1
|
Ma L, Lin Y. Orthogonal RNA replication enables directed evolution and Darwinian adaptation in mammalian cells. Nat Chem Biol 2025; 21:451-463. [PMID: 39753704 DOI: 10.1038/s41589-024-01783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/31/2024] [Indexed: 01/31/2025]
Abstract
Directed evolution in mammalian cells offers a powerful approach for advancing synthetic biology applications. However, existing mammalian-based directed evolution methods face substantial bottlenecks, including host genome interference, small library size and uncontrolled mutagenesis. Here we engineered an orthogonal alphaviral RNA replication system to evolve RNA-based devices, enabling RNA replicase-assisted continuous evolution (REPLACE) in proliferating mammalian cells. This system generates a large, continuously diversified library of replicative RNAs through replicase-limited mode of replication and inducible mutagenesis. Using REPLACE, we engineered fluorescent proteins and transcription factors. Notably, cells equipped with REPLACE can undergo Darwinian adaptation, allowing them to evolve in response to both cell-extrinsic and cell-intrinsic challenges. Collectively, this work establishes a powerful platform for advancing mammalian synthetic biology and cell engineering applications through directed evolution.
Collapse
Affiliation(s)
- Liang Ma
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yihan Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
- Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Peking University, Chengdu, China.
| |
Collapse
|
2
|
Chacón M, Dixon N. Genetically encoded biosensors for the circular plastics bioeconomy. Metab Eng Commun 2024; 19:e00255. [PMID: 39737114 PMCID: PMC11683335 DOI: 10.1016/j.mec.2024.e00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Current plastic production and consumption routes are unsustainable due to impact upon climate change and pollution, and therefore reform across the entire value chain is required. Biotechnology offers solutions for production from renewable feedstocks, and to aid end of life recycling/upcycling of plastics. Biology sequence/design space is complex requiring high-throughput analytical methods to facilitate the iterative optimisation, design-build, test-learn (DBTL), cycle of Synthetic Biology. Furthermore, genetic regulatory tools can enable harmonisation between biotechnological demands and the physiological constraints of the selected production host. Genetically encoded biosensors offer a solution for both requirements to facilitate the circular plastic bioeconomy. In this review we present a summary of biosensors developed to date reported to be responsive to plastic precursors/monomers. In addition, we provide a summary of the demonstrated and prospective applications of these biosensors for the construction and deconstruction of plastics. Collectively, this review provides a valuable resource of biosensor tools and enabled applications to support the development of the circular plastics bioeconomy.
Collapse
Affiliation(s)
- Micaela Chacón
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| |
Collapse
|
3
|
Bultelle M, Casas A, Kitney R. Engineering biology and automation-Replicability as a design principle. ENGINEERING BIOLOGY 2024; 8:53-68. [PMID: 39734660 PMCID: PMC11681252 DOI: 10.1049/enb2.12035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 12/31/2024] Open
Abstract
Applications in engineering biology increasingly share the need to run operations on very large numbers of biological samples. This is a direct consequence of the application of good engineering practices, the limited predictive power of current computational models and the desire to investigate very large design spaces in order to solve the hard, important problems the discipline promises to solve. Automation has been proposed as a key component for running large numbers of operations on biological samples. This is because it is strongly associated with higher throughput, and with higher replicability (thanks to the reduction of human input). The authors focus on replicability and make the point that, far from being an additional burden for automation efforts, replicability should be considered central to the design of the automated pipelines processing biological samples at scale-as trialled in biofoundries. There cannot be successful automation without effective error control. Design principles for an IT infrastructure that supports replicability are presented. Finally, the authors conclude with some perspectives regarding the evolution of automation in engineering biology. In particular, they speculate that the integration of hardware and software will show rapid progress, and offer users a degree of control and abstraction of the robotic infrastructure on a level significantly greater than experienced today.
Collapse
Affiliation(s)
| | - Alexis Casas
- Department of BioengineeringImperial College LondonLondonUK
| | - Richard Kitney
- Department of BioengineeringImperial College LondonLondonUK
| |
Collapse
|
4
|
Saleski TE, Peng H, Lengger B, Wang J, Jensen MK, Jensen ED. High-throughput G protein-coupled receptor-based autocrine screening for secondary metabolite production in yeast. Biotechnol Bioeng 2024; 121:3283-3296. [PMID: 38973176 DOI: 10.1002/bit.28797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Biosensors are valuable tools in accelerating the test phase of the design-build-test-learn cycle of cell factory development, as well as in bioprocess monitoring and control. G protein-coupled receptor (GPCR)-based biosensors enable cells to sense a wide array of molecules and environmental conditions in a specific manner. Due to the extracellular nature of their sensing, GPCR-based biosensors require compartmentalization of distinct genotypes when screening production levels of a strain library to ensure that detected levels originate exclusively from the strain under assessment. Here, we explore the integration of production and sensing modalities into a single Saccharomyces cerevisiae strain and compartmentalization using three different methods: (1) cultivation in microtiter plates, (2) spatial separation on agar plates, and (3) encapsulation in water-in-oil-in-water double emulsion droplets, combined with analysis and sorting via a fluorescence-activated cell sorting machine. Employing tryptamine and serotonin as proof-of-concept target molecules, we optimize biosensing conditions and demonstrate the ability of the autocrine screening method to enrich for high producers, showing the enrichment of a serotonin-producing strain over a nonproducing strain. These findings illustrate a workflow that can be adapted to screening for a wide range of complex chemistry at high throughput using commercially available microfluidic systems.
Collapse
Affiliation(s)
- Tatyana E Saleski
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Huadong Peng
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Bettina Lengger
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Jinglin Wang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Michael Krogh Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Emil D Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
5
|
Weibel N, Curcio M, Schreiber A, Arriaga G, Mausy M, Mehdy J, Brüllmann L, Meyer A, Roth L, Flury T, Pecina V, Starlinger K, Dernič J, Jungfer K, Ackle F, Earp J, Hausmann M, Jinek M, Rogler G, Antunes Westmann C. Engineering a Novel Probiotic Toolkit in Escherichia coli Nissle 1917 for Sensing and Mitigating Gut Inflammatory Diseases. ACS Synth Biol 2024; 13:2376-2390. [PMID: 39115381 PMCID: PMC11334186 DOI: 10.1021/acssynbio.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation with no cure and limited treatment options that often have systemic side effects. In this study, we developed a target-specific system to potentially treat IBD by engineering the probiotic bacterium Escherichia coli Nissle 1917 (EcN). Our modular system comprises three components: a transcription factor-based sensor (NorR) capable of detecting the inflammation biomarker nitric oxide (NO), a type 1 hemolysin secretion system, and a therapeutic cargo consisting of a library of humanized anti-TNFα nanobodies. Despite a reduction in sensitivity, our system demonstrated a concentration-dependent response to NO, successfully secreting functional nanobodies with binding affinities comparable to the commonly used drug Adalimumab, as confirmed by enzyme-linked immunosorbent assay and in vitro assays. This newly validated nanobody library expands EcN therapeutic capabilities. The adopted secretion system, also characterized for the first time in EcN, can be further adapted as a platform for screening and purifying proteins of interest. Additionally, we provided a mathematical framework to assess critical parameters in engineering probiotic systems, including the production and diffusion of relevant molecules, bacterial colonization rates, and particle interactions. This integrated approach expands the synthetic biology toolbox for EcN-based therapies, providing novel parts, circuits, and a model for tunable responses at inflammatory hotspots.
Collapse
Affiliation(s)
- Nathalie Weibel
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Martina Curcio
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Atilla Schreiber
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Gabriel Arriaga
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Marine Mausy
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jana Mehdy
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Lea Brüllmann
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Andreas Meyer
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Len Roth
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Tamara Flury
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Valerie Pecina
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Kim Starlinger
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jan Dernič
- Institute
of Pharmacology and Toxicology, University
of Zürich, Winterthurerstrasse
190, CH-8057 Zürich, Switzerland
| | - Kenny Jungfer
- Department
of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Fabian Ackle
- Institute
of Medical Microbiology, University of Zürich, Gloriastrasse 28/30, CH-8006 Zürich, Switzerland
| | - Jennifer Earp
- Institute
of Medical Microbiology, University of Zürich, Gloriastrasse 28/30, CH-8006 Zürich, Switzerland
| | - Martin Hausmann
- Department
of Gastroenterology and Hepatology, University
Hospital Zürich and Zürich University, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Martin Jinek
- Department
of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Gerhard Rogler
- Department
of Gastroenterology and Hepatology, University
Hospital Zürich and Zürich University, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Cauã Antunes Westmann
- Department
of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Swiss
Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Tripathi A, Dubey KD. The mechanistic insights into different aspects of promiscuity in metalloenzymes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:23-66. [PMID: 38960476 DOI: 10.1016/bs.apcsb.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Enzymes are nature's ultimate machinery to catalyze complex reactions. Though enzymes are evolved to catalyze specific reactions, they also show significant promiscuity in reactions and substrate selection. Metalloenzymes contain a metal ion or metal cofactor in their active site, which is crucial in their catalytic activity. Depending on the metal and its coordination environment, the metal ion or cofactor may function as a Lewis acid or base and a redox center and thus can catalyze a plethora of natural reactions. In fact, the versatility in the oxidation state of the metal ions provides metalloenzymes with a high level of catalytic adaptability and promiscuity. In this chapter, we discuss different aspects of promiscuity in metalloenzymes by using several recent experimental and theoretical works as case studies. We start our discussion by introducing the concept of promiscuity and then we delve into the mechanistic insight into promiscuity at the molecular level.
Collapse
Affiliation(s)
- Ankita Tripathi
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
7
|
Vijayanathan M, Vadakkepat AK, Mahendran KR, Sharaf A, Frandsen KEH, Bandyopadhyay D, Pillai MR, Soniya EV. Structural and mechanistic insights into Quinolone Synthase to address its functional promiscuity. Commun Biol 2024; 7:566. [PMID: 38745065 PMCID: PMC11093982 DOI: 10.1038/s42003-024-06152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/07/2024] [Indexed: 05/16/2024] Open
Abstract
Quinolone synthase from Aegle marmelos (AmQNS) is a type III polyketide synthase that yields therapeutically effective quinolone and acridone compounds. Addressing the structural and molecular underpinnings of AmQNS and its substrate interaction in terms of its high selectivity and specificity can aid in the development of numerous novel compounds. This paper presents a high-resolution AmQNS crystal structure and explains its mechanistic role in synthetic selectivity. Additionally, we provide a model framework to comprehend structural constraints on ketide insertion and postulate that AmQNS's steric and electrostatic selectivity plays a role in its ability to bind to various core substrates, resulting in its synthetic diversity. AmQNS prefers quinolone synthesis and can accommodate large substrates because of its wide active site entrance. However, our research suggests that acridone is exclusively synthesized in the presence of high malonyl-CoA concentrations. Potential implications of functionally relevant residue mutations were also investigated, which will assist in harnessing the benefits of mutations for targeted polyketide production. The pharmaceutical industry stands to gain from these findings as they expand the pool of potential drug candidates, and these methodologies can also be applied to additional promising enzymes.
Collapse
Affiliation(s)
- Mallika Vijayanathan
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
- Department of Plant and Environment Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Abhinav Koyamangalath Vadakkepat
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE17HB, UK
| | - Kozhinjampara R Mahendran
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Abdoallah Sharaf
- SequAna Core Facility, Department of Biology, University of Konstanz, Konstanz, Germany
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Kristian E H Frandsen
- Department of Plant and Environment Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Debashree Bandyopadhyay
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad, India
| | - M Radhakrishna Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Eppurath Vasudevan Soniya
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India.
| |
Collapse
|
8
|
Jing F, Chen K, Yandeau-Nelson MD, Nikolau BJ. Machine learning model of the catalytic efficiency and substrate specificity of acyl-ACP thioesterase variants generated from natural and in vitro directed evolution. Front Bioeng Biotechnol 2024; 12:1379121. [PMID: 38665811 PMCID: PMC11043601 DOI: 10.3389/fbioe.2024.1379121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Modulating the catalytic activity of acyl-ACP thioesterase (TE) is an important biotechnological target for effectively increasing flux and diversifying products of the fatty acid biosynthesis pathway. In this study, a directed evolution approach was developed to improve the fatty acid titer and fatty acid diversity produced by E. coli strains expressing variant acyl-ACP TEs. A single round of in vitro directed evolution, coupled with a high-throughput colorimetric screen, identified 26 novel acyl-ACP TE variants that convey up to a 10-fold increase in fatty acid titer, and generate altered fatty acid profiles when expressed in a bacterial host strain. These in vitro-generated variant acyl-ACP TEs, in combination with 31 previously characterized natural variants isolated from diverse phylogenetic origins, were analyzed with a random forest classifier machine learning tool. The resulting quantitative model identified 22 amino acid residues, which define important structural features that determine the catalytic efficiency and substrate specificity of acyl-ACP TE.
Collapse
Affiliation(s)
- Fuyuan Jing
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
- Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, United States
| | - Keting Chen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Marna D. Yandeau-Nelson
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
- Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, United States
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
- Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, United States
| |
Collapse
|
9
|
Rao D, Huo R, Yan Z, Guo Z, Liu W, Lu M, Luo H, Tao X, Yang W, Su L, Chen S, Wang L, Wu J. Multiple approaches of loop region modification for thermostability improvement of 4,6-α-glucanotransferase from Limosilactobacillus fermentum NCC 3057. Int J Biol Macromol 2023; 233:123536. [PMID: 36740130 DOI: 10.1016/j.ijbiomac.2023.123536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
4,6-α-glucanotransferase (4,6-α-GT), as a member of the glycoside hydrolase 70 (GH70) family, converts starch/maltooligosaccharides into α,1-6 bond-containing α-glucan and possesses potential applications in food, medical and related industries but does not satisfy the high-temperature requirement due to its poor thermostability. In this study, a 4,6-α-GT (ΔGtfB) from Limosilactobacillus fermentum NCC 3057 was used as a model enzyme to improve its thermostability. The loops of ΔGtfB as the target region were optimized using directed evolution, sequence alignment, and computer-aided design. A total of 11 positive mutants were obtained and iteratively combined to obtain a combined mutant CM9, with high resistance to temperature (50 °C). The activity of mutant CM9 was 2.08-fold the activity of the wild type, accompanied by a 5 °C higher optimal temperature, a 5.76 °C higher melting point (Tm, 59.46 °C), and an 11.95-fold longer half-life time (t1/2). The results showed that most of the polar residues in the loop region of ΔGtfB are mutated into rigid proline residues. Molecular dynamics simulation demonstrated that the root mean square fluctuation of CM9 significantly decreased by "Breathing" movement reduction of the loop region. This study provides a new strategy for improving the thermostability of 4,6-α-GT through rational loop region modification.
Collapse
Affiliation(s)
- Deming Rao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Runtian Huo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhengfei Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhiyong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weiqiong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mengwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hui Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiumei Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weikang Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
10
|
Rahban M, Zolghadri S, Salehi N, Ahmad F, Haertlé T, Rezaei-Ghaleh N, Sawyer L, Saboury AA. Thermal stability enhancement: Fundamental concepts of protein engineering strategies to manipulate the flexible structure. Int J Biol Macromol 2022; 214:642-654. [DOI: 10.1016/j.ijbiomac.2022.06.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/28/2023]
|
11
|
Kaczmarek JA, Prather KLJ. Effective use of biosensors for high-throughput library screening for metabolite production. J Ind Microbiol Biotechnol 2021; 48:6339276. [PMID: 34347108 PMCID: PMC8788864 DOI: 10.1093/jimb/kuab049] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/19/2021] [Indexed: 11/14/2022]
Abstract
The development of fast and affordable microbial production from recombinant pathways is a challenging endeavor, with targeted improvements difficult to predict due to the complex nature of living systems. To address the limitations in biosynthetic pathways, much work has been done to generate large libraries of various genetic parts (promoters, RBSs, enzymes, etc.) to discover library members that bring about significantly improved levels of metabolite production. To evaluate these large libraries, high throughput approaches are necessary, such as those that rely on biosensors. There are various modes of operation to apply biosensors to library screens that are available at different scales of throughput. The effectiveness of each biosensor-based method is dependent on the pathway or strain to which it is applied, and all approaches have strengths and weaknesses to be carefully considered for any high throughput library screen. In this review, we discuss the various approaches used in biosensor screening for improved metabolite production, focusing on transcription factor-based biosensors.
Collapse
Affiliation(s)
- Jennifer A Kaczmarek
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02142, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02142, USA
| |
Collapse
|
12
|
Accelerating strain phenotyping with desorption electrospray ionization-imaging mass spectrometry and untargeted analysis of intact microbial colonies. Proc Natl Acad Sci U S A 2021; 118:2109633118. [PMID: 34857637 DOI: 10.1073/pnas.2109633118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Reading and writing DNA were once the rate-limiting step in synthetic biology workflows. This has been replaced by the search for the optimal target sequences to produce systems with desired properties. Directed evolution and screening mutant libraries are proven technologies for isolating strains with enhanced performance whenever specialized assays are available for rapidly detecting a phenotype of interest. Armed with technologies such as CRISPR-Cas9, these experiments are capable of generating libraries of up to 1010 genetic variants. At a rate of 102 samples per day, standard analytical methods for assessing metabolic phenotypes represent a major bottleneck to modern synthetic biology workflows. To address this issue, we have developed a desorption electrospray ionization-imaging mass spectrometry screening assay that directly samples microorganisms. This technology increases the throughput of metabolic measurements by reducing sample preparation and analyzing organisms in a multiplexed fashion. To further accelerate synthetic biology workflows, we utilized untargeted acquisitions and unsupervised analytics to assess multiple targets for future engineering strategies within a single acquisition. We demonstrate the utility of the developed method using Escherichia coli strains engineered to overproduce free fatty acids. We determined discrete metabolic phenotypes associated with each strain, which include the primary fatty acid product, secondary products, and additional metabolites outside the engineered product pathway. Furthermore, we measured changes in amino acid levels and membrane lipid composition, which affect cell viability. In sum, we present an analytical method to accelerate synthetic biology workflows through rapid, untargeted, and multiplexed metabolomic analyses.
Collapse
|
13
|
Gao M, Xu Y, Yang G, Jin S, Hu X, Jiang Y, Zhu L, Li Z, Zhan X. One-step production of functional branched oligoglucosides with coupled fermentation of Pichia pastoris GS115 and Sclerotium rolfsii WSH-G01. BIORESOURCE TECHNOLOGY 2021; 335:125286. [PMID: 34022479 DOI: 10.1016/j.biortech.2021.125286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Endo-β-1,3-glucanase with high specific activity is a prerequisite for enzymatic preparation of valuable β-oligoglucosides. Heterologous expression in Pichia pastoris GS115 with error-prone PCR technology was implemented, and the mutant strain 7 N12 was obtained. The mutant endo-β-1,3-glucanase showed efficient specific activities for degrading curdlan (366 U mg-1) and scleroglucan (274.5 U mg-1). Thereafter, one-step production of functional branched oligoglucosides was established with coupled fermentation of Pichia pastoris and Sclerotium rolfsii. During the fermentation process, the endo-β-1,3-glucanase secreted by Pichia pastoris GS115 can efficiently hydrolyse scleroglucan metabolized by Sclerotium rolfsii WSH-G01. The maximum yields of β-oligoglucosides in the shake flasks and 7-L bioreactor reached 1.73 g L-1 and 12.71 g L-1, respectively, with polymerization degrees of 2-17. The successful implementation of heterologous expression with error-prone PCR and the coupled fermentation simplified the multi-step enzymatic β-oligoglucoside preparation procedures, which makes it a potential strategy for industrial production of functional oligosaccharides.
Collapse
Affiliation(s)
- Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Ying Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Guoshuai Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Shuxia Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing 100833, PR China
| | - Yun Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Li Zhu
- Wuxi Galaxy Biotech Co. Ltd., Wuxi 214125, PR China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
14
|
Kajiwara K, Aoki W, Koike N, Ueda M. Development of a yeast cell surface display method using the SpyTag/SpyCatcher system. Sci Rep 2021; 11:11059. [PMID: 34040114 PMCID: PMC8155107 DOI: 10.1038/s41598-021-90593-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/12/2021] [Indexed: 12/05/2022] Open
Abstract
Yeast cell surface display (YSD) has been used to engineer various proteins, including antibodies. Directed evolution, which subjects a gene to iterative rounds of mutagenesis, selection and amplification, is useful for protein engineering. In vivo continuous mutagenesis, which continuously diversifies target genes in the host cell, is a promising tool for accelerating directed evolution. However, combining in vivo continuous evolution and YSD is difficult because mutations in the gene encoding the anchor proteins may inhibit the display of target proteins on the cell surface. In this study, we have developed a modified YSD method that utilises SpyTag/SpyCatcher-based in vivo protein ligation. A nanobody fused with a SpyTag of 16 amino acids and an anchor protein fused with a SpyCatcher of 113 amino acids are encoded by separate gene cassettes and then assembled via isopeptide bond formation. This system achieved a high display efficiency of more than 90%, no intercellular protein ligation events, and the enrichment of target cells by cell sorting. These results suggested that our system demonstrates comparable performance with conventional YSD methods; therefore, it can be an appropriate platform to be integrated with in vivo continuous evolution.
Collapse
Affiliation(s)
- Kaho Kajiwara
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
- JST, CREST, 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Naoki Koike
- TechnoPro, Inc. TechnoPro R&D, Company, Tokyo, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
- JST, CREST, 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan.
| |
Collapse
|
15
|
Hao J, Miao W, Lu S, Cheng Y, Jia G, Li C. Controllable stereoinversion in DNA-catalyzed olefin cyclopropanation via cofactor modification. Chem Sci 2021; 12:7918-7923. [PMID: 34168845 PMCID: PMC8188488 DOI: 10.1039/d1sc00755f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022] Open
Abstract
The assembly of DNA with metal-complex cofactors can form promising biocatalysts for asymmetric reactions, although catalytic performance is typically limited by low enantioselectivities and stereo-control remains a challenge. Here, we engineer G-quadruplex-based DNA biocatalysts for an asymmetric cyclopropanation reaction, achieving enantiomeric excess (eetrans) values of up to +91% with controllable stereoinversion, where the enantioselectivity switches to -72% eetrans through modification of the Fe-porphyrin cofactor. Complementary circular dichroism, nuclear magnetic resonance, and fluorescence titration experiments show that the porphyrin ligand of the cofactor participates in the regulation of the catalytic enantioselectivity via a synergetic effect with DNA residues at the active site. These findings underline the important role of cofactor modification in DNA catalysis and thus pave the way for the rational engineering of DNA-based biocatalysts.
Collapse
Affiliation(s)
- Jingya Hao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 101408 China
| | - Wenhui Miao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 101408 China
| | - Shengmei Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Yu Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 101408 China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| |
Collapse
|
16
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
17
|
Chang J, Zhang C, Cheng H, Tan YW. Rational Design of Adenylate Kinase Thermostability through Coevolution and Sequence Divergence Analysis. Int J Mol Sci 2021; 22:2768. [PMID: 33803409 PMCID: PMC7967156 DOI: 10.3390/ijms22052768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/09/2023] Open
Abstract
Protein engineering is actively pursued in industrial and laboratory settings for high thermostability. Among the many protein engineering methods, rational design by bioinformatics provides theoretical guidance without time-consuming experimental screenings. However, most rational design methods either rely on protein tertiary structure information or have limited accuracies. We proposed a primary-sequence-based algorithm for increasing the heat resistance of a protein while maintaining its functions. Using adenylate kinase (ADK) family as a model system, this method identified a series of amino acid sites closely related to thermostability. Single- and double-point mutants constructed based on this method increase the thermal denaturation temperature of the mesophilic Escherichia coli (E. coli) ADK by 5.5 and 8.3 °C, respectively, while preserving most of the catalytic function at ambient temperatures. Additionally, the constructed mutants have improved enzymatic activity at higher temperature.
Collapse
Affiliation(s)
- Jian Chang
- State Key Laboratory of Surface Physics, Multiscale Research Institute of Complex Systems, Department of Physics, Fudan University, Shanghai 200433, China; (J.C.); (H.C.)
| | - Chengxin Zhang
- School of Life Science, Fudan University, Shanghai 200433, China;
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huaqiang Cheng
- State Key Laboratory of Surface Physics, Multiscale Research Institute of Complex Systems, Department of Physics, Fudan University, Shanghai 200433, China; (J.C.); (H.C.)
| | - Yan-Wen Tan
- State Key Laboratory of Surface Physics, Multiscale Research Institute of Complex Systems, Department of Physics, Fudan University, Shanghai 200433, China; (J.C.); (H.C.)
| |
Collapse
|
18
|
The Selection of Gamma-Ray Irradiated Higher Yield Rice Mutants by Directed Evolution Method. PLANTS 2020; 9:plants9081004. [PMID: 32784591 PMCID: PMC7464962 DOI: 10.3390/plants9081004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 11/27/2022]
Abstract
We have succeeded in selecting four higher yield mutants from five gamma-ray irradiated high-yielding Japanese rice varieties using a novel approach. A total of 464 M2 plants which had heavier total panicle weights per plant were first selected from 9801 irradiated M2 plants. Their higher yields were confirmed by yield trials conducted for three years with a six to ten-pairwise replicated plot design. FukuhibikiH6 and FukuhibikiH8 were selected from an irradiated high-yielding variety Fukuhibiki and showed 1.2% to 22.5% higher yield than their original significantly. YamadawaraH3 was selected from an irradiated high-yielding variety Yamadawara and its yield advantages were 2.7% to 3.9%. However, there was no difference in the genotypes of the 96 SNP (single nucleotide polymorphism) markers between the higher yield mutants and their respective original varieties. The differences in the measured phenotypical traits between each mutant and its original variety were not constant and the actual differences were marginal. Therefore, the higher yields of the selected mutants were likely to have been caused by physiological traits rather than phenotypical traits. The selection method used in this study is an application of the directed evolution method which has long been commonly used in the substantial improvements of microorganisms and their proteins.
Collapse
|
19
|
Arunrattanamook N, Wansuksri R, Uengwetwanit T, Champreda V. Engineering of β-mannanase from Aspergillus niger to increase product selectivity towards medium chain length mannooligosaccharides. J Biosci Bioeng 2020; 130:443-449. [PMID: 32727668 DOI: 10.1016/j.jbiosc.2020.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/02/2023]
Abstract
Mannooligosaccharides (MOSs) are one of the most commonly used biomass-derived feed additives. The effectiveness of MOS varies with the length of oligosaccharides, medium length MOSs such as mannotetraose and mannopentaose being the most efficient. This study aims at improving specificity of β-mannanase from Aspergillus niger toward the desirable product size through rational-based enzyme engineering. Tyr 42 and Tyr 132 were mutated to Gly to extend the substrate binding site, allowing higher molecular weight MOS to non-catalytically bind to the enzyme. Hydrolysis product content was analyzed by high-performance anion-exchange chromatography with pulsed amperometric detection. Instead of mannobiose, the enzyme variants yielded mannotriose and mannotetraose as the major products, followed by mannobiose and mannopentaose. Overall, 42% improvement in production yield of highly active mannotetraose and mannopentaose was achieved. This validates the use of engineered β-mannanase to selectively produce larger MOS, making them promising candidates for large-scale MOS enzymatic production process.
Collapse
Affiliation(s)
- Nattapol Arunrattanamook
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand.
| | - Rungtiva Wansuksri
- Cassava and Starch Technology Research Laboratory, National Center for Genetic Engineering and Biotechnology, Bangkok 10900, Thailand
| | - Tanaporn Uengwetwanit
- Bio-sensing Technology Research Unit, National Center for Genetic Engineering and Biotechnology, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Verawat Champreda
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
20
|
Pinzón-Reyes EH, Sierra-Bueno DA, Suarez-Barrera MO, Rueda-Forero NJ, Abaunza-Villamizar S, Rondón-Villareal P. Generation of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling. Evol Bioinform Online 2020; 16:1176934320924681. [PMID: 32782424 PMCID: PMC7385851 DOI: 10.1177/1176934320924681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Directed evolution methods mimic in vitro Darwinian evolution, inducing random mutations and selective pressure in genes to obtain proteins with enhanced characteristics. These techniques are developed using trial-and-error testing at an experimental level with a high degree of uncertainty. Therefore, in silico modeling of directed evolution is required to support experimental assays. Several in silico approaches have reproduced directed evolution, using statistical, thermodynamic, and kinetic models in an attempt to recreate experimental conditions. Likewise, optimization techniques using heuristic models have been used to understand and find the best scenarios of directed evolution. Our study uses an in silico model named HeurIstics DirecteD EvolutioN, which is based on a genetic algorithm designed to generate chimeric libraries from 2 parental genes, cry11Aa and cry11Ba, of Bacillus thuringiensis. These genes encode crystal-shaped δ-endotoxins with 3 conserved domains. Cry11 toxins are of biotechnological interest because they have shown to be effective as biopesticides for disease-spreading vectors. With our heuristic model, we considered experimental parameters such as DNA fragmentation length, number of generations or simulation cycles, and mutation rate, to get characteristics of Cry11 chimeric libraries such as percentage of population identity, truncation of variants obtained from the presence of internal stop codons, percentage of thermodynamic diversity, and stability of variants. Our study allowed us to focus on experimental conditions that may be useful for the design of in vitro and in silico experiments of directed evolution with Cry toxins of 3 conserved domains. Furthermore, we obtained in silico libraries of Cry11 variants, in which structural characteristics of wild Cry families were observed in a review of a sample of in silico sequences. We consider that future studies could use our in silico libraries and heuristic computational models, as the one suggested here, to support in vitro experiments of directed evolution.
Collapse
Affiliation(s)
- Efraín Hernando Pinzón-Reyes
- Universidad de Santander, Faculty of Health Sciences, Laboratory of Molecular Biology and Biotechnology, Bucaramanga, Colombia.,Centro de Bioinformática Simulación y Modelado (CBSM), School of Bioinformatic, Universidad de Talca, Talca, Chile
| | | | - Miguel Orlando Suarez-Barrera
- Universidad de Santander, Faculty of Health Sciences, Laboratory of Molecular Biology and Biotechnology, Bucaramanga, Colombia
| | - Nohora Juliana Rueda-Forero
- Universidad de Santander, Faculty of Health Sciences, Laboratory of Molecular Biology and Biotechnology, Bucaramanga, Colombia
| | - Sebastián Abaunza-Villamizar
- Universidad de Santander, Faculty of Health Sciences, Laboratory of Molecular Biology and Biotechnology, Bucaramanga, Colombia
| | - Paola Rondón-Villareal
- Universidad de Santander, Faculty of Health Sciences, Laboratory of Molecular Biology and Biotechnology, Bucaramanga, Colombia
| |
Collapse
|
21
|
Patron NJ. Beyond natural: synthetic expansions of botanical form and function. THE NEW PHYTOLOGIST 2020; 227:295-310. [PMID: 32239523 PMCID: PMC7383487 DOI: 10.1111/nph.16562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/03/2020] [Indexed: 05/05/2023]
Abstract
Powered by developments that enabled genome-scale investigations, systems biology emerged as a field aiming to understand how phenotypes emerge from network functions. These advances fuelled a new engineering discipline focussed on synthetic reconstructions of complex biological systems with the goal of predictable rational design and control. Initially, progress in the nascent field of synthetic biology was slow due to the ad hoc nature of molecular biology methods such as cloning. The application of engineering principles such as standardisation, together with several key technical advances, enabled a revolution in the speed and accuracy of genetic manipulation. Combined with mathematical and statistical modelling, this has improved the predictability of engineering biological systems of which nonlinearity and stochasticity are intrinsic features leading to remarkable achievements in biotechnology as well as novel insights into biological function. In the past decade, there has been slow but steady progress in establishing foundations for synthetic biology in plant systems. Recently, this has enabled model-informed rational design to be successfully applied to the engineering of plant gene regulation and metabolism. Synthetic biology is now poised to transform the potential of plant biotechnology. However, reaching full potential will require conscious adjustments to the skillsets and mind sets of plant scientists.
Collapse
Affiliation(s)
- Nicola J. Patron
- Engineering BiologyEarlham InstituteNorwich Research Park, NorwichNorfolkNR4 7UZUK
| |
Collapse
|
22
|
Xue P, Si T, Mishra S, Zhang L, Choe K, Sweedler JV, Zhao H. A mass spectrometry-based high-throughput screening method for engineering fatty acid synthases with improved production of medium-chain fatty acids. Biotechnol Bioeng 2020; 117:2131-2138. [PMID: 32219854 DOI: 10.1002/bit.27343] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/07/2020] [Accepted: 03/22/2020] [Indexed: 01/09/2023]
Abstract
Microbial cell factories have been extensively engineered to produce free fatty acids (FFAs) as key components of crucial nutrients, soaps, industrial chemicals, and fuels. However, our ability to control the composition of microbially synthesized FFAs is still limited, particularly, for producing medium-chain fatty acids (MCFAs). This is mainly due to the lack of high-throughput approaches for FFA analysis to engineer enzymes with desirable product specificity. Here we report a mass spectrometry (MS)-based method for rapid profiling of MCFAs in Saccharomyces cerevisiae by using membrane lipids as a proxy. In particular, matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) MS was used to detect shorter acyl chain phosphatidylcholines from membrane lipids and a higher m/z peak ratio at 730 and 758 was used as an indication for improved MCFA production. This colony-based method can be performed at a rate of ~2 s per sample, representing a substantial improvement over gas chromatography-MS (typically >30 min per sample) as the gold standard method for FFA detection. To demonstrate the power of this method, we performed site-saturation mutagenesis of the yeast fatty acid synthase and identified nine missense mutations that resulted in improved MCFA production relative to the wild-type strain. Colony-based MALDI-ToF MS screening provides an effective approach for engineering microbial fatty acid compositions in a high-throughput manner.
Collapse
Affiliation(s)
- Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Tong Si
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Linzixuan Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Kisurb Choe
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jonathan V Sweedler
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
23
|
Newton MS, Cabezas-Perusse Y, Tong CL, Seelig B. In Vitro Selection of Peptides and Proteins-Advantages of mRNA Display. ACS Synth Biol 2020; 9:181-190. [PMID: 31891492 DOI: 10.1021/acssynbio.9b00419] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
mRNA display is a robust in vitro selection technique that allows the selection of peptides and proteins with desired functions from libraries of trillions of variants. mRNA display relies upon a covalent linkage between a protein and its encoding mRNA molecule; the power of the technique stems from the stability of this link, and the large degree of control over experimental conditions afforded to the researcher. This article describes the major advantages that make mRNA display the method of choice among comparable in vivo and in vitro methods, including cell-surface display, phage display, and ribosomal display. We also describe innovative techniques that harness mRNA display for directed evolution, protein engineering, and drug discovery.
Collapse
Affiliation(s)
- Matilda S. Newton
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
- Department of Molecular, Cellular, and Developmental Biology & Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Yari Cabezas-Perusse
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Cher Ling Tong
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Burckhard Seelig
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| |
Collapse
|
24
|
Ma C, Li J, Zhang B, Liu C, Zhang J, Liu Y. Hydrogel Microparticles Functionalized with Engineered Escherichia coli as Living Lactam Biosensors. SENSORS 2019; 19:s19245556. [PMID: 31888205 PMCID: PMC6960487 DOI: 10.3390/s19245556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/26/2022]
Abstract
Recently there has been an increasing need for synthesizing valued chemicals through biorefineries. Lactams are an essential family of commodity chemicals widely used in the nylon industry with annual production of millions of tons. The bio-production of lactams can substantially benefit from high-throughput lactam sensing strategies for lactam producer screening. We present here a robust and living lactam biosensor that is directly compatible with high-throughput analytical means. The biosensor is a hydrogel microparticle encapsulating living microcolonies of engineered lactam-responsive Escherichia coli. The microparticles feature facile and ultra-high throughput manufacturing of up to 10,000,000 per hour through droplet microfluidics. We show that the biosensors can specifically detect major lactam species in a dose-dependent manner, which can be quantified using flow cytometry. The biosensor could potentially be used for high-throughput metabolic engineering of lactam biosynthesis.
Collapse
Affiliation(s)
- Conghui Ma
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; (C.M.); (J.L.); (B.Z.); (C.L.)
| | - Jie Li
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; (C.M.); (J.L.); (B.Z.); (C.L.)
| | - Boyin Zhang
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; (C.M.); (J.L.); (B.Z.); (C.L.)
| | - Chenxi Liu
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; (C.M.); (J.L.); (B.Z.); (C.L.)
| | - Jingwei Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Correspondence: (J.Z.); (Y.L.)
| | - Yifan Liu
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; (C.M.); (J.L.); (B.Z.); (C.L.)
- Correspondence: (J.Z.); (Y.L.)
| |
Collapse
|
25
|
Sharma A, Gupta G, Ahmad T, Mansoor S, Kaur B. Enzyme Engineering: Current Trends and Future Perspectives. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1695835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Anshula Sharma
- Department of Biotechnology, Punjabi University, Patiala, India
| | - Gaganjot Gupta
- Department of Biotechnology, Punjabi University, Patiala, India
| | - Tawseef Ahmad
- Department of Biotechnology, Punjabi University, Patiala, India
| | | | - Baljinder Kaur
- Department of Biotechnology, Punjabi University, Patiala, India
| |
Collapse
|
26
|
Abstract
Synthetic biology uses living cells as the substrate for performing human-defined computations. Many current implementations of cellular computing are based on the “genetic circuit” metaphor, an approximation of the operation of silicon-based computers. Although this conceptual mapping has been relatively successful, we argue that it fundamentally limits the types of computation that may be engineered inside the cell, and fails to exploit the rich and diverse functionality available in natural living systems. We propose the notion of “cellular supremacy” to focus attention on domains in which biocomputing might offer superior performance over traditional computers. We consider potential pathways toward cellular supremacy, and suggest application areas in which it may be found. Synthetic biology uses cells as its computing substrate, often based on the genetic circuit concept. In this Perspective, the authors argue that existing synthetic biology approaches based on classical models of computation limit the potential of biocomputing, and propose that living organisms have under-exploited capabilities.
Collapse
|
27
|
Gionfriddo M, De Gara L, Loreto F. Directed Evolution of Plant Processes: Towards a Green (r)Evolution? TRENDS IN PLANT SCIENCE 2019; 24:999-1007. [PMID: 31604600 DOI: 10.1016/j.tplants.2019.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 05/13/2023]
Abstract
Directed evolution (DE) is a powerful approach for generating proteins with new chemical and physical properties. It mimics the principles of Darwinian evolution by imposing selective pressure on a large population of molecules harboring random genetic variation in DNA, such that sequences with specific desirable properties are generated and selected. We propose that combining DE and genome-editing (DE-GE) technologies represents a powerful tool to discover and integrate new traits into plants for agronomic and biotechnological gain. DE-GE has the potential to deliver a new green (r)evolution research platform that can provide novel solutions to major trait delivery aspirations for sustainable agriculture, climate-resilient crops, and improved food security and nutritional quality.
Collapse
Affiliation(s)
- Matteo Gionfriddo
- Unit of Food Science and Human Nutrition, Campus Bio-Medico, University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico, University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Francesco Loreto
- Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy; Department of Biology, University Federico II, Via Cinthia, 80126 Naples, Italy.
| |
Collapse
|
28
|
Yoav S, Stern J, Salama-Alber O, Frolow F, Anbar M, Karpol A, Hadar Y, Morag E, Bayer EA. Directed Evolution of Clostridium thermocellum β-Glucosidase A Towards Enhanced Thermostability. Int J Mol Sci 2019; 20:E4701. [PMID: 31547488 PMCID: PMC6801902 DOI: 10.3390/ijms20194701] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022] Open
Abstract
β-Glucosidases are key enzymes in the process of cellulose utilization. It is the last enzyme in the cellulose hydrolysis chain, which converts cellobiose to glucose. Since cellobiose is known to have a feedback inhibitory effect on a variety of cellulases, β-glucosidase can prevent this inhibition by hydrolyzing cellobiose to non-inhibitory glucose. While the optimal temperature of the Clostridium thermocellum cellulosome is 70 °C, C. thermocellum β-glucosidase A is almost inactive at such high temperatures. Thus, in the current study, a random mutagenesis directed evolutionary approach was conducted to produce a thermostable mutant with Kcat and Km, similar to those of the wild-type enzyme. The resultant mutant contained two mutations, A17S and K268N, but only the former was found to affect thermostability, whereby the inflection temperature (Ti) was increased by 6.4 °C. A17 is located near the central cavity of the native enzyme. Interestingly, multiple alignments revealed that position 17 is relatively conserved, whereby alanine is replaced only by serine. Upon the addition of the thermostable mutant to the C. thermocellum secretome for subsequent hydrolysis of microcrystalline cellulose at 70 °C, a higher soluble glucose yield (243%) was obtained compared to the activity of the secretome supplemented with the wild-type enzyme.
Collapse
Affiliation(s)
- Shahar Yoav
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, the Advanced School for Environmental Studies, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Johanna Stern
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Orly Salama-Alber
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Felix Frolow
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Michael Anbar
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Alon Karpol
- CelDezyner, 2 Bergman St, Tamar Science Park, Rehovot 7670504, Israel.
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, the Advanced School for Environmental Studies, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Ely Morag
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
29
|
Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges. J Ind Microbiol Biotechnol 2019; 46:1343-1358. [PMID: 31278525 DOI: 10.1007/s10295-019-02211-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
Functional differentiation and metabolite exchange enable microbial consortia to perform complex metabolic tasks and efficiently cycle the nutrients. Inspired by the cooperative relationships in environmental microbial consortia, synthetic microbial consortia have great promise for studying the microbial interactions in nature and more importantly for various engineering applications. However, challenges coexist with promises, and the potential of consortium-based technologies is far from being fully harnessed. Thorough understanding of the underlying molecular mechanisms of microbial interactions is greatly needed for the rational design and optimization of defined consortia. These knowledge gaps could be potentially filled with the assistance of the ongoing revolution in systems biology and synthetic biology tools. As current fundamental and technical obstacles down the road being removed, we would expect new avenues with synthetic microbial consortia playing important roles in biological and environmental engineering processes such as bioproduction of desired chemicals and fuels, as well as biodegradation of persistent contaminants.
Collapse
|
30
|
Kan A, Joshi NS. Towards the directed evolution of protein materials. MRS COMMUNICATIONS 2019; 9:441-455. [PMID: 31750012 PMCID: PMC6867688 DOI: 10.1557/mrc.2019.28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/22/2019] [Indexed: 05/06/2023]
Abstract
Protein-based materials have emerged as a powerful instrument for a new generation of biological materials, with many chemical and mechanical capabilities. Through the manipulation of DNA, researchers can design proteins at the molecular level, engineering a vast array of structural building blocks. However, our capability to rationally design and predict the properties of such materials is limited by the vastness of possible sequence space. Directed evolution has emerged as a powerful tool to improve biological systems through mutation and selection, presenting another avenue to produce novel protein materials. In this prospective review, we discuss the application of directed evolution for protein materials, reviewing current examples and developments that could facilitate the evolution of protein for material applications.
Collapse
Affiliation(s)
- Anton Kan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Neel S. Joshi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| |
Collapse
|
31
|
Sürmeli Y, İlgü H, Şanlı-Mohamed G. Improved activity of α-L-arabinofuranosidase from Geobacillus vulcani GS90 by directed evolution: Investigation on thermal and alkaline stability. Biotechnol Appl Biochem 2018; 66:101-107. [PMID: 30334285 DOI: 10.1002/bab.1702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/13/2018] [Indexed: 02/06/2023]
Abstract
α-L-Arabinofuranosidase (Abf) is a potential enzyme because of its synergistic effect with other hemicellulases in agro-industrial field. In this study, directed evolution was applied to Abf from Geobacillus vulcani GS90 (GvAbf) using one round error-prone PCR and constructed a library of 73 enzyme variants of GvAbf. The activity screening of the enzyme variants was performed on soluble protein extracts using p-nitrophenyl α-L-arabinofuranoside as substrate. Two high activity displaying variants (GvAbf L307S and GvAbf Q90H/L307S) were selected, purified, partially characterized, and structurally analyzed. The specific activities of both variants were almost 2.5-fold more than that of GvAbf. Both GvAbf variants also exhibited higher thermal stability but lower alkaline stability in reference to GvAbf. The structural analysis of GvAbf model indicated that two mutation sites Q90H and L307S in both GvAbf variants are located in TIM barrel domain, responsible for catalytic action in many Glycoside Hydrolase Families including GH51. The structure of GvAbf model displayed that the position of L307S mutation is closer to the catalytic residues of GvAbf compared with Q90H mutation and also L307S mutation is conserved in both variants of GvAbf. Therefore, it was hypothesized that L307S amino acid substitution may play a critical role in catalytic activity of GvAbf.
Collapse
Affiliation(s)
- Yusuf Sürmeli
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, İzmir, Turkey
| | - Hüseyin İlgü
- Department of Chemistry, İzmir Institute of Technology, İzmir, Turkey
| | | |
Collapse
|
32
|
Designing with living systems in the synthetic yeast project. Nat Commun 2018; 9:2950. [PMID: 30054478 PMCID: PMC6063962 DOI: 10.1038/s41467-018-05332-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/28/2018] [Indexed: 11/08/2022] Open
Abstract
Synthetic biology is challenged by the complexity and the unpredictability of living systems. While one response to this complexity involves simplifying cells to create more fully specified systems, another approach utilizes directed evolution, releasing some control and using unpredictable change to achieve design goals. Here we discuss SCRaMbLE, employed in the synthetic yeast project, as an example of synthetic biology design through working with living systems. SCRaMbLE is a designed tool without being a design tool, harnessing the activities of the yeast rather than relying entirely on scientists’ deliberate choices. We suggest that directed evolution at the level of the whole organism allows scientists and microorganisms to “collaborate” to achieve design goals, suggesting new directions for synthetic biology. Synthetic biology often views the organism as a chassis into which a circuit can be inserted. Here the authors explore the idea of the organism as a core aspect of design, aiding researchers in navigating the genetic space opened up by SCRaMbLE.
Collapse
|
33
|
Huang QG, Zeng BD, Liang L, Wu SG, Huang JZ. Genome shuffling and high-throughput screening of Brevibacterium flavum MDV1 for enhanced L-valine production. World J Microbiol Biotechnol 2018; 34:121. [PMID: 30039311 DOI: 10.1007/s11274-018-2502-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 07/10/2018] [Indexed: 11/25/2022]
Abstract
L-valine is an essential branched-amino acid that is widely used in multiple areas such as pharmaceuticals and special dietary products and its use is increasing. As the world market for L-valine grows rapidly, there is an increasing interest to develop an efficient L-valine-producing strain. In this study, a simple, sensitive, efficient, and consistent screening procedure termed 96 well plate-PC-HPLC (96-PH) was developed for the rapid identification of high-yield L-valine strains to replace the traditional L-valine assay. L-valine production by Brevibacterium flavum MDV1 was increased by genome shuffling. The starting strains were obtained using ultraviolet (UV) irradiation and binary ethylenimine treatment followed by preparation of protoplasts, UV irradiation inactivation, multi-cell fusion, and fusion of the inactivated protoplasts to produce positive colonies. After two rounds of genome shuffling and the 96-PH method, six L-valine high-yielding mutants were selected. One genetically stable mutant (MDVR2-21) showed an L-valine yield of 30.1 g/L during shake flask fermentation, 6.8-fold higher than that of MDV1. Under fed-batch conditions in a 30 L automated fermentor, MDVR2-21 accumulated 70.1 g/L of L-valine (0.598 mol L-valine per mole of glucose; 38.9% glucose conversion rate). During large-scale fermentation using a 120 m3 fermentor, this strain produced > 66.8 g/L L-valine (36.5% glucose conversion rate), reflecting a very productive and stable industrial enrichment fermentation effect. Genome shuffling is an efficient technique to improve production of L-valine by B. flavum MDV1. Screening using 96-PH is very economical, rapid, efficient, and well-suited for high-throughput screening.
Collapse
Affiliation(s)
- Qin-Geng Huang
- Engineering Research Center of Industrial Microbiology, Ministry of Education, College of Life Sciences, Fujian Normal University, No. 1, Science & Technology Road, Fuzhou, 350108, Fujian, People's Republic of China
| | - Bang-Ding Zeng
- Engineering Research Center of Industrial Microbiology, Ministry of Education, College of Life Sciences, Fujian Normal University, No. 1, Science & Technology Road, Fuzhou, 350108, Fujian, People's Republic of China
| | - Ling Liang
- Engineering Research Center of Industrial Microbiology, Ministry of Education, College of Life Sciences, Fujian Normal University, No. 1, Science & Technology Road, Fuzhou, 350108, Fujian, People's Republic of China
| | - Song-Gang Wu
- Engineering Research Center of Industrial Microbiology, Ministry of Education, College of Life Sciences, Fujian Normal University, No. 1, Science & Technology Road, Fuzhou, 350108, Fujian, People's Republic of China
| | - Jian-Zhong Huang
- Engineering Research Center of Industrial Microbiology, Ministry of Education, College of Life Sciences, Fujian Normal University, No. 1, Science & Technology Road, Fuzhou, 350108, Fujian, People's Republic of China.
| |
Collapse
|
34
|
Siltanen CA, Cole RH, Poust S, Chao L, Tyerman J, Kaufmann-Malaga B, Ubersax J, Gartner ZJ, Abate AR. An Oil-Free Picodrop Bioassay Platform for Synthetic Biology. Sci Rep 2018; 8:7913. [PMID: 29784937 PMCID: PMC5962535 DOI: 10.1038/s41598-018-25577-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/19/2018] [Indexed: 01/14/2023] Open
Abstract
Droplet microfluidics enables massively-parallel analysis of single cells, biomolecules, and chemicals, making it valuable for high-throughput screens. However, many hydrophobic analytes are soluble in carrier oils, preventing their quantitative analysis with the method. We apply Printed Droplet Microfluidics to construct defined reactions with chemicals and cells incubated under air on an open array. The method interfaces with most bioanalytical tools and retains hydrophobic compounds in compartmentalized reactors, allowing their quantitation.
Collapse
Affiliation(s)
- Christian A Siltanen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Russell H Cole
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Sean Poust
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | | | - Jabus Tyerman
- Amyris, Inc. Emeryville, California, USA.,Delv Bio, Sacramento, California, USA
| | | | | | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.,Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA. .,Chan Zuckerberg Biohub, San Francisco, California, USA.
| |
Collapse
|
35
|
Boehr DD, D'Amico RN, O'Rourke KF. Engineered control of enzyme structural dynamics and function. Protein Sci 2018; 27:825-838. [PMID: 29380452 DOI: 10.1002/pro.3379] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
Enzymes undergo a range of internal motions from local, active site fluctuations to large-scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post-translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus-responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
36
|
Zhou P, Xie W, Yao Z, Zhu Y, Ye L, Yu H. Development of a temperature-responsive yeast cell factory using engineered Gal4 as a protein switch. Biotechnol Bioeng 2018; 115:1321-1330. [PMID: 29315481 DOI: 10.1002/bit.26544] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/08/2017] [Accepted: 01/02/2018] [Indexed: 01/11/2023]
Abstract
Conflict between cell growth and product accumulation is frequently encountered in biosynthesis of secondary metabolites. Herein, a temperature-dependent dynamic control strategy was developed by modifying the GAL regulation system to facilitate two-stage fermentation in yeast. A temperature-sensitive Gal4 mutant Gal4M9 was created by directed evolution, and used as a protein switch in ΔGAL80 yeast. After EGFP-reported validation of its temperature-responsive induction capability, the sensitivity and stringency of this system in multi-gene pathway regulation was tested, using lycopene as an example product. When Gal4M9 was used to control the expression of PGAL -driven pathway genes, growth and production was successfully decoupled upon temperature shift during fermentation, accumulating 44% higher biomass and 177% more lycopene than the control strain with wild-type Gal4. This is the first example of adopting temperature as an input signal for metabolic pathway regulation in yeast cell factories.
Collapse
Affiliation(s)
- Pingping Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Wenping Xie
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Zhen Yao
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Yongqiang Zhu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
37
|
Gamboa-Melendez H, Larroude M, Park YK, Trebul P, Nicaud JM, Ledesma-Amaro R. Synthetic Biology to Improve the Production of Lipases and Esterases (Review). Methods Mol Biol 2018; 1835:229-242. [PMID: 30109656 DOI: 10.1007/978-1-4939-8672-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Synthetic biology is an emergent field of research whose aim is to make biology an engineering discipline, thus permitting to design, control, and standardize biological processes. Synthetic biology is therefore expected to boost the development of biotechnological processes such as protein production and enzyme engineering, which can be significantly relevant for lipases and esterases.
Collapse
Affiliation(s)
- Heber Gamboa-Melendez
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Macarena Larroude
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Young Kyoung Park
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pauline Trebul
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Sythetic Biology, Imperial College London, London, UK.
| |
Collapse
|
38
|
Duarte JM, Barbier I, Schaerli Y. Bacterial Microcolonies in Gel Beads for High-Throughput Screening of Libraries in Synthetic Biology. ACS Synth Biol 2017; 6:1988-1995. [PMID: 28803463 DOI: 10.1021/acssynbio.7b00111] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic biologists increasingly rely on directed evolution to optimize engineered biological systems. Applying an appropriate screening or selection method for identifying the potentially rare library members with the desired properties is a crucial step for success in these experiments. Special challenges include substantial cell-to-cell variability and the requirement to check multiple states (e.g., being ON or OFF depending on the input). Here, we present a high-throughput screening method that addresses these challenges. First, we encapsulate single bacteria into microfluidic agarose gel beads. After incubation, they harbor monoclonal bacterial microcolonies (e.g., expressing a synthetic construct) and can be sorted according their fluorescence by fluorescence activated cell sorting (FACS). We determine enrichment rates and demonstrate that we can measure the average fluorescent signals of microcolonies containing phenotypically heterogeneous cells, obviating the problem of cell-to-cell variability. Finally, we apply this method to sort a pBAD promoter library at ON and OFF states.
Collapse
Affiliation(s)
- José M. Duarte
- Department
of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Içvara Barbier
- Department
of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Yolanda Schaerli
- Department
of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- Department
of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Abstract
The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair and re-write genomes, recently developed base-editing systems present a useful orthogonal strategy to engineer nucleotide substitutions. Base editing relies on recruitment of cytidine deaminases to introduce changes (rather than double-stranded breaks and donor templates) and offers potential improvements in efficiency while limiting damage and simplifying the delivery of editing machinery. At the same time, these systems enable novel mutagenesis strategies to introduce sequence diversity for engineering and discovery. Here, we review the different base-editing platforms, including their deaminase recruitment strategies and editing outcomes, and compare them to other CRISPR genome-editing technologies. Additionally, we discuss how these systems have been applied in therapeutic, engineering, and research settings. Lastly, we explore future directions of this emerging technology.
Collapse
|
40
|
Hess GT, Tycko J, Yao D, Bassik MC. Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes. Mol Cell 2017; 68:26-43. [PMID: 28985508 PMCID: PMC5997582 DOI: 10.1016/j.molcel.2017.09.029] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022]
Abstract
The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair and re-write genomes, recently developed base-editing systems present a useful orthogonal strategy to engineer nucleotide substitutions. Base editing relies on recruitment of cytidine deaminases to introduce changes (rather than double-stranded breaks and donor templates) and offers potential improvements in efficiency while limiting damage and simplifying the delivery of editing machinery. At the same time, these systems enable novel mutagenesis strategies to introduce sequence diversity for engineering and discovery. Here, we review the different base-editing platforms, including their deaminase recruitment strategies and editing outcomes, and compare them to other CRISPR genome-editing technologies. Additionally, we discuss how these systems have been applied in therapeutic, engineering, and research settings. Lastly, we explore future directions of this emerging technology.
Collapse
Affiliation(s)
- Gaelen T Hess
- Department of Genetics and Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA
| | - Josh Tycko
- Department of Genetics and Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA
| | - David Yao
- Department of Genetics and Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics and Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA.
| |
Collapse
|
41
|
McNerney MP, Styczynski MP. Small molecule signaling, regulation, and potential applications in cellular therapeutics. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [PMID: 28960879 DOI: 10.1002/wsbm.1405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Small molecules have many important roles across the tree of life: they regulate processes from metabolism to transcription, they enable signaling within and between species, and they serve as the biochemical building blocks for cells. They also represent valuable phenotypic endpoints that are promising for use as biomarkers of disease states. In the context of engineering cell-based therapeutics, they hold particularly great promise for enabling finer control over the therapeutic cells and allowing them to be responsive to extracellular cues. The natural signaling and regulatory functions of small molecules can be harnessed and rewired to control cell activity and delivery of therapeutic payloads, potentially increasing efficacy while decreasing toxicity. To that end, this review considers small molecule-mediated regulation and signaling in bacteria. We first discuss some of the most prominent applications and aspirations for responsive cell-based therapeutics. We then describe the transport, signaling, and regulation associated with three classes of molecules that may be exploited in the engineering of therapeutic bacteria: amino acids, fatty acids, and quorum-sensing signaling molecules. We also present examples of existing engineering efforts to generate cells that sense and respond to levels of different small molecules. Finally, we discuss future directions for how small molecule-mediated regulation could be harnessed for therapeutic applications, as well as some critical considerations for the ultimate success of such endeavors. WIREs Syst Biol Med 2018, 10:e1405. doi: 10.1002/wsbm.1405 This article is categorized under: Biological Mechanisms > Cell Signaling Biological Mechanisms > Metabolism Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Monica P McNerney
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
42
|
Stainbrook SC, Yu JS, Reddick MP, Bagheri N, Tyo KEJ. Modulating and evaluating receptor promiscuity through directed evolution and modeling. Protein Eng Des Sel 2017; 30:455-465. [PMID: 28453776 DOI: 10.1093/protein/gzx018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/17/2017] [Indexed: 11/13/2022] Open
Abstract
The promiscuity of G-protein-coupled receptors (GPCRs) has broad implications in disease, pharmacology and biosensing. Promiscuity is a particularly crucial consideration for protein engineering, where the ability to modulate and model promiscuity is essential for developing desirable proteins. Here, we present methodologies for (i) modifying GPCR promiscuity using directed evolution and (ii) predicting receptor response and identifying important peptide features using quantitative structure-activity relationship models and grouping-exhaustive feature selection. We apply these methodologies to the yeast pheromone receptor Ste2 and its native ligand α-factor. Using directed evolution, we created Ste2 mutants with altered specificity toward a library of α-factor variants. We then used the Vectors of Hydrophobic, Steric, and Electronic properties and partial least squares regression to characterize receptor-ligand interactions, identify important ligand positions and properties, and predict receptor response to novel ligands. Together, directed evolution and computational analysis enable the control and evaluation of GPCR promiscuity. These approaches should be broadly useful for the study and engineering of GPCRs and other protein-small molecule interactions.
Collapse
Affiliation(s)
- Sarah C Stainbrook
- Interdisciplinary Biological Sciences Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Jessica S Yu
- Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael P Reddick
- Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Neda Bagheri
- Interdisciplinary Biological Sciences Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Keith E J Tyo
- Interdisciplinary Biological Sciences Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
43
|
Brödel AK, Jaramillo A, Isalan M. Intracellular directed evolution of proteins from combinatorial libraries based on conditional phage replication. Nat Protoc 2017; 12:1830-1843. [PMID: 28796233 DOI: 10.1038/nprot.2017.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Directed evolution is a powerful tool to improve the characteristics of biomolecules. Here we present a protocol for the intracellular evolution of proteins with distinct differences and advantages in comparison with established techniques. These include the ability to select for a particular function from a library of protein variants inside cells, minimizing undesired coevolution and propagation of nonfunctional library members, as well as allowing positive and negative selection logics using basally active promoters. A typical evolution experiment comprises the following stages: (i) preparation of a combinatorial M13 phagemid (PM) library expressing variants of the gene of interest (GOI) and preparation of the Escherichia coli host cells; (ii) multiple rounds of an intracellular selection process toward a desired activity; and (iii) the characterization of the evolved target proteins. The system has been developed for the selection of new orthogonal transcription factors (TFs) but is capable of evolving any gene-or gene circuit function-that can be linked to conditional M13 phage replication. Here we demonstrate our approach using as an example the directed evolution of the bacteriophage λ cI TF against two synthetic bidirectional promoters. The evolved TF variants enable simultaneous activation and repression against their engineered promoters and do not cross-react with the wild-type promoter, thus ensuring orthogonality. This protocol requires no special equipment, allowing synthetic biologists and general users to evolve improved biomolecules within ∼7 weeks.
Collapse
Affiliation(s)
- Andreas K Brödel
- Department of Life Sciences, Imperial College London, London, UK
| | - Alfonso Jaramillo
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry, UK.,Laboratoire iSSB, UMR 8030, Université Paris-Saclay, Université d'Évry-Val d'Essonne, CNRS, CEA, IG/Genoscope, CEA DRF, Évry, France.,Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
44
|
Moses T, Mehrshahi P, Smith AG, Goossens A. Synthetic biology approaches for the production of plant metabolites in unicellular organisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4057-4074. [PMID: 28449101 DOI: 10.1093/jxb/erx119] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synthetic biology is the repurposing of biological systems for novel objectives and applications. Through the co-ordinated and balanced expression of genes, both native and those introduced from other organisms, resources within an industrial chassis can be siphoned for the commercial production of high-value commodities. This developing interdisciplinary field has the potential to revolutionize natural product discovery from higher plants, by providing a diverse array of tools, technologies, and strategies for exploring the large chemically complex space of plant natural products using unicellular organisms. In this review, we emphasize the key features that influence the generation of biorefineries and highlight technologies and strategic solutions that can be used to overcome engineering pitfalls with rational design. Also presented is a succinct guide to assist the selection of unicellular chassis most suited for the engineering and subsequent production of the desired natural product, in order to meet the global demand for plant natural products in a safe and sustainable manner.
Collapse
Affiliation(s)
- Tessa Moses
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Payam Mehrshahi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
45
|
Jia X, Liu Y, Han Y. A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate. Sci Rep 2017; 7:4333. [PMID: 28659601 PMCID: PMC5489476 DOI: 10.1038/s41598-017-04684-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/18/2017] [Indexed: 11/09/2022] Open
Abstract
Acetoin (3-hydroxy-2-butanone) is an important bio-based platform chemical with wide applications. In vitro enzyme catalysed synthesis exhibits great feasibility in the production of chemicals with high purity. In the present work, a synthetic pathway involving a two-step continuous reaction was constructed in vitro for acetoin production from pyruvate at improved temperature. Thermostable candidates, acetolactate synthase (coAHASL1 and coAHASL2 from Caldicellulosiruptor owensensis OL) and α-acetolactate decarboxylase (bsALDC from Bacillus subtilis IPE5-4) were cloned, heterologously expressed, and characterized. All the enzymes showed maximum activities at 65–70 °C and pH of 6.5. Enzyme kinetics analysis showed that coAHASL1 had a higher activity but lower affinity against pyruvate than that of coAHASL2. In addition, the activities of coAHASL1 and bsALDC were promoted by Mn2+ and NADPH. The cascade enzymatic reaction was optimized by using coAHASL1 and bsALDC based on their kinetic properties. Under optimal conditions, a maximum concentration of 3.36 ± 0.26 mM acetoin was produced from 10 mM pyruvate after reaction for 24 h at 65 °C. The productivity of acetoin was 0.14 mM h−1, and the yield was 67.80% compared with the theoretical value. The results confirmed the feasibility of synthesis of acetoin from pyruvate with a cell-free enzyme catalysed system at improved temperature.
Collapse
Affiliation(s)
- Xiaojing Jia
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ying Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
46
|
Yu JS, Pertusi DA, Adeniran AV, Tyo KEJ. CellSort: a support vector machine tool for optimizing fluorescence-activated cell sorting and reducing experimental effort. Bioinformatics 2017; 33:909-916. [PMID: 27998936 PMCID: PMC5860017 DOI: 10.1093/bioinformatics/btw710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/19/2016] [Accepted: 11/08/2016] [Indexed: 02/05/2023] Open
Abstract
Motivation High throughput screening by fluorescence activated cell sorting (FACS) is a common task in protein engineering and directed evolution. It can also be a rate-limiting step if high false positive or negative rates necessitate multiple rounds of enrichment. Current FACS software requires the user to define sorting gates by intuition and is practically limited to two dimensions. In cases when multiple rounds of enrichment are required, the software cannot forecast the enrichment effort required. Results We have developed CellSort, a support vector machine (SVM) algorithm that identifies optimal sorting gates based on machine learning using positive and negative control populations. CellSort can take advantage of more than two dimensions to enhance the ability to distinguish between populations. We also present a Bayesian approach to predict the number of sorting rounds required to enrich a population from a given library size. This Bayesian approach allowed us to determine strategies for biasing the sorting gates in order to reduce the required number of enrichment rounds. This algorithm should be generally useful for improve sorting outcomes and reducing effort when using FACS. Availability and Implementation Source code available at http://tyolab.northwestern.edu/tools/ . k-tyo@northwestern.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jessica S Yu
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Dante A Pertusi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Adebola V Adeniran
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
47
|
Polakovič M, Švitel J, Bučko M, Filip J, Neděla V, Ansorge-Schumacher MB, Gemeiner P. Progress in biocatalysis with immobilized viable whole cells: systems development, reaction engineering and applications. Biotechnol Lett 2017; 39:667-683. [PMID: 28181062 DOI: 10.1007/s10529-017-2300-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/01/2017] [Indexed: 11/28/2022]
Abstract
Viable microbial cells are important biocatalysts in the production of fine chemicals and biofuels, in environmental applications and also in emerging applications such as biosensors or medicine. Their increasing significance is driven mainly by the intensive development of high performance recombinant strains supplying multienzyme cascade reaction pathways, and by advances in preservation of the native state and stability of whole-cell biocatalysts throughout their application. In many cases, the stability and performance of whole-cell biocatalysts can be highly improved by controlled immobilization techniques. This review summarizes the current progress in the development of immobilized whole-cell biocatalysts, the immobilization methods as well as in the bioreaction engineering aspects and economical aspects of their biocatalytic applications.
Collapse
Affiliation(s)
- Milan Polakovič
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava, Slovakia
| | - Juraj Švitel
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava, Slovakia
| | - Marek Bučko
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jaroslav Filip
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Vilém Neděla
- Institute of Scientific Instruments, Academy of Sciences Czech Republic, Brno, Czech Republic
| | | | - Peter Gemeiner
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
48
|
Recent applications of metabolomics to advance microbial biofuel production. Curr Opin Biotechnol 2016; 43:118-126. [PMID: 27883952 DOI: 10.1016/j.copbio.2016.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 12/26/2022]
Abstract
Biofuel production from plant biomass is a promising source of renewable energy [1]. However, efficient biofuel production involves the complex task of engineering high-performance microorganisms, which requires detailed knowledge of metabolic function and regulation. This review highlights the potential of mass-spectrometry-based metabolomic analysis to guide rational engineering of biofuel-producing microbes. We discuss recent studies that apply knowledge gained from metabolomic analyses to increase the productivity of engineered pathways, characterize the metabolism of emerging biofuel producers, generate novel bioproducts, enable utilization of lignocellulosic feedstock, and improve the stress tolerance of biofuel producers.
Collapse
|
49
|
Lechner A, Brunk E, Keasling JD. The Need for Integrated Approaches in Metabolic Engineering. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023903. [PMID: 27527588 DOI: 10.1101/cshperspect.a023903] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review highlights state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. We emphasize that a combination of different approaches over multiple time and size scales must be considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the "system" that is being manipulated: transcriptome, translatome, proteome, or reactome. By bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes.
Collapse
Affiliation(s)
- Anna Lechner
- Joint Bioenergy Institute (JBEI), Emeryville, California 94608.,Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California 94720
| | - Elizabeth Brunk
- Department of Bioengineering, University of California, San Diego, California 92093
| | - Jay D Keasling
- Joint Bioenergy Institute (JBEI), Emeryville, California 94608.,Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California 94720.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
50
|
Bag SS, Jana S, Pradhan MK. Synthesis, photophysical properties of triazolyl-donor/acceptor chromophores decorated unnatural amino acids: Incorporation of a pair into Leu-enkephalin peptide and application of triazolylperylene amino acid in sensing BSA. Bioorg Med Chem 2016; 24:3579-95. [DOI: 10.1016/j.bmc.2016.05.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/29/2016] [Accepted: 05/30/2016] [Indexed: 02/03/2023]
|