1
|
Yan M, Yu Y, Luo L, Su J, Ma J, Hu Z, Wang H. Functional disparities of malonyl-ACP decarboxylase between Xanthomonas campestris and Xanthomonas oryzae. Appl Environ Microbiol 2025; 91:e0243624. [PMID: 40197034 DOI: 10.1128/aem.02436-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Xanthomonas campestris pv. campestris (Xcc) and X. oryzae pv. oryzae (Xoo) are crucial plant pathogenic bacteria, causing crucifer black rot and rice leaf blight, respectively. Both bacterial species encode a protein containing the YiiD_C domain, designated MadB, which exhibits an 87.5% sequence identity between their MadBs. The madB genes from either Xoo or Xcc successfully restored the growth defect in Ralstonia solanacearum and Escherichia coli fabH mutants in vivo. In vitro assays demonstrated that MadB proteins possess malonyl-ACP decarboxylase activity, although Xcc MadB exhibited lower activity compared with Xoo MadB. Mutation of madB in both Xoo and Xcc strains led to decreased pathogenicity in their respective host plants. Interestingly, the Xoo madB mutant exhibited a significant increase in branched-chain fatty acid production, whereas the Xcc madB mutant showed only minor changes in fatty acid composition. Despite the reduction in exopolysaccharide (EPS) synthesis due to madB mutation in both Xoo and Xcc, EPS production in the Xoo madB mutant could be restored by exogenous sodium acetate supplementation. In contrast, sodium acetate failed to restore EPS synthesis in the Xcc madB mutant. Biochemical and genetic analyses indicated that these divergent physiological roles arise from the distinct biochemical functions of MadB in the two bacteria. In Xoo, the fatty acid synthesis (FAS) pathway mediated by MadB operates independently of the FAS pathway mediated by FabH. Conversely, in Xcc, the FAS pathway mediated by FabH is the primary route, with MadB's pathway serving a supplementary and regulatory role. Further analysis of gene organization and expression regulation of madB in both bacteria corroborates these distinctions. IMPORTANCE Despite the high conservation of the mad gene within the Proteobacteria, the physiological roles of the Mad protein remain largely unclear. Xoo and Xcc are bacteria with very close phylogenetic relationships, both encoding malonyl-ACP decarboxylase (MadB). However, MadB demonstrates substantial physiological function variations between these two species. This study demonstrates that even in closely related bacteria, homologous genes have adopted different evolutionary pathways to adapt to diverse living environments, forming unique gene expression regulation mechanisms. This has led to the biochemical functional divergence of homologous proteins within their respective species, ultimately resulting in distinct physiological functions.
Collapse
Affiliation(s)
- Mingfeng Yan
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
- Guangdong Provincial Key Laboratory for Developmental Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yonghong Yu
- Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, China
| | - Lizhen Luo
- Guangdong Provincial Key Laboratory for Developmental Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jingtong Su
- Guangdong Provincial Key Laboratory for Developmental Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jincheng Ma
- Guangdong Provincial Key Laboratory for Developmental Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhe Hu
- Guangdong Provincial Key Laboratory for Developmental Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haihong Wang
- Guangdong Provincial Key Laboratory for Developmental Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Yang X, Liang W, Lin X, Zhao M, Zhang Q, Tao Y, Huang J, Ke C. Efficient Escherichia coli Platform for Cannabinoid Precursor Olivetolic Acid Biosynthesis from Inexpensive Inputs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3611-3621. [PMID: 39893678 DOI: 10.1021/acs.jafc.4c11867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Olivetolic acid (OLA), an initial precursor of cannabinoids, is catalyzed by type III polyketide synthase, which has a wide range of pharmacological activities, such as antimicrobial and cytotoxic effects. Here, we applied systematic metabolic engineering to develop a multienzyme cascade system to produce OLA via two low-cost inputs. The polyketide synthase (OLS) and cyclase enzymes (OAC), along with the best combination of hexanoyl-CoA and malonyl-CoA synthetases (AEE3 and MatB), were first introduced into the biocatalytic system to increase the supply of hexanoyl-CoA and malonyl-CoA as starting and extender units. To drive the catalysis smoothly, an ATP regeneration system and a CoA-sufficient supply system were incorporated into the biocatalysts to provide enough cofactors. Furthermore, malonyl-CoA flux was redirected to OLA biosynthesis through delicate control of the fatty acid biosynthesis (FAB) pathway via promoter engineering. Collectively, these strategies have led us to produce OLA at a titer of 102.1 mg/L with a productivity of 25.5 mg/L/h by using malonate and hexanoate as direct substrates. Our biocatalytic system provides an effective platform for the production of the cannabinoid precursor OLA in Escherichia coli and may be a valuable reference for the development of microbial cell factories that use hexanoyl-CoA and malonyl-CoA as important intermediates.
Collapse
Affiliation(s)
- Xinwei Yang
- National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, People's Republic of China
| | - Wenhao Liang
- National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, People's Republic of China
| | - Xinyi Lin
- National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, People's Republic of China
| | - Mingyue Zhao
- National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, People's Republic of China
| | - Qinshu Zhang
- National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, People's Republic of China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Jianzhong Huang
- National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, People's Republic of China
| | - Chongrong Ke
- National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, People's Republic of China
| |
Collapse
|
3
|
Ma JR, Lin JY, Zhang YY, Chen Y, Zhang WB, Ni XP, Yu YH. SCO6564, a novel 3-ketoacyl acyl carrier protein synthase III, contributes in fatty acid synthesis in Streptomyces coelicolor. PLoS One 2025; 20:e0318258. [PMID: 39913464 PMCID: PMC11801535 DOI: 10.1371/journal.pone.0318258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
The genus Streptomyces comprises gram-positive bacteria that produce large numbers of secondary metabolites, which have promising commercial applications and deserve extensive study. Most bacteria synthesize fatty acids using a type II fatty acid synthase, with each step catalyzed by a discrete protein. Fatty acid synthesis has been intensively studied in the model strain Streptomyces coelicolor, in which 3-ketoacyl-acyl carrier protein synthase III (KAS III, FabH) is essential for growth and fatty acid biosynthesis. In this study, the FabH homolog SCO6564 (named FabH2) was identified in the S. coelicolor genome by BLAST analysis. The expression of fabH2 restored the growth of Ralstonia solanacearum fabH mutant and made the mutant produce small amounts of branched-chain fatty acids. FabH2 could condense various substrates, including straight-chain and branched-chain acyl-CoAs, with malonyl-acyl carrier protein to initiate fatty acid synthesis in in vitro assays. The fabH2 deletion did not cause significant changes in the growth or fatty acid composition of S. coelicolor, indicating that fabH2 is nonessential for growth or fatty acid synthesis. However, fabH2 overexpression reduced the blue-pigmented actinorhodin production. Phylogenetic analysis of KAS III from different bacteria revealed that FabH2 belongs to a novel group of FabH-type, which is ubiquitous in Streptomyces spp.
Collapse
Affiliation(s)
- Jian-Rong Ma
- Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, China
| | - Jia-Ying Lin
- College of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yuan-Yin Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yun Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wen-Bing Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xian-Pu Ni
- College of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yong-Hong Yu
- Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Kuatsjah E, Schwartz A, Zahn M, Tornesakis K, Kellermyer ZA, Ingraham MA, Woodworth SP, Ramirez KJ, Cox PA, Pickford AR, Salvachúa D. Biochemical and structural characterization of enzymes in the 4-hydroxybenzoate catabolic pathway of lignin-degrading white-rot fungi. Cell Rep 2024; 43:115002. [PMID: 39589922 DOI: 10.1016/j.celrep.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/15/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
White-rot fungi (WRF) are the most efficient lignin-degrading organisms in nature. However, their capacity to use lignin-related aromatic compounds, such as 4-hydroxybenzoate, as carbon sources has only been described recently. Previously, the hydroxyquinol pathway was proposed for the bioconversion of these compounds in fungi, but gene- and structure-function relationships of the full enzymatic pathway remain uncharacterized in any single fungal species. Here, we characterize seven enzymes from two WRF, Trametes versicolor and Gelatoporia subvermispora, which constitute a four-enzyme cascade from 4-hydroxybenzoate to β-ketoadipate via the hydroxyquinol pathway. Furthermore, we solve the crystal structure of four of these enzymes and identify mechanistic differences with the closest bacterial and fungal structural homologs. Overall, this research expands our understanding of aromatic catabolism by WRF and establishes an alternative strategy for the conversion of lignin-related compounds to the valuable molecule β-ketoadipate, contributing to the development of biological processes for lignin valorization.
Collapse
Affiliation(s)
- Eugene Kuatsjah
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Alexa Schwartz
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA; Advanced Energy Systems Graduate Program, Colorado School of Mines, Golden, CO 80401, USA
| | - Michael Zahn
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Konstantinos Tornesakis
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Zoe A Kellermyer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Morgan A Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Sean P Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Paul A Cox
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Andrew R Pickford
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
5
|
Favoino G, Krink N, Schwanemann T, Wierckx N, Nikel PI. Enhanced biosynthesis of poly(3-hydroxybutyrate) in engineered strains of Pseudomonas putida via increased malonyl-CoA availability. Microb Biotechnol 2024; 17:e70044. [PMID: 39503721 PMCID: PMC11539682 DOI: 10.1111/1751-7915.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024] Open
Abstract
Malonyl-coenzyme A (CoA) is a key precursor for the biosynthesis of multiple value-added compounds by microbial cell factories, including polyketides, carboxylic acids, biofuels, and polyhydroxyalkanoates. Owing to its role as a metabolic hub, malonyl-CoA availability is limited by competition in several essential metabolic pathways. To address this limitation, we modified a genome-reduced Pseudomonas putida strain to increase acetyl-CoA carboxylation while limiting malonyl-CoA utilization. Genes involved in sugar catabolism and its regulation, the tricarboxylic acid (TCA) cycle, and fatty acid biosynthesis were knocked-out in specific combinations towards increasing the malonyl-CoA pool. An enzyme-coupled biosensor, based on the rppA gene, was employed to monitor malonyl-CoA levels in vivo. RppA is a type III polyketide synthase that converts malonyl-CoA into flaviolin, a red-colored polyketide. We isolated strains displaying enhanced malonyl-CoA availability via a colorimetric screening method based on the RppA-dependent red pigmentation; direct flaviolin quantification identified four engineered strains had a significant increase in malonyl-CoA levels. We further modified these strains by adding a non-canonical pathway that uses malonyl-CoA as precursor for poly(3-hydroxybutyrate) biosynthesis. These manipulations led to increased polymer accumulation in the fully engineered strains, validating our general strategy to boost the output of malonyl-CoA-dependent pathways in P. putida.
Collapse
Affiliation(s)
- Giusi Favoino
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Nicolas Krink
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Tobias Schwanemann
- Institute of Bio‐ and GeosciencesIBG‐1: Biotechnology, Forschungszentrum Jülich GmbHJülichGermany
| | - Nick Wierckx
- Institute of Bio‐ and GeosciencesIBG‐1: Biotechnology, Forschungszentrum Jülich GmbHJülichGermany
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
6
|
Yang T, Li G, Xu Y, He X, Song B, Cao Y. Characterization of the gut microbiota in polycystic ovary syndrome with dyslipidemia. BMC Microbiol 2024; 24:169. [PMID: 38760705 PMCID: PMC11100065 DOI: 10.1186/s12866-024-03329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrinopathy in childbearing-age females which can cause many complications, such as diabetes, obesity, and dyslipidemia. The metabolic disorders in patients with PCOS were linked to gut microbial dysbiosis. However, the correlation between the gut microbial community and dyslipidemia in PCOS remains unillustrated. Our study elucidated the different gut microbiota in patients with PCOS and dyslipidemia (PCOS.D) compared to those with only PCOS and healthy women. RESULTS In total, 18 patients with PCOS, 16 healthy females, and 18 patients with PCOS.D were enrolled. The 16 S rRNA sequencing in V3-V4 region was utilized for identifying the gut microbiota, which analyzes species annotation, community diversity, and community functions. Our results showed that the β diversity of gut microbiota did not differ significantly among the three groups. Regarding gut microbiota dysbiosis, patients with PCOS showed a decreased abundance of Proteobacteria, and patients with PCOS.D showed an increased abundance of Bacteroidota compared to other groups. With respect to the gut microbial imbalance at genus level, the PCOS.D group showed a higher abundance of Clostridium_sensu_stricto_1 compared to other two groups. Furthermore, the abundances of Faecalibacterium and Holdemanella were lower in the PCOS.D than those in the PCOS group. Several genera, including Faecalibacterium and Holdemanella, were negatively correlated with the lipid profiles. Pseudomonas was negatively correlated with luteinizing hormone levels. Using PICRUSt analysis, the gut microbiota community functions suggested that certain metabolic pathways (e.g., amino acids, glycolysis, and lipid) were altered in PCOS.D patients as compared to those in PCOS patients. CONCLUSIONS The gut microbiota characterizations in patients with PCOS.D differ from those in patients with PCOS and controls, and those might also be related to clinical parameters. This may have the potential to become an alternative therapy to regulate the clinical lipid levels of patients with PCOS in the future.
Collapse
Affiliation(s)
- Tianjin Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Guanjian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bing Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China.
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China.
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
7
|
Guo Q, Su J, Liao Y, Yu Y, Luo L, Weng X, Zhang W, Hu Z, Wang H, Beattie GA, Ma J. An atypical 3-ketoacyl ACP synthase III required for acyl homoserine lactone synthesis in Pseudomonas syringae pv. syringae B728a. Appl Environ Microbiol 2024; 90:e0225623. [PMID: 38415624 PMCID: PMC10952384 DOI: 10.1128/aem.02256-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/29/2024] Open
Abstract
The last step of the initiation phase of fatty acid biosynthesis in most bacteria is catalyzed by the 3-ketoacyl-acyl carrier protein (ACP) synthase III (FabH). Pseudomonas syringae pv. syringae strain B728a encodes two FabH homologs, Psyr_3467 and Psyr_3830, which we designated PssFabH1 and PssFabH2, respectively. Here, we explored the roles of these two 3-ketoacyl-ACP synthase (KAS) III proteins. We found that PssFabH1 is similar to the Escherichia coli FabH in using acetyl-acetyl-coenzyme A (CoA ) as a substrate in vitro, whereas PssFabH2 uses acyl-CoAs (C4-C10) or acyl-ACPs (C6-C10). Mutant analysis showed that neither KAS III protein is essential for the de novo fatty acid synthesis and cell growth. Loss of PssFabH1 reduced the production of an acyl homoserine lactone (AHL) quorum-sensing signal, and this production was partially restored by overexpressing FabH homologs from other bacteria. AHL production was also restored by inhibiting fatty acid elongation and providing exogenous butyric acid. Deletion of PssFabH1 supports the redirection of acyl-ACP toward biosurfactant synthesis, which in turn enhances swarming motility. Our study revealed that PssFabH1 is an atypical KAS III protein that represents a new KAS III clade that functions in providing a critical fatty acid precursor, butyryl-ACP, for AHL synthesis.IMPORTANCEAcyl homoserine lactones (AHLs) are important quorum-sensing compounds in Gram-negative bacteria. Although their formation requires acylated acyl carrier proteins (ACPs), how the acylated intermediate is shunted from cellular fatty acid synthesis to AHL synthesis is not known. Here, we provide in vivo evidence that Pseudomonas syringae strain B728a uses the enzyme PssFabH1 to provide the critical fatty acid precursor butyryl-ACP for AHL synthesis. Loss of PssFabH1 reduces the diversion of butyryl-ACP to AHL, enabling the accumulation of acyl-ACP for synthesis of biosurfactants that contribute to bacterial swarming motility. We report that PssFabH1 and PssFabH2 each encode a 3-ketoacyl-acyl carrier protein synthase (KAS) III in P. syringae B728a. Whereas PssFabH2 is able to function in redirecting intermediates from β-oxidation to fatty acid synthesis, PssFabH1 is an atypical KAS III protein that represents a new KAS III clade based on its sequence, non-involvement in cell growth, and novel role in AHL synthesis.
Collapse
Affiliation(s)
- Qiaoqiao Guo
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jingtong Su
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuling Liao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yin Yu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lizhen Luo
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaoshan Weng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenbin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhe Hu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haihong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gwyn A. Beattie
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Jincheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
8
|
Lu C, Wijffels RH, Martins dos Santos VAP, Weusthuis RA. Pseudomonas putida as a platform for medium-chain length α,ω-diol production: Opportunities and challenges. Microb Biotechnol 2024; 17:e14423. [PMID: 38528784 PMCID: PMC10963910 DOI: 10.1111/1751-7915.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 03/27/2024] Open
Abstract
Medium-chain-length α,ω-diols (mcl-diols) play an important role in polymer production, traditionally depending on energy-intensive chemical processes. Microbial cell factories offer an alternative, but conventional strains like Escherichia coli and Saccharomyces cerevisiae face challenges in mcl-diol production due to the toxicity of intermediates such as alcohols and acids. Metabolic engineering and synthetic biology enable the engineering of non-model strains for such purposes with P. putida emerging as a promising microbial platform. This study reviews the advancement in diol production using P. putida and proposes a four-module approach for the sustainable production of diols. Despite progress, challenges persist, and this study discusses current obstacles and future opportunities for leveraging P. putida as a microbial cell factory for mcl-diol production. Furthermore, this study highlights the potential of using P. putida as an efficient chassis for diol synthesis.
Collapse
Affiliation(s)
- Chunzhe Lu
- Bioprocess EngineeringWageningen University & ResearchWageningenThe Netherlands
- Groningen Biomolecular Sciences & Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Rene H. Wijffels
- Bioprocess EngineeringWageningen University & ResearchWageningenThe Netherlands
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | | | - Ruud A. Weusthuis
- Bioprocess EngineeringWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
9
|
Guo Q, Zhong C, Dong H, Cronan JE, Wang H. Diversity in fatty acid elongation enzymes: The FabB long-chain β-ketoacyl-ACP synthase I initiates fatty acid synthesis in Pseudomonas putida F1. J Biol Chem 2024; 300:105600. [PMID: 38335573 PMCID: PMC10869286 DOI: 10.1016/j.jbc.2023.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 02/12/2024] Open
Abstract
The condensation of acetyl-CoA with malonyl-acyl carrier protein (ACP) by β-ketoacyl-ACP synthase III (KAS III, FabH) and decarboxylation of malonyl-ACP by malonyl-ACP decarboxylase are the two pathways that initiate bacterial fatty acid synthesis (FAS) in Escherichia coli. In addition to these two routes, we report that Pseudomonas putida F1 β-ketoacyl-ACP synthase I (FabB), in addition to playing a key role in fatty acid elongation, also initiates FAS in vivo. We report that although two P. putida F1 fabH genes (PpfabH1 and PpfabH2) both encode functional KAS III enzymes, neither is essential for growth. PpFabH1 is a canonical KAS III similar to E. coli FabH whereas PpFabH2 catalyzes condensation of malonyl-ACP with short- and medium-chain length acyl-CoAs. Since these two KAS III enzymes are not essential for FAS in P. putida F1, we sought the P. putida initiation enzyme and unexpectedly found that it was FabB, the elongation enzyme of the oxygen-independent unsaturated fatty acid pathway. P. putida FabB decarboxylates malonyl-ACP and condenses the acetyl-ACP product with malonyl-ACP for initiation of FAS. These data show that P. putida FabB, unlike the paradigm E. coli FabB, can catalyze the initiation reaction in FAS.
Collapse
Affiliation(s)
- Qiaoqiao Guo
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Canyao Zhong
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Huijuan Dong
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | - Haihong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
10
|
Amendola CR, Cordell WT, Kneucker CM, Szostkiewicz CJ, Ingraham MA, Monninger M, Wilton R, Pfleger BF, Salvachúa D, Johnson CW, Beckham GT. Comparison of wild-type KT2440 and genome-reduced EM42 Pseudomonas putida strains for muconate production from aromatic compounds and glucose. Metab Eng 2024; 81:88-99. [PMID: 38000549 DOI: 10.1016/j.ymben.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Pseudomonas putida KT2440 is a robust, aromatic catabolic bacterium that has been widely engineered to convert bio-based and waste-based feedstocks to target products. Towards industrial domestication of P. putida KT2440, rational genome reduction has been previously conducted, resulting in P. putida strain EM42, which exhibited characteristics that could be advantageous for production strains. Here, we compared P. putida KT2440- and EM42-derived strains for cis,cis-muconic acid production from an aromatic compound, p-coumarate, and in separate strains, from glucose. To our surprise, the EM42-derived strains did not outperform the KT2440-derived strains in muconate production from either substrate. In bioreactor cultivations, KT2440- and EM42-derived strains produced muconate from p-coumarate at titers of 45 g/L and 37 g/L, respectively, and from glucose at 20 g/L and 13 g/L, respectively. To provide additional insights about the differences in the parent strains, we analyzed growth profiles of KT2440 and EM42 on aromatic compounds as the sole carbon and energy sources. In general, the EM42 strain exhibited reduced growth rates but shorter growth lags than KT2440. We also observed that EM42-derived strains resulted in higher growth rates on glucose compared to KT2440-derived strains, but only at the lowest glucose concentrations tested. Transcriptomics revealed that genome reduction in EM42 had global effects on transcript levels and showed that the EM42-derived strains that produce muconate from glucose exhibit reduced modulation of gene expression in response to changes in glucose concentrations. Overall, our results highlight that additional studies are warranted to understand the effects of genome reduction on microbial metabolism and physiology, especially when intended for use in production strains.
Collapse
Affiliation(s)
- Caroline R Amendola
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - William T Cordell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin M Kneucker
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Caralyn J Szostkiewicz
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Morgan A Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Michela Monninger
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Rosemarie Wilton
- Agile BioFoundry, Emeryville, CA, 94608, USA; Biosciences Division Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA.
| |
Collapse
|
11
|
Yu Q, Sun L, Peng F, Sun C, Xiong F, Sun M, Liu J, Peng C, Zhou Q. Antimicrobial Activity of Stilbenes from Bletilla striata against Cutibacterium acnes and Its Effect on Cell Membrane. Microorganisms 2023; 11:2958. [PMID: 38138103 PMCID: PMC10746055 DOI: 10.3390/microorganisms11122958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The abnormal proliferation of Cutibacterium acnes is the main cause of acne vulgaris. Natural antibacterial plant extracts have gained great interest due to the efficacy and safety of their use in skin care products. Bletilla striata is a common externally used traditional Chinese medicine, and several of its isolated stilbenes were reported to exhibit good antibacterial activity. In this study, the antimicrobial activity of stilbenes from B. striata (BSS) against C. acnes and its potential effect on cell membrane were elucidated by determining the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), bacterial growth curve, adenosine triphosphate (ATP) levels, membrane potential (MP), and the expression of genes related to fatty acid biosynthesis in the cell membrane. In addition, the morphological changes in C. acnes by BSS were observed using transmission electron microscopy (TEM). Experimentally, we verified that BSS possessed significant antibacterial activity against C. acnes, with an MIC and MBC of 15.62 μg/mL and 62.5 μg/mL, respectively. The growth curve indicated that BSS at 2 MIC, MIC, 1/2 MIC, and 1/4 MIC concentrations inhibited the growth of C. acnes. TEM images demonstrated that BSS at an MIC concentration disrupted the morphological structure and cell membrane in C. acnes. Furthermore, the BSS at the 2 MIC, MIC, and 1/2 MIC concentrations caused a decrease in the intracellular ATP levels and the depolarization of the cell membrane as well as BSS at an MIC concentration inhibited the expression of fatty acid biosynthesis-associated genes. In conclusion, BSS could exert good antimicrobial activity by interfering with cell membrane in C. acnes, which have the potential to be developed as a natural antiacne additive.
Collapse
Affiliation(s)
- Qian Yu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luyao Sun
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chen Sun
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Xiong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meiji Sun
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Juan Liu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qinmei Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
12
|
Cywar RM, Ling C, Clarke RW, Kim DH, Kneucker CM, Salvachúa D, Addison B, Hesse SA, Takacs CJ, Xu S, Demirtas MU, Woodworth SP, Rorrer NA, Johnson CW, Tassone CJ, Allen RD, Chen EYX, Beckham GT. Elastomeric vitrimers from designer polyhydroxyalkanoates with recyclability and biodegradability. SCIENCE ADVANCES 2023; 9:eadi1735. [PMID: 37992173 PMCID: PMC10664982 DOI: 10.1126/sciadv.adi1735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Cross-linked elastomers are stretchable materials that typically are not recyclable or biodegradable. Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are soft and ductile, making these bio-based polymers good candidates for biodegradable elastomers. Elasticity is commonly imparted by a cross-linked network structure, and covalent adaptable networks have emerged as a solution to prepare recyclable thermosets via triggered rearrangement of dynamic covalent bonds. Here, we develop biodegradable and recyclable elastomers by chemically installing the covalent adaptable network within biologically produced mcl-PHAs. Specifically, an engineered strain of Pseudomonas putida was used to produce mcl-PHAs containing pendent terminal alkenes as chemical handles for postfunctionalization. Thiol-ene chemistry was used to incorporate boronic ester (BE) cross-links, resulting in PHA-based vitrimers. mcl-PHAs cross-linked with BE at low density (<6 mole %) affords a soft, elastomeric material that demonstrates thermal reprocessability, biodegradability, and denetworking at end of life. The mechanical properties show potential for applications including adhesives and soft, biodegradable robotics and electronics.
Collapse
Affiliation(s)
- Robin M. Cywar
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Chen Ling
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Ryan W. Clarke
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Dong Hyun Kim
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Colin M. Kneucker
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Bennett Addison
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Sarah A. Hesse
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher J. Takacs
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Shu Xu
- Applied Materials Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Northwestern Argonne Institute of Science and Engineering, 2205 Tech Drive, Suite 1160, Evanston, IL 60208, USA
| | | | - Sean P. Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Nicholas A. Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Christopher W. Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Christopher J. Tassone
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Robert D. Allen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Eugene Y.-X. Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| |
Collapse
|
13
|
Schwanemann T, Otto M, Wynands B, Marienhagen J, Wierckx N. A Pseudomonas taiwanensis malonyl-CoA platform strain for polyketide synthesis. Metab Eng 2023; 77:219-230. [PMID: 37031949 DOI: 10.1016/j.ymben.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/11/2023]
Abstract
Malonyl-CoA is a central precursor for biosynthesis of a wide range of complex secondary metabolites. The development of platform strains with increased malonyl-CoA supply can contribute to the efficient production of secondary metabolites, especially if such strains exhibit high tolerance towards these chemicals. In this study, Pseudomonas taiwanensis VLB120 was engineered for increased malonyl-CoA availability to produce bacterial and plant-derived polyketides. A multi-target metabolic engineering strategy focusing on decreasing the malonyl-CoA drain and increasing malonyl-CoA precursor availability, led to an increased production of various malonyl-CoA-derived products, including pinosylvin, resveratrol and flaviolin. The production of flaviolin, a molecule deriving from five malonyl-CoA molecules, was doubled compared to the parental strain by this malonyl-CoA increasing strategy. Additionally, the engineered platform strain enabled production of up to 84 mg L-1 resveratrol from supplemented p-coumarate. One key finding of this study was that acetyl-CoA carboxylase overexpression majorly contributed to an increased malonyl-CoA availability for polyketide production in dependence on the used strain-background and whether downstream fatty acid synthesis was impaired, reflecting its complexity in metabolism. Hence, malonyl-CoA availability is primarily determined by competition of the production pathway with downstream fatty acid synthesis, while supply reactions are of secondary importance for compounds that derive directly from malonyl-CoA in Pseudomonas.
Collapse
Affiliation(s)
- Tobias Schwanemann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Maike Otto
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany; Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|