1
|
Victor Atoki A, Aja PM, Shinkafi TS, Ondari EN, Adeniyi AI, Fasogbon IV, Dangana RS, Shehu UU, Akin-Adewumi A. Exploring the versatility of Drosophila melanogaster as a model organism in biomedical research: a comprehensive review. Fly (Austin) 2025; 19:2420453. [PMID: 39722550 DOI: 10.1080/19336934.2024.2420453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024] Open
Abstract
Drosophila melanogaster is a highly versatile model organism that has profoundly advanced our understanding of human diseases. With more than 60% of its genes having human homologs, Drosophila provides an invaluable system for modelling a wide range of pathologies, including neurodegenerative disorders, cancer, metabolic diseases, as well as cardiac and muscular conditions. This review highlights key developments in utilizing Drosophila for disease modelling, emphasizing the genetic tools that have transformed research in this field. Technologies such as the GAL4/UAS system, RNA interference (RNAi) and CRISPR-Cas9 have enabled precise genetic manipulation, with CRISPR-Cas9 allowing for the introduction of human disease mutations into orthologous Drosophila genes. These approaches have yielded critical insights into disease mechanisms, identified novel therapeutic targets and facilitated both drug screening and toxicological studies. Articles were selected based on their relevance, impact and contribution to the field, with a particular focus on studies offering innovative perspectives on disease mechanisms or therapeutic strategies. Our findings emphasize the central role of Drosophila in studying complex human diseases, underscoring its genetic similarities to humans and its effectiveness in modelling conditions such as Alzheimer's disease, Parkinson's disease and cancer. This review reaffirms Drosophila's critical role as a model organism, highlighting its potential to drive future research and therapeutic advancements.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Pure and Applied Sciences, Department of Biological Sciences, Kisii University, Kisii, Kenya
| | | | | | | | - Umar Uthman Shehu
- Department of Physiology, Kampala International University, Ishaka, Uganda
| | | |
Collapse
|
2
|
Loreau V, Koolhaas WH, Chan EH, De Boissier P, Brouilly N, Avosani S, Sane A, Pitaval C, Reiter S, Luis NM, Mangeol P, von Philipsborn AC, Rupprecht JF, Görlich D, Habermann BH, Schnorrer F. Titin-dependent biomechanical feedback tailors sarcomeres to specialized muscle functions in insects. SCIENCE ADVANCES 2025; 11:eads8716. [PMID: 40344069 PMCID: PMC12063666 DOI: 10.1126/sciadv.ads8716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 04/03/2025] [Indexed: 05/11/2025]
Abstract
Sarcomeres are the universal contractile units of muscles that enable animals to move. Insect muscles display a remarkable functional diversity: they operate at extremely different contraction frequencies (ranging from ~1 to 1000 hertz) and amplitudes during flying, walking, and crawling. This is puzzling because sarcomeres are built from essentially the same actin-myosin components. Here, we address how functionally different sarcomeres are made. We show that the giant protein titin and the regulation of developmental contractility are key for the sarcomere specializations. I-band titin spans and determines the length of the sarcomeric I-band in a muscle type-specific manner. Unexpectedly, I-band titin also rules the length of the force-generating myosin filament using a feedback mechanism that is modulated by myosin contractility. We propose a model of how sarcomere specializations in insects are tuned, provide evidence for this model, and discuss its validity beyond insects.
Collapse
Affiliation(s)
- Vincent Loreau
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | | | - Eunice HoYee Chan
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Paul De Boissier
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Nicolas Brouilly
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Sabina Avosani
- Department of Neuroscience and Movement Science, Medicine Section, University of Fribourg, Fribourg, Switzerland
| | - Aditya Sane
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Christophe Pitaval
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Stefanie Reiter
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nuno Miguel Luis
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Pierre Mangeol
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Anne C. von Philipsborn
- Department of Neuroscience and Movement Science, Medicine Section, University of Fribourg, Fribourg, Switzerland
| | | | - Dirk Görlich
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bianca H. Habermann
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
- Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
3
|
Preußner M, Bischoff M, Önel SF. mir-276a Is Required for Muscle Development in Drosophila and Regulates the FGF Receptor Heartless During the Migration of Nascent Myotubes in the Testis. Cells 2025; 14:368. [PMID: 40072096 PMCID: PMC11898445 DOI: 10.3390/cells14050368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/15/2025] Open
Abstract
MicroRNAs function as post-transcriptional regulators in gene expression and control a broad range of biological processes in metazoans. The formation of multinucleated muscles is essential for locomotion, growth, and muscle repair. microRNAs have also emerged as important regulators for muscle development and function. In order to identify new microRNAs required for muscle formation, we have performed a large microRNA overexpression screen. We screened for defects during embryonic and adult muscle formation. Here, we describe the identification of mir-276a as a regulator for muscle migration during testis formation. The mir-276a overexpression phenotype in testis muscles resembles the loss-of-function phenotype of heartless. A GFP sensor assay reveals that the 3'UTR of heartless is a target of mir-276a. Furthermore, we found that mir-276a is essential for the proper development of indirect flight muscles and describe a method for determining the number of nuclei for each of the six longitudinal muscle fibers (DLMs), which are part of the indirect flight muscles.
Collapse
Affiliation(s)
- Mathieu Preußner
- Department of Biology, Developmental Biology, Philipps University Marburg, Karl-von-Frisch Str. 8, 35037 Marburg, Germany; (M.P.); (M.B.)
- Department of Developmental Biology of Vertebrates, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Maik Bischoff
- Department of Biology, Developmental Biology, Philipps University Marburg, Karl-von-Frisch Str. 8, 35037 Marburg, Germany; (M.P.); (M.B.)
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Susanne Filiz Önel
- Department of Biology, Developmental Biology, Philipps University Marburg, Karl-von-Frisch Str. 8, 35037 Marburg, Germany; (M.P.); (M.B.)
- Department of Biology, Molecular Embryology, Philipps University Marburg, Karl-von-Frisch Str. 8, 35037 Marburg, Germany
| |
Collapse
|
4
|
Poliacikova G, Aouane A, Caruso N, Brouilly N, Maurel-Zaffran C, Graba Y, Saurin AJ. The Hox protein Antennapedia orchestrates Drosophila adult flight muscle development. SCIENCE ADVANCES 2024; 10:eadr2261. [PMID: 39602537 PMCID: PMC11601212 DOI: 10.1126/sciadv.adr2261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Muscle development and diversity require a large number of spatially and temporally regulated events controlled by transcription factors (TFs). Drosophila has long stood as a model to study myogenesis due to the highly conserved key TFs involved at all stages of muscle development. While many studies focused on the diversification of Drosophila larval musculature, how distinct adult muscle types are generated is much less characterized. Here, we identify an essential regulator of Drosophila thoracic flight muscle development, the Hox TF Antennapedia (Antp). Correcting a long-standing belief that flight muscle development occurs without the input of Hox TFs, we show that Antp intervenes at several stages of flight muscle development, from the establishment of the progenitor pool in the embryo to myoblast differentiation in the early pupa. Furthermore, the precisely regulated clearance of Hox in the developing flight muscle fibers is required to allow for fibrillar muscle fate diversification, setting these muscles apart from all other adult tubular muscle types.
Collapse
Affiliation(s)
- Gabriela Poliacikova
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Aïcha Aouane
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Nathalie Caruso
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Nicolas Brouilly
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Corinne Maurel-Zaffran
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Yacine Graba
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Andrew J. Saurin
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| |
Collapse
|
5
|
Zhang X, Avellaneda J, Spletter ML, Lemke SB, Mangeol P, Habermann BH, Schnorrer F. Mechanoresponsive regulation of myogenesis by the force-sensing transcriptional regulator Tono. Curr Biol 2024; 34:4143-4159.e6. [PMID: 39163855 DOI: 10.1016/j.cub.2024.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/26/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Muscle morphogenesis is a multi-step program, starting with myoblast fusion, followed by myotube-tendon attachment and sarcomere assembly, with subsequent sarcomere maturation, mitochondrial amplification, and specialization. The correct chronological order of these steps requires precise control of the transcriptional regulators and their effectors. How this regulation is achieved during muscle development is not well understood. In a genome-wide RNAi screen in Drosophila, we identified the BTB-zinc-finger protein Tono (CG32121) as a muscle-specific transcriptional regulator. tono mutant flight muscles display severe deficits in mitochondria and sarcomere maturation, resulting in uncontrolled contractile forces causing muscle rupture and degeneration during development. Tono protein is expressed during sarcomere maturation and localizes in distinct condensates in flight muscle nuclei. Interestingly, internal pressure exerted by the maturing sarcomeres deforms the muscle nuclei into elongated shapes and changes the Tono condensates, suggesting that Tono senses the mechanical status of the muscle cells. Indeed, external mechanical pressure on the muscles triggers rapid liquid-liquid phase separation of Tono utilizing its BTB domain. Thus, we propose that Tono senses high mechanical pressure to adapt muscle transcription, specifically at the sarcomere maturation stages. Consistently, tono mutant muscles display specific defects in a transcriptional switch that represses early muscle differentiation genes and boosts late ones. We hypothesize that a similar mechano-responsive regulation mechanism may control the activity of related BTB-zinc-finger proteins that, if mutated, can result in uncontrolled force production in human muscle.
Collapse
Affiliation(s)
- Xu Zhang
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; School of Life Science and Engineering, Foshan University, Foshan 52800, Guangdong, China
| | - Jerome Avellaneda
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Maria L Spletter
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; Department of Physiological Chemistry, Biomedical Center, Ludwig Maximilians University of Munich, Großhaderner Strasse, Martinsried, 82152 Munich, Germany; Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Rockhill Road, Kansas City, MO 64110, USA
| | - Sandra B Lemke
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Pierre Mangeol
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Bianca H Habermann
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany.
| |
Collapse
|
6
|
Zappia MP, Damschroder D, Westacott A, Wessells RJ, Frolov MV. The RU486-dependent activation of the GeneSwitch system in adult muscles leads to severe adverse effects in Drosophila. G3 (BETHESDA, MD.) 2024; 14:jkae039. [PMID: 38409337 PMCID: PMC11075533 DOI: 10.1093/g3journal/jkae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Robust genetic systems to control the expression of transgenes in a spatial and temporal manner are a valuable asset for researchers. The GeneSwitch system induced by the drug RU486 has gained widespread use in the Drosophila community. However, some concerns were raised as negative effects were seen depending on the stock, transgene, stage, and tissue under study. Here, we characterized the adverse effects triggered by activating the GeneSwitch system in adult muscles using the MHC-GS-GAL4 driver. When a control, mock UAS-RNAi transgene was induced by feeding adult flies with RU486, we found that the overall muscle structure, including myofibrils and mitochondrial shape, was significantly disrupted and led to a significant reduction in the lifespan. Remarkably, lifespan was even shorter when 2 copies of the driver were used even without the mock UAS-RNAi transgene. Thus, researchers should be cautious when interpreting the results given the adverse effects we found when inducing RU486-dependent MHC-GS-GAL4 in adult muscles. To account for the impact of these effects we recommend adjusting the dose of RU486, setting up additional control groups, such as a mock UAS-RNAi transgene, as comparing the phenotypes between RU486-treated and untreated animals could be insufficient.
Collapse
Affiliation(s)
- Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Deena Damschroder
- Department of Physiology, Wayne State School of Medicine, Detroit, MI 48201, USA
| | - Anton Westacott
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Robert J Wessells
- Department of Physiology, Wayne State School of Medicine, Detroit, MI 48201, USA
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
7
|
Nikonova E, DeCata J, Canela M, Barz C, Esser A, Bouterwek J, Roy A, Gensler H, Heß M, Straub T, Forne I, Spletter ML. Bruno 1/CELF regulates splicing and cytoskeleton dynamics to ensure correct sarcomere assembly in Drosophila flight muscles. PLoS Biol 2024; 22:e3002575. [PMID: 38683844 PMCID: PMC11081514 DOI: 10.1371/journal.pbio.3002575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 05/09/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024] Open
Abstract
Muscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis. Loss of Bru1 in flight muscles results in disorganization of the actin cytoskeleton leading to aberrant myofiber compaction and defects in pre-myofibril formation. Temporally restricted rescue and RNAi knockdown demonstrate that early cytoskeletal defects interfere with subsequent steps in sarcomere growth and maturation. Early defects are distinct from a later requirement for bru1 to regulate sarcomere assembly dynamics during myofiber maturation. We identify an imbalance in growth in sarcomere length and width during later stages of development as the mechanism driving abnormal radial growth, myofibril fusion, and the formation of hollow myofibrils in bru1 mutant muscle. Molecularly, we characterize a genome-wide transition from immature to mature sarcomere gene isoform expression in flight muscle development that is blocked in bru1 mutants. We further demonstrate that temporally restricted Bru1 rescue can partially alleviate hypercontraction in late pupal and adult stages, but it cannot restore myofiber function or correct structural deficits. Our results reveal the conserved nature of CELF function in regulating cytoskeletal dynamics in muscle development and demonstrate that defective RNA processing due to misexpression of CELF proteins causes wide-reaching structural defects and progressive malfunction of affected muscles that cannot be rescued by late-stage gene replacement.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Jenna DeCata
- School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, Missouri, United States of America
| | - Marc Canela
- Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, München, Germany
| | - Alexandra Esser
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Jessica Bouterwek
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Akanksha Roy
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Heidemarie Gensler
- Department of Systematic Zoology, Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München, München, Germany
| | - Martin Heß
- Department of Systematic Zoology, Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München, München, Germany
| | - Tobias Straub
- Biomedical Center, Bioinformatics Core Unit, Ludwig-Maximilians-Universität München, München, Germany
| | - Ignasi Forne
- Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, München, Germany
| | - Maria L. Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
- School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, Missouri, United States of America
| |
Collapse
|
8
|
Farkas D, Szikora S, Jijumon AS, Polgár TF, Patai R, Tóth MÁ, Bugyi B, Gajdos T, Bíró P, Novák T, Erdélyi M, Mihály J. Peripheral thickening of the sarcomeres and pointed end elongation of the thin filaments are both promoted by SALS and its formin interaction partners. PLoS Genet 2024; 20:e1011117. [PMID: 38198522 PMCID: PMC10805286 DOI: 10.1371/journal.pgen.1011117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/23/2024] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
During striated muscle development the first periodically repeated units appear in the premyofibrils, consisting of immature sarcomeres that must undergo a substantial growth both in length and width, to reach their final size. Here we report that, beyond its well established role in sarcomere elongation, the Sarcomere length short (SALS) protein is involved in Z-disc formation and peripheral growth of the sarcomeres. Our protein localization data and loss-of-function studies in the Drosophila indirect flight muscle strongly suggest that radial growth of the sarcomeres is initiated at the Z-disc. As to thin filament elongation, we used a powerful nanoscopy approach to reveal that SALS is subject to a major conformational change during sarcomere development, which might be critical to stop pointed end elongation in the adult muscles. In addition, we demonstrate that the roles of SALS in sarcomere elongation and radial growth are both dependent on formin type of actin assembly factors. Unexpectedly, when SALS is present in excess amounts, it promotes the formation of actin aggregates highly resembling the ones described in nemaline myopathy patients. Collectively, these findings helped to shed light on the complex mechanisms of SALS during the coordinated elongation and thickening of the sarcomeres, and resulted in the discovery of a potential nemaline myopathy model, suitable for the identification of genetic and small molecule inhibitors.
Collapse
Affiliation(s)
- Dávid Farkas
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - A. S. Jijumon
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Tamás F. Polgár
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mónika Ágnes Tóth
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Beáta Bugyi
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Tamás Gajdos
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Péter Bíró
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Tibor Novák
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
- University of Szeged, Department of Genetics, Szeged, Hungary
| |
Collapse
|
9
|
Saavedra P, Dumesic PA, Hu Y, Filine E, Jouandin P, Binari R, Wilensky SE, Rodiger J, Wang H, Chen W, Liu Y, Spiegelman BM, Perrimon N. REPTOR and CREBRF encode key regulators of muscle energy metabolism. Nat Commun 2023; 14:4943. [PMID: 37582831 PMCID: PMC10427696 DOI: 10.1038/s41467-023-40595-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Metabolic flexibility of muscle tissue describes the adaptive capacity to use different energy substrates according to their availability. The disruption of this ability associates with metabolic disease. Here, using a Drosophila model of systemic metabolic dysfunction triggered by yorkie-induced gut tumors, we show that the transcription factor REPTOR is an important regulator of energy metabolism in muscles. We present evidence that REPTOR is activated in muscles of adult flies with gut yorkie-tumors, where it modulates glucose metabolism. Further, in vivo studies indicate that sustained activity of REPTOR is sufficient in wildtype muscles to repress glycolysis and increase tricarboxylic acid (TCA) cycle metabolites. Consistent with the fly studies, higher levels of CREBRF, the mammalian ortholog of REPTOR, reduce glycolysis in mouse myotubes while promoting oxidative metabolism. Altogether, our results define a conserved function for REPTOR and CREBRF as key regulators of muscle energy metabolism.
Collapse
Affiliation(s)
- Pedro Saavedra
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Phillip A Dumesic
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth Filine
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Patrick Jouandin
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Montpellier, France
| | - Richard Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Sarah E Wilensky
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weihang Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Barwell T, Raina S, Page A, MacCharles H, Seroude L. Juvenile and adult expression of polyglutamine expanded huntingtin produce distinct aggregate distributions in Drosophila muscle. Hum Mol Genet 2023; 32:2656-2668. [PMID: 37369041 DOI: 10.1093/hmg/ddad098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
While Huntington's disease (HD) is widely recognized as a disease affecting the nervous system, much evidence has accumulated to suggest peripheral or non-neuronal tissues are affected as well. Here, we utilize the UAS/GAL4 system to express a pathogenic HD construct in the muscle of the fly and characterize the effects. We observe detrimental phenotypes such as a reduced lifespan, decreased locomotion and accumulation of protein aggregates. Strikingly, depending on the GAL4 driver used to express the construct, we saw different aggregate distributions and severity of phenotypes. These different aggregate distributions were found to be dependent on the expression level and the timing of expression. Hsp70, a well-documented suppressor of polyglutamine aggregates, was found to strongly reduce the accumulation of aggregates in the eye, but in the muscle, it did not prevent the reduction of the lifespan. Therefore, the molecular mechanisms underlying the detrimental effects of aggregates in the muscle are distinct from the nervous system.
Collapse
Affiliation(s)
- Taylor Barwell
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| | - Sehaj Raina
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| | - Austin Page
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| | - Hayley MacCharles
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| | - Laurent Seroude
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
11
|
Poliacikova G, Barthez M, Rival T, Aouane A, Luis NM, Richard F, Daian F, Brouilly N, Schnorrer F, Maurel-Zaffran C, Graba Y, Saurin AJ. M1BP is an essential transcriptional activator of oxidative metabolism during Drosophila development. Nat Commun 2023; 14:3187. [PMID: 37268614 DOI: 10.1038/s41467-023-38986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
Oxidative metabolism is the predominant energy source for aerobic muscle contraction in adult animals. How the cellular and molecular components that support aerobic muscle physiology are put in place during development through their transcriptional regulation is not well understood. Using the Drosophila flight muscle model, we show that the formation of mitochondria cristae harbouring the respiratory chain is concomitant with a large-scale transcriptional upregulation of genes linked with oxidative phosphorylation (OXPHOS) during specific stages of flight muscle development. We further demonstrate using high-resolution imaging, transcriptomic and biochemical analyses that Motif-1-binding protein (M1BP) transcriptionally regulates the expression of genes encoding critical components for OXPHOS complex assembly and integrity. In the absence of M1BP function, the quantity of assembled mitochondrial respiratory complexes is reduced and OXPHOS proteins aggregate in the mitochondrial matrix, triggering a strong protein quality control response. This results in isolation of the aggregate from the rest of the matrix by multiple layers of the inner mitochondrial membrane, representing a previously undocumented mitochondrial stress response mechanism. Together, this study provides mechanistic insight into the transcriptional regulation of oxidative metabolism during Drosophila development and identifies M1BP as a critical player in this process.
Collapse
Affiliation(s)
- Gabriela Poliacikova
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Marine Barthez
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Thomas Rival
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Aïcha Aouane
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Nuno Miguel Luis
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Fabrice Richard
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Fabrice Daian
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Nicolas Brouilly
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Frank Schnorrer
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Corinne Maurel-Zaffran
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Yacine Graba
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Andrew J Saurin
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
12
|
Loreau V, Rees R, Chan EH, Taxer W, Gregor K, Mußil B, Pitaval C, Luis NM, Mangeol P, Schnorrer F, Görlich D. A nanobody toolbox to investigate localisation and dynamics of Drosophila titins and other key sarcomeric proteins. eLife 2023; 12:79343. [PMID: 36645120 PMCID: PMC9886281 DOI: 10.7554/elife.79343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Measuring the positions and dynamics of proteins in intact tissues or whole animals is key to understanding protein function. However, to date, this is challenging, as the accessibility of large antibodies to dense tissues is often limited, and fluorescent proteins inserted close to a domain of interest may affect protein function. These complications apply in particular to muscle sarcomeres, arguably one of the most protein-dense assemblies in nature, which complicates studying sarcomere morphogenesis at molecular resolution. Here, we introduce a toolbox of nanobodies recognising various domains of the two Drosophila titin homologs, Sallimus and Projectin, as well as the key sarcomeric proteins Obscurin, α-Actinin, and Zasp52. We verified the superior labelling qualities of our nanobodies in muscle tissue as compared to antibodies. By applying our toolbox to larval muscles, we found a gigantic Sallimus isoform stretching more than 2 µm to bridge the sarcomeric I-band, while Projectin covers almost the entire myosin filaments in a polar orientation. Transgenic expression of tagged nanobodies confirmed their high affinity-binding without affecting target protein function. Finally, adding a degradation signal to anti-Sallimus nanobodies suggested that it is difficult to fully degrade Sallimus in mature sarcomeres; however, expression of these nanobodies caused developmental lethality. These results may inspire the generation of similar toolboxes for other large protein complexes in Drosophila or mammals.
Collapse
Affiliation(s)
- Vincent Loreau
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Renate Rees
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Eunice HoYee Chan
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Waltraud Taxer
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Kathrin Gregor
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Bianka Mußil
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Christophe Pitaval
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Nuno Miguel Luis
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Pierre Mangeol
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Frank Schnorrer
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| |
Collapse
|
13
|
Schueder F, Mangeol P, Chan EH, Rees R, Schünemann J, Jungmann R, Görlich D, Schnorrer F. Nanobodies combined with DNA-PAINT super-resolution reveal a staggered titin nanoarchitecture in flight muscles. eLife 2023; 12:e79344. [PMID: 36645127 PMCID: PMC9886278 DOI: 10.7554/elife.79344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/22/2022] [Indexed: 01/17/2023] Open
Abstract
Sarcomeres are the force-producing units of all striated muscles. Their nanoarchitecture critically depends on the large titin protein, which in vertebrates spans from the sarcomeric Z-disc to the M-band and hence links actin and myosin filaments stably together. This ensures sarcomeric integrity and determines the length of vertebrate sarcomeres. However, the instructive role of titins for sarcomeric architecture outside of vertebrates is not as well understood. Here, we used a series of nanobodies, the Drosophila titin nanobody toolbox, recognising specific domains of the two Drosophila titin homologs Sallimus and Projectin to determine their precise location in intact flight muscles. By combining nanobodies with DNA-PAINT super-resolution microscopy, we found that, similar to vertebrate titin, Sallimus bridges across the flight muscle I-band, whereas Projectin is located at the beginning of the A-band. Interestingly, the ends of both proteins overlap at the I-band/A-band border, revealing a staggered organisation of the two Drosophila titin homologs. This architecture may help to stably anchor Sallimus at the myosin filament and hence ensure efficient force transduction during flight.
Collapse
Affiliation(s)
- Florian Schueder
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian UniversityMunichGermany
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Pierre Mangeol
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| | - Eunice HoYee Chan
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| | - Renate Rees
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | | | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian UniversityMunichGermany
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Dirk Görlich
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| |
Collapse
|
14
|
Ajayi PT, Katti P, Zhang Y, Willingham TB, Sun Y, Bleck CKE, Glancy B. Regulation of the evolutionarily conserved muscle myofibrillar matrix by cell type dependent and independent mechanisms. Nat Commun 2022; 13:2661. [PMID: 35562354 PMCID: PMC9106682 DOI: 10.1038/s41467-022-30401-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/29/2022] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscles play a central role in human movement through forces transmitted by contraction of the sarcomere. We recently showed that mammalian sarcomeres are connected through frequent branches forming a singular, mesh-like myofibrillar matrix. However, the extent to which myofibrillar connectivity is evolutionarily conserved as well as mechanisms which regulate the specific architecture of sarcomere branching remain unclear. Here, we demonstrate the presence of a myofibrillar matrix in the tubular, but not indirect flight (IF) muscles within Drosophila melanogaster. Moreover, we find that loss of transcription factor H15 increases sarcomere branching frequency in the tubular jump muscles, and we show that sarcomere branching can be turned on in IF muscles by salm-mediated conversion to tubular muscles. Finally, we demonstrate that neurochondrin misexpression results in myofibrillar connectivity in IF muscles without conversion to tubular muscles. These data indicate an evolutionarily conserved myofibrillar matrix regulated by both cell-type dependent and independent mechanisms.
Collapse
Affiliation(s)
- Peter T Ajayi
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Prasanna Katti
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Yingfan Zhang
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | | | - Ye Sun
- Electron Microscopy Core, NHLBI, NIH, Bethesda, MD, 20892, USA
| | | | - Brian Glancy
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA.
- NIAMS, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Lim JJ, Hyun S. Minocycline treatment improves proteostasis during Drosophila aging via autophagy mediated by FOXO and Hsp70. Biomed Pharmacother 2022; 149:112803. [PMID: 35286967 DOI: 10.1016/j.biopha.2022.112803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 11/02/2022] Open
Abstract
Minocycline is a semi-synthetic tetracycline derivative antibiotic that has been examined for its non-antibiotic properties, such as anti-inflammatory, tumor-suppressive, and neuroprotective effects. In this study, we found that feeding minocycline to Drosophila improves proteostasis during organismal aging. Poly-ubiquitinated protein aggregates increase in the flight muscles as flies age, which are reduced in response to minocycline feeding. Minocycline feeding increases the expression of several autophagy genes and the activity of the autophagy/lysosomal pathway in Drosophila muscles. Interestingly, mutant flies lacking either FOXO or Hsp70 showed increased levels of poly-ubiquitinated protein aggregates with reduced autophagy/lysosomal activity, which was not reversed by minocycline feeding. Our findings suggest that minocycline may improve proteostasis in aging tissues via FOXO-Hsp70 axis, which highlights the multifaceted effects of minocycline as a therapeutic agent in age-associated features.
Collapse
Affiliation(s)
- Jin Ju Lim
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
16
|
Nikonova E, Mukherjee A, Kamble K, Barz C, Nongthomba U, Spletter ML. Rbfox1 is required for myofibril development and maintaining fiber type-specific isoform expression in Drosophila muscles. Life Sci Alliance 2022; 5:5/4/e202101342. [PMID: 34996845 PMCID: PMC8742874 DOI: 10.26508/lsa.202101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
Protein isoform transitions confer muscle fibers with distinct properties and are regulated by differential transcription and alternative splicing. RNA-binding Fox protein 1 (Rbfox1) can affect both transcript levels and splicing, and is known to contribute to normal muscle development and physiology in vertebrates, although the detailed mechanisms remain obscure. In this study, we report that Rbfox1 contributes to the generation of adult muscle diversity in Drosophila Rbfox1 is differentially expressed among muscle fiber types, and RNAi knockdown causes a hypercontraction phenotype that leads to behavioral and eclosion defects. Misregulation of fiber type-specific gene and splice isoform expression, notably loss of an indirect flight muscle-specific isoform of Troponin-I that is critical for regulating myosin activity, leads to structural defects. We further show that Rbfox1 directly binds the 3'-UTR of target transcripts, regulates the expression level of myogenic transcription factors myocyte enhancer factor 2 and Salm, and both modulates expression of and genetically interacts with the CELF family RNA-binding protein Bruno1 (Bru1). Rbfox1 and Bru1 co-regulate fiber type-specific alternative splicing of structural genes, indicating that regulatory interactions between FOX and CELF family RNA-binding proteins are conserved in fly muscle. Rbfox1 thus affects muscle development by regulating fiber type-specific splicing and expression dynamics of identity genes and structural proteins.
Collapse
Affiliation(s)
- Elena Nikonova
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried-Planegg, Germany
| | - Amartya Mukherjee
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Ketaki Kamble
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried-Planegg, Germany
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Maria L Spletter
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried-Planegg, Germany
| |
Collapse
|
17
|
Ribot C, Soler C, Chartier A, Al Hayek S, Naït-Saïdi R, Barbezier N, Coux O, Simonelig M. Activation of the ubiquitin-proteasome system contributes to oculopharyngeal muscular dystrophy through muscle atrophy. PLoS Genet 2022; 18:e1010015. [PMID: 35025870 PMCID: PMC8791501 DOI: 10.1371/journal.pgen.1010015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/26/2022] [Accepted: 01/01/2022] [Indexed: 12/05/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder characterized by progressive weakness and degeneration of specific muscles. OPMD is due to extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). Aggregation of the mutant protein in muscle nuclei is a hallmark of the disease. Previous transcriptomic analyses revealed the consistent deregulation of the ubiquitin-proteasome system (UPS) in OPMD animal models and patients, suggesting a role of this deregulation in OPMD pathogenesis. Subsequent studies proposed that UPS contribution to OPMD involved PABPN1 aggregation. Here, we use a Drosophila model of OPMD to address the functional importance of UPS deregulation in OPMD. Through genome-wide and targeted genetic screens we identify a large number of UPS components that are involved in OPMD. Half dosage of UPS genes reduces OPMD muscle defects suggesting a pathological increase of UPS activity in the disease. Quantification of proteasome activity confirms stronger activity in OPMD muscles, associated with degradation of myofibrillar proteins. Importantly, improvement of muscle structure and function in the presence of UPS mutants does not correlate with the levels of PABPN1 aggregation, but is linked to decreased degradation of muscle proteins. Oral treatment with the proteasome inhibitor MG132 is beneficial to the OPMD Drosophila model, improving muscle function although PABPN1 aggregation is enhanced. This functional study reveals the importance of increased UPS activity that underlies muscle atrophy in OPMD. It also provides a proof-of-concept that inhibitors of proteasome activity might be an attractive pharmacological approach for OPMD. Oculopharyngeal muscular dystrophy (OPMD) is a genetic disease characterized by progressive weakness of specific muscles, leading to swallowing difficulties (dysphagia), eyelid drooping (ptosis) and walking difficulties at later stages. No drug treatments are currently available. OPMD is due to mutations in a nuclear protein called poly(A) binding protein nuclear 1 (PABPN1) that is involved in processing of different classes of RNAs in the nucleus. We have used an animal model of OPMD that we have developed in the fly Drosophila to investigate the role in OPMD of the ubiquitin-proteasome system, a pathway specialized in protein degradation. We report an increased activity of the ubiquitin-proteasome system that is associated with degradation of muscular proteins in the OPMD Drosophila model. We propose that higher activity of the ubiquitin-proteasome system leads to muscle atrophy in OPMD. Importantly, oral treatment of this OPMD animal model with an inhibitor of proteasome activity reduces muscle defects. A number of proteasome inhibitors are approved drugs used in clinic against cancers, therefore our results provide a proof-of-concept that inhibitors of proteasome might be of interest in future treatments of OPMD.
Collapse
Affiliation(s)
- Cécile Ribot
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Cédric Soler
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Aymeric Chartier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Sandy Al Hayek
- GReD Laboratory, Clermont-Auvergne University, INSERM U1103, CNRS UMR6293, Clermont-Ferrand, France
| | - Rima Naït-Saïdi
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Nicolas Barbezier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Olivier Coux
- Ubiquitin-proteasome system and cell cycle control, Montpellier Cell Biology Research Center, UMR5237 CNRS-Univ Montpellier, Montpellier, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
18
|
Boltje DB, Hoogenboom JP, Jakobi AJ, Jensen GJ, Jonker CTH, Kaag MJ, Koster AJ, Last MGF, de Agrela Pinto C, Plitzko JM, Raunser S, Tacke S, Wang Z, van der Wee EB, Wepf R, den Hoedt S. A cryogenic, coincident fluorescence, electron, and ion beam microscope. eLife 2022; 11:82891. [PMID: 36305590 PMCID: PMC9714966 DOI: 10.7554/elife.82891] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 02/04/2023] Open
Abstract
Cryogenic electron tomography (cryo-ET) combined with subtomogram averaging, allows in situ visualization and structure determination of macromolecular complexes at subnanometre resolution. Cryogenic focused ion beam (cryo-FIB) micromachining is used to prepare a thin lamella-shaped sample out of a frozen-hydrated cell for cryo-ET imaging, but standard cryo-FIB fabrication is blind to the precise location of the structure or proteins of interest. Fluorescence-guided focused ion beam (FIB) milling at target locations requires multiple sample transfers prone to contamination, and relocation and registration accuracy is often insufficient for 3D targeting. Here, we present in situ fluorescence microscopy-guided FIB fabrication of a frozen-hydrated lamella to address this problem: we built a coincident three-beam cryogenic correlative microscope by retrofitting a compact cryogenic microcooler, custom positioning stage, and an inverted widefield fluorescence microscope (FM) on an existing FIB scanning electron microscope. We show FM controlled targeting at every milling step in the lamella fabrication process, validated with transmission electron microscope tomogram reconstructions of the target regions. The ability to check the lamella during and after the milling process results in a higher success rate in the fabrication process and will increase the throughput of fabrication for lamellae suitable for high-resolution imaging.
Collapse
Affiliation(s)
- Daan B Boltje
- Department of Imaging Physic, Delft University of TechnologyDelftNetherlands,Delmic B.VDelftNetherlands
| | - Jacob P Hoogenboom
- Department of Imaging Physic, Delft University of TechnologyDelftNetherlands
| | - Arjen J Jakobi
- Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Grant J Jensen
- California Institute of TechnologyPasadenaUnited States,Brigham Young UniversityProvoUnited States
| | | | - Max J Kaag
- Department of Imaging Physic, Delft University of TechnologyDelftNetherlands
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Leiden University Medical CenterLeidenNetherlands
| | - Mart GF Last
- Delmic B.VDelftNetherlands,Department of Cell and Chemical Biology, Leiden University Medical CenterLeidenNetherlands
| | | | - Jürgen M Plitzko
- CryoEM Technology, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Sebastian Tacke
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Zhexin Wang
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | | | - Roger Wepf
- Centre for Microscopy and Microanalysis, University of QueenslandBrisbaneAustralia
| | | |
Collapse
|
19
|
Coombs GS, Rios-Monterrosa JL, Lai S, Dai Q, Goll AC, Ketterer MR, Valdes MF, Uche N, Benjamin IJ, Wallrath LL. Modulation of muscle redox and protein aggregation rescues lethality caused by mutant lamins. Redox Biol 2021; 48:102196. [PMID: 34872044 PMCID: PMC8646998 DOI: 10.1016/j.redox.2021.102196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022] Open
Abstract
Mutations in the human LMNA gene cause a collection of diseases called laminopathies, which includes muscular dystrophy and dilated cardiomyopathy. The LMNA gene encodes lamins, filamentous proteins that form a meshwork on the inner side of the nuclear envelope. How mutant lamins cause muscle disease is not well understood, and treatment options are currently limited. To understand the pathological functions of mutant lamins so that therapies can be developed, we generated new Drosophila models and human iPS cell-derived cardiomyocytes. In the Drosophila models, muscle-specific expression of the mutant lamins caused nuclear envelope defects, cytoplasmic protein aggregation, activation of the Nrf2/Keap1 redox pathway, and reductive stress. These defects reduced larval motility and caused death at the pupal stage. Patient-derived cardiomyocytes expressing mutant lamins showed nuclear envelope deformations. The Drosophila models allowed for genetic and pharmacological manipulations at the organismal level. Genetic interventions to increase autophagy, decrease Nrf2/Keap1 signaling, or lower reducing equivalents partially suppressed the lethality caused by mutant lamins. Moreover, treatment of flies with pamoic acid, a compound that inhibits the NADPH-producing malic enzyme, partially suppressed lethality. Taken together, these studies have identified multiple new factors as potential therapeutic targets for LMNA-associated muscular dystrophy.
Collapse
Affiliation(s)
- Gary S Coombs
- Biology Department, Waldorf University, Forest City, IA, USA
| | | | - Shuping Lai
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Qiang Dai
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley C Goll
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Margaret R Ketterer
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Maria F Valdes
- Biology Department, Waldorf University, Forest City, IA, USA
| | - Nnamdi Uche
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WO, USA
| | - Ivor J Benjamin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lori L Wallrath
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
20
|
Drosophila Nesprin-1 Isoforms Differentially Contribute to Muscle Function. Cells 2021; 10:cells10113061. [PMID: 34831284 PMCID: PMC8616381 DOI: 10.3390/cells10113061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
Nesprin-1 is a large scaffold protein connecting nuclei to the actin cytoskeleton via its KASH and Calponin Homology domains, respectively. Nesprin-1 disconnection from nuclei results in altered muscle function and myonuclei mispositioning. Furthermore, Nesprin-1 mutations are associated with muscular pathologies such as Emery Dreifuss muscular dystrophy and arthrogryposis. Nesprin-1 was thus proposed to mainly contribute to muscle function by controlling nuclei position. However, Nesprin-1′s localisation at sarcomere’s Z-discs, its involvement in organelles’ subcellular localization, as well as the description of numerous isoforms presenting different combinations of Calponin Homology (CH) and KASH domains, suggest that the contribution of Nesprin-1 to muscle functions is more complex. Here, we investigate the roles of Nesprin-1/Msp300 isoforms in muscle function and subcellular organisation using Drosophila larvae as a model. Subsets of Msp300 isoform were down-regulated by muscle-specific RNAi expression and muscle global function and morphology were assessed. We show that nuclei anchoring in mature muscle and global muscle function are disconnected functions associated with different Msp300 isoforms. Our work further uncovers a new and unsuspected role of Msp300 in myofibril registration and nuclei peripheral displacement supported by Msp300 CH containing isoforms, a function performed by Desmin in mammals.
Collapse
|
21
|
Peppriell AE, Gunderson JT, Krout IN, Vorojeikina D, Rand MD. Latent effects of early-life methylmercury exposure on motor function in Drosophila. Neurotoxicol Teratol 2021; 88:107037. [PMID: 34656729 DOI: 10.1016/j.ntt.2021.107037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/25/2021] [Accepted: 10/10/2021] [Indexed: 12/27/2022]
Abstract
The developmental toxicant, methylmercury (MeHg), can elicit motor deficits that last well into adulthood. Recent studies using Drosophila showed that the developing musculature is sensitive to high doses of MeHg, where a larval feeding paradigm resulted in compromised myotendinous junction (MTJ) formation during development, by a mechanism involving the NG2 homologue, kon-tiki (kon). Low-dose exposures to MeHg that do not produce muscle pathology during development, nevertheless result in impaired flight behavior later in adult life. The present study evaluated the potential for relatively low-dose exposure to produce latent adult muscle pathology and motor impairments, as assayed by climbing and flight, as well as to evaluate molecular mechanisms that may contribute to motor deficits. Wildtype larvae were fed 0, 2, 2.5, or 5 μM MeHg laden food until eclosion. The effect of 5 μM MeHg on MTJ-related gene expression during pupal development was assessed via quantitative RT-qPCR analysis. Upon eclosion, adults were transferred to standard food bottles for 4, 11, or 30 days prior to motor testing. Survivorship (%) was determined from a subset of 200 flies per treatment. Average climbing speed (cm/s) was quantified 4-days post-eclosion (PE). Flight ability was assayed 11- or 30-days PE by measuring landing height (cm) of flies dropped into an adhesive-lined vertical column. In parallel, total body mercury was measured to estimate the influence of residual MeHg at the time of motor testing. Muscle morphology was assessed using immuno-fluorescence microscopy. Exposure to 5uM MeHg significantly reduced climbing speed, and flight ability 4 and 11 - days PE, respectively. While age-related flight deficits were seen in each sex, flight deficits due to MeHg persisted to 30-day PE timepoints exclusively in males. Expression of kon was upregulated across the window of pupal development essential to establishing adult MTJ. However, experimentally restricting the induction of comparable levels of kon to muscle during the same periods did not recapitulate the flight deficits, indicating that muscle-specific induction of kon alone is not sufficient to contribute to latent flight impairments. Adult flight muscle morphology of 11-day PE flies treated with 5 μM MeHg was indistinct from controls, implying muscle structure is not grossly perturbed to impair flight. Collectively, the current data suggest that developmental exposure to 5 μM MeHg reduces flight ability in each sex at 11 day-PE and that latent deficits at 30-day PE are male-specific. It remains to be determined whether the developing MTJ of Drosophila is a sensitive target of MeHg, and whether or not kon acts in conjunction with additional MTJ factors to constitute a MeHg target.
Collapse
Affiliation(s)
- Ashley E Peppriell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; ICF International, Durham, NC, USA.
| | - Jakob T Gunderson
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ian N Krout
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Daria Vorojeikina
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
22
|
Kay AR, Eberl DF, Wang JW. Myogenic contraction of a somatic muscle powers rhythmic flow of hemolymph through Drosophila antennae and generates brain pulsations. J Exp Biol 2021; 224:jeb242699. [PMID: 34585241 PMCID: PMC8545754 DOI: 10.1242/jeb.242699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022]
Abstract
Hemolymph is driven through the antennae of Drosophila melanogaster by the rhythmic contraction of muscle 16 (m16), which runs through the brain. Contraction of m16 results in the expansion of an elastic ampulla, opening ostia and filling the ampulla. Relaxation of the ampullary membrane forces hemolymph through vessels into the antennae. We show that m16 is an auto-active rhythmic somatic muscle. The activity of m16 leads to the rapid perfusion of the antenna by hemolymph. In addition, it leads to the rhythmic agitation of the brain, which could be important for clearing the interstitial space.
Collapse
Affiliation(s)
- Alan R. Kay
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel F. Eberl
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Jing W. Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, CA 92093, USA
| |
Collapse
|
23
|
Tumor-derived MMPs regulate cachexia in a Drosophila cancer model. Dev Cell 2021; 56:2664-2680.e6. [PMID: 34473940 DOI: 10.1016/j.devcel.2021.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
Cachexia, the wasting syndrome commonly observed in advanced cancer patients, accounts for up to one-third of cancer-related mortalities. We have established a Drosophila larval model of organ wasting whereby epithelial overgrowth in eye-antennal discs leads to wasting of the adipose tissue and muscles. The wasting is associated with fat-body remodeling and muscle detachment and is dependent on tumor-secreted matrix metalloproteinase 1 (Mmp1). Mmp1 can both modulate TGFβ signaling in the fat body and disrupt basement membrane (BM)/extracellular matrix (ECM) protein localization in both the fat body and the muscle. Inhibition of TGFβ signaling or Mmps in the fat body/muscle using a QF2-QUAS binary expression system rescues muscle wasting in the presence of tumor. Altogether, our study proposes that tumor-derived Mmps are central mediators of organ wasting in cancer cachexia.
Collapse
|
24
|
Kao SY, Nikonova E, Chaabane S, Sabani A, Martitz A, Wittner A, Heemken J, Straub T, Spletter ML. A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Drosophila Flight Muscle. Cells 2021; 10:2505. [PMID: 34685485 PMCID: PMC8534295 DOI: 10.3390/cells10102505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/30/2022] Open
Abstract
The proper regulation of RNA processing is critical for muscle development and the fine-tuning of contractile ability among muscle fiber-types. RNA binding proteins (RBPs) regulate the diverse steps in RNA processing, including alternative splicing, which generates fiber-type specific isoforms of structural proteins that confer contractile sarcomeres with distinct biomechanical properties. Alternative splicing is disrupted in muscle diseases such as myotonic dystrophy and dilated cardiomyopathy and is altered after intense exercise as well as with aging. It is therefore important to understand splicing and RBP function, but currently, only a small fraction of the hundreds of annotated RBPs expressed in muscle have been characterized. Here, we demonstrate the utility of Drosophila as a genetic model system to investigate basic developmental mechanisms of RBP function in myogenesis. We find that RBPs exhibit dynamic temporal and fiber-type specific expression patterns in mRNA-Seq data and display muscle-specific phenotypes. We performed knockdown with 105 RNAi hairpins targeting 35 RBPs and report associated lethality, flight, myofiber and sarcomere defects, including flight muscle phenotypes for Doa, Rm62, mub, mbl, sbr, and clu. Knockdown phenotypes of spliceosome components, as highlighted by phenotypes for A-complex components SF1 and Hrb87F (hnRNPA1), revealed level- and temporal-dependent myofibril defects. We further show that splicing mediated by SF1 and Hrb87F is necessary for Z-disc stability and proper myofibril development, and strong knockdown of either gene results in impaired localization of kettin to the Z-disc. Our results expand the number of RBPs with a described phenotype in muscle and underscore the diversity in myofibril and transcriptomic phenotypes associated with splicing defects. Drosophila is thus a powerful model to gain disease-relevant insight into cellular and molecular phenotypes observed when expression levels of splicing factors, spliceosome components and splicing dynamics are altered.
Collapse
Affiliation(s)
- Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Sabrina Chaabane
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Albiona Sabani
- Department of Biology, University of Wisconsin at Madison, 1117 W. Johnson St., Madison, WI 53706, USA;
| | - Alexandra Martitz
- Molecular Nutrition Medicine, Else Kröner-Fresenius Center, Technical University of Munich, 85354 Freising, Germany;
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Jakob Heemken
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Tobias Straub
- Biomedical Center, Bioinformatics Core Facility, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany;
| | - Maria L. Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| |
Collapse
|
25
|
Development of the indirect flight muscles of Aedes aegypti, a main arbovirus vector. BMC DEVELOPMENTAL BIOLOGY 2021; 21:11. [PMID: 34445959 PMCID: PMC8394598 DOI: 10.1186/s12861-021-00242-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
Background Flying is an essential function for mosquitoes, required for mating and, in the case of females, to get a blood meal and consequently function as a vector. Flight depends on the action of the indirect flight muscles (IFMs), which power the wings beat. No description of the development of IFMs in mosquitoes, including Aedes aegypti, is available.
Methods A. aegypti thoraces of larvae 3 and larvae 4 (L3 and L4) instars were analyzed using histochemistry and bright field microscopy. IFM primordia from L3 and L4 and IFMs from pupal and adult stages were dissected and processed to detect F-actin labelling with phalloidin-rhodamine or TRITC, or to immunodetection of myosin and tubulin using specific antibodies, these samples were analyzed by confocal microscopy. Other samples were studied using transmission electron microscopy. Results At L3–L4, IFM primordia for dorsal-longitudinal muscles (DLM) and dorsal–ventral muscles (DVM) were identified in the expected locations in the thoracic region: three primordia per hemithorax corresponding to DLM with anterior to posterior orientation were present. Other three primordia per hemithorax, corresponding to DVM, had lateral position and dorsal to ventral orientation. During L3 to L4 myoblast fusion led to syncytial myotubes formation, followed by myotendon junctions (MTJ) creation, myofibrils assembly and sarcomere maturation. The formation of Z-discs and M-line during sarcomere maturation was observed in pupal stage and, the structure reached in teneral insects a classical myosin thick, and actin thin filaments arranged in a hexagonal lattice structure. Conclusions A general description of A. aegypti IFM development is presented, from the myoblast fusion at L3 to form myotubes, to sarcomere maturation at adult stage. Several differences during IFM development were observed between A. aegypti (Nematoceran) and Drosophila melanogaster (Brachyceran) and, similitudes with Chironomus sp. were observed as this insect is a Nematoceran, which is taxonomically closer to A. aegypti and share the same number of larval stages. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-021-00242-8.
Collapse
|
26
|
Meiler A, Marchiano F, Haering M, Weitkunat M, Schnorrer F, Habermann BH. AnnoMiner is a new web-tool to integrate epigenetics, transcription factor occupancy and transcriptomics data to predict transcriptional regulators. Sci Rep 2021; 11:15463. [PMID: 34326396 PMCID: PMC8322331 DOI: 10.1038/s41598-021-94805-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Gene expression regulation requires precise transcriptional programs, led by transcription factors in combination with epigenetic events. Recent advances in epigenomic and transcriptomic techniques provided insight into different gene regulation mechanisms. However, to date it remains challenging to understand how combinations of transcription factors together with epigenetic events control cell-type specific gene expression. We have developed the AnnoMiner web-server, an innovative and flexible tool to annotate and integrate epigenetic, and transcription factor occupancy data. First, AnnoMiner annotates user-provided peaks with gene features. Second, AnnoMiner can integrate genome binding data from two different transcriptional regulators together with gene features. Third, AnnoMiner offers to explore the transcriptional deregulation of genes nearby, or within a specified genomic region surrounding a user-provided peak. AnnoMiner’s fourth function performs transcription factor or histone modification enrichment analysis for user-provided gene lists by utilizing hundreds of public, high-quality datasets from ENCODE for the model organisms human, mouse, Drosophila and C. elegans. Thus, AnnoMiner can predict transcriptional regulators for a studied process without the strict need for chromatin data from the same process. We compared AnnoMiner to existing tools and experimentally validated several transcriptional regulators predicted by AnnoMiner to indeed contribute to muscle morphogenesis in Drosophila. AnnoMiner is freely available at http://chimborazo.ibdm.univ-mrs.fr/AnnoMiner/.
Collapse
Affiliation(s)
- Arno Meiler
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Fabio Marchiano
- Aix-Marseille University, CNRS, IBDM UMR 7288, The Turing Centre for Living systems (CENTURI), Aix-Marseille University, Parc Scientifique de Luminy Case 907, 163, Avenue de Luminy, 13009, Marseille, France
| | - Margaux Haering
- Aix-Marseille University, CNRS, IBDM UMR 7288, The Turing Centre for Living systems (CENTURI), Aix-Marseille University, Parc Scientifique de Luminy Case 907, 163, Avenue de Luminy, 13009, Marseille, France
| | - Manuela Weitkunat
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,Aix-Marseille University, CNRS, IBDM UMR 7288, The Turing Centre for Living systems (CENTURI), Aix-Marseille University, Parc Scientifique de Luminy Case 907, 163, Avenue de Luminy, 13009, Marseille, France
| | - Bianca H Habermann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany. .,Aix-Marseille University, CNRS, IBDM UMR 7288, The Turing Centre for Living systems (CENTURI), Aix-Marseille University, Parc Scientifique de Luminy Case 907, 163, Avenue de Luminy, 13009, Marseille, France.
| |
Collapse
|
27
|
Kinold JC, Brenner M, Aberle H. Misregulation of Drosophila Sidestep Leads to Uncontrolled Wiring of the Adult Neuromuscular System and Severe Locomotion Defects. Front Neural Circuits 2021; 15:658791. [PMID: 34149366 PMCID: PMC8209334 DOI: 10.3389/fncir.2021.658791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Abstract
Holometabolic organisms undergo extensive remodelling of their neuromuscular system during metamorphosis. Relatively, little is known whether or not the embryonic guidance of molecules and axonal growth mechanisms are re-activated for the innervation of a very different set of adult muscles. Here, we show that the axonal attractant Sidestep (Side) is re-expressed during Drosophila metamorphosis and is indispensable for neuromuscular wiring. Mutations in side cause severe innervation defects in all legs. Neuromuscular junctions (NMJs) show a reduced density or are completely absent at multi-fibre muscles. Misinnervation strongly impedes, but does not completely abolish motor behaviours, including walking, flying, or grooming. Overexpression of Side in developing muscles induces similar innervation defects; for example, at indirect flight muscles, it causes flightlessness. Since muscle-specific overexpression of Side is unlikely to affect the central circuits, the resulting phenotypes seem to correlate with faulty muscle wiring. We further show that mutations in beaten path Ia (beat), a receptor for Side, results in similar weaker adult innervation and locomotion phenotypes, indicating that embryonic guidance pathways seem to be reactivated during metamorphosis.
Collapse
Affiliation(s)
- Jaqueline C Kinold
- Department of Biology, Institute for Functional Cell Morphology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marcel Brenner
- Department of Biology, Institute for Functional Cell Morphology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hermann Aberle
- Department of Biology, Institute for Functional Cell Morphology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
28
|
Mechano-chemical enforcement of tendon apical ECM into nano-filaments during Drosophila flight muscle development. Curr Biol 2021; 31:1366-1378.e7. [PMID: 33545042 DOI: 10.1016/j.cub.2021.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/16/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
Contractile tension is critical for musculoskeletal system development and maintenance. In insects, the muscular force is transmitted to the exoskeleton through the tendon cells and tendon apical extracellular matrix (ECM). In Drosophila, we found tendon cells secrete Dumpy (Dpy), a zona pellucida domain (ZPD) protein, to form the force-resistant filaments in the exuvial space, anchoring the tendon cells to the pupal cuticle. We showed that Dpy undergoes filamentous conversion in response to the tension increment during indirect flight muscle development. We also found another ZPD protein Quasimodo (Qsm) protects the notum epidermis from collapsing under the muscle tension by enhancing the tensile strength of Dpy filaments. Qsm is co-transported with Dpy in the intracellular vesicles and diffuses into the exuvial space after secretion. Tissue-specific qsm expression rescued the qsm mutant phenotypes in distant tissues, suggesting Qsm can function in a long-range, non-cell-autonomous manner. In the cell culture assay, Qsm interacts with Dpy-ZPD and promotes secretion and polymerization of Dpy-ZPD. The roles of Qsm underlies the positive feedback mechanism of force-dependent organization of Dpy filaments, providing new insights into apical ECM remodeling through the unconventional interaction of ZPD proteins.
Collapse
|
29
|
Avellaneda J, Rodier C, Daian F, Brouilly N, Rival T, Luis NM, Schnorrer F. Myofibril and mitochondria morphogenesis are coordinated by a mechanical feedback mechanism in muscle. Nat Commun 2021; 12:2091. [PMID: 33828099 PMCID: PMC8027795 DOI: 10.1038/s41467-021-22058-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/23/2021] [Indexed: 02/01/2023] Open
Abstract
Complex animals build specialised muscles to match specific biomechanical and energetic needs. Hence, composition and architecture of sarcomeres and mitochondria are muscle type specific. However, mechanisms coordinating mitochondria with sarcomere morphogenesis are elusive. Here we use Drosophila muscles to demonstrate that myofibril and mitochondria morphogenesis are intimately linked. In flight muscles, the muscle selector spalt instructs mitochondria to intercalate between myofibrils, which in turn mechanically constrain mitochondria into elongated shapes. Conversely in cross-striated leg muscles, mitochondria networks surround myofibril bundles, contacting myofibrils only with thin extensions. To investigate the mechanism causing these differences, we manipulated mitochondrial dynamics and found that increased mitochondrial fusion during myofibril assembly prevents mitochondrial intercalation in flight muscles. Strikingly, this causes the expression of cross-striated muscle specific sarcomeric proteins. Consequently, flight muscle myofibrils convert towards a partially cross-striated architecture. Together, these data suggest a biomechanical feedback mechanism downstream of spalt synchronizing mitochondria with myofibril morphogenesis.
Collapse
Affiliation(s)
- Jerome Avellaneda
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Clement Rodier
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Fabrice Daian
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Nicolas Brouilly
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Thomas Rival
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Nuno Miguel Luis
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France.
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
30
|
Spierer AN, Mossman JA, Smith SP, Crawford L, Ramachandran S, Rand DM. Natural variation in the regulation of neurodevelopmental genes modifies flight performance in Drosophila. PLoS Genet 2021; 17:e1008887. [PMID: 33735180 PMCID: PMC7971549 DOI: 10.1371/journal.pgen.1008887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
The winged insects of the order Diptera are colloquially named for their most recognizable phenotype: flight. These insects rely on flight for a number of important life history traits, such as dispersal, foraging, and courtship. Despite the importance of flight, relatively little is known about the genetic architecture of flight performance. Accordingly, we sought to uncover the genetic modifiers of flight using a measure of flies’ reaction and response to an abrupt drop in a vertical flight column. We conducted a genome wide association study (GWAS) using 197 of the Drosophila Genetic Reference Panel (DGRP) lines, and identified a combination of additive and marginal variants, epistatic interactions, whole genes, and enrichment across interaction networks. Egfr, a highly pleiotropic developmental gene, was among the most significant additive variants identified. We functionally validated 13 of the additive candidate genes’ (Adgf-A/Adgf-A2/CG32181, bru1, CadN, flapper (CG11073), CG15236, flippy (CG9766), CREG, Dscam4, form3, fry, Lasp/CG9692, Pde6, Snoo), and introduce a novel approach to whole gene significance screens: PEGASUS_flies. Additionally, we identified ppk23, an Acid Sensing Ion Channel (ASIC) homolog, as an important hub for epistatic interactions. We propose a model that suggests genetic modifiers of wing and muscle morphology, nervous system development and function, BMP signaling, sexually dimorphic neural wiring, and gene regulation are all important for the observed differences flight performance in a natural population. Additionally, these results represent a snapshot of the genetic modifiers affecting drop-response flight performance in Drosophila, with implications for other insects. Insect flight is a widely recognizable phenotype of many winged insects, hence the name: flies. While fruit flies, or Drosophila melanogaster, are a genetically tractable model, flight performance is a highly integrative phenotype, and therefore challenging to identify comprehensively which genetic modifiers contribute to its genetic architecture. Accordingly, we screened 197 Drosophila Genetic Reference Panel lines for their ability to react and respond to an abrupt drop. Using several computational approaches, we identified additive, marginal, and epistatic variants, as well as whole genes and altered sub-networks of gene-gene and protein-protein interaction networks that contribute to variation in flight performance. More generally, we demonstrate the benefits of employing multiple methodologies to elucidate the genetic architecture of complex traits. Many variants and genes mapped to regions of the genome that affect neurodevelopment, wing and muscle development, and regulation of gene expression. We also introduce PEGASUS_flies, a Drosophila-adapted version of the PEGASUS platform first used in human studies, to infer gene-level significance of association based on the gene’s distribution of individual variant P-values. Our results contribute to the debate over the relative importance of individual, additive factors and epistatic, or higher order, interactions, in the mapping of genotype to phenotype.
Collapse
Affiliation(s)
- Adam N Spierer
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Jim A Mossman
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Samuel Pattillo Smith
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Microsoft Research New England, Cambridge, Massachusetts, United States of America
| | - Sohini Ramachandran
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
31
|
Bawa S, Piccirillo R, Geisbrecht ER. TRIM32: A Multifunctional Protein Involved in Muscle Homeostasis, Glucose Metabolism, and Tumorigenesis. Biomolecules 2021; 11:biom11030408. [PMID: 33802079 PMCID: PMC7999776 DOI: 10.3390/biom11030408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022] Open
Abstract
Human tripartite motif family of proteins 32 (TRIM32) is a ubiquitous multifunctional protein that has demonstrated roles in differentiation, muscle physiology and regeneration, and tumor suppression. Mutations in TRIM32 result in two clinically diverse diseases. A mutation in the B-box domain gives rise to Bardet–Biedl syndrome (BBS), a disease whose clinical presentation shares no muscle pathology, while mutations in the NHL (NCL-1, HT2A, LIN-41) repeats of TRIM32 causes limb-girdle muscular dystrophy type 2H (LGMD2H). TRIM32 also functions as a tumor suppressor, but paradoxically is overexpressed in certain types of cancer. Recent evidence supports a role for TRIM32 in glycolytic-mediated cell growth, thus providing a possible mechanism for TRIM32 in the accumulation of cellular biomass during regeneration and tumorigenesis, including in vitro and in vivo approaches, to understand the broad spectrum of TRIM32 functions. A special emphasis is placed on the utility of the Drosophila model, a unique system to study glycolysis and anabolic pathways that contribute to the growth and homeostasis of both normal and tumor tissues.
Collapse
Affiliation(s)
- Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA;
| | - Rosanna Piccirillo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Erika R. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA;
- Correspondence: ; Tel.: +1-(785)-532-3105
| |
Collapse
|
32
|
Kaya-Çopur A, Marchiano F, Hein MY, Alpern D, Russeil J, Luis NM, Mann M, Deplancke B, Habermann BH, Schnorrer F. The Hippo pathway controls myofibril assembly and muscle fiber growth by regulating sarcomeric gene expression. eLife 2021; 10:e63726. [PMID: 33404503 PMCID: PMC7815313 DOI: 10.7554/elife.63726] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscles are composed of gigantic cells called muscle fibers, packed with force-producing myofibrils. During development, the size of individual muscle fibers must dramatically enlarge to match with skeletal growth. How muscle growth is coordinated with growth of the contractile apparatus is not understood. Here, we use the large Drosophila flight muscles to mechanistically decipher how muscle fiber growth is controlled. We find that regulated activity of core members of the Hippo pathway is required to support flight muscle growth. Interestingly, we identify Dlg5 and Slmap as regulators of the STRIPAK phosphatase, which negatively regulates Hippo to enable post-mitotic muscle growth. Mechanistically, we show that the Hippo pathway controls timing and levels of sarcomeric gene expression during development and thus regulates the key components that physically mediate muscle growth. Since Dlg5, STRIPAK and the Hippo pathway are conserved a similar mechanism may contribute to muscle or cardiomyocyte growth in humans.
Collapse
Affiliation(s)
- Aynur Kaya-Çopur
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Fabio Marchiano
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Marco Y Hein
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Daniel Alpern
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Julie Russeil
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Nuno Miguel Luis
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Matthias Mann
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bianca H Habermann
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
- Max Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
33
|
An insight on Drosophila myogenesis and its assessment techniques. Mol Biol Rep 2020; 47:9849-9863. [PMID: 33263930 DOI: 10.1007/s11033-020-06006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Movement assisted by muscles forms the basis of various behavioural traits seen in Drosophila. Myogenesis involves developmental processes like cellular specification, differentiation, migration, fusion, adherence to tendons and neuronal innervation in a series of coordinated event well defined in body space and time. Gene regulatory networks are switched on-off, fine tuning at the right developmental stage to assist each cellular event. Drosophila is a holometabolous organism that undergoes myogenesis waves at two developmental stages, and is ideal for comparative analysis of the role of genes and genetic pathways conserved across phyla. In this review we have summarized myogenic events from the embryo to adult focussing on the somatic muscle development during the early embryonic stage and then on indirect flight muscles (IFM) formation required for adult life, emphasizing on recent trends of analysing muscle mutants and advances in Drosophila muscle biology.
Collapse
|
34
|
Zappia MP, de Castro L, Ariss MM, Jefferson H, Islam AB, Frolov MV. A cell atlas of adult muscle precursors uncovers early events in fibre-type divergence in Drosophila. EMBO Rep 2020; 21:e49555. [PMID: 32815271 PMCID: PMC7534622 DOI: 10.15252/embr.201949555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/12/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
In Drosophila, the wing disc‐associated muscle precursor cells give rise to the fibrillar indirect flight muscles (IFM) and the tubular direct flight muscles (DFM). To understand early transcriptional events underlying this muscle diversification, we performed single‐cell RNA‐sequencing experiments and built a cell atlas of myoblasts associated with third instar larval wing disc. Our analysis identified distinct transcriptional signatures for IFM and DFM myoblasts that underlie the molecular basis of their divergence. The atlas further revealed various states of differentiation of myoblasts, thus illustrating previously unappreciated spatial and temporal heterogeneity among them. We identified and validated novel markers for both IFM and DFM myoblasts at various states of differentiation by immunofluorescence and genetic cell‐tracing experiments. Finally, we performed a systematic genetic screen using a panel of markers from the reference cell atlas as an entry point and found a novel gene, Amalgam which is functionally important in muscle development. Our work provides a framework for leveraging scRNA‐seq for gene discovery and details a strategy that can be applied to other scRNA‐seq datasets.
Collapse
Affiliation(s)
- Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lucia de Castro
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Majd M Ariss
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Holly Jefferson
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Abul Bmmk Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
35
|
Manhart A, Azevedo M, Baylies M, Mogilner A. Reverse-engineering forces responsible for dynamic clustering and spreading of multiple nuclei in developing muscle cells. Mol Biol Cell 2020; 31:1802-1814. [PMID: 32129712 PMCID: PMC7521854 DOI: 10.1091/mbc.e19-12-0711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
How cells position their organelles is a fundamental biological question. During Drosophila embryonic muscle development, multiple nuclei transition from being clustered together to splitting into two smaller clusters to spreading along the myotube’s length. Perturbations of microtubules and motor proteins disrupt this sequence of events. These perturbations do not allow intuiting which molecular forces govern the nuclear positioning; we therefore used computational screening to reverse-engineer and identify these forces. The screen reveals three models. Two suggest that the initial clustering is due to nuclear repulsion from the cell poles, while the third, most robust, model poses that this clustering is due to a short-ranged internuclear attraction. All three models suggest that the nuclear spreading is due to long-ranged internuclear repulsion. We test the robust model quantitatively by comparing it with data from perturbed muscle cells. We also test the model using agent-based simulations with elastic dynamic microtubules and molecular motors. The model predicts that, in longer mammalian myotubes with a large number of nuclei, the spreading stage would be preceded by segregation of the nuclei into a large number of clusters, proportional to the myotube length, with a small average number of nuclei per cluster.
Collapse
Affiliation(s)
- Angelika Manhart
- Mathematics Department, University College London, London WC1H 0AY, UK
| | - Mafalda Azevedo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065.,Graduate Program in Areas of Basic and Applied Biology (GABBA), Abel Salazar Biomedical Sciences Institute, University of Porto, 4050 Porto, Portugal
| | - Mary Baylies
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Alex Mogilner
- Courant Institute for Mathematical Sciences and Department of Biology, New York University, New York, NY 10012
| |
Collapse
|
36
|
Szikora S, Novák T, Gajdos T, Erdélyi M, Mihály J. Superresolution Microscopy of Drosophila Indirect Flight Muscle Sarcomeres. Bio Protoc 2020; 10:e3654. [PMID: 33659324 DOI: 10.21769/bioprotoc.3654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 11/02/2022] Open
Abstract
Sarcomeres are extremely highly ordered macromolecular assemblies where proper structural organization is an absolute prerequisite to the functionality of these contractile units. Despite the wealth of information collected, the exact spatial arrangement of many of the H-zone and Z-disk proteins remained unknown. Recently, we developed a powerful nanoscopic approach to localize the sarcomeric protein components with a resolution well below the diffraction limit. The ease of sample preparation and the near crystalline structure of the Drosophila flight muscle sarcomeres make them ideally suitable for single molecule localization microscopy and structure averaging. Our approach allowed us to determine the position of dozens of H-zone and Z-disk proteins with a quasi-molecular, ~5-10 nm localization precision. The protocol described below provides an easy and reproducible method to prepare individual myofibrils for dSTORM imaging. In addition, it includes an in-depth description of a custom made and freely available software toolbox to process and quantitatively analyze the raw localization data.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Szeged, Hungary.,Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Tibor Novák
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Tamás Gajdos
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Szeged, Hungary.,Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| |
Collapse
|
37
|
Zappia MP, Rogers A, Islam ABMMK, Frolov MV. Rbf Activates the Myogenic Transcriptional Program to Promote Skeletal Muscle Differentiation. Cell Rep 2020; 26:702-719.e6. [PMID: 30650361 PMCID: PMC6344057 DOI: 10.1016/j.celrep.2018.12.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 11/18/2018] [Accepted: 12/18/2018] [Indexed: 11/25/2022] Open
Abstract
The importance of the retinoblastoma tumor suppressor protein pRB in cell cycle control is well established. However, less is known about its role in differentiation during animal development. Here, we investigated the role of Rbf, the Drosophila pRB homolog, in adult skeletal muscles. We found that the depletion of Rbf severely reduced muscle growth and altered myofibrillogenesis but only minimally affected myoblast proliferation. We identified an Rbf-dependent transcriptional program in late muscle development that is distinct from the canonical role of Rbf in cell cycle control. Unexpectedly, Rbf acts as a transcriptional activator of the myogenic and metabolic genes in the growing muscles. The genomic regions bound by Rbf contained the binding sites of several factors that genetically interacted with Rbf by modulating Rbf-dependent phenotype. Thus, our results reveal a distinctive role for Rbf as a direct activator of the myogenic transcriptional program that drives late muscle differentiation. Inactivation of the tumor suppressor RB, an obligatory step in most cancers, results in unrestrained cell cycle progression. Zappia et al. show that Rbf, the RB Drosophila ortholog, directly activates the metabolic program that accompanies muscle development. This work expands the understanding of the plethora of Rbf functions.
Collapse
Affiliation(s)
- Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | - Alice Rogers
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA.
| |
Collapse
|
38
|
Marescal O, Schӧck F, González-Morales N. Bimolecular Fluorescence Complementation (BiFC) for Studying Sarcomeric Protein Interactions in Drosophila. Bio Protoc 2020; 10:e3569. [PMID: 33659539 DOI: 10.21769/bioprotoc.3569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/02/2022] Open
Abstract
Protein-protein interactions in Drosophila myofibrils are essential for their function and formation. Bimolecular Fluorescence Complementation (BiFC) is an effective method for studying protein interactions and localization. BiFC relies on the reconstitution of a monomeric fluorescent protein from two half-fragments when in proximity. Two proteins tagged with the different half-fragments emit a fluorescent signal when they are in physical contact, thus revealing a protein interaction and its spatial distribution. Because myofibrils are large networks of interconnected proteins, BIFC is an ideal method to study protein-protein interactions in myofibrils. Here we present a protocol for generating transgenic flies compatible with BiFC and a method for analyzing protein-protein interactions based on the fluorescent BiFC signal in myofibrils. Our protocol is applicable to the majority of Drosophila proteins and with few modifications may be used to study any tissue.
Collapse
|
39
|
Nikonova E, Kao SY, Spletter ML. Contributions of alternative splicing to muscle type development and function. Semin Cell Dev Biol 2020; 104:65-80. [PMID: 32070639 DOI: 10.1016/j.semcdb.2020.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/30/2022]
Abstract
Animals possess a wide variety of muscle types that support different kinds of movements. Different muscles have distinct locations, morphologies and contractile properties, raising the question of how muscle diversity is generated during development. Normal aging processes and muscle disorders differentially affect particular muscle types, thus understanding how muscles normally develop and are maintained provides insight into alterations in disease and senescence. As muscle structure and basic developmental mechanisms are highly conserved, many important insights into disease mechanisms in humans as well as into basic principles of muscle development have come from model organisms such as Drosophila, zebrafish and mouse. While transcriptional regulation has been characterized to play an important role in myogenesis, there is a growing recognition of the contributions of alternative splicing to myogenesis and the refinement of muscle function. Here we review our current understanding of muscle type specific alternative splicing, using examples of isoforms with distinct functions from both vertebrates and Drosophila. Future exploration of the vast potential of alternative splicing to fine-tune muscle development and function will likely uncover novel mechanisms of isoform-specific regulation and a more holistic understanding of muscle development, disease and aging.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
40
|
Riddle NC. Drosophila melanogaster, a new model for exercise research. Acta Physiol (Oxf) 2019; 227:e13352. [PMID: 31344748 DOI: 10.1111/apha.13352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/03/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Nicole C. Riddle
- Department of Biology The University of Alabama at Birmingham Birmingham Alabama USA
| |
Collapse
|
41
|
Sauerwald J, Backer W, Matzat T, Schnorrer F, Luschnig S. Matrix metalloproteinase 1 modulates invasive behavior of tracheal branches during entry into Drosophila flight muscles. eLife 2019; 8:48857. [PMID: 31577228 PMCID: PMC6795481 DOI: 10.7554/elife.48857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
Tubular networks like the vasculature extend branches throughout animal bodies, but how developing vessels interact with and invade tissues is not well understood. We investigated the underlying mechanisms using the developing tracheal tube network of Drosophila indirect flight muscles (IFMs) as a model. Live imaging revealed that tracheal sprouts invade IFMs directionally with growth-cone-like structures at branch tips. Ramification inside IFMs proceeds until tracheal branches fill the myotube. However, individual tracheal cells occupy largely separate territories, possibly mediated by cell-cell repulsion. Matrix metalloproteinase 1 (MMP1) is required in tracheal cells for normal invasion speed and for the dynamic organization of growth-cone-like branch tips. MMP1 remodels the CollagenIV-containing matrix around branch tips, which show differential matrix composition with low CollagenIV levels, while Laminin is present along tracheal branches. Thus, tracheal-derived MMP1 sustains branch invasion by modulating the dynamic behavior of sprouting branches as well as properties of the surrounding matrix.
Collapse
Affiliation(s)
- Julia Sauerwald
- Institute for Zoophysiology, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| | - Wilko Backer
- Institute for Zoophysiology, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| | - Till Matzat
- Institute for Zoophysiology, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| | | | - Stefan Luschnig
- Institute for Zoophysiology, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| |
Collapse
|
42
|
Lemke SB, Weidemann T, Cost AL, Grashoff C, Schnorrer F. A small proportion of Talin molecules transmit forces at developing muscle attachments in vivo. PLoS Biol 2019; 17:e3000057. [PMID: 30917109 PMCID: PMC6453563 DOI: 10.1371/journal.pbio.3000057] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/08/2019] [Accepted: 03/08/2019] [Indexed: 11/19/2022] Open
Abstract
Cells in developing organisms are subjected to particular mechanical forces that shape tissues and instruct cell fate decisions. How these forces are sensed and transmitted at the molecular level is therefore an important question, one that has mainly been investigated in cultured cells in vitro. Here, we elucidate how mechanical forces are transmitted in an intact organism. We studied Drosophila muscle attachment sites, which experience high mechanical forces during development and require integrin-mediated adhesion for stable attachment to tendons. Therefore, we quantified molecular forces across the essential integrin-binding protein Talin, which links integrin to the actin cytoskeleton. Generating flies expressing 3 Förster resonance energy transfer (FRET)-based Talin tension sensors reporting different force levels between 1 and 11 piconewton (pN) enabled us to quantify physiologically relevant molecular forces. By measuring primary Drosophila muscle cells, we demonstrate that Drosophila Talin experiences mechanical forces in cell culture that are similar to those previously reported for Talin in mammalian cell lines. However, in vivo force measurements at developing flight muscle attachment sites revealed that average forces across Talin are comparatively low and decrease even further while attachments mature and tissue-level tension remains high. Concomitantly, the Talin concentration at attachment sites increases 5-fold as quantified by fluorescence correlation spectroscopy (FCS), suggesting that only a small proportion of Talin molecules are mechanically engaged at any given time. Reducing Talin levels at late stages of muscle development results in muscle–tendon rupture in the adult fly, likely as a result of active muscle contractions. We therefore propose that a large pool of adhesion molecules is required to share high tissue forces. As a result, less than 15% of the molecules experience detectable forces at developing muscle attachment sites at the same time. Our findings define an important new concept of how cells can adapt to changes in tissue mechanics to prevent mechanical failure in vivo. The protein Talin links the transmembrane cell adhesion molecule integrin to the actin cytoskeleton. Quantitative FRET-based force measurements across Talin in vivo reveal that only few Talin molecules are under force during the development of muscle attachment sites. Cells in our body are constantly exposed to mechanical forces, which they need to sense and react to. In previous studies, fluorescent force sensors were developed to demonstrate that individual proteins in adhesion structures of a cell experience forces in the piconewton (pN) range. However, these cells were analyzed in isolation in an artificial plastic or glass environment. Here, we explored forces on adhesion proteins in their natural environment within a developing animal and used the muscle–tendon tissue in the fruit fly Drosophila as a model system. We made genetically modified fly lines with force sensors or controls inserted into the gene that produces the essential adhesion protein Talin. Using these force sensor flies, we found that only a small proportion of all the Talin proteins (<15%) present at developing muscle–tendon attachments experience detectable forces at the same time. Nevertheless, a large amount of Talin is accumulated at these attachments during fly development. We found that this large Talin pool is important to prevent rupture of the muscle–tendon connection in adult flies that produce high muscle forces during flight. In conclusion, we demonstrated that a large pool of Talin proteins is required for stable muscle–tendon attachment, likely with the individual Talin molecules dynamically sharing the mechanical load.
Collapse
Affiliation(s)
- Sandra B. Lemke
- Max Planck Institute of Biochemistry, Martinsried, Germany
- * E-mail: (FS); (CG); (SBL)
| | | | - Anna-Lena Cost
- Max Planck Institute of Biochemistry, Martinsried, Germany
- University of Münster, Institute for Molecular Cell Biology, Münster, Germany
| | - Carsten Grashoff
- Max Planck Institute of Biochemistry, Martinsried, Germany
- University of Münster, Institute for Molecular Cell Biology, Münster, Germany
- * E-mail: (FS); (CG); (SBL)
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Aix Marseille University, CNRS, IBDM, Marseille, France
- * E-mail: (FS); (CG); (SBL)
| |
Collapse
|
43
|
Draper I, Saha M, Stonebreaker H, Salomon RN, Matin B, Kang PB. The impact of Megf10/Drpr gain-of-function on muscle development in Drosophila. FEBS Lett 2019; 593:680-696. [PMID: 30802937 DOI: 10.1002/1873-3468.13348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/07/2022]
Abstract
Recessive mutations in multiple epidermal growth factor-like domains 10 (MEGF10) underlie a rare congenital muscle disease known as MEGF10 myopathy. MEGF10 and its Drosophila homolog Draper (Drpr) are transmembrane receptors expressed in muscle and glia. Drpr deficiency is known to result in muscle abnormalities in flies. In the current study, flies that ubiquitously overexpress Drpr, or mouse Megf10, display developmental arrest. The phenotype is reproduced with overexpression in muscle, but not in other tissues, and with overexpression during intermediate stages of myogenesis, but not in myoblasts. We find that tubular muscle subtypes are particularly sensitive to Megf10/Drpr overexpression. Complementary genetic analyses show that Megf10/Drpr and Notch may interact to regulate myogenesis. Our findings provide a basis for investigating MEGF10 in muscle development using Drosophila.
Collapse
Affiliation(s)
- Isabelle Draper
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Madhurima Saha
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Robert N Salomon
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - Bahar Matin
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Peter B Kang
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Neurology, Boston Children's Hospital, MA, USA.,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Genetics Institute and Myology Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
44
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
45
|
Kaya-Çopur A, Schnorrer F. RNA Interference Screening for Genes Regulating Drosophila Muscle Morphogenesis. Methods Mol Biol 2019; 1889:331-348. [PMID: 30367424 DOI: 10.1007/978-1-4939-8897-6_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
RNA interference (RNAi) is the method of choice to systematically test for gene function in an intact organism. The model organism Drosophila has the advantage that RNAi is cell autonomous, meaning it does not spread from one cell to the next. Hence, RNAi can be performed in a tissue-specific manner by expressing short or long inverted repeat constructs (hairpins) designed to target mRNAs from one specific target gene. This achieves tissue-specific knock-down of a target gene of choice. Here, we detail the methodology to test gene function in Drosophila muscle tissue by expressing hairpins in a muscle-specific manner using the GAL4-UAS system. We further discuss the systematic RNAi resource collections available which also permit large scale screens in a muscle-specific manner. The full power of such screens is revealed by combination of high-throughput assays followed by detailed morphological assays. Together, this chapter should be a practical guide to enable the reader to either test a few candidate genes, or large gene sets for particular functions in Drosophila muscle tissue and provide first insights into the biological process the gene might be important for in muscle.
Collapse
|
46
|
Kinold JC, Pfarr C, Aberle H. Sidestep-induced neuromuscular miswiring causes severe locomotion defects in Drosophila larvae. Development 2018; 145:145/17/dev163279. [DOI: 10.1242/dev.163279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/17/2018] [Indexed: 01/12/2023]
Abstract
ABSTRACT
Mutations in motor axon guidance molecules cause aberrant projection patterns of motor nerves. As most studies in Drosophila have analysed these molecules in fixed embryos, the consequences for larval locomotion are entirely unexplored. Here, we took advantage of sidestep (side)-mutant larvae that display severe locomotion defects because of irreparable innervation errors. Mutations in side affected all motor nerve branches and all body wall regions. Innervation defects were non-stereotypical, showing unique innervation patterns in each hemisegment. Premature activation of Side in muscle precursors abrogated dorsal migration of motor nerves, resulting in larvae with a complete loss of neuromuscular junctions on dorsal-most muscles. High-speed videography showed that these larvae failed to maintain substrate contact and inappropriately raised both head and tail segments above the substrate, resulting in unique ‘arching’ and ‘lifting’ phenotypes. These results show that guidance errors in side mutants are maintained throughout larval life and are asymmetrical with respect to the bilateral body axis. Together with similar findings in mice, this study also suggests that miswiring could be an underlying cause of inherited movement disorders.
Collapse
Affiliation(s)
- Jaqueline C. Kinold
- Heinrich Heine University Düsseldorf, Functional Cell Morphology Lab, Building 26-12-00, Universitaetsstrasse 1, 40225 Düsseldorf, Germany
| | - Carsten Pfarr
- Heinrich Heine University Düsseldorf, Functional Cell Morphology Lab, Building 26-12-00, Universitaetsstrasse 1, 40225 Düsseldorf, Germany
| | - Hermann Aberle
- Heinrich Heine University Düsseldorf, Functional Cell Morphology Lab, Building 26-12-00, Universitaetsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Green HJ, Griffiths AGM, Ylänne J, Brown NH. Novel functions for integrin-associated proteins revealed by analysis of myofibril attachment in Drosophila. eLife 2018; 7:e35783. [PMID: 30028294 PMCID: PMC6092120 DOI: 10.7554/elife.35783] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/19/2018] [Indexed: 01/18/2023] Open
Abstract
We use the myotendinous junction of Drosophila flight muscles to explore why many integrin associated proteins (IAPs) are needed and how their function is coordinated. These muscles revealed new functions for IAPs not required for viability: Focal Adhesion Kinase (FAK), RSU1, tensin and vinculin. Genetic interactions demonstrated a balance between positive and negative activities, with vinculin and tensin positively regulating adhesion, while FAK inhibits elevation of integrin activity by tensin, and RSU1 keeps PINCH activity in check. The molecular composition of myofibril termini resolves into 4 distinct layers, one of which is built by a mechanotransduction cascade: vinculin facilitates mechanical opening of filamin, which works with the Arp2/3 activator WASH to build an actin-rich layer positioned between integrins and the first sarcomere. Thus, integration of IAP activity is needed to build the complex architecture of the myotendinous junction, linking the membrane anchor to the sarcomere.
Collapse
Affiliation(s)
- Hannah J Green
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
- Department of Biological and Environmental SciencesUniversity of JyväskyläJyväskyläFinland
- Nanoscience CenterUniversity of JyväskyläJyväskyläFinland
| | - Annabel GM Griffiths
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Jari Ylänne
- Department of Biological and Environmental SciencesUniversity of JyväskyläJyväskyläFinland
- Nanoscience CenterUniversity of JyväskyläJyväskyläFinland
| | - Nicholas H Brown
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
48
|
Spletter ML, Barz C, Yeroslaviz A, Zhang X, Lemke SB, Bonnard A, Brunner E, Cardone G, Basler K, Habermann BH, Schnorrer F. A transcriptomics resource reveals a transcriptional transition during ordered sarcomere morphogenesis in flight muscle. eLife 2018; 7:34058. [PMID: 29846170 PMCID: PMC6005683 DOI: 10.7554/elife.34058] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/26/2018] [Indexed: 01/07/2023] Open
Abstract
Muscles organise pseudo-crystalline arrays of actin, myosin and titin filaments to build force-producing sarcomeres. To study sarcomerogenesis, we have generated a transcriptomics resource of developing Drosophila flight muscles and identified 40 distinct expression profile clusters. Strikingly, most sarcomeric components group in two clusters, which are strongly induced after all myofibrils have been assembled, indicating a transcriptional transition during myofibrillogenesis. Following myofibril assembly, many short sarcomeres are added to each myofibril. Subsequently, all sarcomeres mature, reaching 1.5 µm diameter and 3.2 µm length and acquiring stretch-sensitivity. The efficient induction of the transcriptional transition during myofibrillogenesis, including the transcriptional boost of sarcomeric components, requires in part the transcriptional regulator Spalt major. As a consequence of Spalt knock-down, sarcomere maturation is defective and fibers fail to gain stretch-sensitivity. Together, this defines an ordered sarcomere morphogenesis process under precise transcriptional control - a concept that may also apply to vertebrate muscle or heart development.
Collapse
Affiliation(s)
- Maria L Spletter
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Biomedical Center, Physiological ChemistryLudwig-Maximilians-Universität MünchenMartinsriedGermany
| | - Christiane Barz
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Assa Yeroslaviz
- Computational Biology GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Xu Zhang
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
| | - Sandra B Lemke
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Adrien Bonnard
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- Aix Marseille Univ, INSERM, TAGCMarseilleFrance
| | - Erich Brunner
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Giovanni Cardone
- Imaging FacilityMax Planck Institute of BiochemistryMartinsriedGermany
| | - Konrad Basler
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Bianca H Habermann
- Computational Biology GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- Aix Marseille Univ, INSERM, TAGCMarseilleFrance
| | - Frank Schnorrer
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
| |
Collapse
|
49
|
Chakraborty K, VijayRaghavan K, Gunage R. A Method to Injure, Dissect and Image Indirect Flight Muscle of Drosophila. Bio Protoc 2018; 8:e2860. [PMID: 34285976 DOI: 10.21769/bioprotoc.2860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/06/2018] [Accepted: 05/23/2018] [Indexed: 11/02/2022] Open
Abstract
Inducing an injury specifically to Drosophila flight muscles is a difficult task, owing to the small size of the muscles and the presence of the cuticle. The protocol described below provides an easy and reproducible method to induce injury in the Drosophila flight muscles.
Collapse
Affiliation(s)
- Kunal Chakraborty
- Department of Developmental Biology and Genetics, National Centre for Biological Sciences, Bangalore, India.,School of Chemical & Biotechnology, Shanmugha Arts, Science, Technology & Research Academy, Thanjavur, India
| | - K VijayRaghavan
- Department of Developmental Biology and Genetics, National Centre for Biological Sciences, Bangalore, India
| | - Rajesh Gunage
- Department of Developmental Biology and Genetics, National Centre for Biological Sciences, Bangalore, India.,Stem Cell Program and Division of Haematology/Oncology, Children's Hospital, Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|
50
|
Boukhatmi H, Bray S. A population of adult satellite-like cells in Drosophila is maintained through a switch in RNA-isoforms. eLife 2018; 7:35954. [PMID: 29629869 PMCID: PMC5919756 DOI: 10.7554/elife.35954] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/07/2018] [Indexed: 12/13/2022] Open
Abstract
Adult stem cells are important for tissue maintenance and repair. One key question is how such cells are specified and then protected from differentiation for a prolonged period. Investigating the maintenance of Drosophila muscle progenitors (MPs) we demonstrate that it involves a switch in zfh1/ZEB1 RNA-isoforms. Differentiation into functional muscles is accompanied by expression of miR-8/miR-200, which targets the major zfh1-long RNA isoform and decreases Zfh1 protein. Through activity of the Notch pathway, a subset of MPs produce an alternate zfh1-short isoform, which lacks the miR-8 seed site. Zfh1 protein is thus maintained in these cells, enabling them to escape differentiation and persist as MPs in the adult. There, like mammalian satellite cells, they contribute to muscle homeostasis. Such preferential regulation of a specific RNA isoform, with differential sensitivity to miRs, is a powerful mechanism for maintaining a population of poised progenitors and may be of widespread significance.
Collapse
Affiliation(s)
- Hadi Boukhatmi
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|