1
|
Długosz M, Cichocki B, Szymczak P. First coarse grain then scale: How to estimate diffusion coefficients of confined molecules. J Chem Phys 2023; 159:214101. [PMID: 38038202 DOI: 10.1063/5.0175501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
An approach for approximating position and orientation dependent translational and rotational diffusion coefficients of rigid molecules of any shape suspended in a viscous fluid under geometric confinement is proposed. It is an extension of the previously developed scheme for evaluating near-wall diffusion of macromolecules, now applied to any geometry of boundaries. The method relies on shape based coarse-graining combined with scaling of mobility matrix components by factors derived based on energy dissipation arguments for Stokes flows. Tests performed for a capsule shaped molecule and its coarse-grained model, a dumbbell, for three different types of boundaries (a sphere, an open cylinder, and two parallel planes) are described. An almost perfect agreement between mobility functions of the detailed and coarse-grained models, even close to boundary surfaces, is obtained. The proposed method can be used to simplify hydrodynamic calculations and reduce errors introduced due to coarse-graining of molecular shapes.
Collapse
Affiliation(s)
- Maciej Długosz
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Pasteura 5, Poland
| | - Bogdan Cichocki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Pasteura 5, Poland
| | - Piotr Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Pasteura 5, Poland
| |
Collapse
|
2
|
Ruiz-Rodríguez MA, Cooper CD, Rocchia W, Casalegno M, López de los Santos Y, Raos G. Modeling of the Electrostatic Interaction and Catalytic Activity of [NiFe] Hydrogenases on a Planar Electrode. J Phys Chem B 2022; 126:8777-8790. [PMID: 36269122 PMCID: PMC9639099 DOI: 10.1021/acs.jpcb.2c05371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hydrogenases are a group of enzymes that have caught the interest of researchers in renewable energies, due to their ability to catalyze the redox reaction of hydrogen. The exploitation of hydrogenases in electrochemical devices requires their immobilization on the surface of suitable electrodes, such as graphite. The orientation of the enzyme on the electrode is important to ensure a good flux of electrons to the catalytic center, through an array of iron-sulfur clusters. Here we present a computational approach to determine the possible orientations of a [NiFe] hydrogenase (PDB 1e3d) on a planar electrode, as a function of pH, salinity, and electrode potential. The calculations are based on the solution of the linearized Poisson-Boltzmann equation, using the PyGBe software. The results reveal that electrostatic interactions do not truly immobilize the enzyme on the surface of the electrode, but there is instead a dynamic equilibrium between different orientations. Nonetheless, after averaging over all thermally accessible orientations, we find significant differences related to the solution's salinity and pH, while the effect of the electrode potential is relatively weak. We also combine models for the protein adsoption-desorption equilibria and for the electron transfer between the proteins and the electrode to arrive at a prediction of the electrode's activity as a function of the enzyme concentration.
Collapse
Affiliation(s)
| | - Christopher D. Cooper
- Department
of Mechanical Engineering and Centro Científico Tecnológico
de Valparaíso, Universidad Técnica
Federico Santa María, Valparaíso, 2340000, Chile
| | - Walter Rocchia
- CONCEPT
Lab, Istituto Italiano di Tecnologia, 16163Genova, Italy
| | - Mosè Casalegno
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, 20133Milano, Italy
| | - Yossef López de los Santos
- Centre
Armand-Frappier Santé, Biotechnologie, Institut national de
la recherche scientifique (INRS), Université
du Québec, Laval, QuébecHV7 1B7, Canada
| | - Guido Raos
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, 20133Milano, Italy,
| |
Collapse
|
3
|
Urzúa SA, Sauceda-Oloño PY, García CD, Cooper CD. Predicting the Orientation of Adsorbed Proteins Steered with Electric Fields Using a Simple Electrostatic Model. J Phys Chem B 2022; 126:5231-5240. [PMID: 35819287 DOI: 10.1021/acs.jpcb.2c03118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Under the most common experimental conditions, the adsorption of proteins to solid surfaces is a spontaneous process that leads to a rather compact layer of randomly oriented molecules. However, controlling such orientation is critically important for the development of catalytic surfaces. In this regard, the use of electric fields is one of the most promising alternatives. Our work is motivated by experimental observations that show important differences in catalytic activity of a trypsin-covered surface, which depended on the applied potential during the adsorption. Even though adsorption results from the combination of several processes, we were able to determine that (under the selected conditions) mean-field electrostatics play a dominant role, determining the orientation and yielding a difference in catalytic activity. We simulated the electrostatic potential numerically, using an implicit-solvent model based on the linearized Poisson-Boltzmann equation. This was implemented in an extension of the code PyGBe that included an external electric field, and rendered the electrostatic component of the solvation free energy. Our model (extensions available at the Github repository) allowed estimating the overall affinity of the protein with the surface, and their most likely orientation as a function of the potential applied. Our results show that the active sites of trypsin are, on average, more exposed when the electric field is negative, which agrees with the experimental results of catalytic activity, and confirm the premise that electrostatic interactions can be used to control the orientation of adsorbed proteins.
Collapse
Affiliation(s)
- Sergio A Urzúa
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile
| | - Perla Y Sauceda-Oloño
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Christopher D Cooper
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile.,Centro Científico Tecnológico de Valparaíso, Valparaíso, 2390123, Chile
| |
Collapse
|
4
|
Długosz M, Cichocki B, Szymczak P. Estimating near-wall diffusion coefficients of arbitrarily shaped rigid macromolecules. Phys Rev E 2022; 106:014407. [PMID: 35974550 DOI: 10.1103/physreve.106.014407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
We developed a computationally efficient approach to approximate near-wall diffusion coefficients of arbitrarily shaped rigid macromolecules. The proposed method relies on extremum principles for Stokes flows produced by the motion of rigid bodies. In the presence of the wall, the rate of energy dissipation is decreased relative to the unbounded fluid. In our approach, the position- and orientation-dependent mobility matrix of a body suspended near a no-slip plane is calculated numerically using a coarse-grained molecular model and the Rotne-Prager-Yamakawa description of hydrodynamics. Effects of the boundary are accounted for via Blake's image construction. The matrix components are scaled using ratios of the corresponding bulk values evaluated for the detailed representation of the molecule and its coarse-grained model, leading to accurate values of the near-wall diffusion coefficients. We assess the performance of the approach for two biomolecules at different levels of coarse-graining.
Collapse
Affiliation(s)
- Maciej Długosz
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Pasteura 5, Poland
| | - Bogdan Cichocki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Pasteura 5, Poland
| | - Piotr Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Pasteura 5, Poland
| |
Collapse
|
5
|
Zhao H, Nguyen A, To SC, Schuck P. Calibrating analytical ultracentrifuges. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:353-362. [PMID: 33398460 PMCID: PMC8192337 DOI: 10.1007/s00249-020-01485-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 11/28/2022]
Abstract
Analytical ultracentrifugation (AUC) is based on the concept of recording and analyzing macroscopic macromolecular redistribution that results from a centrifugal force acting on the mass of suspended macromolecules in solution. Since AUC rests on first principles, it can provide an absolute measurement of macromolecular mass, sedimentation and diffusion coefficients, and many other quantities, provided that the solvent density and viscosity are known, and provided that the instrument is properly calibrated. Unfortunately, a large benchmark study revealed that many instruments exhibit very significant systematic errors. This includes the magnification of the optical detection system used to determine migration distance, the measurement of sedimentation time, and the measurement of the solution temperature governing viscosity. We have previously developed reference materials, tools, and protocols to detect and correct for systematic measurement errors in the AUC by comparison with independently calibrated standards. This 'external calibration' resulted in greatly improved precision and consistency of parameters across laboratories. Here we detail the steps required for calibration of the different data dimensions in the AUC. We demonstrate the calibration of three different instruments with absorbance and interference optical detection, and use measurements of the sedimentation coefficient of NISTmAb monomer as a test of consistency. Whereas the measured uncorrected sedimentation coefficients span a wide range from 6.22 to 6.61 S, proper calibration resulted in a tenfold reduced standard deviation of sedimentation coefficients. The calibrated relative standard deviation and mean error of 0.2% and 0.07%, respectively, is comparable with statistical errors and side-by-side repeatability in a single instrument.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Ai Nguyen
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Samuel C To
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Protein intrinsic viscosity determination with the Viscosizer TD instrument: reaching beyond the initially expected applications. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:587-595. [PMID: 33486532 DOI: 10.1007/s00249-020-01492-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/03/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Intrinsic viscosity is a key hydrodynamic parameter to understand molecular structure and hydration, as well as intramolecular interactions. Commercially available instruments measure intrinsic viscosity by recording the macromolecular mobility in a capillary. These instruments monitor Taylor dispersion using an absorbance or fluorescence detector. By design, these instruments behave like U-tube viscometers. To our knowledge, there are no studies to date showing that the Viscosizer TD instrument (Malvern-Panalytical) is able to measure the intrinsic viscosity of macromolecules. In this study, we then performed our assays on the Poly(ethylene oxide) polymer (PEO), used classically as a standard for viscometry measurements and on three model proteins: the bovine serum albumin (BSA), the bevacizumab monoclonal antibody, and the RTX Repeat Domain (RD) of the adenylate cyclase toxin of Bordetella pertussis (CyaA). The presence of P20 in the samples is critical to get reliable results. The data obtained with our in-house protocol show a strong correlation with intrinsic viscosity values obtained using conventional techniques. However, with respect to them, our measurements could be performed at relatively low concentrations, between 2 and 5 mg/ml, using only 7 µL per injection. Altogether, our results show that the Viscosizer TD instrument is able to measure intrinsic viscosities in a straightforward manner. This simple and innovative approach should give a new boost to intrinsic viscosity measurements and should reignite the interest of biophysicists, immunologists, structural biologists and other researchers for this key physicochemical parameter.
Collapse
|
7
|
Palanisamy D, den Otter WK. Fluctuating Brownian stresslets and the intrinsic viscosity of colloidal suspensions. J Chem Phys 2020; 152:074901. [DOI: 10.1063/1.5141527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Duraivelan Palanisamy
- MultiScale Mechanics, Faculty of Engineering Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wouter K. den Otter
- MultiScale Mechanics, Faculty of Engineering Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
8
|
Palanisamy D, den Otter WK. Intrinsic viscosities of non-spherical colloids by Brownian dynamics simulations. J Chem Phys 2019; 151:184902. [DOI: 10.1063/1.5127001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Duraivelan Palanisamy
- Multi-Scale Mechanics, Faculty of Engineering Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wouter K. den Otter
- Multi-Scale Mechanics, Faculty of Engineering Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
9
|
Hydrodynamic and Electrophoretic Properties of Trastuzumab/HER2 Extracellular Domain Complexes as Revealed by Experimental Techniques and Computational Simulations. Int J Mol Sci 2019; 20:ijms20051076. [PMID: 30832287 PMCID: PMC6429128 DOI: 10.3390/ijms20051076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 11/18/2022] Open
Abstract
The combination of hydrodynamic and electrophoretic experiments and computer simulations is a powerful approach to study the interaction between proteins. In this work, we present hydrodynamic and electrophoretic experiments in an aqueous solution along with molecular dynamics and hydrodynamic modeling to monitor and compute biophysical properties of the interactions between the extracellular domain of the HER2 protein (eHER2) and the monoclonal antibody trastuzumab (TZM). The importance of this system relies on the fact that the overexpression of HER2 protein is related with the poor prognosis breast cancers (HER2++ positives), while the TZM is a monoclonal antibody for the treatment of this cancer. We have found and characterized two different complexes between the TZM and eHER2 proteins (1:1 and 1:2 TZM:eHER2 complexes). The conformational features of these complexes regulate their hydrodynamic and electrostatic properties. Thus, the results indicate a high degree of molecular flexibility in the systems that ultimately leads to higher values of the intrinsic viscosity, as well as lower values of diffusion coefficient than those expected for simple globular proteins. A highly asymmetric charge distribution is detected for the monovalent complex (1:1 complex), which has strong implications in correlations between the experimental electrophoretic mobility and the modeled net charge. In order to understand the dynamics of these systems and the role of the specific domains involved, it is essential to find biophysical correlations between dynamics, macroscopic transport and electrostatic properties. The results should be of general interest for researchers working in this area.
Collapse
|
10
|
Zuk PJ, Cichocki B, Szymczak P. GRPY: An Accurate Bead Method for Calculation of Hydrodynamic Properties of Rigid Biomacromolecules. Biophys J 2018; 115:782-800. [PMID: 30144937 PMCID: PMC6127458 DOI: 10.1016/j.bpj.2018.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022] Open
Abstract
Two main problems that arise in the context of hydrodynamic bead modeling are an inaccurate treatment of bead overlaps and the necessity of using volume corrections when calculating intrinsic viscosity. We present a formalism based on the generalized Rotne-Prager-Yamakawa approximation that successfully addresses both of these issues. The generalized Rotne-Prager-Yamakawa method is shown to be highly effective for the calculation of transport properties of rigid biomolecules represented as assemblies of spherical beads of different sizes, both overlapping and nonoverlapping. We test the method on simple molecular shapes as well as real protein structures and compare its performance with other computational approaches.
Collapse
Affiliation(s)
- Pawel J Zuk
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
| | - Bogdan Cichocki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Piotr Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
11
|
LeBrun T, Schuck P, Wei R, Yoon JS, Dong X, Morgan NY, Fagan J, Zhao H. A radial calibration window for analytical ultracentrifugation. PLoS One 2018; 13:e0201529. [PMID: 30059530 PMCID: PMC6066226 DOI: 10.1371/journal.pone.0201529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/17/2018] [Indexed: 12/23/2022] Open
Abstract
Analytical ultracentrifugation (AUC) is a first-principles based method for studying macromolecules and particles in solution by monitoring the evolution of their radial concentration distribution as a function of time in the presence of a high centrifugal field. In sedimentation velocity experiments, hydrodynamic properties relating to size, shape, density, and solvation of particles can be measured, at a high hydrodynamic resolution, on polydisperse samples. In a recent multilaboratory benchmark study including data from commercial analytical ultracentrifuges in 67 laboratories, the calibration accuracy of the radial dimension was found to be one of the dominant factors limiting the accuracy of AUC. In the present work, we develop an artifact consisting of an accurately calibrated reflective pattern lithographically deposited onto an AUC window. It serves as a reticle when scanned in AUC control experiments for absolute calibration of radial magnification. After analysis of the pitch between landmarks in scans using different optical systems, we estimate that the residual uncertainty in radial magnification after external calibration with the radial scale artifact is ≈0.2 %, of similar magnitude to other important contributions after external calibration such as the uncertainty in temperature and time. The previous multilaboratory study had found many instruments with errors in radial measurements of 1 % to 2 %, and a few instruments with errors in excess of 15 %, meaning that the use of the artifact developed here could reduce errors by 5-to 10-fold or more. Adoption of external radial calibration is thus an important factor for assuring accuracy in studies related to molecular hydrodynamics and particle size measurements by AUC.
Collapse
Affiliation(s)
- Thomas LeBrun
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, United States of America
- * E-mail: (TL); (PS); (HZ)
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
- * E-mail: (TL); (PS); (HZ)
| | - Ren Wei
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, United States of America
| | - Justine S. Yoon
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Xianghui Dong
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Nicole Y. Morgan
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Jeffrey Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, United States of America
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
- * E-mail: (TL); (PS); (HZ)
| |
Collapse
|
12
|
Palanisamy D, den Otter WK. Efficient Brownian Dynamics of rigid colloids in linear flow fields based on the grand mobility matrix. J Chem Phys 2018; 148:194112. [DOI: 10.1063/1.5027063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Duraivelan Palanisamy
- Multi-Scale Mechanics, Faculty of Engineering Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wouter K. den Otter
- Multi-Scale Mechanics, Faculty of Engineering Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
13
|
Vega JF, Ramos J, Cruz VL, Vicente-Alique E, Sánchez-Sánchez E, Sánchez-Fernández A, Wang Y, Hu P, Cortés J, Martínez-Salazar J. Molecular and hydrodynamic properties of human epidermal growth factor receptor HER2 extracellular domain and its homodimer: Experiments and multi-scale simulations. Biochim Biophys Acta Gen Subj 2017. [PMID: 28642126 DOI: 10.1016/j.bbagen.2017.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND In a broad range of human carcinomas gene amplification leads to HER2 overexpression, which has been proposed to cause spontaneous dimerization and activation in the absence of ligand. This makes HER2 attractive as a therapeutic target. However, the HER2 homodimerization mechanism remains unexplored. It has been suggested that the "back-to-back" homodimer does not form in solution. Notwithstanding, very recently the crystal structure of the HER2 extracellular domain homodimer formed with a "back-to-head" interaction has been resolved. We intend to explore the existence of such interactions. METHODS A combination of experiments, molecular dynamics and hydrodynamic modeling were used to monitor the transport properties of HER2 in solution. RESULTS & CONCLUSIONS We have detected the HER2 extracellular domain homodimer in solution. The results show a high degree of molecular flexibility, which ultimately leads to quite higher values of the intrinsic viscosity and lower values of diffusion coefficient than those corresponding to globular proteins. This flexibility obeys to the open conformation of the receptor and to the large fluctuations of the different domains. We also report that for obtaining the correct hydrodynamic constants from the modeling one must consider the glycosylation of the systems. GENERAL SIGNIFICANCE Conformational features of epidermal growth factor receptors regulate their hydrodynamic properties and control their activity. It is essential to understand the dynamics of these systems and the role of the specific domains involved. To find biophysical correlations between dynamics and macroscopic transport properties is of general interest for researches working in this area. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- J F Vega
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain.
| | - J Ramos
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| | - V L Cruz
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| | - E Vicente-Alique
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| | - E Sánchez-Sánchez
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| | - A Sánchez-Fernández
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| | - Y Wang
- Sino Biological, Inc., Beijing, People's Republic of China
| | - P Hu
- Sino Biological, Inc., Beijing, People's Republic of China
| | - J Cortés
- Ramon y Cajal University Hospital, Ctra. de Colmenar Viejo, km 9,100, 28034 Madrid, Spain; Vall D'Hebron Institute of Oncology (VHIO), Paseo Vall Hebron 119-129, 08035 Barcelona, Spain
| | - J Martínez-Salazar
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| |
Collapse
|
14
|
Chaturvedi SK, Zhao H, Schuck P. Sedimentation of Reversibly Interacting Macromolecules with Changes in Fluorescence Quantum Yield. Biophys J 2017; 112:1374-1382. [PMID: 28402880 DOI: 10.1016/j.bpj.2017.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/10/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022] Open
Abstract
Sedimentation velocity analytical ultracentrifugation with fluorescence detection has emerged as a powerful method for the study of interacting systems of macromolecules. It combines picomolar sensitivity with high hydrodynamic resolution, and can be carried out with photoswitchable fluorophores for multicomponent discrimination, to determine the stoichiometry, affinity, and shape of macromolecular complexes with dissociation equilibrium constants from picomolar to micromolar. A popular approach for data interpretation is the determination of the binding affinity by isotherms of weight-average sedimentation coefficients sw. A prevailing dogma in sedimentation analysis is that the weight-average sedimentation coefficient from the transport method corresponds to the signal- and population-weighted average of all species. We show that this does not always hold true for systems that exhibit significant signal changes with complex formation-properties that may be readily encountered in practice, e.g., from a change in fluorescence quantum yield. Coupled transport in the reaction boundary of rapidly reversible systems can make significant contributions to the observed migration in a way that cannot be accounted for in the standard population-based average. Effective particle theory provides a simple physical picture for the reaction-coupled migration process. On this basis, we develop a more general binding model that converges to the well-known form of sw with constant signals, but can account simultaneously for hydrodynamic cotransport in the presence of changes in fluorescence quantum yield. We believe this will be useful when studying interacting systems exhibiting fluorescence quenching, enhancement, or Förster resonance energy transfer with transport methods.
Collapse
Affiliation(s)
- Sumit K Chaturvedi
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
15
|
Desai A, Krynitsky J, Pohida TJ, Zhao H, Schuck P. 3D-Printing for Analytical Ultracentrifugation. PLoS One 2016; 11:e0155201. [PMID: 27525659 PMCID: PMC4985148 DOI: 10.1371/journal.pone.0155201] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/13/2016] [Indexed: 11/30/2022] Open
Abstract
Analytical ultracentrifugation (AUC) is a classical technique of physical biochemistry providing information on size, shape, and interactions of macromolecules from the analysis of their migration in centrifugal fields while free in solution. A key mechanical element in AUC is the centerpiece, a component of the sample cell assembly that is mounted between the optical windows to allow imaging and to seal the sample solution column against high vacuum while exposed to gravitational forces in excess of 300,000 g. For sedimentation velocity it needs to be precisely sector-shaped to allow unimpeded radial macromolecular migration. During the history of AUC a great variety of centerpiece designs have been developed for different types of experiments. Here, we report that centerpieces can now be readily fabricated by 3D printing at low cost, from a variety of materials, and with customized designs. The new centerpieces can exhibit sufficient mechanical stability to withstand the gravitational forces at the highest rotor speeds and be sufficiently precise for sedimentation equilibrium and sedimentation velocity experiments. Sedimentation velocity experiments with bovine serum albumin as a reference molecule in 3D printed centerpieces with standard double-sector design result in sedimentation boundaries virtually indistinguishable from those in commercial double-sector epoxy centerpieces, with sedimentation coefficients well within the range of published values. The statistical error of the measurement is slightly above that obtained with commercial epoxy, but still below 1%. Facilitated by modern open-source design and fabrication paradigms, we believe 3D printed centerpieces and AUC accessories can spawn a variety of improvements in AUC experimental design, efficiency and resource allocation.
Collapse
Affiliation(s)
- Abhiksha Desai
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Jonathan Krynitsky
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Thomas J. Pohida
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
The hydrodynamic parameters measured in an AUC experiment, s(20,w) and D(t)(20,w)(0), can be used to gain information on the solution structure of (bio)macromolecules and their assemblies. This entails comparing the measured parameters with those that can be computed from usually "dry" structures by "hydrodynamic modeling." In this chapter, we will first briefly put hydrodynamic modeling in perspective and present the basic physics behind it as implemented in the most commonly used methods. The important "hydration" issue is also touched upon, and the distinction between rigid bodies versus those for which flexibility must be considered in the modeling process is then made. The available hydrodynamic modeling/computation programs, HYDROPRO, BEST, SoMo, AtoB, and Zeno, the latter four all implemented within the US-SOMO suite, are described and their performance evaluated. Finally, some literature examples are presented to illustrate the potential applications of hydrodynamics in the expanding field of multiresolution modeling.
Collapse
Affiliation(s)
- Mattia Rocco
- Biopolimeri e Proteomica, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy.
| | - Olwyn Byron
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom.
| |
Collapse
|
17
|
Rocco M, Byron O. Computing translational diffusion and sedimentation coefficients: an evaluation of experimental data and programs. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:417-31. [DOI: 10.1007/s00249-015-1042-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/04/2015] [Accepted: 05/13/2015] [Indexed: 11/28/2022]
|
18
|
Zhao H, Ghirlando R, Alfonso C, Arisaka F, Attali I, Bain DL, Bakhtina MM, Becker DF, Bedwell GJ, Bekdemir A, Besong TMD, Birck C, Brautigam CA, Brennerman W, Byron O, Bzowska A, Chaires JB, Chaton CT, Cölfen H, Connaghan KD, Crowley KA, Curth U, Daviter T, Dean WL, Díez AI, Ebel C, Eckert DM, Eisele LE, Eisenstein E, England P, Escalante C, Fagan JA, Fairman R, Finn RM, Fischle W, de la Torre JG, Gor J, Gustafsson H, Hall D, Harding SE, Cifre JGH, Herr AB, Howell EE, Isaac RS, Jao SC, Jose D, Kim SJ, Kokona B, Kornblatt JA, Kosek D, Krayukhina E, Krzizike D, Kusznir EA, Kwon H, Larson A, Laue TM, Le Roy A, Leech AP, Lilie H, Luger K, Luque-Ortega JR, Ma J, May CA, Maynard EL, Modrak-Wojcik A, Mok YF, Mücke N, Nagel-Steger L, Narlikar GJ, Noda M, Nourse A, Obsil T, Park CK, Park JK, Pawelek PD, Perdue EE, Perkins SJ, Perugini MA, Peterson CL, Peverelli MG, Piszczek G, Prag G, Prevelige PE, Raynal BDE, Rezabkova L, Richter K, Ringel AE, Rosenberg R, Rowe AJ, Rufer AC, Scott DJ, Seravalli JG, Solovyova AS, Song R, Staunton D, Stoddard C, Stott K, Strauss HM, Streicher WW, Sumida JP, et alZhao H, Ghirlando R, Alfonso C, Arisaka F, Attali I, Bain DL, Bakhtina MM, Becker DF, Bedwell GJ, Bekdemir A, Besong TMD, Birck C, Brautigam CA, Brennerman W, Byron O, Bzowska A, Chaires JB, Chaton CT, Cölfen H, Connaghan KD, Crowley KA, Curth U, Daviter T, Dean WL, Díez AI, Ebel C, Eckert DM, Eisele LE, Eisenstein E, England P, Escalante C, Fagan JA, Fairman R, Finn RM, Fischle W, de la Torre JG, Gor J, Gustafsson H, Hall D, Harding SE, Cifre JGH, Herr AB, Howell EE, Isaac RS, Jao SC, Jose D, Kim SJ, Kokona B, Kornblatt JA, Kosek D, Krayukhina E, Krzizike D, Kusznir EA, Kwon H, Larson A, Laue TM, Le Roy A, Leech AP, Lilie H, Luger K, Luque-Ortega JR, Ma J, May CA, Maynard EL, Modrak-Wojcik A, Mok YF, Mücke N, Nagel-Steger L, Narlikar GJ, Noda M, Nourse A, Obsil T, Park CK, Park JK, Pawelek PD, Perdue EE, Perkins SJ, Perugini MA, Peterson CL, Peverelli MG, Piszczek G, Prag G, Prevelige PE, Raynal BDE, Rezabkova L, Richter K, Ringel AE, Rosenberg R, Rowe AJ, Rufer AC, Scott DJ, Seravalli JG, Solovyova AS, Song R, Staunton D, Stoddard C, Stott K, Strauss HM, Streicher WW, Sumida JP, Swygert SG, Szczepanowski RH, Tessmer I, Toth RT, Tripathy A, Uchiyama S, Uebel SFW, Unzai S, Gruber AV, von Hippel PH, Wandrey C, Wang SH, Weitzel SE, Wielgus-Kutrowska B, Wolberger C, Wolff M, Wright E, Wu YS, Wubben JM, Schuck P. A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation. PLoS One 2015; 10:e0126420. [PMID: 25997164 PMCID: PMC4440767 DOI: 10.1371/journal.pone.0126420] [Show More Authors] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022] Open
Abstract
Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Carlos Alfonso
- Analytical Ultracentrifugacion and Light Scattering Facility, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Fumio Arisaka
- Life Science Research Center, Nihon University, College of Bioresource Science, Fujisawa, 252–0880, Japan
| | - Ilan Attali
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - David L. Bain
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, 80045, United States of America
| | - Marina M. Bakhtina
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Donald F. Becker
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States of America
| | - Gregory J. Bedwell
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Ahmet Bekdemir
- Supramolecular Nanomaterials and Interfaces Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Tabot M. D. Besong
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, School of Biosciences, Sutton Bonington, LE12 5RD, United Kingdom
| | | | - Chad A. Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
| | - William Brennerman
- Beckman Coulter, Inc., Life Science Division, Indianapolis, Indiana, 46268, United States of America
| | - Olwyn Byron
- School of Life Sciences, University of Glasgow, Glasgow, G37TT, United Kingdom
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, 02–089, Poland
| | - Jonathan B. Chaires
- JG Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Catherine T. Chaton
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, United States of America
| | - Helmut Cölfen
- Physical Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Keith D. Connaghan
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, 80045, United States of America
| | - Kimberly A. Crowley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, 01605, United States of America
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Tina Daviter
- Institute of Structural and Molecular Biology Biophysics Centre, Birkbeck, University of London and University College London, London, WC1E 7HX, United Kingdom
| | - William L. Dean
- JG Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Ana I. Díez
- Department of Physical Chemistry, University of Murcia, Murcia, 30071, Spain
| | - Christine Ebel
- Univ. Grenoble Alpes, IBS, F-38044, Grenoble, France
- CNRS, IBS, F-38044, Grenoble, France
- CEA, IBS, F-38044, Grenoble, France
| | - Debra M. Eckert
- Protein Interactions Core, Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, 84112, United States of America
| | - Leslie E. Eisele
- Wadsworth Center, New York State Department of Health, Albany, New York, 12208, United States of America
| | - Edward Eisenstein
- Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland, 20850, United States of America
| | - Patrick England
- Institut Pasteur, Centre of Biophysics of Macromolecules and Their Interactions, Paris, 75724, France
| | - Carlos Escalante
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, 23220, United States of America
| | - Jeffrey A. Fagan
- Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, United States of America
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, Pennsylvania, 19041, United States of America
| | - Ron M. Finn
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | | | - Jayesh Gor
- Department of Structural and Molecular Biology, Darwin Building, University College London, London, WC1E 6BT, United Kingdom
| | | | - Damien Hall
- Research School of Chemistry, Section on Biological Chemistry, The Australian National University, Acton, ACT 0200, Australia
| | - Stephen E. Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, School of Biosciences, Sutton Bonington, LE12 5RD, United Kingdom
| | | | - Andrew B. Herr
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, United States of America
| | - Elizabeth E. Howell
- Biochemistry, Cell and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, 37996–0840, United States of America
| | - Richard S. Isaac
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, 94158, United States of America
- Tetrad Graduate Program, University of California San Francisco, San Francisco, California, 94158, United States of America
| | - Shu-Chuan Jao
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Biophysics Core Facility, Scientific Instrument Center, Academia Sinica, Taipei, 115, Taiwan
| | - Davis Jose
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Soon-Jong Kim
- Department of Chemistry, Mokpo National University, Muan, 534–729, Korea
| | - Bashkim Kokona
- Department of Biology, Haverford College, Haverford, Pennsylvania, 19041, United States of America
| | - Jack A. Kornblatt
- Enzyme Research Group, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Dalibor Kosek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague, 12843, Czech Republic
| | - Elena Krayukhina
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 565–0871, Japan
| | - Daniel Krzizike
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Eric A. Kusznir
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-LaRoche Ltd., Basel, 4070, Switzerland
| | - Hyewon Kwon
- Analytical Biopharmacy Core, University of Washington, Seattle, Washington, 98195, United States of America
| | - Adam Larson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, 94158, United States of America
- Tetrad Graduate Program, University of California San Francisco, San Francisco, California, 94158, United States of America
| | - Thomas M. Laue
- Department of Biochemistry, University of New Hampshire, Durham, New Hampshire, 03824, United States of America
| | - Aline Le Roy
- Univ. Grenoble Alpes, IBS, F-38044, Grenoble, France
- CNRS, IBS, F-38044, Grenoble, France
- CEA, IBS, F-38044, Grenoble, France
| | - Andrew P. Leech
- Technology Facility, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Karolin Luger
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Juan R. Luque-Ortega
- Analytical Ultracentrifugacion and Light Scattering Facility, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Jia Ma
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Carrie A. May
- Department of Biochemistry, University of New Hampshire, Durham, New Hampshire, 03824, United States of America
| | - Ernest L. Maynard
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20814, United States of America
| | - Anna Modrak-Wojcik
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, 02–089, Poland
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology, Bio21 Instute of Molecular Science and Biotechnology, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Norbert Mücke
- Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, 69120, Germany
| | | | - Geeta J. Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, 94158, United States of America
| | - Masanori Noda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 565–0871, Japan
| | - Amanda Nourse
- Molecular Interaction Analysis Shared Resource, St. Jude Children’s Research Hospital, Memphis, Tennessee, 38105, United States of America
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague, 12843, Czech Republic
| | - Chad K. Park
- Analytical Biophysics & Materials Characterization, Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, United States of America
| | - Jin-Ku Park
- Central Instrument Center, Mokpo National University, Muan, 534–729, Korea
| | - Peter D. Pawelek
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Erby E. Perdue
- Beckman Coulter, Inc., Life Science Division, Indianapolis, Indiana, 46268, United States of America
| | - Stephen J. Perkins
- Department of Structural and Molecular Biology, Darwin Building, University College London, London, WC1E 6BT, United Kingdom
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Craig L. Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, 01605, United States of America
| | - Martin G. Peverelli
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Grzegorz Piszczek
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Gali Prag
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Peter E. Prevelige
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Bertrand D. E. Raynal
- Institut Pasteur, Centre of Biophysics of Macromolecules and Their Interactions, Paris, 75724, France
| | - Lenka Rezabkova
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Klaus Richter
- Department of Chemistry and Center for Integrated Protein Science, Technische Universität München, 85748, Garching, Germany
| | - Alison E. Ringel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Rose Rosenberg
- Physical Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Arthur J. Rowe
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, School of Biosciences, Sutton Bonington, LE12 5RD, United Kingdom
| | - Arne C. Rufer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-LaRoche Ltd., Basel, 4070, Switzerland
| | - David J. Scott
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, United Kingdom
| | - Javier G. Seravalli
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States of America
| | - Alexandra S. Solovyova
- Proteome and Protein Analysis, University of Newcastle, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Renjie Song
- Wadsworth Center, New York State Department of Health, Albany, New York, 12208, United States of America
| | - David Staunton
- Molecular Biophysics Suite, Department of Biochemistry, Oxford, Oxon, OX1 3QU, United Kingdom
| | - Caitlin Stoddard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, 94158, United States of America
- Tetrad Graduate Program, University of California San Francisco, San Francisco, California, 94158, United States of America
| | - Katherine Stott
- Biochemistry Department, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | | | - Werner W. Streicher
- Protein Function and Interactions, Novo Nordisk Foundation Center for Protein Research, Copenhagen, 2200, Denmark
| | - John P. Sumida
- Analytical Biopharmacy Core, University of Washington, Seattle, Washington, 98195, United States of America
| | - Sarah G. Swygert
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, 01605, United States of America
| | - Roman H. Szczepanowski
- Core Facility, International Institute of Molecular and Cell Biology, Warsaw, 02–109, Poland
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Ronald T. Toth
- Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, 66047, United States of America
| | - Ashutosh Tripathy
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 565–0871, Japan
| | - Stephan F. W. Uebel
- Biochemistry Core Facility, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Satoru Unzai
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230–0045, Japan
| | - Anna Vitlin Gruber
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Peter H. von Hippel
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Christine Wandrey
- Laboratoire de Médecine Régénérative et de Pharmacobiologie, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Szu-Huan Wang
- Biophysics Core Facility, Scientific Instrument Center, Academia Sinica, Taipei, 115, Taiwan
| | - Steven E. Weitzel
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, 02–089, Poland
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Martin Wolff
- ICS-6, Structural Biochemistry, Research Center Juelich, 52428, Juelich, Germany
| | - Edward Wright
- Biochemistry, Cell and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, 37996–0840, United States of America
| | - Yu-Sung Wu
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, United States of America
| | - Jacinta M. Wubben
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
- * E-mail:
| |
Collapse
|
19
|
The protein and contrast agent-specific influence of pathological plasma-protein concentration levels on contrast-enhanced magnetic resonance imaging. Invest Radiol 2015; 49:608-19. [PMID: 24710201 DOI: 10.1097/rli.0000000000000061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of this study was to measure the protein-specific response of r1 and r2 relaxivities of commercially available gadolinium-based magnetic resonance imaging contrast agents to variation of plasma-protein concentrations. MATERIALS AND METHODS In this in vitro study, contrast agent (gadofosveset trisodium, gadoxetate disodium, gadobutrol, and gadoterate meglumine) dilution series (0-2.5 mmol Gd/L) were prepared with plasma-protein (human serum albumin [HSA] and immunoglobulin G [IgG]) concentrations at physiological (42 and 10 g/L HSA and IgG, respectively, Normal) and at 3 pathological levels with HSA/IgG concentrations of 10/10 (solution Alb low), 42/50 (IgG mild), and 42/70 (IgG severe) g/L. Contrast-agent molar relaxivities and relaxivity-enhancing protein-contrast-agent interaction coefficients were determined on the basis of inversion-recovery and spin-echo data acquired at 1.5 and 3.0 T at 37°C. Protein-induced magnetic resonance imaging signal changes were calculated. RESULTS The effective r1 and r2 molar relaxivities consistently increased with albumin and IgG concentrations. At 1.5 T, the r1 values increased by 10.2 (gadofosveset), 4.3 (gadoxetate), 1.3 (gadobutrol), and 1.1 L s mmol (gadoterate), respectively, from the Alb low to the IgG severe solution. At 3.0 T, the r1 values increased by 2.9 (gadofosveset), 2.3 (gadoxetate), 0.7 (gadobutrol), and 0.9 (gadoterate) L s mmol, respectively. An excess of IgG most strongly increased the r1 of gadoxetate (+40 and +19% at 1.5 and 3.0 T, respectively, from Normal to IgG severe). An albumin deficiency most strongly decreased the r1 of gadofosveset (-44% and -20% at 1.5 and 3.0 T, respectively, from Normal to Alb low). The modeling confirmed a strong gadofosveset r1 enhancement by albumin and suggested stronger IgG than albumin effects on the apparent molar relaxivity of the other agents per protein mass concentration at 1.5 T. CONCLUSIONS Pathological deviations from normal plasma-protein concentrations in aqueous solutions result in changes of effective r1 and r2 contrast-agent relaxivities and projected signal enhancements that depend on the contrast agent, the blood-serum protein profile, and the field strength.
Collapse
|
20
|
Ma J, Zhao H, Schuck P. A histogram approach to the quality of fit in sedimentation velocity analyses. Anal Biochem 2015; 483:1-3. [PMID: 25959995 DOI: 10.1016/j.ab.2015.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
The quality of fit of sedimentation velocity data is critical to judge the veracity of the sedimentation model and accuracy of the derived macromolecular parameters. Absolute statistical measures are usually complicated by the presence of characteristic systematic errors and run-to-run variation in the stochastic noise of data acquisition. We present a new graphical approach to visualize systematic deviations between data and model in the form of a histogram of residuals. In comparison with the ideally expected Gaussian distribution, it can provide a robust measure of fit quality and be used to flag poor models.
Collapse
Affiliation(s)
- Jia Ma
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Rezaei-Ghaleh N, Klama F, Munari F, Zweckstetter M. HYCUD: a computational tool for prediction of effective rotational correlation time in flexible proteins. Bioinformatics 2014; 31:1319-21. [DOI: 10.1093/bioinformatics/btu824] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/08/2014] [Indexed: 11/14/2022] Open
|
22
|
Abstract
We study the equilibrium liquid structure and dynamics of dilute and concentrated bovine eye lens α-crystallin solutions, using small-angle X-ray scattering, static and dynamic light scattering, viscometry, molecular dynamics simulations, and mode-coupling theory. We find that a polydisperse Percus-Yevick hard-sphere liquid-structure model accurately reproduces both static light scattering data and small-angle X-ray scattering liquid structure data from α-crystallin solutions over an extended range of protein concentrations up to 290 mg/mL or 49% vol fraction and up to ca. 330 mg/mL for static light scattering. The measured dynamic light scattering and viscosity properties are also consistent with those of hard-sphere colloids and show power laws characteristic of an approach toward a glass transition at α-crystallin volume fractions near 58%. Dynamic light scattering at a volume fraction beyond the glass transition indicates formation of an arrested state. We further perform event-driven molecular dynamics simulations of polydisperse hard-sphere systems and use mode-coupling theory to compare the measured dynamic power laws with those of hard-sphere models. The static and dynamic data, simulations, and analysis show that aqueous eye lens α-crystallin solutions exhibit a glass transition at high concentrations that is similar to those found in hard-sphere colloidal systems. The α-crystallin glass transition could have implications for the molecular basis of presbyopia and the kinetics of molecular change during cataractogenesis.
Collapse
|
23
|
Zhao H, Ma J, Ingaramo M, Andrade E, MacDonald J, Ramsay G, Piszczek G, Patterson GH, Schuck P. Accounting for photophysical processes and specific signal intensity changes in fluorescence-detected sedimentation velocity. Anal Chem 2014; 86:9286-92. [PMID: 25136929 PMCID: PMC4165462 DOI: 10.1021/ac502478a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Fluorescence detected sedimentation
velocity (FDS-SV) has emerged
as a powerful technique for the study of high-affinity protein interactions,
with hydrodynamic resolution exceeding that of diffusion-based techniques,
and with sufficient sensitivity for binding studies at low picomolar
concentrations. For the detailed quantitative analysis of the observed
sedimentation boundaries, it is necessary to adjust the conventional
sedimentation models to the FDS data structure. A key consideration
is the change in the macromolecular fluorescence intensity during
the course of the experiment, caused by slow drifts of the excitation
laser power, and/or by photophysical processes. In the present work,
we demonstrate that FDS-SV data have inherently a reference for the
time-dependent macromolecular signal intensity, resting on a geometric
link between radial boundary migration and plateau signal. We show
how this new time-domain can be exploited to study molecules exhibiting
photobleaching and photoactivation. This expands the application of
FDS-SV to proteins tagged with photoswitchable fluorescent proteins,
organic dyes, or nanoparticles, such as those recently introduced
for subdiffraction microscopy and enables FDS-SV studies of their
interactions and size distributions. At the same time, we find that
conventional fluorophores undergo minimal photobleaching under standard
illumination in the FDS. These findings support the application of
a high laser power density for the detection, which we demonstrate
can further increase the signal quality.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Długosz M, Antosiewicz JM. Transient Effects of Excluded Volume Interactions on the Translational Diffusion of Hydrodynamically Anisotropic Molecules. J Chem Theory Comput 2014; 10:2583-90. [DOI: 10.1021/ct500124r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Maciej Długosz
- Center of New Technologies, University of Warsaw, Żwirki i Wigury 93, Warsaw 02-089, Poland
| | - Jan M. Antosiewicz
- Department of Biophysics,
Faculty of Physics, University of Warsaw, Żwirki i Wigury 93, Warsaw 02-089, Poland
| |
Collapse
|
25
|
Ghirlando R, Zhao H, Balbo A, Piszczek G, Curth U, Brautigam CA, Schuck P. Measurement of the temperature of the resting rotor in analytical ultracentrifugation. Anal Biochem 2014; 458:37-9. [PMID: 24799348 DOI: 10.1016/j.ab.2014.04.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 11/27/2022]
Abstract
Accurate measurements of rotor temperature are critical for the interpretation of hydrodynamic parameters in analytical ultracentrifugation. We have recently developed methods for a more accurate determination of the temperature of a spinning rotor using iButton temperature loggers. Here we report that the temperature measured with the iButton on the counterbalance of a resting rotor, following thermal equilibration under high vacuum, closely corresponded to the temperature of the spinning rotor with a precision better than 0.2°C. This strategy offers an inexpensive and straightforward approach to monitor the accuracy of the temperature calibration and determine corrective temperature offsets.
Collapse
Affiliation(s)
- Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea Balbo
- Bioengineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Chad A Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Improved measurement of the rotor temperature in analytical ultracentrifugation. Anal Biochem 2014; 451:69-75. [PMID: 24530285 DOI: 10.1016/j.ab.2014.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 11/24/2022]
Abstract
Sedimentation velocity is a classical method for measuring the hydrodynamic, translational friction coefficient of biological macromolecules. In a recent study comparing various analytical ultracentrifuges, we showed that external calibration of the scan time, radial magnification, and temperature is critically important for accurate measurements (Anal. Biochem. 440 (2013) 81-95). To achieve accurate temperature calibration, we introduced the use of an autonomous miniature temperature logging integrated circuit (Maxim Thermochron iButton) that can be inserted into an ultracentrifugation cell assembly and spun at low rotor speeds. In the current work, we developed an improved holder for the temperature sensor located in the rotor handle. This has the advantage of not reducing the rotor capacity and allowing for a direct temperature measurement of the spinning rotor during high-speed sedimentation velocity experiments up to 60,000rpm. We demonstrated the sensitivity of this approach by monitoring the adiabatic cooling due to rotor stretching during rotor acceleration and the reverse process on rotor deceleration. Based on this, we developed a procedure to approximate isothermal rotor acceleration for better temperature control.
Collapse
|
27
|
Zhao H, Chen Y, Rezabkova L, Wu Z, Wistow G, Schuck P. Solution properties of γ-crystallins: hydration of fish and mammal γ-crystallins. Protein Sci 2013; 23:88-99. [PMID: 24282025 DOI: 10.1002/pro.2394] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 11/06/2022]
Abstract
Lens γ crystallins are found at the highest protein concentration of any tissue, ranging from 300 mg/mL in some mammals to over 1000 mg/mL in fish. Such high concentrations are necessary for the refraction of light, but impose extreme requirements for protein stability and solubility. γ-crystallins, small stable monomeric proteins, are particularly associated with the lowest hydration regions of the lens. Here, we examine the solvation of selected γ-crystallins from mammals (human γD and mouse γS) and fish (zebrafish γM2b and γM7). The thermodynamic water binding coefficient B₁ could be probed by sucrose expulsion, and the hydrodynamic hydration shell of tightly bound water was probed by translational diffusion and structure-based hydrodynamic boundary element modeling. While the amount of tightly bound water of human γD was consistent with that of average proteins, the water binding of mouse γS was found to be relatively low. γM2b and γM7 crystallins were found to exhibit extremely low degrees hydration, consistent with their role in the fish lens. γM crystallins have a very high methionine content, in some species up to 15%. Structure-based modeling of hydration in γM7 crystallin suggests low hydration is associated with the large number of surface methionine residues, likely in adaptation to the extremely high concentration and low hydration environment in fish lenses. Overall, the degree of hydration appears to balance stability and tissue density requirements required to produce and maintain the optical properties of the lens in different vertebrate species.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, Bethesda, Maryland, 20892
| | | | | | | | | | | |
Collapse
|
28
|
Rezaei-Ghaleh N, Klama F, Munari F, Zweckstetter M. Vorhersage der Rotationskorrelationszeit in dynamischen Mehrdomänenproteinen und supramolekularen Komplexen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Rezaei-Ghaleh N, Klama F, Munari F, Zweckstetter M. Predicting the Rotational Tumbling of Dynamic Multidomain Proteins and Supramolecular Complexes. Angew Chem Int Ed Engl 2013; 52:11410-4. [DOI: 10.1002/anie.201305094] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Indexed: 01/10/2023]
|
30
|
Ghirlando R, Balbo A, Piszczek G, Brown PH, Lewis MS, Brautigam CA, Schuck P, Zhao H. Improving the thermal, radial, and temporal accuracy of the analytical ultracentrifuge through external references. Anal Biochem 2013; 440:81-95. [PMID: 23711724 PMCID: PMC3826449 DOI: 10.1016/j.ab.2013.05.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 11/21/2022]
Abstract
Sedimentation velocity (SV) is a method based on first principles that provides a precise hydrodynamic characterization of macromolecules in solution. Due to recent improvements in data analysis, the accuracy of experimental SV data emerges as a limiting factor in its interpretation. Our goal was to unravel the sources of experimental error and develop improved calibration procedures. We implemented the use of a Thermochron iButton temperature logger to directly measure the temperature of a spinning rotor and detected deviations that can translate into an error of as much as 10% in the sedimentation coefficient. We further designed a precision mask with equidistant markers to correct for instrumental errors in the radial calibration that were observed to span a range of 8.6%. The need for an independent time calibration emerged with use of the current data acquisition software (Zhao et al., Anal. Biochem., 437 (2013) 104-108), and we now show that smaller but significant time errors of up to 2% also occur with earlier versions. After application of these calibration corrections, the sedimentation coefficients obtained from 11 instruments displayed a significantly reduced standard deviation of approximately 0.7%. This study demonstrates the need for external calibration procedures and regular control experiments with a sedimentation coefficient standard.
Collapse
Affiliation(s)
- Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD
| | - Andrea Balbo
- Bioengineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD
| | - Grzegorz Piszczek
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD
| | - Patrick H. Brown
- Bioengineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD
| | - Marc S. Lewis
- Bioengineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD
| | - Chad A. Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD
| |
Collapse
|
31
|
Deiber JA, Piaggio MV, Peirotti MB. Evaluation of the slip length in the slipping friction between background electrolytes and peptides through the modeling of their capillary zone electrophoretic mobilities. Electrophoresis 2013; 34:2648-54. [DOI: 10.1002/elps.201300102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/30/2013] [Accepted: 04/02/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Julio A. Deiber
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); UNL, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe; Argentina
| | - Maria V. Piaggio
- Cátedra de Bioquímica Básica de Macromoléculas; Facultad de Bioquímica y Ciencias Biológicas; Universidad Nacional del Litoral (UNL); Santa Fe; Argentina
| | - Marta B. Peirotti
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); UNL, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe; Argentina
| |
Collapse
|
32
|
Długosz M, Antosiewicz JM. Hydrodynamic effects on the relative rotational velocity of associating proteins. J Phys Chem B 2013; 117:6165-74. [PMID: 23631732 DOI: 10.1021/jp402534c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrodynamic steering effects on the barnase-barstar association were studied through the analysis of the relative rotational velocity of the proteins. We considered the two proteins approaching each other in response to their electrostatic attraction and employed a method that accounts for the long-range and many-body character of the hydrodynamic interactions, as well as the complicated shapes of the proteins. Hydrodynamic steering effects were clearly seen when attractive forces were applied to the geometric centers of the proteins (resulting in zero torques) and the attraction acted along the line that connects centers of geometry of proteins in their crystallographic complex. When we rotated barstar relative to barnase around this line by an angle in the range from -90° to 60°, the rotational velocity arising solely from hydrodynamic interactions restored the orientation of the proteins in the crystal structure. However, because, in reality, both electrostatic forces and torques act on the proteins and these forces and torques depend on the protein-protein distance and the relative orientation of the binding partners, we also investigated more realistic situations employing continuum electrostatics calculations based on atomistic protein models. Overall, we conclude that hydrodynamic interactions aid barnase and barstar in assuming a proper relative orientation upon complex formation.
Collapse
Affiliation(s)
- Maciej Długosz
- Centre of New Technologies, Faculty of Physics, University of Warsaw, Żwirki i Wigury 93, 02-89 Warsaw, Poland.
| | | |
Collapse
|
33
|
Abstract
The last two decades have led to significant progress in the field of analytical ultracentrifugation driven by instrumental, theoretical, and computational methods. This review will highlight key developments in sedimentation equilibrium (SE) and sedimentation velocity (SV) analysis. For SE, this includes the analysis of tracer sedimentation equilibrium at high concentrations with strong thermodynamic non-ideality, and for ideally interacting systems the development of strategies for the analysis of heterogeneous interactions towards global multi-signal and multi-speed SE analysis with implicit mass conservation. For SV, this includes the development and applications of numerical solutions of the Lamm equation, noise decomposition techniques enabling direct boundary fitting, diffusion deconvoluted sedimentation coefficient distributions, and multi-signal sedimentation coefficient distributions. Recently, effective particle theory has uncovered simple physical rules for the co-migration of rapidly exchanging systems of interacting components in SV. This has opened new possibilities for the robust interpretation of the boundary patterns of heterogeneous interacting systems. Together, these SE and SV techniques have led to new approaches to study macromolecular interactions across the entire the spectrum of affinities, including both attractive and repulsive interactions, in both dilute and highly concentrated solutions, which can be applied to single-component solutions of self-associating proteins as well as the study of multi-protein complex formation in multi-component solutions.
Collapse
Affiliation(s)
- Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| |
Collapse
|
34
|
Zhao H, Brautigam CA, Ghirlando R, Schuck P. Overview of current methods in sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2013; Chapter 20:Unit20.12. [PMID: 23377850 PMCID: PMC3652391 DOI: 10.1002/0471140864.ps2012s71] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modern computational strategies have allowed for the direct modeling of the sedimentation process of heterogeneous mixtures, resulting in sedimentation velocity (SV) size-distribution analyses with significantly improved detection limits and strongly enhanced resolution. These advances have transformed the practice of SV, rendering it the primary method of choice for most existing applications of analytical ultracentrifugation (AUC), such as the study of protein self- and hetero-association, the study of membrane proteins, and applications in biotechnology. New global multisignal modeling and mass conservation approaches in SV and sedimentation equilibrium (SE), in conjunction with the effective-particle framework for interpreting the sedimentation boundary structure of interacting systems, as well as tools for explicit modeling of the reaction/diffusion/sedimentation equations to experimental data, have led to more robust and more powerful strategies for the study of reversible protein interactions and multiprotein complexes. Furthermore, modern mathematical modeling capabilities have allowed for a detailed description of many experimental aspects of the acquired data, thus enabling novel experimental opportunities, with important implications for both sample preparation and data acquisition. The goal of the current unit is to describe the current tools for the study of soluble proteins, detergent-solubilized membrane proteins and their interactions by SV and SE.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
35
|
Deiber JA, Piaggio MV, Peirotti MB. Determination of electrokinetic and hydrodynamic parameters of proteins by modeling their electrophoretic mobilities through the electrically charged spherical soft particle. Electrophoresis 2013; 34:708-15. [DOI: 10.1002/elps.201200463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/03/2012] [Accepted: 10/17/2012] [Indexed: 01/23/2023]
Affiliation(s)
- Julio A. Deiber
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe; Argentina
| | - María V. Piaggio
- Cátedra de Bioquímica Básica de Macromoléculas; Facultad de Bioquímica y Ciencias Biológicas; UNL; Santa Fe; Argentina
| | - Marta B. Peirotti
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe; Argentina
| |
Collapse
|
36
|
Zhao H, Berger AJ, Brown PH, Kumar J, Balbo A, May CA, Casillas E, Laue TM, Patterson GH, Mayer ML, Schuck P. Analysis of high-affinity assembly for AMPA receptor amino-terminal domains. J Gen Physiol 2012; 139:371-88. [PMID: 22508847 PMCID: PMC3343374 DOI: 10.1085/jgp.201210770] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/27/2012] [Indexed: 01/06/2023] Open
Abstract
Analytical ultracentrifugation (AUC) and steady-state fluorescence anisotropy were used to measure the equilibrium dissociation constant (Kd) for formation of dimers by the amino-terminal domains (ATDs) of the GluA2 and GluA3 subtypes of AMPA receptor. Previous reports on GluA2 dimerization differed in their estimate of the monomer-dimer Kd by a 2,400-fold range, with no consensus on whether the ATD forms tetramers in solution. We find by sedimentation velocity (SV) analysis performed using absorbance detection a narrow range of monomer-dimer Kd values for GluA2, from 5 to 11 nM for six independent experiments, with no detectable formation of tetramers and no effect of glycosylation or the polypeptide linker connecting the ATD and ligand-binding domains; for GluA3, the monomer-dimer Kd was 5.6 µM, again with no detectable tetramer formation. For sedimentation equilibrium (SE) experiments, a wide range of Kd values was obtained for GluA2, from 13 to 284 nM, whereas for GluA3, the Kd of 3.1 µM was less than twofold different from the SV value. Analysis of cell contents after the ∼1-week centrifuge run by silver-stained gels revealed low molecular weight GluA2 breakdown products. Simulated data for SE runs demonstrate that the apparent Kd for GluA2 varies with the extent of proteolysis, leading to artificially high Kd values. SV experiments with fluorescence detection for GluA2 labeled with 5,6-carboxyfluorescein, and fluorescence anisotropy measurements for GluA2 labeled with DyLight405, yielded Kd values of 5 and 11 nM, consistent with those from SV with absorbance detection. However, the sedimentation coefficients measured by AUC using absorbance and fluorescence systems were strikingly different, and for the latter are not consistent with hydrodynamic protein models. Thus, for unknown reasons, the concentration dependence of sedimentation coefficients obtained with fluorescence detection SV may be unreliable, limiting the usefulness of this technique for quantitative analysis.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Anthony J. Berger
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Patrick H. Brown
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Janesh Kumar
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Andrea Balbo
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Carrie A. May
- Department of Biochemistry, University of New Hampshire, Durham, NH 03824
| | - Ernesto Casillas
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Thomas M. Laue
- Department of Biochemistry, University of New Hampshire, Durham, NH 03824
| | - George H. Patterson
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Mark L. Mayer
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| |
Collapse
|
37
|
Długosz M, Antosiewicz JM, Zieliński P, Trylska J. Contributions of far-field hydrodynamic interactions to the kinetics of electrostatically driven molecular association. J Phys Chem B 2012; 116:5437-47. [PMID: 22512305 DOI: 10.1021/jp301265y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We simulated the diffusional encounters in periodic systems of model isotropic and anisotropic molecules using Brownian dynamics. We considered the electrostatic, excluded volume, and far-field hydrodynamic forces between diffusing molecules. Our goal was to estimate to what extent the hydrodynamic interactions influence the association kinetics when the associating partners are oppositely charged and their direct electrostatic interactions are screened by small mobile ions of dissolved salt. Overall, including hydrodynamic interactions decreases the association rate constants. The relative magnitude of this decrease does not depend on the ionic strength for the association of isotropic charged objects. This also holds true for nonspecific association (i.e., without restrictions regarding the relative orientation of binding partners in an encounter complex) of anisotropic objects. However, such dependence is visible for orientation-specific association of anisotropic objects. Moreover, we observe that some orientations of anisotropic molecules are hydrodynamically favorable during their mutual approach, and that such molecules can be hydrodynamically steered toward a particular relative orientation. This hydrodynamic orientational steering is impeded in case of strong electrostatic interactions or steric hindrance.
Collapse
Affiliation(s)
- Maciej Długosz
- Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland.
| | | | | | | |
Collapse
|
38
|
Deiber JA, Peirotti MB, Piaggio MV. Interplay between electrophoretic mobility and intrinsic viscosity of polypeptide chains. Electrophoresis 2012; 33:990-9. [DOI: 10.1002/elps.201100637] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julio A. Deiber
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe; Argentina
| | - Marta B. Peirotti
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe; Argentina
| | - María V. Piaggio
- Cátedra de Bioquímica Básica de Macromoléculas,; Facultad de Bioquímica y Ciencias Biológicas; UNL; Santa Fe; Argentina
| |
Collapse
|
39
|
Brown PH, Balbo A, Zhao H, Ebel C, Schuck P. Density contrast sedimentation velocity for the determination of protein partial-specific volumes. PLoS One 2011; 6:e26221. [PMID: 22028836 PMCID: PMC3197611 DOI: 10.1371/journal.pone.0026221] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/22/2011] [Indexed: 11/22/2022] Open
Abstract
The partial-specific volume of proteins is an important thermodynamic parameter required for the interpretation of data in several biophysical disciplines. Building on recent advances in the use of density variation sedimentation velocity analytical ultracentrifugation for the determination of macromolecular partial-specific volumes, we have explored a direct global modeling approach describing the sedimentation boundaries in different solvents with a joint differential sedimentation coefficient distribution. This takes full advantage of the influence of different macromolecular buoyancy on both the spread and the velocity of the sedimentation boundary. It should lend itself well to the study of interacting macromolecules and/or heterogeneous samples in microgram quantities. Model applications to three protein samples studied in either H(2)O, or isotopically enriched H(2) (18)O mixtures, indicate that partial-specific volumes can be determined with a statistical precision of better than 0.5%, provided signal/noise ratios of 50-100 can be achieved in the measurement of the macromolecular sedimentation velocity profiles. The approach is implemented in the global modeling software SEDPHAT.
Collapse
Affiliation(s)
- Patrick H. Brown
- Biomedical Engineering and Physical Sciences Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrea Balbo
- Biomedical Engineering and Physical Sciences Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christine Ebel
- Institut de Biologie Structurale, Université Grenoble 1, Grenoble, France
- Centre National de la Recherche Scientifique, Grenoble, France
- Commisariat à l'Energie Atomique, Grenoble, France
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
40
|
Schuck P, Zhao H. Editorial for the special issue of methods "Modern Analytical Ultracentrifugation". Methods 2011; 54:1-3. [PMID: 21536133 DOI: 10.1016/j.ymeth.2011.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2011] [Indexed: 10/18/2022] Open
|
41
|
Povlock SL, Amara SG. Vaccinia virus-T7 RNA polymerase expression system for neurotransmitter transporters. Methods Enzymol 1998; 296:436-43. [PMID: 9779465 DOI: 10.1016/s0076-6879(98)96031-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- S L Povlock
- Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland 97201-3011, USA
| | | |
Collapse
|