1
|
Xiong H, Chang Q, Ding J, Wang S, Zhang W, Li Y, Wu Y, Lin P, Yang C, Liu M, Fang G, Yang Y, Xie J, Qi D, Jiang T, Fu W, Hu F, Chen Y, Yue R, Li Y, Cui Y, Li M, Fan S, Yang Y, Xu Y, Li D, Zhang F, Zhao H, Wu C, Zheng Q, Piatkevich KD, Fu Z. A highly stable monomeric red fluorescent protein for advanced microscopy. Nat Methods 2025:10.1038/s41592-025-02676-5. [PMID: 40247125 DOI: 10.1038/s41592-025-02676-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/07/2025] [Indexed: 04/19/2025]
Abstract
The stability of fluorescent proteins (FPs) is crucial for imaging techniques such as live-cell imaging, super-resolution microscopy and correlative light and electron microscopy. Although stable green and yellow FPs are available, stable monomeric red FPs (RFPs) remain limited. Here we develop an extremely stable monomeric RFP named mScarlet3-H and determine its structure at a 1.5 Å resolution. mScarlet3-H exhibits remarkable resistance to high temperature, chaotropic conditions and oxidative environments, enabling efficient correlative light and electron microscopy imaging and rapid (less than 1 day) whole-organ tissue clearing. In addition, its high photostability allows long-term three-dimensional structured illumination microscopy imaging of mitochondrial dynamics with minimal photobleaching. It also facilitates dual-color live-cell stimulated emission depletion imaging with a high signal-to-noise ratio and strong specificity. Systematic benchmarking against high-performing RFPs established mScarlet3-H as a highly stable RFP for multimodality microscopy in cell cultures and model organisms, complementing green FPs for multiplexed imaging in zebrafish, mice and Nicotiana benthamiana.
Collapse
Affiliation(s)
- Haiyan Xiong
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Public Technology Service Center, Fujian Medical University, Fuzhou, China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qiyuan Chang
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Public Technology Service Center, Fujian Medical University, Fuzhou, China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiayi Ding
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Shuyuan Wang
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Wenhao Zhang
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu Li
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Yaochen Wu
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Public Technology Service Center, Fujian Medical University, Fuzhou, China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Pengyan Lin
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Chengyu Yang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Miaoxing Liu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Guicun Fang
- Microscopy core facility of Westlake University, Hangzhou, China
| | - Yiwei Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Jiongfang Xie
- Microscopy core facility of Westlake University, Hangzhou, China
| | - Dong Qi
- Optofem Technology Company, Beijing, China
| | - Tao Jiang
- Beijing Nano Insights Technology Co. Ltd, Beijing, China
| | - Wenfeng Fu
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fen Hu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yiming Chen
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Rongcai Yue
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
- School of Pharmacy, Center of Translational Hematology, Fujian Medical University, Fuzhou, China
| | - Yanbin Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Min Li
- X-ray crystallography platform of National Protein Science Facility, Tsinghua University, Beijing, China
| | - Shilong Fan
- X-ray crystallography platform of National Protein Science Facility, Tsinghua University, Beijing, China
| | - Yufeng Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Yunlu Xu
- School of Pharmacy, Center of Translational Hematology, Fujian Medical University, Fuzhou, China
| | - Dong Li
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fenghua Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hu Zhao
- Chinese Institute for Brain Research, Beijing, China
| | - Congxian Wu
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Public Technology Service Center, Fujian Medical University, Fuzhou, China.
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China.
| | - Kiryl D Piatkevich
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- College of Life Sciences, Zhejiang University, Hangzhou, China.
| | - Zhifei Fu
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Public Technology Service Center, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Plath AMS, Huber S, Alfarano SR, Abbott DF, Hu M, Mougel V, Isa L, Ferguson SJ. Co-Electrospun Poly(ε-Caprolactone)/Zein Articular Cartilage Scaffolds. Bioengineering (Basel) 2023; 10:771. [PMID: 37508797 PMCID: PMC10376865 DOI: 10.3390/bioengineering10070771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis scaffold-based grafts fail because of poor integration with the surrounding soft tissue and inadequate tribological properties. To circumvent this, we propose electrospun poly(ε-caprolactone)/zein-based scaffolds owing to their biomimetic capabilities. The scaffold surfaces were characterized using Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, static water contact angles, and profilometry. Scaffold biocompatibility properties were assessed by measuring protein adsorption (Bicinchoninic Acid Assay), cell spreading (stained F-actin), and metabolic activity (PrestoBlue™ Cell Viability Reagent) of primary bovine chondrocytes. The data show that zein surface segregation in the membranes not only completely changed the hydrophobic behavior of the materials, but also increased the cell yield and metabolic activity on the scaffolds. The surface segregation is verified by the infrared peak at 1658 cm-1, along with the presence and increase in N1 content in the survey XPS. This observation could explain the decrease in the water contact angles from 125° to approximately 60° in zein-comprised materials and the decrease in the protein adsorption of both bovine serum albumin and synovial fluid by half. Surface nano roughness in the PCL/zein samples additionally benefited the radial spreading of bovine chondrocytes. This study showed that co-electrospun PCL/zein scaffolds have promising surface and biocompatibility properties for use in articular-tissue-engineering applications.
Collapse
Affiliation(s)
| | - Stephanie Huber
- Laboratory for Orthopaedic Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Serena R Alfarano
- Laboratory of Food and Soft Materials, ETH Zurich, 8092 Zurich, Switzerland
| | - Daniel F Abbott
- Laboratory of Inorganic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Minghan Hu
- Laboratory for Soft Materials and Interfaces, ETH Zurich, 8093 Zurich, Switzerland
| | - Victor Mougel
- Laboratory of Inorganic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, ETH Zurich, 8093 Zurich, Switzerland
| | - Stephen J Ferguson
- Laboratory for Orthopaedic Technology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
3
|
Li M, Shang M, Li L, Wang Y, Song Q, Zhou Z, Kuang W, Zhang Y, Huang ZL. Real-time image resolution measurement for single molecule localization microscopy. OPTICS EXPRESS 2022; 30:28079-28090. [PMID: 36236964 DOI: 10.1364/oe.463996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/05/2022] [Indexed: 06/16/2023]
Abstract
Recent advancements in single molecule localization microscopy (SMLM) have demonstrated outstanding potential applications in high-throughput and high-content screening imaging. One major limitation to such applications is to find a way to optimize imaging throughput without scarifying image quality, especially the homogeneity in image resolution, during the imaging of hundreds of field-of-views (FOVs) in heterogeneous samples. Here we introduce a real-time image resolution measurement method for SMLM to solve this problem. This method is under the heuristic framework of overall image resolution that counts on localization precision and localization density. Rather than estimating the mean localization density after completing the entire SMLM process, this method uses the spatial Poisson process to model the random activation of molecules and thus determines the localization density in real-time. We demonstrate that the method is valid in real-time resolution measurement and is effective in guaranteeing homogeneous image resolution across multiple representative FOVs with optimized imaging throughput.
Collapse
|
4
|
Szafranska K, Neuman T, Baster Z, Rajfur Z, Szelest O, Holte C, Kubisiak A, Kus E, Wolfson DL, Chlopicki S, Ahluwalia BS, Lekka M, Szymonski M, McCourt P, Zapotoczny B. From fixed-dried to wet-fixed to live - comparative super-resolution microscopy of liver sinusoidal endothelial cell fenestrations. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2253-2270. [PMID: 39678082 PMCID: PMC11636152 DOI: 10.1515/nanoph-2021-0818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/21/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2024]
Abstract
Fenestrations in liver sinusoidal endothelial cells (LSEC) are transcellular nanopores of 50-350 nm diameter that facilitate bidirectional transport of solutes and macromolecules between the bloodstream and the parenchyma of the liver. Liver diseases, ageing, and various substances such as nicotine or ethanol can negatively influence LSECs fenestrations and lead to defenestration. Over the years, the diameter of fenestrations remained the main challenge for imaging of LSEC in vitro. Several microscopy, or rather nanoscopy, approaches have been used to quantify fenestrations in LSEC to assess the effect of drugs and, and toxins in different biological models. All techniques have their limitations, and measurements of the "true" size of fenestrations are hampered because of this. In this study, we approach the comparison of different types of microscopy in a correlative manner. We combine scanning electron microscopy (SEM) with optical nanoscopy methods such as structured illumination microscopy (SIM) or stimulated emission depletion (STED) microscopy. In addition, we combined atomic force microscopy (AFM) with SEM and STED, all to better understand the previously reported differences between the reports of fenestration dimensions. We conclude that sample dehydration alters fenestration diameters. Finally, we propose the combination of AFM with conventional microscopy that allows for easy super-resolution observation of the cell dynamics with additional chemical information that can be traced back for the whole experiment. Overall, by pairing the various types of imaging techniques that provide topological 2D/3D/label-free/chemical information we get a deeper insight into both limitations and strengths of each type microscopy when applied to fenestration analysis.
Collapse
Affiliation(s)
- Karolina Szafranska
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
| | - Tanja Neuman
- JPK BioAFM Business, Nano Surfaces and Metrology Division, Bruker Nano GmbH, Berlin, Germany
| | - Zbigniew Baster
- Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland
| | - Zenon Rajfur
- Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland
| | | | - Christopher Holte
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
| | - Agata Kubisiak
- Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland
| | - Edyta Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Deanna L. Wolfson
- Department of Physics and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Balpreet S. Ahluwalia
- Department of Physics and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Malgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Marek Szymonski
- Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland
| | - Peter McCourt
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
| | - Bartlomiej Zapotoczny
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
5
|
Lee WTC, Gupta D, Rothenberg E. Single-molecule imaging of replication fork conflicts at genomic DNA G4 structures in human cells. Methods Enzymol 2021; 661:77-94. [PMID: 34776224 DOI: 10.1016/bs.mie.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DNA G-quadruplexes (G4s) are stable, non-canonical DNA secondary structures formed within guanine(G)-rich sequences. While extensively studied in vitro, evidence of the occurrence of G4s in vivo has only recently emerged. The formation of G4 structures may pose an obstacle for diverse DNA transactions including replication, which is linked to mutagenesis and genomic instability. A fundamental question in the field has been whether and how the formation of G4s is coupled to the progression of replication forks. This process has remained undefined largely due to the lack of experimental approaches capable of monitoring the presence of G4s and their association with the replication machinery in cells. Here, we describe a detailed multicolor single-molecule localization microscopy (SMLM) protocol for detecting nanoscale spatial-association of DNA G4s with the cellular replisome complex. This method offers a unique platform for visualizing the mechanisms of G4 formation at the molecular level, as well as addressing key biological questions as to the functional roles of these structures in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Wei Ting C Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States.
| | - Dipika Gupta
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
6
|
Stiekema M, Ramaekers FCS, Kapsokalyvas D, van Zandvoort MAMJ, Veltrop RJA, Broers JLV. Super-Resolution Imaging of the A- and B-Type Lamin Networks: A Comparative Study of Different Fluorescence Labeling Procedures. Int J Mol Sci 2021; 22:ijms221910194. [PMID: 34638534 PMCID: PMC8508656 DOI: 10.3390/ijms221910194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022] Open
Abstract
A- and B-type lamins are type V intermediate filament proteins. Mutations in the genes encoding these lamins cause rare diseases, collectively called laminopathies. A fraction of the cells obtained from laminopathy patients show aberrations in the localization of each lamin subtype, which may represent only the minority of the lamina disorganization. To get a better insight into more delicate and more abundant lamina abnormalities, the lamin network can be studied using super-resolution microscopy. We compared confocal scanning laser microscopy and stimulated emission depletion (STED) microscopy in combination with different fluorescence labeling approaches for the study of the lamin network. We demonstrate the suitability of an immunofluorescence staining approach when using STED microscopy, by determining the lamin layer thickness and the degree of lamin A and B1 colocalization as detected in fixed fibroblasts (co-)stained with lamin antibodies or (co-)transfected with EGFP/YFP lamin constructs. This revealed that immunofluorescence staining of cells does not lead to consequent changes in the detected lamin layer thickness, nor does it influence the degree of colocalization of lamin A and B1, when compared to the transfection approach. Studying laminopathy patient dermal fibroblasts (LMNA c.1130G>T (p.(Arg377Leu)) variant) confirmed the suitability of immunofluorescence protocols in STED microscopy, which circumvents the need for less convenient transfection steps. Furthermore, we found a significant decrease in lamin A/C and B1 colocalization in these patient fibroblasts, compared to normal human dermal fibroblasts. We conclude that super-resolution light microscopy combined with immunofluorescence protocols provides a potential tool to detect structural lamina differences between normal and laminopathy patient fibroblasts.
Collapse
Affiliation(s)
- Merel Stiekema
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Frans C. S. Ramaekers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Dimitrios Kapsokalyvas
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- Interdisciplinary Center for Clinical Research, IZKF, RWTH Aachen University, 52074 Aachen, Germany
| | - Marc A. M. J. van Zandvoort
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, 52074 Aachen, Germany
| | - Rogier J. A. Veltrop
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, 52074 Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Jos L. V. Broers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-433881366
| |
Collapse
|
7
|
Valli J, Sanderson J. Super-Resolution Fluorescence Microscopy Methods for Assessing Mouse Biology. Curr Protoc 2021; 1:e224. [PMID: 34436832 DOI: 10.1002/cpz1.224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Super-resolution (diffraction unlimited) microscopy was developed 15 years ago; the developers were awarded the Nobel Prize in Chemistry in recognition of their work in 2014. Super-resolution microscopy is increasingly being applied to diverse scientific fields, from single molecules to cell organelles, viruses, bacteria, plants, and animals, especially the mammalian model organism Mus musculus. In this review, we explain how super-resolution microscopy, along with fluorescence microscopy from which it grew, has aided the renaissance of the light microscope. We cover experiment planning and specimen preparation and explain structured illumination microscopy, super-resolution radial fluctuations, stimulated emission depletion microscopy, single-molecule localization microscopy, and super-resolution imaging by pixel reassignment. The final section of this review discusses the strengths and weaknesses of each super-resolution technique and how to choose the best approach for your research. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jessica Valli
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| |
Collapse
|
8
|
Melnyk O, Jones R, Macêdo R, Garbovskiy Y, Hagen G, Glushchenko AV, Spendier K, Camley RE. Fast Switching Dual-Frequency Nematic Liquid Crystal Tunable Filters. ACS PHOTONICS 2021; 8:1222-1231. [PMID: 34095347 PMCID: PMC8174839 DOI: 10.1021/acsphotonics.1c00151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We develop tunable optical filters with dual-frequency nematic liquid crystal optical retarders to enable fast switching between the passed wavelengths. The filters are composed of a series of two liquid crystal optical retarders. We select the specific thicknesses of the liquid crystal retarders and use individual biasing schemes to continuously tune the wavelength and bandwidth of the filter. This enables fine-tuned filter switching speeds of filter operation in the ms regime. We present theoretical predictions and experimental results for the electro-optical filter characterization as well as an example application for our filter in total internal reflection fluorescence microscopy. We find that our filter switching speeds can be as short as a few ms, an order of magnitude improvement over typical mechanical filter wheel switching speeds. The quality of our fluorescence images is similar to those obtained by conventional filters.
Collapse
Affiliation(s)
- Olha Melnyk
- UCCS Biofrontiers Center and Department of Physics and Energy Science, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Reed Jones
- UCCS Biofrontiers Center and Department of Physics and Energy Science, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Rair Macêdo
- James Watt School of Engineering, Electronics & Nanoscale Engineering Division, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yuriy Garbovskiy
- Department of Physics and Engineering Physics, Central Connecticut State University, New Britain, Connecticut 06050, United States
| | - Guy Hagen
- UCCS Biofrontiers Center and Department of Physics and Energy Science, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Anatoliy V Glushchenko
- UCCS Biofrontiers Center and Department of Physics and Energy Science, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Kathrin Spendier
- UCCS Biofrontiers Center and Department of Physics and Energy Science, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Robert E Camley
- UCCS Biofrontiers Center and Department of Physics and Energy Science, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| |
Collapse
|
9
|
Kesarwani S, Lama P, Chandra A, Reddy PP, Jijumon AS, Bodakuntla S, Rao BM, Janke C, Das R, Sirajuddin M. Genetically encoded live-cell sensor for tyrosinated microtubules. J Cell Biol 2021; 219:152071. [PMID: 32886100 PMCID: PMC7659708 DOI: 10.1083/jcb.201912107] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Microtubule cytoskeleton exists in various biochemical forms in different cells due to tubulin posttranslational modifications (PTMs). Tubulin PTMs are known to affect microtubule stability, dynamics, and interaction with MAPs and motors in a specific manner, widely known as tubulin code hypothesis. At present, there exists no tool that can specifically mark tubulin PTMs in living cells, thus severely limiting our understanding of their dynamics and cellular functions. Using a yeast display library, we identified a binder against terminal tyrosine of α-tubulin, a unique PTM site. Extensive characterization validates the robustness and nonperturbing nature of our binder as tyrosination sensor, a live-cell tubulin nanobody specific towards tyrosinated microtubules. Using this sensor, we followed nocodazole-, colchicine-, and vincristine-induced depolymerization events of tyrosinated microtubules in real time and found each distinctly perturbs the microtubule polymer. Together, our work describes a novel tyrosination sensor and its potential applications to study the dynamics of microtubule and their PTM processes in living cells.
Collapse
Affiliation(s)
- Shubham Kesarwani
- Centre for Cardiovascular Biology and Diseases, Institute for Stem Cell Science and Regenerative Medicine, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prakash Lama
- Centre for Cardiovascular Biology and Diseases, Institute for Stem Cell Science and Regenerative Medicine, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anchal Chandra
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| | - P Purushotam Reddy
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| | - A S Jijumon
- Institut Curie, Paris Sciences et Lettres University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, Paris Sciences et Lettres University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC
| | - Carsten Janke
- Institut Curie, Paris Sciences et Lettres University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Ranabir Das
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| | - Minhajuddin Sirajuddin
- Centre for Cardiovascular Biology and Diseases, Institute for Stem Cell Science and Regenerative Medicine, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| |
Collapse
|
10
|
Abstract
Over the last 30 years, confocal microscopy has emerged as a primary tool for biological investigation across many disciplines. The simplicity of use and widespread accessibility of confocal microscopy ensure that it will have a prominent place in biological imaging for many years to come, even with the recent advances in light sheet and field synthesis microscopy. Since these more advanced technologies still require significant expertise to effectively implement and carry through to analysis, confocal microscopy-based approaches still remain the easiest way for biologists with minimal imaging experience to address fundamental questions about how their systems are arranged through space and time. In this review, we discuss a number of advanced applications of confocal microscopy for probing the spatiotemporal dynamics of biological systems.
Collapse
Affiliation(s)
- W Matt Reilly
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.,Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
11
|
Feng YX, Chen X, Li YW, Zhao HM, Xiang L, Li H, Cai QY, Feng NX, Mo CH, Wong MH. A Visual Leaf Zymography Technique for the In Situ Examination of Plant Enzyme Activity under the Stress of Environmental Pollution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14015-14024. [PMID: 32822176 DOI: 10.1021/acs.jafc.0c03815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study established a high-efficiency fluorescence quenching approach for the in situ visualization and modeling of the spatial distribution of xylanase, β-glucosidase, and phosphatase activities in plant leaves under pollution stress (namely, the leaf zymography technique, LZT). In the LZT, a membrane saturated with an enzyme-specific fluorescent substrate on the leaf surface was incubated and the fluorescence image generated on the membrane under ultraviolet light was recorded. An image-based modeling method for restoring the morphological traits of the true image by reducing noise was developed to ensure the accurate estimation of enzyme activities. The LZT could simultaneously measure 48 samples within 2 h, with good reproducibility. The results obtained by the LZT were comparable to those obtained by a conventional biochemical analysis method and presented low-cost and convenient advantages. This paper explains the theoretical basis required to investigate the realistic application of the LZT for assessing ecotoxicity in large-scale monitoring.
Collapse
Affiliation(s)
- Yu-Xi Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xin Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
12
|
Mascheroni L, Scherer KM, Manton JD, Ward E, Dibben O, Kaminski CF. Combining sample expansion and light sheet microscopy for the volumetric imaging of virus-infected cells with super-resolution. BIOMEDICAL OPTICS EXPRESS 2020; 11:5032-5044. [PMID: 33014598 PMCID: PMC7510880 DOI: 10.1364/boe.399404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 05/25/2023]
Abstract
Expansion microscopy is a sample preparation technique that enables the optical imaging of biological specimens at super-resolution owing to their physical magnification, which is achieved through water-absorbing polymers. The technique uses readily available chemicals and does not require sophisticated equipment, thus offering super-resolution to laboratories that are not microscopy-specialised. Here we present a protocol combining sample expansion with light sheet microscopy to generate high-contrast, high-resolution 3D reconstructions of whole virus-infected cells. The results are superior to those achievable with comparable imaging modalities and reveal details of the infection cycle that are not discernible before expansion. An image resolution of approximately 95 nm could be achieved in samples labelled in 3 colours. We resolve that the viral nucleoprotein is accumulated at the membrane of vesicular structures within the cell cytoplasm and how these vesicles are positioned relative to cellular structures. We provide detailed guidance and a video protocol for the optimal application of the method and demonstrate its potential to study virus-host cell interactions.
Collapse
Affiliation(s)
- Luca Mascheroni
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- These authors contributed equally
| | - Katharina M Scherer
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- These authors contributed equally
| | | | - Edward Ward
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Oliver Dibben
- Flu-MSAT, Biopharmaceutical Development, R&D, AstraZeneca, Liverpool, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Moeyaert B, Vandenberg W, Dedecker P. SOFIevaluator: a strategy for the quantitative quality assessment of SOFI data. BIOMEDICAL OPTICS EXPRESS 2020; 11:636-648. [PMID: 32133218 PMCID: PMC7041449 DOI: 10.1364/boe.382278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 05/21/2023]
Abstract
Super-resolution fluorescence imaging techniques allow optical imaging of specimens beyond the diffraction limit of light. Super-resolution optical fluctuation imaging (SOFI) relies on computational analysis of stochastic blinking events to obtain a super-resolved image. As with some other super-resolution methods, this strong dependency on computational analysis can make it difficult to gauge how well the resulting images reflect the underlying sample structure. We herein report SOFIevaluator, an unbiased and parameter-free algorithm for calculating a set of metrics that describes the quality of super-resolution fluorescence imaging data for SOFI. We additionally demonstrate how SOFIevaluator can be used to identify fluorescent proteins that perform well for SOFI imaging under different imaging conditions.
Collapse
Affiliation(s)
- Benjamien Moeyaert
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Heverlee, Belgium
| | - Wim Vandenberg
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Heverlee, Belgium
| | - Peter Dedecker
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Heverlee, Belgium
| |
Collapse
|
14
|
Thevathasan JV, Kahnwald M, Cieśliński K, Hoess P, Peneti SK, Reitberger M, Heid D, Kasuba KC, Hoerner SJ, Li Y, Wu YL, Mund M, Matti U, Pereira PM, Henriques R, Nijmeijer B, Kueblbeck M, Sabinina VJ, Ellenberg J, Ries J. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat Methods 2019; 16:1045-1053. [PMID: 31562488 PMCID: PMC6768092 DOI: 10.1038/s41592-019-0574-9] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
Quantitative fluorescence and superresolution microscopy are often limited by insufficient data quality or artifacts. In this context, it is essential to have biologically relevant control samples to benchmark and optimize the quality of microscopes, labels and imaging conditions. Here, we exploit the stereotypic arrangement of proteins in the nuclear pore complex as in situ reference structures to characterize the performance of a variety of microscopy modalities. We created four genome edited cell lines in which we endogenously labeled the nucleoporin Nup96 with mEGFP, SNAP-tag, HaloTag or the photoconvertible fluorescent protein mMaple. We demonstrate their use (1) as three-dimensional resolution standards for calibration and quality control, (2) to quantify absolute labeling efficiencies and (3) as precise reference standards for molecular counting. These cell lines will enable the broader community to assess the quality of their microscopes and labels, and to perform quantitative, absolute measurements.
Collapse
Affiliation(s)
- Jervis Vermal Thevathasan
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | | | | | - Philipp Hoess
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sudheer Kumar Peneti
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Manuel Reitberger
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Daniel Heid
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Department for Applied Tumor Biology, Heidelberg University Hospital, Heidelberg, Germany
| | - Krishna Chaitanya Kasuba
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Eidgenössische Technische Hochschule Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Sarah Janice Hoerner
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences and Interdisciplinary Center for Neuroscience, Heidelberg University, Heidelberg, Germany
| | - Yiming Li
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
| | - Yu-Le Wu
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Markus Mund
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Department of Biochemistry, University of Geneva, Science 2, Genève, Switzerland
| | - Ulf Matti
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
| | - Pedro Matos Pereira
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ricardo Henriques
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK
| | | | | | | | - Jan Ellenberg
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
| | - Jonas Ries
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany.
| |
Collapse
|
15
|
Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen GPC. Super-resolution microscopy demystified. Nat Cell Biol 2019; 21:72-84. [PMID: 30602772 DOI: 10.1038/s41556-018-0251-8] [Citation(s) in RCA: 619] [Impact Index Per Article: 103.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/12/2018] [Indexed: 02/08/2023]
Abstract
Super-resolution microscopy (SRM) bypasses the diffraction limit, a physical barrier that restricts the optical resolution to roughly 250 nm and was previously thought to be impenetrable. SRM techniques allow the visualization of subcellular organization with unprecedented detail, but also confront biologists with the challenge of selecting the best-suited approach for their particular research question. Here, we provide guidance on how to use SRM techniques advantageously for investigating cellular structures and dynamics to promote new discoveries.
Collapse
Affiliation(s)
- Lothar Schermelleh
- Micron Oxford Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Alexia Ferrand
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Thomas Huser
- Biomolecular Photonics, Department of Physics, University of Bielefeld, Bielefeld, Germany
| | - Christian Eggeling
- MRC Human Immunology Unit and Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Institute for Applied Optics, Friedrich-Schiller-University Jena & Leibniz Institute of Photonic Technology, Jena, Germany
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Oliver Biehlmaier
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Gregor P C Drummen
- Advanced Bio-Imaging Program, Bio&Nano Solutions‒LAB3BIO, Bielefeld, Germany.
- ICON-Europe.org, Exxilon Scientific Events, Steinhagen, Germany.
| |
Collapse
|
16
|
Guo Y, Li D, Zhang S, Yang Y, Liu JJ, Wang X, Liu C, Milkie DE, Moore RP, Tulu US, Kiehart DP, Hu J, Lippincott-Schwartz J, Betzig E, Li D. Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond Timescales. Cell 2018; 175:1430-1442.e17. [DOI: 10.1016/j.cell.2018.09.057] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/21/2018] [Accepted: 09/26/2018] [Indexed: 11/26/2022]
|
17
|
Vangindertael J, Camacho R, Sempels W, Mizuno H, Dedecker P, Janssen KPF. An introduction to optical super-resolution microscopy for the adventurous biologist. Methods Appl Fluoresc 2018; 6:022003. [DOI: 10.1088/2050-6120/aaae0c] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Zhao G, Zheng C, Kuang C, Liu X. Resolution-enhanced SOFI via structured illumination. OPTICS LETTERS 2017; 42:3956-3959. [PMID: 28957171 DOI: 10.1364/ol.42.003956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/02/2017] [Indexed: 06/07/2023]
Abstract
By analyzing the statistics of the temporal fluctuations from the blinking emitters, super-resolution fluctuation imaging (SOFI) achieves super-resolution while imposing fewer constraints on the blinking behavior of the probes and is more suitable for low signal-to-noise ratio acquisition than localization methods. However, determined by the square root of cumulation orders, the resolution improvement of SOFI highly restricts its promotion into high-resolution observations. In this Letter, abandoning the default flat illumination in stochastic imaging methods, we introduce structured illumination (SI) (e.g., Gaussian or sinusoidal pattern) into SOFI (SI-SOFI) to render greatly enhanced resolution. Through simulation with parameters of both real acquisition procedures and microscope properties, we examine the feasibility of SI-SOFI and obtain a resolution improvement of four-six folds at just second-order cumulation compared to wide-field imaging. In addition, a practical pathway for the SI-SOFI reconstruction is offered.
Collapse
|
19
|
Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters. Epigenetics Chromatin 2017; 10:39. [PMID: 28784182 PMCID: PMC5547466 DOI: 10.1186/s13072-017-0146-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The association of active transcription regulatory elements (TREs) with DNAse I hypersensitivity (DHS[+]) and an 'open' local chromatin configuration has long been known. However, the 3D topography of TREs within the nuclear landscape of individual cells in relation to their active or inactive status has remained elusive. Here, we explored the 3D nuclear topography of active and inactive TREs in the context of a recently proposed model for a functionally defined nuclear architecture, where an active and an inactive nuclear compartment (ANC-INC) form two spatially co-aligned and functionally interacting networks. RESULTS Using 3D structured illumination microscopy, we performed 3D FISH with differently labeled DNA probe sets targeting either sites with DHS[+], apparently active TREs, or DHS[-] sites harboring inactive TREs. Using an in-house image analysis tool, DNA targets were quantitatively mapped on chromatin compaction shaped 3D nuclear landscapes. Our analyses present evidence for a radial 3D organization of chromatin domain clusters (CDCs) with layers of increasing chromatin compaction from the periphery to the CDC core. Segments harboring active TREs are significantly enriched at the decondensed periphery of CDCs with loops penetrating into interchromatin compartment channels, constituting the ANC. In contrast, segments lacking active TREs (DHS[-]) are enriched toward the compacted interior of CDCs (INC). CONCLUSIONS Our results add further evidence in support of the ANC-INC network model. The different 3D topographies of DHS[+] and DHS[-] sites suggest positional changes of TREs between the ANC and INC depending on their functional state, which might provide additional protection against an inappropriate activation. Our finding of a structural organization of CDCs based on radially arranged layers of different chromatin compaction levels indicates a complex higher-order chromatin organization beyond a dichotomic classification of chromatin into an 'open,' active and 'closed,' inactive state.
Collapse
|
20
|
Titlow JS, Yang L, Parton RM, Palanca A, Davis I. Super-Resolution Single Molecule FISH at the Drosophila Neuromuscular Junction. Methods Mol Biol 2017; 1649:163-175. [PMID: 29130196 PMCID: PMC6128253 DOI: 10.1007/978-1-4939-7213-5_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The lack of an effective, simple, and highly sensitive protocol for fluorescent in situ hybridization (FISH) at the Drosophila larval neuromuscular junction (NMJ) has hampered the study of mRNA biology. Here, we describe our modified single molecule FISH (smFISH) methods that work well in whole mount Drosophila NMJ preparations to quantify primary transcription and count individual cytoplasmic mRNA molecules in specimens while maintaining ultrastructural preservation. The smFISH method is suitable for high-throughput sample processing and 3D image acquisition using any conventional microscopy imaging modality and is compatible with the use of antibody colabeling and transgenic fluorescent protein tags in axons, glia, synapses, and muscle cells. These attributes make the method particularly amenable to super-resolution imaging. With 3D Structured Illumination Microscopy (3D-SIM), which increases spatial resolution by a factor of 2 in X, Y, and Z, we acquire super-resolution information about the distribution of single molecules of mRNA in relation to covisualized synaptic and cellular structures. Finally, we demonstrate the use of commercial and open source software for the quality control of single transcript expression analysis, 3D-SIM data acquisition and reconstruction as well as image archiving management and presentation. Our methods now allow the detailed mechanistic and functional analysis of sparse as well as abundant mRNAs at the NMJ in their appropriate cellular context.
Collapse
Affiliation(s)
- Joshua S. Titlow
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Lu Yang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Richard M. Parton
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Ana Palanca
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
21
|
Zheng Q, Lavis LD. Development of photostable fluorophores for molecular imaging. Curr Opin Chem Biol 2017; 39:32-38. [PMID: 28544971 DOI: 10.1016/j.cbpa.2017.04.017] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
Advances in fluorescence microscopy promise to unlock details of biological systems with high spatiotemporal precision. These new techniques also place a heavy demand on the 'photon budget'-the number of photons one can extract from a sample. Improving the photostability of small molecule fluorophores using chemistry is a straightforward method for increasing the photon budget. Here, we review the (sometimes sparse) efforts to understand the mechanism of fluorophore photobleaching and recent advances to improve photostability through reducing the propensity for oxidation or through intramolecular triplet-state quenching. Our intent is to inspire a more thorough mechanistic investigation of photobleaching and the use of precise chemistry to improve fluorescent probes.
Collapse
Affiliation(s)
- Qinsi Zheng
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA.
| |
Collapse
|
22
|
Demmerle J, Innocent C, North AJ, Ball G, Müller M, Miron E, Matsuda A, Dobbie IM, Markaki Y, Schermelleh L. Strategic and practical guidelines for successful structured illumination microscopy. Nat Protoc 2017; 12:988-1010. [PMID: 28406496 DOI: 10.1038/nprot.2017.019] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Linear 2D- or 3D-structured illumination microscopy (SIM or3D-SIM, respectively) enables multicolor volumetric imaging of fixed and live specimens with subdiffraction resolution in all spatial dimensions. However, the reliance of SIM on algorithmic post-processing renders it particularly sensitive to artifacts that may reduce resolution, compromise data and its interpretations, and drain resources in terms of money and time spent. Here we present a protocol that allows users to generate high-quality SIM data while accounting and correcting for common artifacts. The protocol details preparation of calibration bead slides designed for SIM-based experiments, the acquisition of calibration data, the documentation of typically encountered SIM artifacts and corrective measures that should be taken to reduce them. It also includes a conceptual overview and checklist for experimental design and calibration decisions, and is applicable to any commercially available or custom platform. This protocol, plus accompanying guidelines, allows researchers from students to imaging professionals to create an optimal SIM imaging environment regardless of specimen type or structure of interest. The calibration sample preparation and system calibration protocol can be executed within 1-2 d.
Collapse
Affiliation(s)
- Justin Demmerle
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Alison J North
- Bio-Imaging Resource Center, The Rockefeller University, New York, New York, USA
| | - Graeme Ball
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Marcel Müller
- Biomolecular Photonics Group, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | - Ezequiel Miron
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Atsushi Matsuda
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Ian M Dobbie
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Yolanda Markaki
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Lothar Schermelleh
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
|
24
|
Lambert TJ, Waters JC. Navigating challenges in the application of superresolution microscopy. J Cell Biol 2017; 216:53-63. [PMID: 27920217 PMCID: PMC5223610 DOI: 10.1083/jcb.201610011] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 11/22/2022] Open
Abstract
In 2014, the Nobel Prize in Chemistry was awarded to three scientists who have made groundbreaking contributions to the field of superresolution (SR) microscopy (SRM). The first commercial SR microscope came to market a decade earlier, and many other commercial options have followed. As commercialization has lowered the barrier to using SRM and the awarding of the Nobel Prize has drawn attention to these methods, biologists have begun adopting SRM to address a wide range of questions in many types of specimens. There is no shortage of reviews on the fundamental principles of SRM and the remarkable achievements made with these methods. We approach SRM from another direction: we focus on the current practical limitations and compromises that must be made when designing an SRM experiment. We provide information and resources to help biologists navigate through common pitfalls in SRM specimen preparation and optimization of image acquisition as well as errors and artifacts that may compromise the reproducibility of SRM data.
Collapse
Affiliation(s)
- Talley J Lambert
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Jennifer C Waters
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
25
|
Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions. Nat Commun 2016; 7:13693. [PMID: 27991512 PMCID: PMC5187410 DOI: 10.1038/ncomms13693] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023] Open
Abstract
Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min−1. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics.
Live cell super-resolution imaging requires a high temporal resolution, which remains a challenge. Here the authors combine photo-activated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI) to achieve high spatiotemporal resolution and quantitative imaging of focal adhesion dynamics.
Collapse
|
26
|
Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat Commun 2016; 7:12471. [PMID: 27514992 PMCID: PMC4990649 DOI: 10.1038/ncomms12471] [Citation(s) in RCA: 366] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022] Open
Abstract
Despite significant progress, high-speed live-cell super-resolution studies remain limited to specialized optical setups, generally requiring intense phototoxic illumination. Here, we describe a new analytical approach, super-resolution radial fluctuations (SRRF), provided as a fast graphics processing unit-enabled ImageJ plugin. In the most challenging data sets for super-resolution, such as those obtained in low-illumination live-cell imaging with GFP, we show that SRRF is generally capable of achieving resolutions better than 150 nm. Meanwhile, for data sets similar to those obtained in PALM or STORM imaging, SRRF achieves resolutions approaching those of standard single-molecule localization analysis. The broad applicability of SRRF and its performance at low signal-to-noise ratios allows super-resolution using modern widefield, confocal or TIRF microscopes with illumination orders of magnitude lower than methods such as PALM, STORM or STED. We demonstrate this by super-resolution live-cell imaging over timescales ranging from minutes to hours.
Collapse
|
27
|
Li D, Betzig E. Response to Comment on "Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics". Science 2016; 352:527. [PMID: 27126031 DOI: 10.1126/science.aad8396] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/05/2016] [Indexed: 01/12/2023]
Abstract
Sahl et al in their Comment raise criticisms of our work that fall into three classes: image artifacts, resolution criteria, and comparative performance on live cells. We explore each of these in turn.
Collapse
Affiliation(s)
- Dong Li
- National Laboratory of Biological Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China. Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147.
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147.
| |
Collapse
|
28
|
High-density three-dimensional localization microscopy across large volumes. Nat Methods 2016; 13:359-65. [PMID: 26950745 PMCID: PMC4889433 DOI: 10.1038/nmeth.3797] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/28/2016] [Indexed: 12/18/2022]
Abstract
Extending three-dimensional (3D) single molecule localization microscopy away from the coverslip and into thicker specimens will greatly broaden its biological utility. However, localizing molecules in 3D with high precision in such samples, while simultaneously achieving the extreme labeling densities required for high resolution of densely crowded structures is challenging due to the limitations both of conventional imaging modalities and of conventional labeling techniques. Here, we combine lattice light sheet microscopy with newly developed, freely diffusing, cell permeable chemical probes with targeted affinity towards either DNA, intracellular membranes, or the plasma membrane. We use this combination to perform high localization precision, ultra-high labeling density, multicolor localization microscopy in samples up to 20 microns thick, including dividing cells and the neuromast organ of a zebrafish embryo. We also demonstrate super-resolution correlative imaging with protein specific photoactivable fluorophores, providing a mutually compatible, single platform alternative to correlative light-electron microscopy over large volumes.
Collapse
|
29
|
SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy. Sci Rep 2015; 5:15915. [PMID: 26525406 PMCID: PMC4648340 DOI: 10.1038/srep15915] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/01/2015] [Indexed: 11/30/2022] Open
Abstract
Three-dimensional structured illumination microscopy (3D-SIM) is a versatile and accessible method for super-resolution fluorescence imaging, but generating high-quality data is challenging, particularly for non-specialist users. We present SIMcheck, a suite of ImageJ plugins enabling users to identify and avoid common problems with 3D-SIM data, and assess resolution and data quality through objective control parameters. Additionally, SIMcheck provides advanced calibration tools and utilities for common image processing tasks. This open-source software is applicable to all commercial and custom platforms, and will promote routine application of super-resolution SIM imaging in cell biology.
Collapse
|
30
|
Knight AE, Peckham M. Recent innovations in super-resolution microscopy. Methods 2015; 88:1-2. [PMID: 26255962 DOI: 10.1016/j.ymeth.2015.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Alex E Knight
- Biotechnology Group, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Michelle Peckham
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|