1
|
Shen X, Wang J, Deng B, Zhao Z, Chen S, Kong W, Zhou C, Bae-Jump V. Review of the Potential Role of Ascorbate in the Prevention and Treatment of Gynecological Cancers. Antioxidants (Basel) 2024; 13:617. [PMID: 38790722 PMCID: PMC11118910 DOI: 10.3390/antiox13050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Ascorbate (vitamin C) is an essential vitamin for the human body and participates in various physiological processes as an important coenzyme and antioxidant. Furthermore, the role of ascorbate in the prevention and treatment of cancer including gynecological cancer has gained much more interest recently. The bioavailability and certain biological functions of ascorbate are distinct in males versus females due to differences in lean body mass, sex hormones, and lifestyle factors. Despite epidemiological evidence that ascorbate-rich foods and ascorbate plasma concentrations are inversely related to cancer risk, ascorbate has not demonstrated a significant protective effect in patients with gynecological cancers. Adequate ascorbate intake may have the potential to reduce the risk of human papillomavirus (HPV) infection and high-risk HPV persistence status. High-dose ascorbate exerts antitumor activity and synergizes with chemotherapeutic agents in preclinical cancer models of gynecological cancer. In this review, we provide evidence for the biological activity of ascorbate in females and discuss the potential role of ascorbate in the prevention and treatment of ovarian, endometrial, and cervical cancers.
Collapse
Affiliation(s)
- Xiaochang Shen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
| | - Boer Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ziyi Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuning Chen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Xiong W, Shen C, Wang Z. The molecular mechanisms underlying acrosome biogenesis elucidated by gene-manipulated mice. Biol Reprod 2021; 105:789-807. [PMID: 34131698 DOI: 10.1093/biolre/ioab117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Sexual reproduction requires the fusion of two gametes in a multistep and multifactorial process termed fertilization. One of the main steps that ensures successful fertilization is acrosome reaction. The acrosome, a special kind of organelle with a cap-like structure that covers the anterior portion of sperm head, plays a key role in the process. Acrosome biogenesis begins with the initial stage of spermatid development, and it is typically divided into four successive phases: the Golgi phase, cap phase, acrosome phase, and maturation phase. The run smoothly of above processes needs an active and specific coordination between the all kinds of organelles (endoplasmic reticulum, trans-golgi network and nucleus) and cytoplasmic structures (acroplaxome and manchette). During the past two decades, an increasingly genes have been discovered to be involved in modulating acrosome formation. Most of these proteins interact with each other and show a complicated molecular regulatory mechanism to facilitate the occurrence of this event. This Review focuses on the progresses of studying acrosome biogenesis using gene-manipulated mice and highlights an emerging molecular basis of mammalian acrosome formation.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Chen JY, Li CF, Lai YS, Hung WC. Lysine demethylase 2A expression in cancer-associated fibroblasts promotes breast tumour growth. Br J Cancer 2021; 124:484-493. [PMID: 33024266 PMCID: PMC7852571 DOI: 10.1038/s41416-020-01112-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 08/05/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our previous study demonstrated that lysine demethylase 2A (KDM2A) enhances stemness in breast cancer cells. This demethylase is also highly expressed in cancer-associated fibroblasts (CAFs). However, its clinical significance is unclear. METHODS The expression of KDM2A in CAFs was studied using immunohistochemical staining and its association with clinicopathological features and patient's survival was tested. Overexpression and knockdown strategies were used to investigate KDM2A-regulated genes in fibroblasts. Senescent cells were detected by using β-galactosidase staining. The in vivo tumour-promoting activity of stromal KDM2A was confirmed by animal study. RESULTS Increase of stromal KDM2A is associated with advanced tumour stage and poor clinical outcome in breast cancer patients. Cancer-derived cytokines stimulated KDM2A expression in normal fibroblasts and transformed them into CAFs. Upregulation of KDM2A induced p53-dependent senescence in fibroblasts and enhanced the release of cytokines, which reciprocally promoted cancer cell proliferation. Additionally, KDM2A upregulated programmed death-ligand 1 (PD-L1) expression via transcriptional activation in fibroblasts. Knockdown of KDM2A completely abolished the tumour-promoting activity of CAFs on breast tumour growth in vivo and diminished PD-L1 expression in the stroma of tumour tissues. CONCLUSIONS Stromal KDM2A plays an oncogenic role in breast cancer and inhibition of KDM2A reduces fibroblast senescence and suppresses tumour growth.
Collapse
Affiliation(s)
- Jing-Yi Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, 840, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Foundation Medical Center, 710, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, 704, Tainan, Taiwan
| | - You-Syuan Lai
- National Institute of Cancer Research, National Health Research Institutes, 704, Tainan, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, 704, Tainan, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807, Kaohsiung, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, 807, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, 807, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Okamoto K, Tanaka Y, Ogasawara S, Obuse C, Nakayama JI, Yano H, Tsuneoka M. KDM2A-dependent reduction of rRNA transcription on glucose starvation requires HP1 in cells, including triple-negative breast cancer cells. Oncotarget 2019; 10:4743-4760. [PMID: 31413816 PMCID: PMC6677663 DOI: 10.18632/oncotarget.27092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/29/2019] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is very aggressive and lacks specific therapeutic targets. Ribosome RNAs (rRNAs) are central components of ribosomes and transcribed in nucleoli, and the level of rRNA transcription greatly affects ribosome production and cell proliferation. We have reported that an epigenetic protein, KDM2A, exists in nucleoli and reduces rRNA transcription on glucose starvation. However, the molecular mechanism is still unclear. The purpose of this study is to examine the KDM2A-dependent regulation mechanism of rRNA transcription. In this study, we turned our attention to the nucleolar accumulation of KDM2A. We found that KDM2A had multiple regions for its nucleolar localization, and one of the regions was directly bound by heterochromatin protein 1γ (HP1γ) using valine 801 in the LxVxL motif of KDM2A. A knockdown of HP1γ or a point mutation of valine 801 in KDM2A decreased the nucleolar accumulation of KDM2A, and suppressed the reduction of rRNA transcription on glucose starvation. These results uncovered a novel function of HP1γ: the regulation of rRNA transcription, and suggested that HP1γ stimulates the nucleolar accumulation of KDM2A to support the KDM2A-dependent regulation of rRNA transcription. HP1γ was expressed in cancer cells in all breast carcinoma tissues examined, including TNBC tissues. A knockdown of HP1γ in a TNBC cell line, MDA-MB-231 cells, reduced the nucleolar accumulation of KDM2A, and suppressed the reductions of rRNA transcription and cell proliferation on glucose starvation. These results suggest that the KDM2A-dependent regulation of rRNA transcription requires HP1γ, and thus may be applicable to the treatment of TNBC.
Collapse
Affiliation(s)
- Kengo Okamoto
- Laboratory of Molecular and Cellular Biology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Yuji Tanaka
- Laboratory of Molecular and Cellular Biology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Sachiko Ogasawara
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka Japan
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Makoto Tsuneoka
- Laboratory of Molecular and Cellular Biology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| |
Collapse
|
5
|
Zhang J, Jing L, Li M, He L, Guo Z. Regulation of histone arginine methylation/demethylation by methylase and demethylase (Review). Mol Med Rep 2019; 19:3963-3971. [PMID: 30942418 PMCID: PMC6471501 DOI: 10.3892/mmr.2019.10111] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
Histone arginine methylation is a universal post-translational modification that has been implicated in multiple cellular and sub-cellular processes, including pre-mRNA splicing, DNA damage signaling, mRNA translation, cell signaling and cell death. Despite these important roles, the understanding of its regulation with respect to certain other modifications, such as phosphorylation and acetylation, is very poor. Thus far, few histone arginine demethylases have been identified in mammalian cells, compared with nine protein arginine methyltransferases (PRMTs) that have been reported. Studies have reported that aberrant histone arginine methylation is strongly associated with carcinogenesis and metastasis. This increases the requirement for understanding the regulation of histone arginine demethylation. The present review summarizes the published studies and provides further insights into histone arginine methylases and demethylases.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210097, P.R. China
| | - Li Jing
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210097, P.R. China
| | - Menghan Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210097, P.R. China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210097, P.R. China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210097, P.R. China
| |
Collapse
|
6
|
Yi X, Jiang X, Li X, Jiang DS. Histone lysine methylation and congenital heart disease: From bench to bedside (Review). Int J Mol Med 2017; 40:953-964. [PMID: 28902362 DOI: 10.3892/ijmm.2017.3115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/21/2017] [Indexed: 11/05/2022] Open
Abstract
Histone post-translational modifications (PTM) as one of the key epigenetic regulatory mechanisms that plays critical role in various biological processes, including regulating chromatin structure dynamics and gene expression. Histone lysine methyltransferase contributes to the establishment and maintenance of differential histone methylation status, which can recognize histone methylated sites and build an association between these modifications and their downstream processes. Recently, it was found that abnormalities in the histone lysine methylation level or pattern may lead to the occurrence of many types of cardiovascular diseases, such as congenital heart disease (CHD). In order to provide new theoretical basis and targets for the treatment of CHD from the view of developmental biology and genetics, this review discusses and elaborates on the association between histone lysine methylation modifications and CHD.
Collapse
Affiliation(s)
- Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
7
|
Ourailidou ME, Lenoci A, Zwergel C, Rotili D, Mai A, Dekker FJ. Towards the development of activity-based probes for detection of lysine-specific demethylase-1 activity. Bioorg Med Chem 2017; 25:847-856. [PMID: 27989416 PMCID: PMC5292237 DOI: 10.1016/j.bmc.2016.11.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023]
Abstract
The implications of lysine-specific demethylase-1 (LSD1) in tumorigenesis have urged scientists to develop diagnostic tools in order to explore the function of this enzyme. In this work, we present our efforts on the development of tranylcypromine (TCP)-based functionalized probes for activity-based protein profiling (ABPP) of LSD1 activity. Biotinylated forms of selected compounds enabled dose-dependent enzyme labeling of recombinant LSD1. However, treatment with LSD1 inhibitors did not clearly reduce the LSD1 labeling efficiency thus indicating that labeling using these probes is not activity dependent. This calls for alternative strategies to develop probes for ABPP of the enzyme LSD1.
Collapse
Affiliation(s)
- Maria E Ourailidou
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Alessia Lenoci
- Department of Drug Chemistry and Technologies, 'Sapienza' University, P.le A. Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, 'Sapienza' University, P.le A. Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, 'Sapienza' University, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, 'Sapienza' University, P.le A. Moro 5, 00185 Rome, Italy; Pasteur Institute, Cenci Bolognetti Foundation, 'Sapienza' University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| |
Collapse
|
8
|
Padayatty SJ, Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis 2016; 22:463-93. [PMID: 26808119 PMCID: PMC4959991 DOI: 10.1111/odi.12446] [Citation(s) in RCA: 442] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 12/11/2022]
Abstract
Vitamin C (Ascorbic Acid), the antiscorbutic vitamin, cannot be synthesized by humans and other primates, and has to be obtained from diet. Ascorbic acid is an electron donor and acts as a cofactor for fifteen mammalian enzymes. Two sodium-dependent transporters are specific for ascorbic acid, and its oxidation product dehydroascorbic acid is transported by glucose transporters. Ascorbic acid is differentially accumulated by most tissues and body fluids. Plasma and tissue vitamin C concentrations are dependent on amount consumed, bioavailability, renal excretion, and utilization. To be biologically meaningful or to be clinically relevant, in vitro and in vivo studies of vitamin C actions have to take into account physiologic concentrations of the vitamin. In this paper, we review vitamin C physiology; the many phenomena involving vitamin C where new knowledge has accrued or where understanding remains limited; raise questions about the vitamin that remain to be answered; and explore lines of investigations that are likely to be fruitful.
Collapse
Affiliation(s)
- S J Padayatty
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - M Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Chromatin methylation and cardiovascular aging. J Mol Cell Cardiol 2015; 83:21-31. [DOI: 10.1016/j.yjmcc.2015.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 12/26/2022]
|
10
|
Kokura K, Sun L, Fang J. In vitro histone demethylase assays. Methods Mol Biol 2015; 1288:109-122. [PMID: 25827878 DOI: 10.1007/978-1-4939-2474-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Histone methylation plays pivotal roles in modulating chromatin structure and dynamics and in turn regulates genomic processes that require access to the DNA template. The methylation status at different sites is dynamically regulated by histone methyltransferases and demethylases. During the past decade, two classes of proteins have been characterized to actively remove methyl groups from lysine residues through different mechanisms. The LSD1/KDM1 family of amine oxidases require flavin adenine dinucleotide (FAD) for reaction, while the larger Jumonji C (JmjC) family of hydroxylases utilize Fe(II) and α-ketoglutarate as cofactors to demethylate histones. Since their discoveries, histone demethylases have been implicated in the precise control of gene expression program during development, cell identity, and fate decision. Several demethylases have also been linked to various human diseases such as neurological disorders and cancer. This chapter describes several in vitro assay conditions and detection methods for two classes of histone demethylases. We also discuss the protocols to prepare various substrates for different histone demethylase assays.
Collapse
Affiliation(s)
- Kenji Kokura
- Tumor Biology Department, H Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | | | | |
Collapse
|
11
|
Kasioulis I, Syred HM, Tate P, Finch A, Shaw J, Seawright A, Fuszard M, Botting CH, Shirran S, Adams IR, Jackson IJ, van Heyningen V, Yeyati PL. Kdm3a lysine demethylase is an Hsp90 client required for cytoskeletal rearrangements during spermatogenesis. Mol Biol Cell 2014; 25:1216-33. [PMID: 24554764 PMCID: PMC3982988 DOI: 10.1091/mbc.e13-08-0471] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 11/30/2022] Open
Abstract
The lysine demethylase Kdm3a (Jhdm2a, Jmjd1a) is required for male fertility, sex determination, and metabolic homeostasis through its nuclear role in chromatin remodeling. Many histone-modifying enzymes have additional nonhistone substrates, as well as nonenzymatic functions, contributing to the full spectrum of events underlying their biological roles. We present two Kdm3a mouse models that exhibit cytoplasmic defects that may account in part for the globozoospermia phenotype reported previously. Electron microscopy revealed abnormal acrosome and manchette and the absence of implantation fossa at the caudal end of the nucleus in mice without Kdm3a demethylase activity, which affected cytoplasmic structures required to elongate the sperm head. We describe an enzymatically active new Kdm3a isoform and show that subcellular distribution, protein levels, and lysine demethylation activity of Kdm3a depended on Hsp90. We show that Kdm3a localizes to cytoplasmic structures of maturing spermatids affected in Kdm3a mutant mice, which in turn display altered fractionation of β-actin and γ-tubulin. Kdm3a is therefore a multifunctional Hsp90 client protein that participates directly in the regulation of cytoskeletal components.
Collapse
Affiliation(s)
- Ioannis Kasioulis
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Heather M. Syred
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Peri Tate
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1HH, United Kingdom
| | - Andrew Finch
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Joseph Shaw
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Anne Seawright
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Matt Fuszard
- Biomedical Sciences Research Complex Mass Spectrometry and Proteomics Facility, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Catherine H. Botting
- Biomedical Sciences Research Complex Mass Spectrometry and Proteomics Facility, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Sally Shirran
- Biomedical Sciences Research Complex Mass Spectrometry and Proteomics Facility, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Ian R. Adams
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Ian J. Jackson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Veronica van Heyningen
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Patricia L. Yeyati
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
12
|
Lawrence P, Conderino JS, Rieder E. Redistribution of demethylated RNA helicase A during foot-and-mouth disease virus infection: role of Jumonji C-domain containing protein 6 in RHA demethylation. Virology 2014; 452-453:1-11. [PMID: 24606677 DOI: 10.1016/j.virol.2013.12.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/20/2013] [Accepted: 12/28/2013] [Indexed: 11/20/2022]
Abstract
Previously, RNA helicase A (RHA) re-localization from the nucleus to the cytoplasm in foot-and-mouth disease virus (FMDV) infected cells was shown to coincide with loss of RHA methylated arginine residues at its C-terminus. The potential interaction between RHA and Jumonji C-domain (JmjC) protein 6 (JMJD6) arginine demethylase in infected cells was investigated. Treatment with N-oxalylglycine (NOG) inhibitor of JmjC demethylases prevented FMDV-induced RHA demethylation and re-localization, and also decreased viral protein synthesis and virus titers. Physical interaction between JMJD6 and RHA was demonstrated via reciprocal co-immunoprecipitation, where RHA preferentially bound JMJD6 monomers. Nuclear efflux of demethylated RHA (DM-RHA) coincided with nuclear influx of JMJD6, which was not observed using another picornavirus. A modified biochemical assay demonstrated JMJD6 induced dose-dependent demethylation of RHA and two RHA-derived isoforms, which could be inhibited by NOG. We propose a role for JMJD6 in RHA demethylation stimulated by FMDV, that appears to facilitate virus replication.
Collapse
Affiliation(s)
- Paul Lawrence
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, NAA, Plum Island Animal Disease Center, PO Box 848, Greenport, NY 11944-0848, USA
| | - Joseph S Conderino
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, NAA, Plum Island Animal Disease Center, PO Box 848, Greenport, NY 11944-0848, USA
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, NAA, Plum Island Animal Disease Center, PO Box 848, Greenport, NY 11944-0848, USA.
| |
Collapse
|
13
|
Li J, Braganza A, Sobol RW. Base excision repair facilitates a functional relationship between Guanine oxidation and histone demethylation. Antioxid Redox Signal 2013; 18:2429-43. [PMID: 23311711 PMCID: PMC3671628 DOI: 10.1089/ars.2012.5107] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Appropriately controlled epigenetic regulation is critical for the normal development and health of an organism. Misregulation of epigenetic control via deoxyribonucleic acid (DNA) methylation or histone methylation has been associated with cancer and chromosomal instability syndromes. RECENT ADVANCES The main function of the proteins in the base excision repair (BER) pathway is to repair DNA single-strand breaks and deamination, oxidation, and alkylation-induced DNA base damage that may result from chemotherapy, environmental exposure, or byproducts of cellular metabolism. Recent studies have suggested that one or more BER proteins may also participate in epigenetic regulation to facilitate gene expression modulation via alteration of the state of DNA methylation or via a reaction coupled to histone modification. BER proteins have also been reported to play an essential role in pluripotent stem cell reprogramming. CRITICAL ISSUES One emerging function for BER in epigenetic regulation is the repair of base lesions induced by hydrogen peroxide as a byproduct of lysine-specific demethylase 1 (LSD1) enzymatic activity (LSD1/LSD2-coupled BER) for transcriptional regulation. FUTURE DIRECTIONS To shed light on this novel role of BER, this review focuses on the repair of oxidative lesions in nuclear DNA that are induced during LSD1-mediated histone demethylation. Further, we highlight current studies suggesting a role for BER proteins in transcriptional regulation of gene expression via BER-coupled active DNA demethylation in mammalian cells. Such efforts to address the role of BER proteins in epigenetic regulation could broaden cancer therapeutic strategies to include epigenetic modifiers combined with BER inhibitors.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
14
|
Hazeldine S, Pachaiyappan B, Steinbergs N, Nowotarski S, Hanson AS, Casero RA, Woster PM. Low molecular weight amidoximes that act as potent inhibitors of lysine-specific demethylase 1. J Med Chem 2012; 55:7378-91. [PMID: 22876979 DOI: 10.1021/jm3002845] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recently discovered enzyme lysine-specific demethylase 1 (LSD1) plays an important role in the epigenetic control of gene expression, and aberrant gene silencing secondary to LSD1 dysregulation is thought to contribute to the development of cancer. We reported that (bis)guanidines, (bis)biguanides, and their urea- and thiourea isosteres are potent inhibitors of LSD1 and induce the re-expression of aberrantly silenced tumor suppressor genes in tumor cells in vitro. We now report a series of small molecule amidoximes that are moderate inhibitors of recombinant LSD1 but that produce dramatic changes in methylation at the histone 3 lysine 4 (H3K4) chromatin mark, a specific target of LSD1, in Calu-6 lung carcinoma cells. In addition, these analogues increase cellular levels of secreted frizzle-related protein (SFRP) 2, H-cadherin (HCAD), and the transcription factor GATA4. These compounds represent leads for an important new series of drug-like epigenetic modulators with the potential for use as antitumor agents.
Collapse
Affiliation(s)
- Stuart Hazeldine
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Methylation of DNA and histones in chromatin has been implicated in numerous biological processes. For many years, methylation has been recognized as static and stable modification, as compared with other covalent modifications of chromatin. Recently, however, several mechanisms have been demonstrated to be involved in demethylation of chromatin, suggesting that chromatin methylation is more dynamically regulated. One chemical reaction that mediates demethylation of both DNA and histones is hydroxylation, catalysed by Fe(II) and α-ketoglutarate (KG)-dependent hydroxylase/dioxygenase. Given that methylation of chromatin is an important epigenetic mark involved in fundamental biological processes such as cell fate determination, understanding how chromatin methylation is dynamically regulated has implications for human diseases and regenerative medicine.
Collapse
Affiliation(s)
- Yu-ichi Tsukada
- Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.
| |
Collapse
|
16
|
Sharma SK, Hazeldine S, Crowley ML, Hanson A, Beattie R, Varghese S, Senanayake TMD, Hirata A, Hirata F, Huang Y, Wu Y, Steinbergs N, Murray-Stewart T, Bytheway I, Casero RA, Woster PM. Polyamine-based small molecule epigenetic modulators. MEDCHEMCOMM 2011; 3:14-21. [PMID: 23293738 PMCID: PMC3535317 DOI: 10.1039/c1md00220a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chromatin remodelling enzymes such as the histone deacetylases (HDACs) and histone demethylases such as lysine-specific demethylase 1 (LSD1) have been validated as targets for cancer drug discovery. Although a number of HDAC inhibitors have been marketed or are in human clinical trials, the search for isoform-specific HDAC inhibitors is an ongoing effort. In addition, the discovery and development of compounds targeting histone demethylases are in their early stages. Epigenetic modulators used in combination with traditional antitumor agents such as 5-azacytidine represent an exciting new approach to cancer chemotherapy. We have developed multiple series of HDAC inhibitors and LSD1 inhibitors that promote the re-expression of aberrantly silenced genes that are important in human cancer. The design, synthesis and biological activity of these analogues is described herein.
Collapse
Affiliation(s)
- Shiv K. Sharma
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Stuart Hazeldine
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Michael L. Crowley
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Allison Hanson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Ross Beattie
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Sheeba Varghese
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | | | - Aiko Hirata
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Fusao Hirata
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Yi Huang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - Yu Wu
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - Nora Steinbergs
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - Tracey Murray-Stewart
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - Ian Bytheway
- Progen Pharmaceuticals, Ltd., Darra, Queensland, Australia
| | - Robert A. Casero
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - Patrick M. Woster
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, SC, 29425, USA
| |
Collapse
|
17
|
Jones A, Joo HY, Robbins W, Wang H. Purification of histone ubiquitin ligases from HeLa cells. Methods 2011; 54:315-25. [PMID: 21402158 PMCID: PMC3119374 DOI: 10.1016/j.ymeth.2011.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/02/2011] [Accepted: 03/06/2011] [Indexed: 12/13/2022] Open
Abstract
Posttranslational histone modifications play an important role in regulating chromatin based nuclear processes including transcription. Of these modifications, histone ubiquitination is among the least understood. Histone ubiquitination predominately targets histones H2A and H2B. While ubiquitination of H2B is evolutionarily conserved from budding yeast to mammals, ubiquitination of H2A has not been detected in budding yeast, worms, or plants. Until recently, studies of histone ubiquitination lagged far behind the study of other histone modifications, largely because antibodies specific for ubiquitinated histones are difficult to generate. Despite this obstacle, the identification of the enzymatic machineries involved in histone ubiquitination, together with the successful use of a combination of genetic and immunoblot approaches to detect ubiquitinated histones, have helped to reveal important regulatory roles for this modification in transcriptional initiation and elongation, cell cycle progression, and DNA damage response. With the aid of the recently developed ubiquitinated histone-specific antibodies, an intriguing link between histone ubiquitination and cancer development has been established. While the enzymes involved in H2B ubiquitination were identified first in budding yeast and subsequently in higher organisms based on gene homology, the identification of the enzymatic machineries involved in H2A ubiquitination largely depended on a biochemical purification approach. The unbiased search for ubiquitin ligases targeting histones also led to the identification of a H3 and H4 ubiquitin ligase. Here we detail a protocol for the biochemical approach to identify histone ubiquitin ligase(s) from HeLa cells. Similar approaches have been successfully used to identify histone methyltransferases, histone demethylases, chromatin remodeling factors, and general transcription factors. So long as an in vitro enzymatic assay can be established, the approach we describe can be easily adapted to identify other histone and non-histone modifying enzymes.
Collapse
Affiliation(s)
- Amanda Jones
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Kaul Human Genetics Building 402A, 720 South 20th Street, Birmingham, AL 35294
| | - Heui-Yun Joo
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Kaul Human Genetics Building 402A, 720 South 20th Street, Birmingham, AL 35294
| | - Woody Robbins
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Kaul Human Genetics Building 402A, 720 South 20th Street, Birmingham, AL 35294
- Fermentation Facility, University of Alabama at Birmingham, Kaul Human Genetics Building 402A, 720 South 20th Street, Birmingham, AL 35294
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Kaul Human Genetics Building 402A, 720 South 20th Street, Birmingham, AL 35294
| |
Collapse
|
18
|
Abstract
Methylation of lysine residues in histones has been known to serve a regulatory role in gene expression. Although enzymatic removal of the methyl groups was discovered as early as 1973, the enzymes responsible for their removal were isolated and their mechanism of action was described only recently. The first enzyme to show such activity was LSD1, a flavin-containing enzyme that removes the methyl groups from lysines 4 and 9 of histone 3 with the generation of formaldehyde from the methyl group. This reaction is similar to the previously described demethylation reactions conducted by the enzymes dimethylglycine dehydrogenase and sarcosine dehydrogenase, in which protein-bound tetrahydrofolate serves as an accepter of the formaldehyde that is generated. We now show that nuclear extracts of HeLa cells contain LSD1 that is associated with folate. Using the method of back-scattering interferometry, we have measured the binding of various forms of folate to both full-length LSD1 and a truncated form of LSD1 in free solution. The 6R,S form of the natural pentaglutamate form of tetrahydrofolate bound with the highest affinity (K(d) = 2.8 μM) to full-length LSD1. The fact that folate participates in the enzymatic demethylation of histones provides an opportunity for this micronutrient to play a role in the epigenetic control of gene expression.
Collapse
Affiliation(s)
- Zigmund Luka
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, 37232
| | - Frank Moss
- Vanderbilt University Department of Chemistry, Nashville, Tennessee, 37232
| | | | - Darryl J. Bornhop
- Vanderbilt University Department of Chemistry, Nashville, Tennessee, 37232
- The Vanderbilt Institute for Chemical Biology Nashville, Tennessee, 37232
| | - Conrad Wagner
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, 37232
| |
Collapse
|
19
|
|
20
|
Abstract
Post-translational modifications of histones play an important role in regulating chromatin dynamics and function. One of the modifications, methylation, occurs on both lysine and arginine residues, and methylation status defines the epigenetic program of a cell by determining chromatin structure and thereby regulating DNA-dependent processes such as transcription. Until recently, histone methylation was considered to be irreversible. However, the discovery of histone demethylases revealed that histone methylation is more dynamic than previously recognized. This protocol describes two different in vitro histone demethylase enzyme reactions and three different methods for measuring histone demethylase activity. The first reaction (type I) uses the Fe(II)- and α-ketoglutarate-dependent dioxygenase family of histone demethylase (represented by JmjC domain-containing histone demethylase [JHDM]); the second (type II) is for the flavin adenine dinucleotide (FAD)-dependent amine oxidase family (represented by lysine-specific demethylase 1 [LSD1]). Histone demethylase activity can then be detected by measuring the release of radiolabeled formaldehyde from (3)H-labeled methylated histone substrates, by monitoring the change in methylation levels of histone substrates by immunoblotting with site-specific methylhistone antibodies, or by using mass spectrometry to detect reductions in histone peptide masses that correspond to methyl groups. These assays can be applied to a wide range of histone demethylase studies, including the measurement of histone demethylase activity in tissue and cell lysates, identification of novel histone demethylases, and screening for inhibitors of histone demethylases.
Collapse
Affiliation(s)
- Yu-ichi Tsukada
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
21
|
Sharma SK, Wu Y, Steinbergs N, Crowley ML, Hanson AS, Casero RA, Woster PM. (Bis)urea and (bis)thiourea inhibitors of lysine-specific demethylase 1 as epigenetic modulators. J Med Chem 2010; 53:5197-212. [PMID: 20568780 PMCID: PMC2920492 DOI: 10.1021/jm100217a] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recently discovered enzyme lysine-specific demethylase 1 (LSD1) plays an important role in the epigenetic control of gene expression, and aberrant gene silencing secondary to LSD1 overexpression is thought to contribute to the development of cancer. We recently reported a series of (bis)guanidines and (bis)biguanides that are potent inhibitors of LSD1 and induce the re-expression of aberrantly silenced tumor suppressor genes in tumor cells in vitro. We now report a series of isosteric ureas and thioureas that are also potent inhibitors of LSD1. These compounds induce increases in methylation at the histone 3 lysine 4 (H3K4) chromatin mark, a specific target of LSD1, in Calu-6 lung carcinoma cells. In addition, these analogues increase cellular levels of secreted frizzle-related protein (SFRP) 2 and transcription factor GATA4. These compounds represent an important new series of epigenetic modulators with the potential for use as antitumor agents.
Collapse
Affiliation(s)
- Shiv K. Sharma
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48202
| | - Yu Wu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231
| | - Nora Steinbergs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231
| | - Michael L. Crowley
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48202
| | - Allison S. Hanson
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48202
| | - Robert A. Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231
| | - Patrick M. Woster
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48202
| |
Collapse
|
22
|
Yokoyama A, Okuno Y, Chikanishi T, Hashiba W, Sekine H, Fujiki R, Kato S. KIAA1718 is a histone demethylase that erases repressive histone methyl marks. Genes Cells 2010; 15:867-73. [PMID: 20629981 DOI: 10.1111/j.1365-2443.2010.01424.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The methylation states of histone lysine residues are regarded as significant epigenetic marks governing transcriptional regulation. A number of histone demethylases containing a jumonji C (JmjC) domain have been recognized; however, their properties remain to be investigated. Here, we show that KIAA1718, a PHF2/PHF8 subfamily member, possesses histone demethylase activity specific for H3K9 and H3K27, transcriptionally repressive histone marks. Biochemical purification of the KIAA1718 interactants reveals that KIAA1718 forms complexes with several factors including KAP1, a transcriptional co-activator. Consistent with these findings, KIAA1718 shows a transcriptional activation function in the chromatin context. Thus, our study identifies KIAA1718 as a histone demethylase for repressive methyl marks and shows that it is involved in transcriptional activation.
Collapse
Affiliation(s)
- Atsushi Yokoyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Robert A. Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231
| | - Patrick M. Woster
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48202
| |
Collapse
|
24
|
Transcription factor CTF1 acts as a chromatin domain boundary that shields human telomeric genes from silencing. Mol Cell Biol 2009; 29:2409-18. [PMID: 19273604 DOI: 10.1128/mcb.00779-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Telomeres are associated with chromatin-mediated silencing of genes in their vicinity. However, how epigenetic markers mediate mammalian telomeric silencing and whether specific proteins may counteract this effect are not known. We evaluated the ability of CTF1, a DNA- and histone-binding transcription factor, to prevent transgene silencing at human telomeres. CTF1 was found to protect a gene from silencing when its DNA-binding sites were interposed between the gene and the telomeric extremity, while it did not affect a gene adjacent to the telomere. Protein fusions containing the CTF1 histone-binding domain displayed similar activities, while mutants impaired in their ability to interact with the histone did not. Chromatin immunoprecipitation indicated the propagation of a hypoacetylated histone structure to various extents depending on the telomere. The CTF1 fusion protein was found to recruit the H2A.Z histone variant at the telomeric locus and to restore high histone acetylation levels to the insulated telomeric transgene. Histone lysine trimethylations were also increased on the insulated transgene, indicating that these modifications may mediate expression rather than silencing at human telomeres. Overall, these results indicate that transcription factors can act to delimit chromatin domain boundaries at mammalian telomeres, thereby blocking the propagation of a silent chromatin structure.
Collapse
|
25
|
Abstract
Histone methylation plays important roles in chromatin structure, transcription, and epigenetic state of the cell. Tremendous discoveries recently demonstrated that methylation mark is not static but is dynamically regulated by both histone methyltransferases and the histone demethylases. Two families of histone demethylases have been identified to remove methyl groups from lysine side chain through different reaction mechanisms in presence of distinct cofactors. Amine oxidase LSD1 family requires flavin adenine dinucleotide (FAD) whereas dioxygenase Jmjc domain-containing proteins family relies on Fe(II) and alpha-ketoglutarate. Identification of these enzymes opened a new era in understanding how chromatin dynamic is regulated and further understanding the regulation of these enzymes will provide significant insights into fundamental mechanisms of many biological processes and human diseases. This chapter describes different assay conditions and detection methods for different family of histone demethylases. We also summarize step-by-step protocols for purification and preparation of various histone substrates for histone demethylase assays.
Collapse
Affiliation(s)
- Kenji Kokura
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | |
Collapse
|
26
|
Tan H, Wu S, Wang J, Zhao ZK. The JMJD2 members of histone demethylase revisited. Mol Biol Rep 2007; 35:551-6. [PMID: 17668288 DOI: 10.1007/s11033-007-9121-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 07/19/2007] [Indexed: 11/26/2022]
Abstract
The study of histone lysine demethylases has become very hot recently. Many histone demethylases have been reported by different research groups with various techniques. However, how many histone lysine-methylation states can be removed by one specific demethylase and how many demethylases can remove one specific histone lysine-methylation state? It remains a daunting challenge to answer these questions to date. An in-depth discussion on recent results, three important points were provided: (1) Some demethylases can remove more histone lysine-methylation states; (2) Some prokaryotes might be endowed with histone lysine demethylases although they are devoid of histones; (3) Protein-protein interaction provides a valuable framework for a better understanding of the functions of the histone lysine demethylases. All of these will be beneficial to a better understanding of demethylases and suggest how future research can be improved.
Collapse
Affiliation(s)
- Haidong Tan
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China.
| | | | | | | |
Collapse
|