
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
35
|
Amalia L, Chang CY, Wang SSS, Yeh YC, Tsai SL. Recent advances in the biological depolymerization and upcycling of polyethylene terephthalate. Curr Opin Biotechnol 2024; 85:103053. [PMID: 38128200 DOI: 10.1016/j.copbio.2023.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Polyethylene terephthalate (PET) is favored for its exceptional properties and widespread daily use. This review highlights recent advancements that enable the development of biological tools for PET decomposition, transforming PET into valuable platform chemicals and materials in upcycling processes. Enhancing PET hydrolases' catalytic activity and efficiency through protein engineering strategies is a priority, facilitating more effective PET waste management. Efforts to create novel PET hydrolases for large-scale PET depolymerization continue, but cost-effectiveness remains challenging. Hydrolyzed monomers must add additional value to make PET recycling economically attractive. Valorization of hydrolysis products through the upcycling process is expected to produce new compounds with different values and qualities from the initial polymer, making the decomposed monomers more appealing. Advances in synthetic biology and enzyme engineering hold promise for PET upcycling. While biological depolymerization offers environmental benefits, further research is needed to make PET upcycling sustainable and economically feasible.
Collapse
Affiliation(s)
- Lita Amalia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chia-Yu Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
36
|
Senatore VG, Milanesi R, Masotti F, Maestroni L, Pagliari S, Cannavacciuolo C, Campone L, Serra I, Branduardi P. Exploring yeast biodiversity and process conditions for optimizing ethylene glycol conversion into glycolic acid. FEMS Yeast Res 2024; 24:foae024. [PMID: 39104224 PMCID: PMC11344169 DOI: 10.1093/femsyr/foae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
Plastics have become an indispensable material in many fields of human activities, with production increasing every year; however, most of the plastic waste is still incinerated or landfilled, and only 10% of the new plastic is recycled even once. Among all plastics, polyethylene terephthalate (PET) is the most produced polyester worldwide; ethylene glycol (EG) is one of the two monomers released by the biorecycling of PET. While most research focuses on bacterial EG metabolism, this work reports the ability of Saccharomyces cerevisiae and nine other common laboratory yeast species not only to consume EG, but also to produce glycolic acid (GA) as the main by-product. A two-step bioconversion of EG to GA by S. cerevisiae was optimized by a design of experiment approach, obtaining 4.51 ± 0.12 g l-1 of GA with a conversion of 94.25 ± 1.74% from 6.21 ± 0.04 g l-1 EG. To improve the titer, screening of yeast biodiversity identified Scheffersomyces stipitis as the best GA producer, obtaining 23.79 ± 1.19 g l-1 of GA (yield 76.68%) in bioreactor fermentation, with a single-step bioprocess. Our findings contribute in laying the ground for EG upcycling strategies with yeasts.
Collapse
Affiliation(s)
- Vittorio Giorgio Senatore
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Riccardo Milanesi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Fiorella Masotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Letizia Maestroni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Stefania Pagliari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Ciro Cannavacciuolo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Immacolata Serra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
37
|
Liu P, Zheng Y, Yuan Y, Han Y, Su T, Qi Q. Upcycling of PET oligomers from chemical recycling processes to PHA by microbial co-cultivation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 172:51-59. [PMID: 37714010 DOI: 10.1016/j.wasman.2023.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Polyethylene terephthalate (PET) is the most widely consumed polyester plastic and can be recycled by many chemical processes, of which glycolysis is most cost-effective and commercially viable. However, PET glycolysis produces oligomers due to incomplete depolymerization, which are undesirable by-products and require proper disposal. In this study, the PET oligomers from chemical recycling processes were completely bio-depolymerized into monomers and then used for the biosynthesis of biodegradable plastics polyhydroxyalkanoates (PHA) by co-cultivation of two engineered microorganisms Escherichia coli BL21 (DE3)-LCCICCG and Pseudomonas putida KT2440-ΔRDt-ΔZP46C-M. E. coli BL21 (DE3)-LCCICCG was used to secrete the PET hydrolase LCCICCG into the medium to directly depolymerize PET oligomers. P. putida KT2440-ΔRDt-ΔZP46C-M that mastered the metabolism of aromatic compounds was engineered to accelerate the hydrolysis of intermediate products mono-2-(hydroxyethyl) terephthalate (MHET) by expressing IsMHETase, and biosynthesize PHA using ultimate products terephthalate and ethylene glycol depolymerized from the PET oligomers. The population ratios of the two microorganisms during the co-cultivation were characterized by fluorescent reporter system, and revealed the collaboration of the two microorganisms to bio-depolymerize and bioconversion of PET oligomers in a single process. This study provides a biological strategy for the upcycling of PET oligomers and promotes the plastic circular economy.
Collapse
Affiliation(s)
- Pan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yi Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yingbo Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuanfei Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
38
|
Wagner N, Wen L, Frazão CJR, Walther T. Next-generation feedstocks methanol and ethylene glycol and their potential in industrial biotechnology. Biotechnol Adv 2023; 69:108276. [PMID: 37918546 DOI: 10.1016/j.biotechadv.2023.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Microbial fermentation processes are expected to play an important role in reducing dependence on fossil-based raw materials for the production of everyday chemicals. In order to meet the growing demand for biotechnological products in the future, alternative carbon sources that do not compete with human nutrition must be exploited. The chemical conversion of the industrially emitted greenhouse gas CO2 into microbially utilizable platform chemicals such as methanol represents a sustainable strategy for the utilization of an abundant carbon source and has attracted enormous scientific interest in recent years. A relatively new approach is the microbial synthesis of products from the C2-compound ethylene glycol, which can also be synthesized from CO2 and non-edible biomass and, in addition, can be recovered from plastic waste. Here we summarize the main chemical routes for the synthesis of methanol and ethylene glycol from sustainable resources and give an overview of recent metabolic engineering work for establishing natural and synthetic microbial assimilation pathways. The different metabolic routes for C1 and C2 alcohol-dependent bioconversions were compared in terms of their theoretical maximum yields and their oxygen requirements for a wide range of value-added products. Assessment of the process engineering challenges for methanol and ethylene glycol-based fermentations underscores the theoretical advantages of new synthetic metabolic routes and advocates greater consideration of ethylene glycol, a C2 substrate that has received comparatively little attention to date.
Collapse
Affiliation(s)
- Nils Wagner
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Linxuan Wen
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Cláudio J R Frazão
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Thomas Walther
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany.
| |
Collapse
|
39
|
Cywar RM, Ling C, Clarke RW, Kim DH, Kneucker CM, Salvachúa D, Addison B, Hesse SA, Takacs CJ, Xu S, Demirtas MU, Woodworth SP, Rorrer NA, Johnson CW, Tassone CJ, Allen RD, Chen EYX, Beckham GT. Elastomeric vitrimers from designer polyhydroxyalkanoates with recyclability and biodegradability. SCIENCE ADVANCES 2023; 9:eadi1735. [PMID: 37992173 PMCID: PMC10664982 DOI: 10.1126/sciadv.adi1735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Cross-linked elastomers are stretchable materials that typically are not recyclable or biodegradable. Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are soft and ductile, making these bio-based polymers good candidates for biodegradable elastomers. Elasticity is commonly imparted by a cross-linked network structure, and covalent adaptable networks have emerged as a solution to prepare recyclable thermosets via triggered rearrangement of dynamic covalent bonds. Here, we develop biodegradable and recyclable elastomers by chemically installing the covalent adaptable network within biologically produced mcl-PHAs. Specifically, an engineered strain of Pseudomonas putida was used to produce mcl-PHAs containing pendent terminal alkenes as chemical handles for postfunctionalization. Thiol-ene chemistry was used to incorporate boronic ester (BE) cross-links, resulting in PHA-based vitrimers. mcl-PHAs cross-linked with BE at low density (<6 mole %) affords a soft, elastomeric material that demonstrates thermal reprocessability, biodegradability, and denetworking at end of life. The mechanical properties show potential for applications including adhesives and soft, biodegradable robotics and electronics.
Collapse
Affiliation(s)
- Robin M. Cywar
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Chen Ling
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Ryan W. Clarke
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Dong Hyun Kim
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Colin M. Kneucker
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Bennett Addison
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Sarah A. Hesse
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher J. Takacs
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Shu Xu
- Applied Materials Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Northwestern Argonne Institute of Science and Engineering, 2205 Tech Drive, Suite 1160, Evanston, IL 60208, USA
| | | | - Sean P. Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Nicholas A. Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Christopher W. Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Christopher J. Tassone
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Robert D. Allen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Eugene Y.-X. Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| |
Collapse
|
40
|
Aminian-Dehkordi J, Rahimi S, Golzar-Ahmadi M, Singh A, Lopez J, Ledesma-Amaro R, Mijakovic I. Synthetic biology tools for environmental protection. Biotechnol Adv 2023; 68:108239. [PMID: 37619824 DOI: 10.1016/j.biotechadv.2023.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Synthetic biology transforms the way we perceive biological systems. Emerging technologies in this field affect many disciplines of science and engineering. Traditionally, synthetic biology approaches were commonly aimed at developing cost-effective microbial cell factories to produce chemicals from renewable sources. Based on this, the immediate beneficial impact of synthetic biology on the environment came from reducing our oil dependency. However, synthetic biology is starting to play a more direct role in environmental protection. Toxic chemicals released by industries and agriculture endanger the environment, disrupting ecosystem balance and biodiversity loss. This review highlights synthetic biology approaches that can help environmental protection by providing remediation systems capable of sensing and responding to specific pollutants. Remediation strategies based on genetically engineered microbes and plants are discussed. Further, an overview of computational approaches that facilitate the design and application of synthetic biology tools in environmental protection is presented.
Collapse
Affiliation(s)
| | - Shadi Rahimi
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Mehdi Golzar-Ahmadi
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
| | - Amritpal Singh
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | - Javiera Lopez
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | | | - Ivan Mijakovic
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
41
|
Lee GH, Kim DW, Jin YH, Kim SM, Lim ES, Cha MJ, Ko JK, Gong G, Lee SM, Um Y, Han SO, Ahn JH. Biotechnological Plastic Degradation and Valorization Using Systems Metabolic Engineering. Int J Mol Sci 2023; 24:15181. [PMID: 37894861 PMCID: PMC10607142 DOI: 10.3390/ijms242015181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Various kinds of plastics have been developed over the past century, vastly improving the quality of life. However, the indiscriminate production and irresponsible management of plastics have led to the accumulation of plastic waste, emerging as a pressing environmental concern. To establish a clean and sustainable plastic economy, plastic recycling becomes imperative to mitigate resource depletion and replace non-eco-friendly processes, such as incineration. Although chemical and mechanical recycling technologies exist, the prevalence of composite plastics in product manufacturing complicates recycling efforts. In recent years, the biodegradation of plastics using enzymes and microorganisms has been reported, opening a new possibility for biotechnological plastic degradation and bio-upcycling. This review provides an overview of microbial strains capable of degrading various plastics, highlighting key enzymes and their role. In addition, recent advances in plastic waste valorization technology based on systems metabolic engineering are explored in detail. Finally, future perspectives on systems metabolic engineering strategies to develop a circular plastic bioeconomy are discussed.
Collapse
Affiliation(s)
- Ga Hyun Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Do-Wook Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yun Hui Jin
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eui Seok Lim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Ji Cha
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
42
|
Bao T, Qian Y, Xin Y, Collins JJ, Lu T. Engineering microbial division of labor for plastic upcycling. Nat Commun 2023; 14:5712. [PMID: 37752119 PMCID: PMC10522701 DOI: 10.1038/s41467-023-40777-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
Plastic pollution is rapidly increasing worldwide, causing adverse impacts on the environment, wildlife and human health. One tempting solution to this crisis is upcycling plastics into products with engineered microorganisms; however, this remains challenging due to complexity in conversion. Here we present a synthetic microbial consortium that efficiently degrades polyethylene terephthalate hydrolysate and subsequently produces desired chemicals through division of labor. The consortium involves two Pseudomonas putida strains, specializing in terephthalic acid and ethylene glycol utilization respectively, to achieve complete substrate assimilation. Compared with its monoculture counterpart, the consortium exhibits reduced catabolic crosstalk and faster deconstruction, particularly when substrate concentrations are high or crude hydrolysate is used. It also outperforms monoculture when polyhydroxyalkanoates serves as a target product and confers flexible tuning through population modulation for cis-cis muconate synthesis. This work demonstrates engineered consortia as a promising, effective platform that may facilitate polymer upcycling and environmental sustainability.
Collapse
Affiliation(s)
- Teng Bao
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yuanchao Qian
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yongping Xin
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - James J Collins
- Department of Biological Engineering and Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Longwood, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ting Lu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, Urbana, IL, 61801, USA.
| |
Collapse
|
43
|
Trivedi VD, Sullivan SF, Choudhury D, Endalur Gopinarayanan V, Hart T, Nair NU. Integration of metabolism and regulation reveals rapid adaptability to growth on non-native substrates. Cell Chem Biol 2023; 30:1135-1143.e5. [PMID: 37421944 PMCID: PMC10529486 DOI: 10.1016/j.chembiol.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023]
Abstract
Engineering synthetic heterotrophy is a key to the efficient bio-based valorization of renewable and waste substrates. Among these, engineering hemicellulosic pentose utilization has been well-explored in Saccharomyces cerevisiae (yeast) over several decades-yet the answer to what makes their utilization inherently recalcitrant remains elusive. Through implementation of a semi-synthetic regulon, we find that harmonizing cellular and engineering objectives are a key to obtaining highest growth rates and yields with minimal metabolic engineering effort. Concurrently, results indicate that "extrinsic" factors-specifically, upstream genes that direct flux of pentoses into central carbon metabolism-are rate-limiting. We also reveal that yeast metabolism is innately highly adaptable to rapid growth on non-native substrates and that systems metabolic engineering (i.e., functional genomics, network modeling, etc.) is largely unnecessary. Overall, this work provides an alternate, novel, holistic (and yet minimalistic) approach based on integrating non-native metabolic genes with a native regulon system.
Collapse
Affiliation(s)
- Vikas D Trivedi
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, USA
| | - Sean F Sullivan
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, USA
| | - Debika Choudhury
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, USA
| | | | - Taylor Hart
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, USA
| | - Nikhil U Nair
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
44
|
Panda S, Zhou JFJ, Feigis M, Harrison E, Ma X, Fung Kin Yuen V, Mahadevan R, Zhou K. Engineering Escherichia coli to produce aromatic chemicals from ethylene glycol. Metab Eng 2023; 79:38-48. [PMID: 37392985 DOI: 10.1016/j.ymben.2023.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Microbial overproduction of aromatic chemicals has gained considerable industrial interest and various metabolic engineering approaches have been employed in recent years to address the associated challenges. So far, most studies have used sugars (mostly glucose) or glycerol as the primary carbon source. In this study, we used ethylene glycol (EG) as the main carbon substrate. EG could be obtained from the degradation of plastic and cellulosic wastes. As a proof of concept, Escherichia coli was engineered to transform EG into L-tyrosine, a valuable aromatic amino acid. Under the best fermentation condition, the strain produced 2 g/L L-tyrosine from 10 g/L EG, outperforming glucose (the most common sugar feedstock) in the same experimental conditions. To prove the concept that EG can be converted into different aromatic chemicals, E. coli was further engineered with a similar approach to synthesize other valuable aromatic chemicals, L-phenylalanine and p-coumaric acid. Finally, waste polyethylene terephthalate (PET) bottles were degraded using acid hydrolysis and the resulting monomer EG was transformed into L-tyrosine using the engineered E. coli, yielding a comparable titer to that obtained using commercial EG. The strains developed in this study should be valuable to the community for producing valuable aromatics from EG.
Collapse
Affiliation(s)
- Smaranika Panda
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Jie Fu J Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Michelle Feigis
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Emma Harrison
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Xiaoqiang Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Vincent Fung Kin Yuen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | | | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore; Cluster of Food, Chemical and Biotechnology, Singapore Institute of Technology, Singapore.
| |
Collapse
|
45
|
Qian X, Xin K, Zhang L, Zhou J, Xu A, Dong W, Jiang M. Integration of ARTP Mutation and Adaptive Laboratory Evolution to Reveal 1,4-Butanediol Degradation in Pseudomonas putida KT2440. Microbiol Spectr 2023; 11:e0498822. [PMID: 37067433 PMCID: PMC10269461 DOI: 10.1128/spectrum.04988-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Biotransformation of plastics or their depolymerization monomers as raw materials would offer a better end-of-life solutions to the plastic waste dilemma. 1,4-butanediol (BDO) is one of the major depolymerization monomers of many plastics polymers. BDO valorization presents great significance for waste plastic up-recycling and fermenting feedstock exploitation. In the present study, atmospheric pressure room temperature plasma (ARTP)-induced mutation combined with adaptive laboratory evolution (ALE) was used to improve the BDO utilization capability of Pseudomonas putida KT2440. The excellent mutant P. putida NB10 was isolated and stored in the China Typical Culture Preservation Center (CCTCC) with the deposit number M 2021482. Whole-genome resequencing and transcriptome analysis revealed that the BDO degradation process consists of β-oxidation, glyoxylate carboligase (GCL) pathway, glyoxylate cycle and gluconeogenesis pathway. The imbalance between the two key intermediates (acetyl-CoA and glycolyl-CoA) and the accumulation of cytotoxic aldehydes resulted in the weak metabolism performance of KT2440 in the utilization of BDO. The balance of the carbon flux and enhanced tolerance to cytotoxic intermediates endow NB10 with great BDO degradation capability. This study deeply revealed the metabolic mechanism behind BDO degradation and provided an excellent chassis cell for BDO further up-cycling to high-value chemicals. IMPORTANCE Plastic waste represents not only a global pollution problem but also a carbon-rich, low-cost, globally renewable feedstock for industrial biotechnology. BDO is the basic material for polybutylene terephthalate (PBT), poly butylene adipate-co-terephthalate (PBAT), poly (butylene succinate) (PBS), etc. Herein, the construction of BDO valorization cell factory presents great significance for waste plastic up-recycling and novel fermentation feedstock exploitation. However, BDO is hard to be metabolized and its metabolic pathway is unclear. This study presents a P. putida mutant NB10, obtained through the integration of ARTP and ALE, displaying significant growth improvement with BDO as the sole carbon source. Further genome resequencing, transcriptome analysis and genetic engineering deeply revealed the metabolic mechanism behind BDO degradation in P. putida, this study offers an excellent microbial chassis and modification strategy for plastic waste up-cycling.
Collapse
Affiliation(s)
- Xiujuan Qian
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Kaiyuan Xin
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Lili Zhang
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Jie Zhou
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Anming Xu
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Weiliang Dong
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Min Jiang
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| |
Collapse
|
46
|
Alruwaili A, Rashid GMM, Bugg TDH. Application of Rhodococcus jostii RHA1 glycolate oxidase as an efficient accessory enzyme for lignin conversion by bacterial Dyp peroxidase enzymes. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:3549-3560. [PMID: 37179958 PMCID: PMC10167727 DOI: 10.1039/d3gc00475a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Abstract
Lignin oxidation by bacterial dye-decolorizing peroxidase enzymes requires hydrogen peroxide as a co-substrate, an unstable and corrosive oxidant. We have identified a glycolate oxidase enzyme from Rhodococcus jostii RHA1 that can couple effectively at pH 6.5 with DyP peroxidase enzymes from Agrobacterium sp. or Comamonas testosteroni to oxidise lignin substrates without addition of hydrogen peroxide. Rhodococcus jostii RHA1 glycolate oxidase (RjGlOx) has activity for oxidation of a range of α-ketoaldehyde and α-hydroxyacid substrates, and is also active for oxidation of hydroxymethylfurfural (HMF) to furandicarboxylic acid. The combination of RjGlOx with Agrobacterium sp. DyP or C. testosteroni DyP generated new and enhanced amounts of low molecular weight aromatic products from organosolv lignin substrates, and was able to generate high-value products from treatment of lignin residue from cellulosic biofuel production, and from a polymeric humin substrate.
Collapse
Affiliation(s)
- Awatif Alruwaili
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Goran M M Rashid
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
47
|
Lammens EM, Feyaerts N, Kerremans A, Boon M, Lavigne R. Assessing the Orthogonality of Phage-Encoded RNA Polymerases for Tailored Synthetic Biology Applications in Pseudomonas Species. Int J Mol Sci 2023; 24:ijms24087175. [PMID: 37108338 PMCID: PMC10138996 DOI: 10.3390/ijms24087175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
The phage T7 RNA polymerase (RNAP) and lysozyme form the basis of the widely used pET expression system for recombinant expression in the biotechnology field and as a tool in microbial synthetic biology. Attempts to transfer this genetic circuitry from Escherichia coli to non-model bacterial organisms with high potential have been restricted by the cytotoxicity of the T7 RNAP in the receiving hosts. We here explore the diversity of T7-like RNAPs mined directly from Pseudomonas phages for implementation in Pseudomonas species, thus relying on the co-evolution and natural adaptation of the system towards its host. By screening and characterizing different viral transcription machinery using a vector-based system in P. putida., we identified a set of four non-toxic phage RNAPs from phages phi15, PPPL-1, Pf-10, and 67PfluR64PP, showing a broad activity range and orthogonality to each other and the T7 RNAP. In addition, we confirmed the transcription start sites of their predicted promoters and improved the stringency of the phage RNAP expression systems by introducing and optimizing phage lysozymes for RNAP inhibition. This set of viral RNAPs expands the adaption of T7-inspired circuitry towards Pseudomonas species and highlights the potential of mining tailored genetic parts and tools from phages for their non-model host.
Collapse
Affiliation(s)
- Eveline-Marie Lammens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 Box 2462, 3001 Leuven, Belgium
| | - Nathalie Feyaerts
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 Box 2462, 3001 Leuven, Belgium
| | - Alison Kerremans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 Box 2462, 3001 Leuven, Belgium
| | - Maarten Boon
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 Box 2462, 3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 Box 2462, 3001 Leuven, Belgium
| |
Collapse
|
48
|
Pellis A, Guebitz GM, Ribitsch D. Bio-upcycling of multilayer materials and blends: closing the plastics loop. Curr Opin Biotechnol 2023; 81:102938. [PMID: 37058877 DOI: 10.1016/j.copbio.2023.102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
The urge to discover and develop new technologies for closing the plastic carbon cycle is motivating industries, governments, and academia to work closely together to find suitable solutions in a timely manner. In this review article, a combination of uprising breakthrough technologies is presented highlighting their potential and complementarity to be integrated one with the other, therefore providing a potential solution to efficiently solve the plastics problem. First, modern approaches for bio-exploration and engineering of polymer-active enzymes are presented to degrade polymers into valuable building blocks. Special focus is placed on the recovery of components from multilayered materials since these complex materials can only be recycled insufficiently or not at all by existing technologies. Then, the potential of microbes and enzymes for resynthesis of polymers and reuse of building blocks is summarized and discussed. Finally, examples for improvement of the bio-based content and enzymatic degradability and future perspectives are given.
Collapse
Affiliation(s)
- Alessandro Pellis
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Georg M Guebitz
- ACIB - Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria; Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180 Vienna, Austria
| | - Doris Ribitsch
- ACIB - Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria; Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180 Vienna, Austria.
| |
Collapse
|
49
|
Frazão CJR, Wagner N, Rabe K, Walther T. Construction of a synthetic metabolic pathway for biosynthesis of 2,4-dihydroxybutyric acid from ethylene glycol. Nat Commun 2023; 14:1931. [PMID: 37024485 PMCID: PMC10079672 DOI: 10.1038/s41467-023-37558-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Ethylene glycol is an attractive two-carbon alcohol substrate for biochemical product synthesis as it can be derived from CO2 or syngas at no sacrifice to human food stocks. Here, we disclose a five-step synthetic metabolic pathway enabling the carbon-conserving biosynthesis of the versatile platform molecule 2,4-dihydroxybutyric acid (DHB) from this compound. The linear pathway chains ethylene glycol dehydrogenase, D-threose aldolase, D-threose dehydrogenase, D-threono-1,4-lactonase, D-threonate dehydratase and 2-oxo-4-hydroxybutyrate reductase enzyme activities in succession. We screen candidate enzymes with D-threose dehydrogenase and D-threonate dehydratase activities on cognate substrates with conserved carbon-centre stereochemistry. Lastly, we show the functionality of the pathway by its expression in an Escherichia coli strain and production of 1 g L-1 and 0.8 g L-1 DHB from, respectively, glycolaldehyde or ethylene glycol.
Collapse
Affiliation(s)
- Cláudio J R Frazão
- Institute of Natural Materials Technology, TU Dresden, 01062, Dresden, Germany
| | - Nils Wagner
- Institute of Natural Materials Technology, TU Dresden, 01062, Dresden, Germany
| | - Kenny Rabe
- Institute of Natural Materials Technology, TU Dresden, 01062, Dresden, Germany
| | - Thomas Walther
- Institute of Natural Materials Technology, TU Dresden, 01062, Dresden, Germany.
| |
Collapse
|
50
|
Jung H, Shin G, Kwak H, Hao LT, Jegal J, Kim HJ, Jeon H, Park J, Oh DX. Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste. CHEMOSPHERE 2023; 320:138089. [PMID: 36754297 DOI: 10.1016/j.chemosphere.2023.138089] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Human society has become increasingly reliant on plastic because it allows for convenient and sanitary living. However, recycling rates are currently low, which means that the majority of plastic waste ends up in landfills or the ocean. Increasing recycling and upcycling rates is a critical strategy for addressing the issues caused by plastic pollution, but there are several technical limitations to overcome. This article reviews advancements in polymer technology that aim to improve the efficiency of recycling and upcycling plastic waste. In food packaging, natural polymers with excellent gas barrier properties and self-cleaning abilities have been introduced as environmentally friendly alternatives to existing materials and to reduce food-derived contamination. Upcycling and valorization approaches have emerged to transform plastic waste into high-value-added products. Recent advancements in the development of recyclable high-performance plastics include the design of super engineering thermoplastics and engineering chemical bonds of thermosets to make them recyclable and biodegradable. Further research is needed to develop more cost-effective and scalable technologies to address the plastic pollution problem through sustainable recycling and upcycling.
Collapse
Affiliation(s)
- Hyuni Jung
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hojung Kwak
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Lam Tan Hao
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyo Jeong Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Jeyoung Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|