1
|
Burato A, Legname G. Comparing Prion Proteins Across Species: Is Zebrafish a Useful Model? Mol Neurobiol 2025; 62:832-845. [PMID: 38918277 PMCID: PMC11711791 DOI: 10.1007/s12035-024-04324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Despite the considerable body of research dedicated to the field of neurodegeneration, the gap in knowledge on the prion protein and its intricate involvement in brain diseases remains substantial. However, in the past decades, many steps forward have been taken toward a better understanding of the molecular mechanisms underlying both the physiological role of the prion protein and the misfolding event converting it into its pathological counterpart, the prion. This review aims to provide an overview of the main findings regarding this protein, highlighting the advantages of many different animal models that share a conserved amino acid sequence and/or structure with the human prion protein. A particular focus will be given to the species Danio rerio, a compelling research organism for the investigation of prion biology, thanks to its conserved orthologs, ease of genetic manipulation, and cost-effectiveness of high-throughput experimentation. We will explore its potential in filling some of the gaps on physiological and pathological aspects of the prion protein, with the aim of directing the future development of therapeutic interventions.
Collapse
Affiliation(s)
- Anna Burato
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
2
|
Luu P, Nadtochiy A, Zanon M, Moreno N, Messina A, Petrazzini MEM, Torres Perez JV, Keomanee-Dizon K, Jones M, Brennan CH, Vallortigara G, Fraser SE, Truong TV. Neural Basis of Number Sense in Larval Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610552. [PMID: 39290349 PMCID: PMC11406567 DOI: 10.1101/2024.08.30.610552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Number sense, the ability to discriminate the quantity of objects, is crucial for survival. To understand how neurons work together and develop to mediate number sense, we used two-photon fluorescence light sheet microscopy to capture the activity of individual neurons throughout the brain of larval Danio rerio, while displaying a visual number stimulus to the animal. We identified number-selective neurons as early as 3 days post-fertilization and found a proportional increase of neurons tuned to larger quantities after 3 days. We used machine learning to predict the stimulus from the neuronal activity and observed that the prediction accuracy improves with age. We further tested ethanol's effect on number sense and found a decrease in number-selective neurons in the forebrain, suggesting cognitive impairment. These findings are a significant step towards understanding neural circuits devoted to discrete magnitudes and our methodology to track single-neuron activity across the whole brain is broadly applicable to other fields in neuroscience.
Collapse
Affiliation(s)
- Peter Luu
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Anna Nadtochiy
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Mirko Zanon
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Noah Moreno
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | | | - Jose Vicente Torres Perez
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
| | - Kevin Keomanee-Dizon
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
| | - Matthew Jones
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Caroline H Brennan
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Scott E Fraser
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Thai V Truong
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Sande R, Godad A, Doshi G. Zebrafish Experimental Animal Models for AD: A Comprehensive Review. Curr Rev Clin Exp Pharmacol 2024; 19:295-311. [PMID: 38284707 DOI: 10.2174/0127724328279684240104094257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 01/30/2024]
Abstract
AD disease (AD) is a multifaceted and intricate neurodegenerative disorder characterized by intracellular neurofibrillary tangle (NFT) formation and the excessive production and deposition of Aβ senile plaques. While transgenic AD models have been found instrumental in unravelling AD pathogenesis, they involve cost and time constraints during the preclinical phase. Zebrafish, owing to their simplicity, well-defined behavioural patterns, and relevance to neurodegenerative research, have emerged as a promising complementary model. Zebrafish possess glutaminergic and cholinergic pathways implicated in learning and memory, actively contributing to our understanding of neural transmission processes. This review sheds light on the molecular mechanisms by which various neurotoxic agents, including okadaic acid (OKA), cigarette smoke extract, metals, and transgenic zebrafish models with genetic similarities to AD patients, induce cognitive impairments and neuronal degeneration in mammalian systems. These insights may facilitate the identification of effective neurotoxic agents for replicating AD pathogenesis in the zebrafish brain. In this comprehensive review, the pivotal role of zebrafish models in advancing our comprehension of AD is emphasized. These models hold immense potential for shaping future research directions and clinical interventions, ultimately contributing to the development of novel AD therapies.
Collapse
Affiliation(s)
- Ruksar Sande
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Angel Godad
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| |
Collapse
|
4
|
Liu J, Li W, Jin X, Lin F, Han J, Zhang Y. Optimal tagging strategies for illuminating expression profiles of genes with different abundance in zebrafish. Commun Biol 2023; 6:1300. [PMID: 38129658 PMCID: PMC10739737 DOI: 10.1038/s42003-023-05686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
CRISPR-mediated knock-in (KI) technology opens a new era of fluorescent-protein labeling in zebrafish, a preferred model organism for in vivo imaging. We described here an optimized zebrafish gene-tagging strategy, which enables easy and high-efficiency KI, ensures high odds of obtaining seamless KI germlines and is suitable for wide applications. Plasmid donors for 3'-labeling were optimized by shortening the microhomologous arms and by reducing the number and reversing the sequence of the consensus Cas9/sgRNA binding sites. To allow for scar-less KI across the genome, linearized dsDNA donors with 5'-chemical modifications were generated and successfully incorporated into our method. To refine the germline screen workflow and expedite the screen process, we combined fluorescence enrichment and caudal-fin junction-PCR. Furthermore, to trace proteins expressed at a low abundance, we developed a fluorescent signal amplifier using the transcriptional activation strategy. Together, our strategies enable efficient gene-tagging and sensitive expression detection for almost every gene in zebrafish.
Collapse
Affiliation(s)
- Jiannan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Wenyuan Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xuepu Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Fanjia Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
- Laboratory Animal Center, Xiamen University, 361102, Xiamen, Fujian, China.
- Research Unit of Cellular Stress of CAMS, Cancer Research Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Yingying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| |
Collapse
|
5
|
Frommelt J, Liu E, Bhaidani A, Hu B, Gao Y, Ye D, Lin F. Flat mount preparation for whole-mount fluorescent imaging of zebrafish embryos. Biol Open 2023; 12:bio060048. [PMID: 37746815 PMCID: PMC10373579 DOI: 10.1242/bio.060048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 09/26/2023] Open
Abstract
The zebrafish is a widely used model organism for biomedical research due to its ease of maintenance, external fertilization of embryos, rapid embryonic development, and availability of established genetic tools. One notable advantage of using zebrafish is the transparency of the embryos, which enables high-resolution imaging of specific cells, tissues, and structures through the use of transgenic and knock-in lines. However, as the embryo develops, multiple layers of tissue wrap around the lipid-enriched yolk, which can create a challenge to image tissues located deep within the embryo. While various methods are available, such as two-photon imaging, cryosectioning, vibratome sectioning, and micro-surgery, each of these has limitations. In this study, we present a novel deyolking method that allows for high-quality imaging of tissues that are obscured by other tissues and the yolk. Embryos are lightly fixed in 1% PFA to remove the yolk without damaging embryonic tissues and are then refixed in 4% PFA and mounted on custom-made bridged slides. This method offers a simple way to prepare imaging samples that can be subjected to further preparation, such as immunostaining. Furthermore, the bridged slides described in this study can be used for imaging tissue and organ preparations from various model organisms.
Collapse
Affiliation(s)
- Joseph Frommelt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Emily Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Afraz Bhaidani
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
6
|
Kemmler CL, Moran HR, Murray BF, Scoresby A, Klem JR, Eckert RL, Lepovsky E, Bertho S, Nieuwenhuize S, Burger S, D'Agati G, Betz C, Puller AC, Felker A, Ditrychova K, Bötschi S, Affolter M, Rohner N, Lovely CB, Kwan KM, Burger A, Mosimann C. Next-generation plasmids for transgenesis in zebrafish and beyond. Development 2023; 150:dev201531. [PMID: 36975217 PMCID: PMC10263156 DOI: 10.1242/dev.201531] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible modular system. Here, we establish several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2 and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Finally, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker that is active before hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish and other models.
Collapse
Affiliation(s)
- Cassie L. Kemmler
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Hannah R. Moran
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Brooke F. Murray
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Aaron Scoresby
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - John R. Klem
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rachel L. Eckert
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Elizabeth Lepovsky
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sylvain Bertho
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Susan Nieuwenhuize
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Sibylle Burger
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Gianluca D'Agati
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Charles Betz
- Growth & Development, Biozentrum, Spitalstrasse 41, University of Basel, 4056 Basel, Switzerland
| | - Ann-Christin Puller
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Anastasia Felker
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Karolina Ditrychova
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Seraina Bötschi
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Markus Affolter
- Growth & Development, Biozentrum, Spitalstrasse 41, University of Basel, 4056 Basel, Switzerland
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - C. Ben Lovely
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kristen M. Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexa Burger
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
8
|
Xu KF, Jia HR, Wang Z, Feng HH, Li LY, Zhang R, Durrani S, Lin F, Wu FG. See the Unseen: Red-Emissive Carbon Dots for Visualizing the Nucleolar Structures in Two Model Animals and In Vivo Drug Toxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205890. [PMID: 36634974 DOI: 10.1002/smll.202205890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Nucleolus, which participates in many crucial cellular activities, is an ideal target for evaluating the state of a cell or an organism. Here, bright red-emissive carbon dots (termed CPCDs) with excitation-independent/polarity-dependent fluorescence emission are synthesized by a one-step hydrothermal reaction between congo red and p-phenylenediamine. The CPCDs can achieve wash-free, real-time, long-term, and high-quality nucleolus imaging in live cells, as well as in vivo imaging of two common model animals-zebrafish and Caenorhabditis elegans (C. elegans). Strikingly, CPCDs realize the nucleolus imaging of organs/flowing blood cells in zebrafish at a cellular level for the first time, and the superb nucleolus imaging of C. elegans suggests that the germ cells in the spermatheca probably have no intact nuclei. These previously unachieved imaging results of the cells/tissues/organs may guide the zebrafish-related studies and benefit the research of C. elegans development. More importantly, a novel strategy based on CPCDs for in vivo toxicity evaluation of materials/drugs (e.g., Ag+ ), which can visualize the otherwise unseen injuries in zebrafish, is developed. In conclusion, the CPCDs represent a robust tool for visualizing the structures and dynamic behaviors of live zebrafish and C. elegans, and may find important applications in cell biology and toxicology.
Collapse
Affiliation(s)
- Ke-Fei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Zihao Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Hui-Heng Feng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Ling-Yi Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Rufeng Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Samran Durrani
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
9
|
Dorigo A, Valishetti K, Hetsch F, Matsui H, Meier JC, Namikawa K, Köster RW. Functional regionalization of the differentiating cerebellar Purkinje cell population occurs in an activity-dependent manner. Front Mol Neurosci 2023; 16:1166900. [PMID: 37181649 PMCID: PMC10174242 DOI: 10.3389/fnmol.2023.1166900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction The cerebellum is organized into functional regions each dedicated to process different motor or sensory inputs for controlling different locomotor behaviors. This functional regionalization is prominent in the evolutionary conserved single-cell layered Purkinje cell (PC) population. Fragmented gene expression domains suggest a genetic organization of PC layer regionalization during cerebellum development. However, the establishment of such functionally specific domains during PC differentiation remained elusive. Methods and results We show the progressive emergence of functional regionalization of PCs from broad responses to spatially restricted regions in zebrafish by means of in vivo Ca2+-imaging during stereotypic locomotive behavior. Moreover, we reveal that formation of new dendritic spines during cerebellar development using in vivo imaging parallels the time course of functional domain development. Pharmacological as well as cell-type specific optogenetic inhibition of PC neuronal activity results in reduced PC dendritic spine density and an altered stagnant pattern of functional domain formation in the PC layer. Discussion Hence, our study suggests that functional regionalization of the PC layer is driven by physiological activity of maturing PCs themselves.
Collapse
Affiliation(s)
- Alessandro Dorigo
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Komali Valishetti
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Florian Hetsch
- Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Pathophysiology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Hideaki Matsui
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Jochen C. Meier
- Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kazuhiko Namikawa
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Kazuhiko Namikawa,
| | - Reinhard W. Köster
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
- Reinhard W. Köster,
| |
Collapse
|
10
|
Basheer F, Dhar P, Samarasinghe RM. Zebrafish Models of Paediatric Brain Tumours. Int J Mol Sci 2022; 23:9920. [PMID: 36077320 PMCID: PMC9456103 DOI: 10.3390/ijms23179920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Paediatric brain cancer is the second most common childhood cancer and is the leading cause of cancer-related deaths in children. Despite significant advancements in the treatment modalities and improvements in the 5-year survival rate, it leaves long-term therapy-associated side effects in paediatric patients. Addressing these impairments demands further understanding of the molecularity and heterogeneity of these brain tumours, which can be demonstrated using different animal models of paediatric brain cancer. Here we review the use of zebrafish as potential in vivo models for paediatric brain tumour modelling, as well as catalogue the currently available zebrafish models used to study paediatric brain cancer pathophysiology, and discuss key findings, the unique attributes that these models add, current challenges and therapeutic significance.
Collapse
Affiliation(s)
- Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| | - Poshmaal Dhar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
11
|
Manni I, de Latouliere L, Piaggio G. Bioluminescence and Optical Imaging: Principles and Applications. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
12
|
Cline HT. Imaging Structural and Functional Dynamics in Xenopus Neurons. Cold Spring Harb Protoc 2021; 2022:pdb.top106773. [PMID: 34531329 DOI: 10.1101/pdb.top106773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In vivo time-lapse imaging has been a fruitful approach to identify structural and functional changes in the Xenopus nervous system in tadpoles and adult frogs. Structural imaging studies have identified fundamental aspects of brain connectivity, development, plasticity, and disease and have been instrumental in elucidating mechanisms regulating these events in vivo. Similarly, assessment of nervous system function using dynamic changes in calcium signals as a proxy for neuronal activity has demonstrated principles of neuron and circuit function and principles of information organization and transfer within the brain of living animals. Because of its many advantages as an experimental system, use of Xenopus has often been at the forefront of developing these imaging methods for in vivo applications. Protocols for in vivo structural and functional imaging-including cellular labeling strategies, image collection, and image analysis-will expand the use of Xenopus to understand brain development, function, and plasticity.
Collapse
Affiliation(s)
- Hollis T Cline
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Center, La Jolla, California 92039, USA
| |
Collapse
|
13
|
Feng MS, Bestman JE. Imaging Mitochondrial Dynamics in the Xenopus Central Nervous System (CNS). Cold Spring Harb Protoc 2021; 2021:2021/4/pdb.prot106807. [PMID: 33795462 DOI: 10.1101/pdb.prot106807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Notable for producing ATP via oxidative phosphorylation, mitochondria also control calcium homeostasis, lipogenesis, the regulation of reactive oxygen species, and apoptosis. Even within relatively simple cells, mitochondria are heterogeneous with regard to their shape, abundance, movement, and subcellular locations. They exist as interconnected, tubular networks and as motile organelles that are transported along the cytoskeleton for distribution throughout cells. These spatial and morphological features reflect variability in the organelle's capacity to synthesize ATP and support cells. Changes to mitochondria are believed to support cell function and fate, and mitochondrial dysfunction underlies disease in the nervous system. Here we describe an in vivo time-lapse imaging approach to monitor and measure the movement and position of the mitochondria in cells of the developing brain in albino Xenopus laevis tadpoles. The unparalleled benefit of using Xenopus for these experiments is that measurements of mitochondrial morphology and distribution in cells can be measured in vivo, where the surrounding neural circuitry and other inputs that influence these critical organelles remain intact. This protocol draws together techniques to label brain cells and capture the morphology of the cells and their mitochondria with 3D time-lapse confocal microscopy. We describe open-source methods to reconstruct cells in order to quantify the features of their mitochondria.
Collapse
Affiliation(s)
- Martin Sihan Feng
- Department of Biology and Neuroscience Program, William and Mary, Williamsburg, Virginia 23185, USA
| | - Jennifer E Bestman
- Department of Biology and Neuroscience Program, William and Mary, Williamsburg, Virginia 23185, USA
| |
Collapse
|
14
|
Bek JW, De Clercq A, De Saffel H, Soenens M, Huysseune A, Witten PE, Coucke PJ, Willaert A. Photoconvertible fluorescent proteins: a versatile tool in zebrafish skeletal imaging. JOURNAL OF FISH BIOLOGY 2021; 98:1007-1017. [PMID: 32242924 DOI: 10.1111/jfb.14335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
One of the most frequently applied techniques in zebrafish (Danio rerio) research is the visualisation or manipulation of specific cell populations using transgenic reporter lines. The generation of these transgenic zebrafish, displaying cell- or tissue-specific expression of frequently used fluorophores such as Green Fluorescent Protein (GFP) or mCherry, is relatively easy using modern techniques. Fluorophores with different emission wavelengths and driven by different promoters can be monitored simultaneously in the same animal. Photoconvertible fluorescent proteins (pcFPs) are different from these standard fluorophores because their emission spectrum is changed when exposed to UV light, a process called photoconversion. Here, the benefits and versatility of using pcFPs for both single and dual fluorochrome imaging in zebrafish skeletal research in a previously generated osx:Kaede transgenic line are illustrated. In this line, Kaede, which is expressed under control of the osterix, otherwise known as sp7, promoter thereby labelling immature osteoblasts, can switch from green to red fluorescence upon irradiation with UV light. First, this study demonstrates that osx:Kaede exhibits an expression pattern similar to a previously described osx:nuGFP transgenic line in both larval and adult stages, hereby validating the use of this line for the imaging of immature osteoblasts. More in-depth experiments highlight different applications for osx:Kaede, such as lineage tracing and its combined use with in vivo skeletal staining and other transgenic backgrounds. Mineral staining in combination with osx:Kaede confirms osteoblast-independent mineralisation of the notochord. Osteoblast lineage tracing reveals migration and dedifferentiation of scleroblasts during fin regeneration. Finally, this study shows that combining two transgenics, osx:Kaede and osc:GFP, with similar emission wavelengths is possible when using a pcFP such as Kaede.
Collapse
Affiliation(s)
- Jan Willem Bek
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Adelbert De Clercq
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Hanna De Saffel
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Mieke Soenens
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - Ann Huysseune
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - P Eckhard Witten
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - Paul J Coucke
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Andy Willaert
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| |
Collapse
|
15
|
de Latouliere L, Manni I, Ferrari L, Pisati F, Totaro MG, Gurtner A, Marra E, Pacello L, Pozzoli O, Aurisicchio L, Capogrossi MC, Deflorian G, Piaggio G. MITO-Luc/GFP zebrafish model to assess spatial and temporal evolution of cell proliferation in vivo. Sci Rep 2021; 11:671. [PMID: 33436662 PMCID: PMC7804000 DOI: 10.1038/s41598-020-79530-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023] Open
Abstract
We developed a novel reporter transgenic zebrafish model called MITO-Luc/GFP zebrafish in which GFP and luciferase expression are under the control of the master regulator of proliferation NF-Y. In MITO-Luc/GFP zebrafish it is possible to visualize cell proliferation in vivo by fluorescence and bioluminescence. In this animal model, GFP and luciferase expression occur in early living embryos, becoming tissue specific in juvenile and adult zebrafish. By in vitro and ex vivo experiments we demonstrate that luciferase activity in adult animals occurs in intestine, kidney and gonads, where detectable proliferating cells are located. Further, by time lapse experiments in live embryos, we observed a wave of GFP positive cells following fin clip. In adult zebrafish, in addition to a bright bioluminescence signal on the regenerating tail, an early unexpected signal coming from the kidney occurs indicating not only a fin cell proliferation, but also a systemic response to tissue damage. Finally, we observed that luciferase activity was inhibited by anti-proliferative interventions, i.e. 5FU, cell cycle inhibitors and X-Rays. In conclusion, MITO-Luc/GFP zebrafish is a novel animal model that may be crucial to assess the spatial and temporal evolution of cell proliferation in vivo.
Collapse
Affiliation(s)
- Luisa de Latouliere
- UOSD SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Isabella Manni
- UOSD SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Laura Ferrari
- IFOM - FIRC Institute of Molecular Oncology, Milan, Italy
| | - Federica Pisati
- Histopathology Unit, Cogentech S.C.a.R.L, 20139, Milan, Italy
| | | | - Aymone Gurtner
- UOSD SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.,Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Emanuele Marra
- Takis s.r.l., via Castel Romano 100, 00128, Rome, Italy.,VITARES -APS, via Castel Romano 100, 00128, Rome, Italy
| | | | - Ombretta Pozzoli
- Laboratorio Di Biologia Vascolare e Medicina Rigenerativa - Centro Cardiologico Monzino - IRCCS (Istituto Di Ricovero E Cura a Carattere Scientifico), Milan, Italy.,Pfizer Italia, Via A.M. Mozzoni 12, 20152, Milan, Italy
| | - Luigi Aurisicchio
- Takis s.r.l., via Castel Romano 100, 00128, Rome, Italy.,VITARES -APS, via Castel Romano 100, 00128, Rome, Italy
| | - Maurizio C Capogrossi
- Johns Hopkins University School of Medicine, Division of Cardiology, 301 Building, Suite 2400, 4940 Eastern Avenue, Baltimore, MD, 21224, USA.,Laboratory of Cardiovascular Sciences, National Institute on Aging/National Institutes of Health, Baltimore, MD, 21224, USA
| | - Gianluca Deflorian
- IFOM - FIRC Institute of Molecular Oncology, Milan, Italy.,Cogentech SRL - Benefit Corporation, Milan, Italy
| | - Giulia Piaggio
- UOSD SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
16
|
Freudenblum J, Meyer D, Kimmel RA. Inducible Mosaic Cell Labeling Provides Insights Into Pancreatic Islet Morphogenesis. Front Cell Dev Biol 2020; 8:586651. [PMID: 33102488 PMCID: PMC7546031 DOI: 10.3389/fcell.2020.586651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 11/13/2022] Open
Abstract
Pancreatic islets, discrete microorgans embedded within the exocrine pancreas, contain beta cells which are critical for glucose homeostasis. Loss or dysfunction of beta cells leads to diabetes, a disease with expanding global prevalence, and for which regenerative therapies are actively being pursued. Recent efforts have focused on producing mature beta cells in vitro, but it is increasingly recognized that achieving a faithful three-dimensional islet structure is crucial for generating fully functional beta cells. Our current understanding of islet morphogenesis is far from complete, due to the deep internal location of the pancreas in mammalian models, which hampers direct visualization. Zebrafish is a model system well suited for studies of pancreas morphogenesis due to its transparency and the accessible location of the larval pancreas. In order to further clarify the cellular mechanisms of islet formation, we have developed new tools for in vivo visualization of single-cell dynamics. Our results show that clustering islet cells make contact and interconnect through dynamic actin-rich processes, move together while remaining in close proximity to the duct, and maintain high protrusive motility after forming clusters. Quantitative analyses of cell morphology and motility in 3-dimensions lays the groundwork to define therapeutically applicable factors responsible for orchestrating the morphogenic behaviors of coalescing endocrine cells.
Collapse
Affiliation(s)
- Julia Freudenblum
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Hong S, Feng L, Yang Y, Jiang H, Hou X, Guo P, Marlow FL, Stanley P, Wu P. In Situ Fucosylation of the Wnt Co-receptor LRP6 Increases Its Endocytosis and Reduces Wnt/β-Catenin Signaling. Cell Chem Biol 2020; 27:1140-1150.e4. [PMID: 32649905 DOI: 10.1016/j.chembiol.2020.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/14/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022]
Abstract
Wnt/β-catenin signaling regulates critical, context-dependent transcription in numerous physiological events. Among the well-documented mechanisms affecting Wnt/β-catenin activity, modification of N-glycans by L-fucose is the newest and the least understood. Using a combination of Chinese hamster ovary cell mutants with different fucosylation levels and cell-surface fucose editing (in situ fucosylation [ISF]), we report that α(1-3)-fucosylation of N-acetylglucosamine (GlcNAc) in the Galβ(1-4)-GlcNAc sequences of complex N-glycans modulates Wnt/β-catenin activity by regulating the endocytosis of low-density lipoprotein receptor-related protein 6 (LRP6). Pulse-chase experiments reveal that ISF elevates endocytosis of lipid-raft-localized LRP6, leading to the suppression of Wnt/β-catenin signaling. Remarkably, Wnt activity decreased by ISF is fully reversed by the exogenously added fucose. The combined data show that in situ cell-surface fucosylation can be exploited to regulate a specific signaling pathway via endocytosis promoted by a fucose-binding protein, thereby linking glycosylation of a receptor with its intracellular signaling.
Collapse
Affiliation(s)
- Senlian Hong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla CA 92037, USA
| | - Lei Feng
- Department of Biochemistry, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Yi Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla CA 92037, USA
| | - Hao Jiang
- Department of Biochemistry, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; The School of Medicine and Pharmacy, Ocean University of China 5 Yushan Road, Qingdao 266003, China
| | - Xiaomeng Hou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla CA 92037, USA
| | - Peng Guo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Florence L Marlow
- Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla CA 92037, USA.
| |
Collapse
|
18
|
Wang F, Wang X, Gao L, Meng LY, Xie JM, Xiong JW, Luo Y. Nanoparticle-mediated delivery of siRNA into zebrafish heart: a cell-level investigation on the biodistribution and gene silencing effects. NANOSCALE 2019; 11:18052-18064. [PMID: 31576876 DOI: 10.1039/c9nr05758g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanomaterials hold promise for the delivery of nucleic acids to facilitate gene therapy in cardiac diseases. However, as much of the in vivo study of nanomaterials was conducted via the "trial and error" method, the understanding of the nanomaterial-mediated delivery in cardiac tissue was limited to the gross efficiency in manipulating the gene expression while little was known about the delivery process and mechanism in particular at the cell level. In this study, small interfering RNA (siRNA) nanoparticles formulated with a polyamidoamine (PAMAM) nanomaterial were applied to the injured heart of zebrafish. The distribution of nanoparticles in cardiomyocytes, endothelial cells, macrophages and leukocytes was quantitatively analyzed with precision at the cell level by using transgenic models. Based on the distribution characteristics, gene silencing effects in a specific group of cells were analyzed to illustrate how siRNA nanoparticles could get potent gene silencing in different cells in vivo. The results elucidated the heterogeneous distribution of siRNA nanoparticles and how nanoparticles could be efficient despite the significant difference in cellular uptake efficiency in different cells. It demonstrated a paradigm and the need to decouple cellular processes to understand nanoparticle-mediated delivery in complex tissue and the investigation/methodology may lead to important information to guide the design of advanced targeted drug-delivery systems in heart.
Collapse
Affiliation(s)
- Fang Wang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ng XW, Sampath K, Wohland T. Fluorescence Correlation and Cross-Correlation Spectroscopy in Zebrafish. Methods Mol Biol 2019; 1863:67-105. [PMID: 30324593 DOI: 10.1007/978-1-4939-8772-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
There has been increasing interest in biophysical studies on live organisms to gain better insights into physiologically relevant biological events at the molecular level. Zebrafish (Danio rerio) is a viable vertebrate model to study such events due to its genetic and evolutionary similarities to humans, amenability to less invasive fluorescence techniques owing to its transparency and well-characterized genetic manipulation techniques. Fluorescence techniques used to probe biomolecular dynamics and interactions of molecules in live zebrafish embryos are therefore highly sought-after to bridge molecular and developmental events. Fluorescence correlation and cross-correlation spectroscopy (FCS and FCCS) are two robust techniques that provide molecular level information on dynamics and interactions respectively. Here, we detail the steps for applying confocal FCS and FCCS, in particular single-wavelength FCCS (SW-FCCS), in live zebrafish embryos, beginning with sample preparation, instrumentation, calibration, and measurements on the FCS/FCCS instrument and ending with data analysis.
Collapse
Affiliation(s)
- Xue Wen Ng
- Department of Chemistry and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Thorsten Wohland
- Department of Chemistry and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
20
|
Cook ZT, Brockway NL, Tobias ZJC, Pajarla J, Boardman IS, Ippolito H, Nkombo Nkoula S, Weissman TA. Combining near-infrared fluorescence with Brainbow to visualize expression of specific genes within a multicolor context. Mol Biol Cell 2019; 30:491-505. [PMID: 30586321 PMCID: PMC6594444 DOI: 10.1091/mbc.e18-06-0340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Fluorescent proteins are a powerful experimental tool, allowing the visualization of gene expression and cellular behaviors in a variety of systems. Multicolor combinations of fluorescent proteins, such as Brainbow, have expanded the range of possible research questions and are useful for distinguishing and tracking cells. The addition of a separately driven color, however, would allow researchers to report expression of a manipulated gene within the multicolor context to investigate mechanistic effects. A far-red or near-infrared protein could be particularly suitable in this context, as these can be distinguished spectrally from Brainbow. We investigated five far-red/near-infrared proteins in zebrafish: TagRFP657, mCardinal, miRFP670, iRFP670, and mIFP. Our results show that both mCardinal and iRFP670 are useful fluorescent proteins for zebrafish expression. We also introduce a new transgenic zebrafish line that expresses Brainbow under the control of the neuroD promoter. We demonstrate that mCardinal can be used to track the expression of a manipulated bone morphogenetic protein receptor within the Brainbow context. The overlay of near-infrared fluorescence onto a Brainbow background defines a clear strategy for future research questions that aim to manipulate or track the effects of specific genes within a population of cells that are delineated using multicolor approaches.
Collapse
Affiliation(s)
- Zoe T. Cook
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | | | - Joy Pajarla
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | - Helen Ippolito
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | | |
Collapse
|
21
|
Optogenetic precision toolkit to reveal form, function and connectivity of single neurons. Methods 2018; 150:42-48. [DOI: 10.1016/j.ymeth.2018.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
|
22
|
Rafferty SA, Quinn TA. A beginner's guide to understanding and implementing the genetic modification of zebrafish. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:3-19. [PMID: 30032905 DOI: 10.1016/j.pbiomolbio.2018.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 02/05/2023]
Abstract
Zebrafish are a relevant and useful vertebrate model species to study normal- and patho-physiology, including that of the heart, due to conservation of protein-coding genes, organ system organisation and function, and efficient breeding and housing. Their amenability to genetic modification, particularly compared to other vertebrate species, is another great advantage, and is the focus of this review. A vast number of genetically engineered zebrafish lines and methods for their creation exist, but their incorporation into research programs is hindered by the overwhelming amount of technical details. The purpose of this paper is to provide a simplified guide to the fundamental information required by the uninitiated researcher for the thorough understanding, critical evaluation, and effective implementation of genetic approaches in the zebrafish. First, an overview of existing zebrafish lines generated through large scale chemical mutagenesis, retroviral insertional mutagenesis, and gene and enhancer trap screens is presented. Second, descriptions of commonly-used genetic modification methods are provided including Tol2 transposon, TALENs (transcription activator-like effector nucleases), and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9). Lastly, design features of genetic modification strategies such as promoters, fluorescent reporters, and conditional transgenesis, are summarised. As a comprehensive resource containing both background information and technical notes of how to obtain or generate zebrafish, this review compliments existing resources to facilitate the use of genetically-modified zebrafish by researchers who are new to the field.
Collapse
Affiliation(s)
- Sara A Rafferty
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada; School of Biomedical Engineering, Dalhousie University, Halifax, Canada.
| |
Collapse
|
23
|
Miller GW, Chandrasekaran V, Yaghoobi B, Lein PJ. Opportunities and challenges for using the zebrafish to study neuronal connectivity as an endpoint of developmental neurotoxicity. Neurotoxicology 2018; 67:102-111. [PMID: 29704525 PMCID: PMC6177215 DOI: 10.1016/j.neuro.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/28/2023]
Abstract
Chemical exposures have been implicated as environmental risk factors that interact with genetic susceptibilities to influence individual risk for complex neurodevelopmental disorders, including autism spectrum disorder, schizophrenia, attention deficit hyperactivity disorder and intellectual disabilities. Altered patterns of neuronal connectivity represent a convergent mechanism of pathogenesis for these and other neurodevelopmental disorders, and growing evidence suggests that chemicals can interfere with specific signaling pathways that regulate the development of neuronal connections. There is, therefore, a growing interest in developing screening platforms to identify chemicals that alter neuronal connectivity. Cell-cell, cell-matrix interactions and systemic influences are known to be important in defining neuronal connectivity in the developing brain, thus, a systems-based model offers significant advantages over cell-based models for screening chemicals for effects on neuronal connectivity. The embryonic zebrafish represents a vertebrate model amenable to higher throughput chemical screening that has proven useful in characterizing conserved mechanisms of neurodevelopment. Moreover, the zebrafish is readily amenable to gene editing to integrate genetic susceptibilities. Although use of the zebrafish model in toxicity testing has increased in recent years, the diverse tools available for imaging structural differences in the developing zebrafish brain have not been widely applied to studies of the influence of gene by environment interactions on neuronal connectivity in the developing zebrafish brain. Here, we discuss tools available for imaging of neuronal connectivity in the developing zebrafish, review what has been published in this regard, and suggest a path forward for applying this information to developmental neurotoxicity testing.
Collapse
Affiliation(s)
- Galen W. Miller
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| | - Vidya Chandrasekaran
- Department of Biology, Saint Mary’s College of California, Moraga, CA 94575, USA
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
24
|
Peng Z, Han X, Li S, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM. Carbon dots: Biomacromolecule interaction, bioimaging and nanomedicine. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Hogan AL, Don EK, Rayner SL, Lee A, Laird AS, Watchon M, Winnick C, Tarr IS, Morsch M, Fifita JA, Gwee SSL, Formella I, Hortle E, Yuan KC, Molloy MP, Williams KL, Nicholson GA, Chung RS, Blair IP, Cole NJ. Expression of ALS/FTD-linked mutant CCNF in zebrafish leads to increased cell death in the spinal cord and an aberrant motor phenotype. Hum Mol Genet 2017; 26:2616-2626. [DOI: 10.1093/hmg/ddx136] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/29/2017] [Indexed: 01/28/2023] Open
|
26
|
Schenk H, Müller-Deile J, Kinast M, Schiffer M. Disease modeling in genetic kidney diseases: zebrafish. Cell Tissue Res 2017; 369:127-141. [PMID: 28331970 DOI: 10.1007/s00441-017-2593-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/22/2017] [Indexed: 01/07/2023]
Abstract
Growing numbers of translational genomics studies are based on the highly efficient and versatile zebrafish (Danio rerio) vertebrate model. The increasing types of zebrafish models have improved our understanding of inherited kidney diseases, since they not only display pathophysiological changes but also give us the opportunity to develop and test novel treatment options in a high-throughput manner. New paradigms in inherited kidney diseases have been developed on the basis of the distinct genome conservation of approximately 70 % between zebrafish and humans in terms of existing gene orthologs. Several options are available to determine the functional role of a specific gene or gene sets. Permanent genome editing can be induced via complete gene knockout by using the CRISPR/Cas-system, among others, or via transient modification by using various morpholino techniques. Cross-species rescues succeeding knockdown techniques are employed to determine the functional significance of a target gene or a specific mutation. This article summarizes the current techniques and discusses their perspectives.
Collapse
Affiliation(s)
- Heiko Schenk
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Janina Müller-Deile
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Mark Kinast
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Mario Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany.
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA.
| |
Collapse
|
27
|
Baxendale S, van Eeden F, Wilkinson R. The Power of Zebrafish in Personalised Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:179-197. [PMID: 28840558 DOI: 10.1007/978-3-319-60733-7_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The goal of personalised medicine is to develop tailor-made therapies for patients in whom currently available therapeutics fail. This approach requires correlating individual patient genotype data to specific disease phenotype data and using these stratified data sets to identify bespoke therapeutics. Applications for personalised medicine include common complex diseases which may have multiple targets, as well as rare monogenic disorders, for which the target may be unknown. In both cases, whole genome sequence analysis (WGS) is discovering large numbers of disease associated mutations in new candidate genes and potential modifier genes. Currently, the main limiting factor is the determination of which mutated genes are important for disease progression and therefore represent potential targets for drug discovery. Zebrafish have gained popularity as a model organism for understanding developmental processes, disease mechanisms and more recently for drug discovery and toxicity testing. In this chapter, we will examine the diverse roles that zebrafish can make in the expanding field of personalised medicine, from generating humanised disease models to xenograft screening of different cancer cell lines, through to finding new drugs via in vivo phenotypic screens. We will discuss the tools available for zebrafish research and recent advances in techniques, highlighting the advantages and potential of using zebrafish for high throughput disease modeling and precision drug discovery.
Collapse
Affiliation(s)
- Sarah Baxendale
- The Bateson Centre, Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Freek van Eeden
- The Bateson Centre, Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Robert Wilkinson
- The Bateson Centre, Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Department of Infection, Immunity and Cardiovascular Disease, Medical School, Beech Hill Rd, University of Sheffield, Sheffield, S10 2RX, UK
| |
Collapse
|
28
|
Karoubi N, Segev R, Wullimann MF. The Brain of the Archerfish Toxotes chatareus: A Nissl-Based Neuroanatomical Atlas and Catecholaminergic/Cholinergic Systems. Front Neuroanat 2016; 10:106. [PMID: 27891081 PMCID: PMC5104738 DOI: 10.3389/fnana.2016.00106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/13/2016] [Indexed: 01/30/2023] Open
Abstract
Over recent years, the seven-spot archerfish (Toxotes chatareus) has emerged as a new model for studies in visual and behavioral neuroscience thanks to its unique hunting strategy. Its natural ability to spit at insects outside of water can be used in the laboratory for well controlled behavioral experiments where the fish is trained to aim at targets on a screen. The need for a documentation of the neuroanatomy of this animal became critical as more research groups use it as a model. Here we present an atlas of adult T. chatareus specimens caught in the wild in South East Asia. The atlas shows representative sections of the brain and specific structures revealed by a classic Nissl staining as well as corresponding schematic drawings. Additional immunostainings for catecholaminergic and cholinergic systems were conducted to corroborate the identification of certain nuclei and the data of a whole brain scanner is available online. We describe the general features of the archerfish brain as well as its specificities, especially for the visual system and compare the neuroanatomy of the archerfish with other teleosts. This atlas of the archerfish brain shows all levels of the neuraxis and intends to provide a solid basis for further neuroscientific research on T. chatareus, in particular electrophysiological studies.
Collapse
Affiliation(s)
- Naomi Karoubi
- Life Sciences Department and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev Beersheba, Israel
| | - Ronen Segev
- Life Sciences Department and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev Beersheba, Israel
| | - Mario F Wullimann
- Graduate School of Systemic Neurosciences and Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University of Munich Munich, Germany
| |
Collapse
|
29
|
Weber T, Namikawa K, Winter B, Müller-Brown K, Kühn R, Wurst W, Köster RW. Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons. Development 2016; 143:4279-4287. [PMID: 27729409 DOI: 10.1242/dev.122721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 09/30/2016] [Indexed: 01/11/2023]
Abstract
The zebrafish is a well-established model organism in which to study in vivo mechanisms of cell communication, differentiation and function. Existing cell ablation methods are either invasive or they rely on the cellular expression of prokaryotic enzymes and the use of antibiotic drugs as cell death-inducing compounds. We have recently established a novel inducible genetic cell ablation system based on tamoxifen-inducible Caspase 8 activity, thereby exploiting mechanisms of cell death intrinsic to most cell types. Here, we prove its suitability in vivo by monitoring the ablation of cerebellar Purkinje cells (PCs) in transgenic zebrafish that co-express the inducible caspase and a fluorescent reporter. Incubation of larvae in tamoxifen for 8 h activated endogenous Caspase 3 and cell death, whereas incubation for 16 h led to the near-complete loss of PCs by apoptosis. We observed synchronous cell death autonomous to the PC population and phagocytosing microglia in the cerebellum, reminiscent of developmental apoptosis in the forebrain. Thus, induction of apoptosis through targeted activation of caspase by tamoxifen (ATTACTM) further expands the repertoire of genetic tools for conditional interrogation of cellular functions.
Collapse
Affiliation(s)
- Thomas Weber
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany.,Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Kazuhiko Namikawa
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Barbara Winter
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Karina Müller-Brown
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Ralf Kühn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Wolfgang Wurst
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, Neuherberg 85764, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Feodor-Lynen-Str. 17, München 81377, Germany.,Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, München 81377, Germany.,Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Reinhard W Köster
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| |
Collapse
|
30
|
Tekeli I, Aujard I, Trepat X, Jullien L, Raya A, Zalvidea D. Long-term in vivo single-cell lineage tracing of deep structures using three-photon activation. LIGHT, SCIENCE & APPLICATIONS 2016; 5:e16084. [PMID: 30167169 PMCID: PMC6059956 DOI: 10.1038/lsa.2016.84] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 05/10/2023]
Abstract
Genetic labeling techniques allow for noninvasive lineage tracing of cells in vivo. Two-photon inducible activators provide spatial resolution for superficial cells, but labeling cells located deep within tissues is precluded by scattering of the far-red illumination required for two-photon photolysis. Three-photon illumination has been shown to overcome the limitations of two-photon microscopy for in vivo imaging of deep structures, but whether it can be used for photoactivation remains to be tested. Here we show, both theoretically and experimentally, that three-photon illumination overcomes scattering problems by combining longer wavelength excitation with high uncaging three-photon cross-section molecules. We prospectively labeled heart muscle cells in zebrafish embryos and found permanent labeling in their progeny in adult animals with negligible tissue damage. This technique allows for a noninvasive genetic manipulation in vivo with spatial, temporal and cell-type specificity, and may have wide applicability in experimental biology.
Collapse
Affiliation(s)
- Isil Tekeli
- Center of Regenerative Medicine in Barcelona (CMRB), Barcelona Biomedical Research Park, Dr Aiguader 88, 08003 Barcelona, Spain
- Control of Stem Cell Potency Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Isabelle Aujard
- École Normale Supérieure—PSL Research University, Department of Chemistry, 24 rue Lhomond, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, PASTEUR, F-75005 Paris, France
- CNRS, UMR 8640 PASTEUR, F-75005 Paris, France
| | - Xavier Trepat
- Integrative Cell and Tissue Dynamics Group, Institute of Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Ludovic Jullien
- École Normale Supérieure—PSL Research University, Department of Chemistry, 24 rue Lhomond, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, PASTEUR, F-75005 Paris, France
- CNRS, UMR 8640 PASTEUR, F-75005 Paris, France
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Barcelona Biomedical Research Park, Dr Aiguader 88, 08003 Barcelona, Spain
- Control of Stem Cell Potency Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Dobryna Zalvidea
- Integrative Cell and Tissue Dynamics Group, Institute of Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
| |
Collapse
|
31
|
Ota KG, Abe G. Goldfish morphology as a model for evolutionary developmental biology. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:272-95. [PMID: 26952007 PMCID: PMC6680352 DOI: 10.1002/wdev.224] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/06/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022]
Abstract
Morphological variation of the goldfish is known to have been established by artificial selection for ornamental purposes during the domestication process. Chinese texts that date to the Song dynasty contain descriptions of goldfish breeding for ornamental purposes, indicating that the practice originated over one thousand years ago. Such a well-documented goldfish breeding process, combined with the phylogenetic and embryological proximities of this species with zebrafish, would appear to make the morphologically diverse goldfish strains suitable models for evolutionary developmental (evodevo) studies. However, few modern evodevo studies of goldfish have been conducted. In this review, we provide an overview of the historical background of goldfish breeding, and the differences between this teleost and zebrafish from an evolutionary perspective. We also summarize recent progress in the field of molecular developmental genetics, with a particular focus on the twin-tail goldfish morphology. Furthermore, we discuss unanswered questions relating to the evolution of the genome, developmental robustness, and morphologies in the goldfish lineage, with the goal of blazing a path toward an evodevo study paradigm using this teleost species as a new model species. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Gembu Abe
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
32
|
Intubation-based anesthesia for long-term time-lapse imaging of adult zebrafish. Nat Protoc 2015; 10:2064-73. [DOI: 10.1038/nprot.2015.130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Mariotti M, Carnovali M, Banfi G. Danio rerio: the Janus of the bone from embryo to scale. ACTA ACUST UNITED AC 2015; 12:188-94. [PMID: 26604948 DOI: 10.11138/ccmbm/2015.12.2.188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Danio rerio (zebrafish), like the Roman god Janus, is an old animal model which is recently emerged and looks to the future with an increasing scientific success. Unlike other traditional animal models, zebrafish represents a versatile way to approach the study of the skeleton. Transparency of the larval stage, genetic manipulability and unique anatomical structures (scales) makes zebrafish a powerful and versatile instrument to investigate the bone tissue in terms of structure and function. Like Janus, zebrafish offers two different faces, or better, two models in one animal: larval and adult stage. The embryo can be used to isolate new genes involved in osteogenesis by large-scale mutagenesis screenings. The behavior of bone cells and genes in osteogenesis can be investigate by using transgenic lines, vital dyes, mutants and traditional molecular biology techniques. The adult zebrafish represents an important resource to study the pathways related to the bone metabolism and turnover. In particular, the properties of the caudal fin allow to study mechanisms of bone regeneration and reparation whereas the elasmoid scale represents an unique tool to investigate the bone metabolism under physiological or pathological conditions.
Collapse
Affiliation(s)
- Massimo Mariotti
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy ; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | | - Giuseppe Banfi
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy ; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
34
|
Abstract
Visual defects affect a large proportion of humanity, have a significant negative impact on quality of life, and cause significant economic burden. The wide variety of visual disorders and the large number of gene mutations responsible require a flexible animal model system to carry out research for possible causes and cures for the blinding conditions. With eyes similar to humans in structure and function, zebrafish are an important vertebrate model organism that is being used to study genetic and environmental eye diseases, including myopia, glaucoma, retinitis pigmentosa, ciliopathies, albinism, and diabetes. This review details the use of zebrafish in modeling human ocular diseases.
Collapse
Affiliation(s)
- Brian A Link
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| | - Ross F Collery
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| |
Collapse
|
35
|
Kang YF, Li YH, Fang YW, Xu Y, Wei XM, Yin XB. Carbon Quantum Dots for Zebrafish Fluorescence Imaging. Sci Rep 2015; 5:11835. [PMID: 26135470 PMCID: PMC4488761 DOI: 10.1038/srep11835] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/30/2015] [Indexed: 12/23/2022] Open
Abstract
Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model.
Collapse
Affiliation(s)
- Yan-Fei Kang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Yu-Hao Li
- Tianjin Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yang-Wu Fang
- Tianjin Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yang Xu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Xiao-Mi Wei
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Xue-Bo Yin
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
36
|
Jungke P, Hammer J, Hans S, Brand M. Isolation of Novel CreERT2-Driver Lines in Zebrafish Using an Unbiased Gene Trap Approach. PLoS One 2015; 10:e0129072. [PMID: 26083735 PMCID: PMC4471347 DOI: 10.1371/journal.pone.0129072] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/04/2015] [Indexed: 01/01/2023] Open
Abstract
Gene manipulation using the Cre/loxP-recombinase system has been successfully employed in zebrafish to study gene functions and lineage relationships. Recently, gene trapping approaches have been applied to produce large collections of transgenic fish expressing conditional alleles in various tissues. However, the limited number of available cell- and tissue-specific Cre/CreERT2-driver lines still constrains widespread application in this model organism. To enlarge the pool of existing CreERT2-driver lines, we performed a genome-wide gene trap screen using a Tol2-based mCherry-T2a-CreERT2 (mCT2aC) gene trap vector. This cassette consists of a splice acceptor and a mCherry-tagged variant of CreERT2 which enables simultaneous labeling of the trapping event, as well as CreERT2 expression from the endogenous promoter. Using this strategy, we generated 27 novel functional CreERT2-driver lines expressing in a cell- and tissue-specific manner during development and adulthood. This study summarizes the analysis of the generated CreERT2-driver lines with respect to functionality, expression, integration, as well as associated phenotypes. Our results significantly enlarge the existing pool of CreERT2-driver lines in zebrafish and combined with Cre-dependent effector lines, the new CreERT2-driver lines will be important tools to manipulate the zebrafish genome.
Collapse
Affiliation(s)
- Peggy Jungke
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Juliane Hammer
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Stefan Hans
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Michael Brand
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| |
Collapse
|
37
|
Breckwoldt MO, Wittmann C, Misgeld T, Kerschensteiner M, Grabher C. Redox imaging using genetically encoded redox indicators in zebrafish and mice. Biol Chem 2015; 396:511-22. [DOI: 10.1515/hsz-2014-0294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/26/2015] [Indexed: 12/28/2022]
Abstract
Abstract
Redox signals have emerged as important regulators of cellular physiology and pathology. The advent of redox imaging in vertebrate systems now provides the opportunity to dynamically visualize redox signaling during development and disease. In this review, we summarize recent advances in the generation of genetically encoded redox indicators (GERIs), introduce new redox imaging strategies, and highlight key publications in the field of vertebrate redox imaging. We also discuss the limitations and future potential of in vivo redox imaging in zebrafish and mice.
Collapse
|
38
|
Handley A, Schauer T, Ladurner A, Margulies C. Designing Cell-Type-Specific Genome-wide Experiments. Mol Cell 2015; 58:621-31. [DOI: 10.1016/j.molcel.2015.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Fukuhara S, Fukui H, Wakayama Y, Ando K, Nakajima H, Mochizuki N. Looking back and moving forward: Recent advances in understanding of cardiovascular development by imaging of zebrafish. Dev Growth Differ 2015; 57:333-40. [DOI: 10.1111/dgd.12210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Shigetomo Fukuhara
- Department of Cell Biology; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
| | - Hajime Fukui
- Department of Cell Biology; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
| | - Yuki Wakayama
- Department of Cell Biology; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
| | - Koji Ando
- Department of Cell Biology; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
| | - Hiroyuki Nakajima
- Department of Cell Biology; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
| | - Naoki Mochizuki
- Department of Cell Biology; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
- JST-CREST; National Cerebral and Cardiovascular Center; 5-7-1 Suita Osaka 565-8565 Japan
| |
Collapse
|
40
|
Abstract
The zebrafish (Danio rerio) is now a widely used model organism in biomedical research. The species is also increasingly used for studying skeletal development and regeneration and for understanding human skeletal diseases. The small size of this model organism is an advantage and an extreme challenge for visualizing and diagnosing the animals' skeleton. This applies especially to early stages of skeletal development. Similar challenges arise for the analysis of the skeleton of other small fish species, such as medaka (Oryzias latipes). High quality histological preparations and knowledge about the special quality of the zebrafish skeleton remain prerequisites for a correct analysis. In addition, new methods for fast and high-resolution 2D and 3D skeletal tissue screening are required for a maximal understanding of skeletal development. We, in this study, review advantages and limitations of adapting current visualization techniques for zebrafish skeletal research. We discuss the methods for in toto visualization, such as X-raying, micro-CT, Alizarin red staining and optical projection tomography. Techniques for in vivo imaging, such as second harmonic generation microscopy and two-photon excitation fluorescence, are also discussed. Finally, we explore the possibilities of light-sheet microscopy for the analysis of the zebrafish skeleton.
Collapse
Affiliation(s)
- Bart Bruneel
- Department of Biology, Research Group Evolutionary Developmental Biology, Ghent University , Ghent , Belgium and
| | | |
Collapse
|
41
|
|
42
|
Bruneel B, Mathä M, Paesen R, Ameloot M, Weninger WJ, Huysseune A. Imaging the zebrafish dentition: from traditional approaches to emerging technologies. Zebrafish 2015; 12:1-10. [PMID: 25560992 PMCID: PMC4298156 DOI: 10.1089/zeb.2014.0980] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The zebrafish, a model organism for which a plethora of molecular and genetic techniques exists, has a lifelong replacing dentition of 22 pharyngeal teeth. This is in contrast to the mouse, which is the key organism in dental research but whose teeth are never replaced. Employing the zebrafish as the main organism to elucidate the mechanisms of continuous tooth replacement, however, poses at least one major problem, related to the fact that all teeth are located deep inside the body. Investigating tooth replacement thus relies on conventional histological methods, which are often laborious, time-consuming and can cause tissue deformations. In this review, we investigate the advantages and limitations of adapting current visualization techniques to dental research in zebrafish. We discuss techniques for fast sectioning, such as vibratome sectioning and high-resolution episcopic microscopy, and methods for in toto visualization, such as Alizarin red staining, micro-computed tomography, and optical projection tomography. Techniques for in vivo imaging, such as two-photon excitation fluorescence and second harmonic generation microscopy, are also covered. Finally, the possibilities of light sheet microscopy are addressed.
Collapse
Affiliation(s)
- Bart Bruneel
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | - Markus Mathä
- IMG Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Rik Paesen
- BIOMED, University Hasselt and Transnational University Limburg, Diepenbeek, Belgium
| | - Marcel Ameloot
- BIOMED, University Hasselt and Transnational University Limburg, Diepenbeek, Belgium
| | - Wolfgang J. Weninger
- IMG Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Ann Huysseune
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
43
|
Clift DE, Thorn RJ, Passarelli EA, Kapoor M, LoPiccolo MK, Richendrfer HA, Colwill RM, Creton R. Effects of embryonic cyclosporine exposures on brain development and behavior. Behav Brain Res 2015; 282:117-24. [PMID: 25591474 DOI: 10.1016/j.bbr.2015.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022]
Abstract
Cyclosporine, a calcineurin inhibitor, is successfully used as an immunosuppressant in transplant medicine. However, the use of this pharmaceutical during pregnancy is concerning since calcineurin is thought to play a role in neural development. The risk for human brain development is difficult to evaluate because of a lack of basic information on the sensitive developmental times and the potentially pleiotropic effects on brain development and behavior. In the present study, we use zebrafish as a model system to examine the effects of embryonic cyclosporine exposures. Early embryonic exposures reduced the size of the eyes and brain. Late embryonic exposures did not affect the size of the eyes or brain, but did lead to substantial behavioral defects at the larval stages. The cyclosporine-exposed larvae displayed a reduced avoidance response to visual stimuli, low swim speeds, increased resting, an increase in thigmotaxis, and changes in the average distance between larvae. Similar results were obtained with the calcineurin inhibitor FK506, suggesting that most, but not all, effects on brain development and behavior are mediated by calcineurin inhibition. Overall, the results show that cyclosporine can induce either structural or functional brain defects, depending on the exposure window. The observed functional brain defects highlight the importance of quantitative behavioral assays when evaluating the risk of developmental exposures.
Collapse
Affiliation(s)
- Danielle E Clift
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Robert J Thorn
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Emily A Passarelli
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Mrinal Kapoor
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Mary K LoPiccolo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Holly A Richendrfer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ruth M Colwill
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
44
|
Hirsinger E, Carvalho JE, Chevalier C, Lutfalla G, Nicolas JF, Peyriéras N, Schubert M. Expression of fluorescent proteins in Branchiostoma lanceolatum by mRNA injection into unfertilized oocytes. J Vis Exp 2015:52042. [PMID: 25650764 PMCID: PMC4354527 DOI: 10.3791/52042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We report here a robust and efficient protocol for the expression of fluorescent proteins after mRNA injection into unfertilized oocytes of the cephalochordate amphioxus, Branchiostoma lanceolatum. We use constructs for membrane and nuclear targeted mCherry and eGFP that have been modified to accommodate amphioxus codon usage and Kozak consensus sequences. We describe the type of injection needles to be used, the immobilization protocol for the unfertilized oocytes, and the overall injection set-up. This technique generates fluorescently labeled embryos, in which the dynamics of cell behaviors during early development can be analyzed using the latest in vivo imaging strategies. The development of a microinjection technique in this amphioxus species will allow live imaging analyses of cell behaviors in the embryo as well as gene-specific manipulations, including gene overexpression and knockdown. Altogether, this protocol will further consolidate the basal chordate amphioxus as an animal model for addressing questions related to the mechanisms of embryonic development and, more importantly, to their evolution.
Collapse
Affiliation(s)
- Estelle Hirsinger
- Département de Biologie du Développement et Cellules Souches, Institut Pasteur
| | - João Emanuel Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR7009 CNRS/UPMC Univ Paris 06), Sorbonne Universités
| | - Christine Chevalier
- Département de Biologie du Développement et Cellules Souches, Institut Pasteur; Equipe Epigenetic Control of Normal and Pathological Hematopoiesis, Centre de Recherche en Cancérologie de Marseille
| | - Georges Lutfalla
- Unité de Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS UMR5235/DAA/cc107/Université Montpellier II
| | | | - Nadine Peyriéras
- Plateforme BioEmergences IBiSA FBI, CNRS-NED, Institut de Neurobiologie Alfred Fessard;
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR7009 CNRS/UPMC Univ Paris 06), Sorbonne Universités
| |
Collapse
|
45
|
Oosterhof N, Boddeke E, van Ham TJ. Immune cell dynamics in the CNS: Learning from the zebrafish. Glia 2014; 63:719-35. [PMID: 25557007 DOI: 10.1002/glia.22780] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/10/2014] [Indexed: 12/22/2022]
Abstract
A major question in research on immune responses in the brain is how the timing and nature of these responses influence physiology, pathogenesis or recovery from pathogenic processes. Proper understanding of the immune regulation of the human brain requires a detailed description of the function and activities of the immune cells in the brain. Zebrafish larvae allow long-term, noninvasive imaging inside the brain at high-spatiotemporal resolution using fluorescent transgenic reporters labeling specific cell populations. Together with recent additional technical advances this allows an unprecedented versatility and scope of future studies. Modeling of human physiology and pathology in zebrafish has already yielded relevant insights into cellular dynamics and function that can be translated to the human clinical situation. For instance, in vivo studies in the zebrafish have provided new insight into immune cell dynamics in granuloma formation in tuberculosis and the mechanisms involving treatment resistance. In this review, we highlight recent findings and novel tools paving the way for basic neuroimmunology research in the zebrafish. GLIA 2015;63:719-735.
Collapse
Affiliation(s)
- Nynke Oosterhof
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
46
|
Park K, Jeong J, Chung BH. Live imaging of cellular dynamics using a multi-imaging vector in single cells. Chem Commun (Camb) 2014; 50:10734-6. [PMID: 25087700 DOI: 10.1039/c4cc04980b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Real-time monitoring of cellular dynamics in living organisms is highly challenging. We developed a multi-imaging vector based on 2A peptides. Live imaging of subcellular compartments can be performed following the transfection of cells with another vector, the multi-labeling vector, which contains localization signals and various fluorescent protein variants.
Collapse
Affiliation(s)
- Kyoungsook Park
- BioNano Health Guard Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea.
| | | | | |
Collapse
|
47
|
Mich JK, Payumo AY, Rack PG, Chen JK. In vivo imaging of Hedgehog pathway activation with a nuclear fluorescent reporter. PLoS One 2014; 9:e103661. [PMID: 25068273 PMCID: PMC4113417 DOI: 10.1371/journal.pone.0103661] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022] Open
Abstract
The Hedgehog (Hh) pathway is essential for embryonic development and tissue regeneration, and its dysregulation can lead to birth defects and tumorigenesis. Understanding how this signaling mechanism contributes to these processes would benefit from an ability to visualize Hedgehog pathway activity in live organisms, in real time, and with single-cell resolution. We report here the generation of transgenic zebrafish lines that express nuclear-localized mCherry fluorescent protein in a Gli transcription factor-dependent manner. As demonstrated by chemical and genetic perturbations, these lines faithfully report Hedgehog pathway state in individual cells and with high detection sensitivity. They will be valuable tools for studying dynamic Gli-dependent processes in vertebrates and for identifying new chemical and genetic regulators of the Hh pathway.
Collapse
Affiliation(s)
- John K. Mich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America. Current address: Children's Research Institute, University of Texas-Southwestern Medical Center, Dallas, Texas, United States of America
| | - Alexander Y. Payumo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Paul G. Rack
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - James K. Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
48
|
Koole W, Tijsterman M. Mosaic analysis and tumor induction in zebrafish by microsatellite instability-mediated stochastic gene expression. Dis Model Mech 2014; 7:929-36. [PMID: 24487406 PMCID: PMC4073281 DOI: 10.1242/dmm.014365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mosaic analysis, in which two or more populations of cells with differing genotypes are studied in a single animal, is a powerful approach to study developmental mechanisms and gene function in vivo. Over recent years, several genetic methods have been developed to achieve mosaicism in zebrafish, but despite their advances, limitations remain and different approaches and further refinements are warranted. Here, we describe an alternative approach for creating somatic mosaicism in zebrafish that relies on the instability of microsatellite sequences during replication. We placed the coding sequences of various marker proteins downstream of a microsatellite and out-of-frame; in vivo frameshifting into the proper reading frame results in expression of the protein in random individual cells that are surrounded by wild-type cells. We optimized this approach for the binary Gal4-UAS expression system by generating a driver line and effector lines that stochastically express Gal4-VP16 or UAS:H2A-EGFP and self-maintaining UAS:H2A-EGFP-Kaloop, respectively. To demonstrate the utility of this system, we stochastically expressed a constitutively active form of the human oncogene H-RAS and show the occurrence of hyperpigmentation and sporadic tumors within 5 days. Our data demonstrate that inducing somatic mosaicism through microsatellite instability can be a valuable approach for mosaic analysis and tumor induction in Danio rerio.
Collapse
Affiliation(s)
- Wouter Koole
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Marcel Tijsterman
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands.
| |
Collapse
|
49
|
Abstract
Genome editing using the Cas9 endonuclease of Streptococcus pyogenes has demonstrated unprecedented efficacy and facility in a wide variety of biological systems. In zebrafish, specifically, studies have shown that Cas9 can be directed to user-defined genomic target sites via synthetic guide RNAs, enabling random or homology-directed sequence alterations, long-range chromosomal deletions, simultaneous disruption of multiple genes, and targeted integration of several kilobases of DNA. Altogether, these methods are opening new doors for the engineering of knock-outs, conditional alleles, tagged proteins, reporter lines, and disease models. In addition, the ease and high efficiency of generating Cas9-mediated gene knock-outs provides great promise for high-throughput functional genomics studies in zebrafish. In this chapter, we briefly review the origin of CRISPR/Cas technology and discuss current Cas9-based genome-editing applications in zebrafish with particular emphasis on their designs and implementations.
Collapse
Affiliation(s)
- Andrew P W Gonzales
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing-Ruey Joanna Yeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
50
|
|