1
|
Lynch DR, Shen M, Wilson RB. Friedreich ataxia: what can we learn from non-GAA repeat mutations? Neurodegener Dis Manag 2025; 15:17-26. [PMID: 39810561 PMCID: PMC11938963 DOI: 10.1080/17582024.2025.2452147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Friedreich ataxia (FRDA) is a slowly progressive neurological disease resulting from decreased levels of the protein frataxin, a small mitochondrial protein that facilitates the synthesis of iron-sulfur clusters in the mitochondrion. It is caused by GAA (guanine-adenine-adenine) repeat expansions in the FXN gene in 96% of patients, with 4% of patients carrying other mutations (missense, nonsense, deletion) in the FXN gene. Compound heterozygote patients with one expanded GAA allele and a non-GAA repeat mutation can have subtle differences in phenotype from typical FRDA, including, in patients with selected missense mutations, both more severe features and less severe features in the same patient. In this review, we propose explanations for such phenotypes based on the potential for activities of frataxin other than enhancement of iron-sulfur cluster synthesis, as well as crucial future experiments for fully understanding the role of frataxin in cells.
Collapse
Affiliation(s)
- David R. Lynch
- Friedreich Ataxia Program, Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - M. Shen
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Robert B. Wilson
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
2
|
Lynch DR, Rojsajjakul T, Subramony SH, Perlman SL, Keita M, Mesaros C, Blair IA. Frataxin analysis using triple quadrupole mass spectrometry: application to a large heterogeneous clinical cohort. J Neurol 2024; 271:1844-1849. [PMID: 38063871 DOI: 10.1007/s00415-023-12118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Friedreich ataxia is a progressive multisystem disorder caused by deficiency of the protein frataxin; a small mitochondrial protein involved in iron sulfur cluster synthesis. Two types of frataxin exist: FXN-M, found in most cells, and FXN-E, found almost exclusively in red blood cells. Treatments in clinical trials include frataxin restoration by gene therapy, protein replacement, and epigenetic therapies, all of which necessitate sensitive assays for assessing frataxin levels. METHODS In the present study, we have used a triple quadrupole mass spectrometry-based assay to examine the features of both types of frataxin levels in blood in a large heterogenous cohort of 106 patients with FRDA. RESULTS Frataxin levels (FXN-E and FXN M) were predicted by GAA repeat length in regression models (R2 values = 0.51 and 0.27, respectively), and conversely frataxin levels predicted clinical status as determined by modified Friedreich Ataxia Rating scale scores and by disability status (R2 values = 0.13-0.16). There was no significant change in frataxin levels in individual subjects over time, and apart from start codon mutations, FXN-E and FXN-M levels were roughly equal. Accounting for hemoglobin levels in a smaller sub-cohort improved prediction of both FXN-E and FXN-M levels from R2 values of (0.3-0.38 to 0.20-0.51). CONCLUSION The present data show that assay of FXN-M and FXN-E levels in blood provides an appropriate biofluid for assessing their repletion in particular clinical contexts.
Collapse
Affiliation(s)
- David R Lynch
- Penn/CHOP Friedreich Ataxia Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 502F Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA, 19104-4318, USA.
| | - Teerapat Rojsajjakul
- Penn/CHOP Friedreich Ataxia Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - S H Subramony
- Department of Neurology, University of Florida, Gainesville, FL, 32608, USA
| | - Susan L Perlman
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Medina Keita
- Penn/CHOP Friedreich Ataxia Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clementina Mesaros
- Penn/CHOP Friedreich Ataxia Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ian A Blair
- Penn/CHOP Friedreich Ataxia Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Lynch DR, Perlman S, Schadt K. Omaveloxolone for the treatment of Friedreich ataxia: clinical trial results and practical considerations. Expert Rev Neurother 2024; 24:251-258. [PMID: 38269532 DOI: 10.1080/14737175.2024.2310617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
INTRODUCTION Omavaloxolone, an NRF2 activator, recently became the first drug approved specifically for the treatment of Friedreich ataxia (FRDA). This landmark achievement provides a background for a review of the detailed data leading to the approval. AREAS COVERED The authors review the data from the 4 major articles on FRDA in the context of the authors' considerable (>1000 patients) experience in treating individuals with FRDA. The data is presented in the context not only of its scientific meaning but also in the practical context of therapy in FRDA. EXPERT OPINION Omaveloxolone provides a significant advance in the treatment of FRDA that is likely to be beneficial in a majority of the FRDA population. The data suggesting a benefit is consistent, and adverse issues are relatively modest. The major remaining questions are the subgroups that are most responsive and how long the beneficial effects will remain significant in FRDA patients.
Collapse
Affiliation(s)
- David R Lynch
- Friedrech Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susan Perlman
- Department of Neurology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Kim Schadt
- Friedreich Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
4
|
Lynch DR, Goldsberry A, Rummey C, Farmer J, Boesch S, Delatycki MB, Giunti P, Hoyle JC, Mariotti C, Mathews KD, Nachbauer W, Perlman S, Subramony S, Wilmot G, Zesiewicz T, Weissfeld L, Meyer C. Propensity matched comparison of omaveloxolone treatment to Friedreich ataxia natural history data. Ann Clin Transl Neurol 2024; 11:4-16. [PMID: 37691319 PMCID: PMC10791025 DOI: 10.1002/acn3.51897] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE The natural history of Friedreich ataxia is being investigated in a multi-center longitudinal study designated the Friedreich ataxia Clinical Outcome Measures Study (FACOMS). To understand the utility of this study in analysis of clinical trials, we performed a propensity-matched comparison of data from the open-label MOXIe extension (omaveloxolone) to that from FACOMS. METHODS MOXIe extension patients were matched to FACOMS patients using logistic regression to estimate propensity scores based on multiple covariates: sex, baseline age, age of onset, baseline modified Friedreich Ataxia Rating scale (mFARS) score, and baseline gait score. The change from baseline in mFARS at Year 3 for the MOXIe extension patients compared to the matched FACOMS patients was analyzed as the primary efficacy endpoint using mixed model repeated measures analysis. RESULTS Data from the MOXIe extension show that omaveloxolone provided persistent benefit over 3 years when compared to an untreated, matched cohort from FACOMS. At each year, in all analysis populations, patients in the MOXIe extension experienced a smaller change from baseline in mFARS score than matched FACOMS patients. In the primary pooled population (136 patients in each group) by Year 3, patients in the FACOMS matched set progressed 6.6 points whereas patients treated with omaveloxolone in MOXIe extension progressed 3 points (difference = -3.6; nominal p value = 0.0001). INTERPRETATION These results suggest a meaningful slowing of Friedreich ataxia progression with omaveloxolone, and consequently detail how propensity-matched analysis may contribute to understanding of effects of therapeutic agents. This demonstrates the direct value of natural history studies in clinical trial evaluations.
Collapse
Affiliation(s)
- David R. Lynch
- Departments of Pediatrics and NeurologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | | | - Jennifer Farmer
- Friedreich Ataxia Research AllianceDowningtownPennsylvaniaUSA
| | - Sylvia Boesch
- Department of NeurologyMedical University InnsbruckInnsbruckAustria
| | - Martin B. Delatycki
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Paola Giunti
- University College London HospitalBloomsburyLondonUK
| | - J. Chad Hoyle
- Department of NeurologyOhio State University College of MedicineColumbusOhioUSA
| | | | - Katherine D. Mathews
- Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | | | - Susan Perlman
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - S.H. Subramony
- Department of Neurology, McKnight Brain InstituteUniversity of Florida Health SystemGainesvilleFloridaUSA
| | - George Wilmot
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Theresa Zesiewicz
- Department of NeurologyUniversity of South Florida Ataxia Research CenterTampaFloridaUSA
| | | | | |
Collapse
|
5
|
Rodden LN, McIntyre K, Keita M, Wells M, Park C, Profeta V, Waldman A, Rummey C, Balcer LJ, Lynch DR. Retinal hypoplasia and degeneration result in vision loss in Friedreich ataxia. Ann Clin Transl Neurol 2023; 10:1397-1406. [PMID: 37334854 PMCID: PMC10424660 DOI: 10.1002/acn3.51830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE Friedreich ataxia (FRDA) is an inherited condition caused by a GAA triplet repeat (GAA-TR) expansion in the FXN gene. Clinical features of FRDA include ataxia, cardiomyopathy, and in some, vision loss. In this study, we characterize features of vision loss in a large cohort of adults and children with FRDA. METHODS Using optical coherence tomography (OCT), we measured peripapillary retinal nerve fiber layer (RNFL) thickness in 198 people with FRDA, and 77 controls. Sloan letter charts were used to determine visual acuity. RNFL thickness and visual acuity were compared to measures of disease severity obtained from the Friedreich Ataxia Clinical Outcomes Measures Study (FACOMS). RESULTS The majority of patients, including children, had pathologically thin RNFLs (mean = 73 ± 13 μm in FRDA; 98 ± 9 μm in controls) and low-contrast vision deficits early in the disease course. Variability in RNFL thickness in FRDA (range: 36 to 107 μm) was best predicted by disease burden (GAA-TR length X disease duration). Significant deficits in high-contrast visual acuity were apparent in patients with an RNFL thickness of ≤68 μm. RNFL thickness decreased at a rate of -1.2 ± 1.4 μm/year and reached 68 μm at a disease burden of approximately 12,000 GAA years, equivalent to disease duration of 17 years for participants with 700 GAAs. INTERPRETATION These data suggest that both hypoplasia and subsequent degeneration of the RNFL may be responsible for the optic nerve dysfunction in FRDA and support the development of a vision-directed treatment for selected patients early in the disease to prevent RNFL loss from reaching the critical threshold.
Collapse
Affiliation(s)
- Layne N. Rodden
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kellie McIntyre
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Medina Keita
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Mckenzie Wells
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Courtney Park
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Victoria Profeta
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amy Waldman
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Laura J. Balcer
- Departments of Neurology, Population Health and OphthalmologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - David R. Lynch
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
6
|
Liu J, Chen H, Lin H, Peng S, Chen L, Cheng X, Yao P, Tang Y. Iron-frataxin involved in the protective effect of quercetin against alcohol-induced liver mitochondrial dysfunction. J Nutr Biochem 2023; 114:109258. [PMID: 36587874 DOI: 10.1016/j.jnutbio.2022.109258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Emerging evidence supports the beneficial effect of quercetin on liver mitochondrial disorders. However, the molecular mechanism by which quercetin protects mitochondria is limited, especially in alcoholic liver disease. In this study, C57BL/6N mice were fed with Lieber De Carli liquid diet (28% ethanol-derived calories) for 12 weeks plus a single binge ethanol and intervened with quercetin (100 mg/kg.bw). Moreover, HepG2CYP2E1+/+ were stimulated with ethanol (100 mM) and quercetin (50 µM) to investigate the effects of mitochondrial protein frataxin. The results indicated that quercetin alleviated alcohol-induced histopathological changes and mitochondrial functional disorders in mice livers. Consistent with increased PINK1, Parkin, Bnip3 and LC3II as well as decreased p62, TOM20 and VDAC1 expression, the inhibition of mitophagy by ethanol was blocked by quercetin. Additionally, quercetin improved the imbalance of iron metabolism-related proteins expression in alcohol-fed mice livers. Compared with ethanol-treated Lv-empty HepG2CYP2E1+/+ cells, frataxin deficiency further exacerbated the inhibition of mitochondrial function. Conversely, restoration of frataxin expression ameliorated the effect of ethanol. Furthermore, frataxin deficiency reduced the protective effects of quercetin on mitochondria disordered by ethanol. Attentively, ferric ammonium citrate (FAC) and deferiprone decreased or increased frataxin expression in HepG2CYP2E1+/+, respectively. Notably, we further found FAC reversed the increasing effect of quercetin on frataxin expression. Ultimately, silencing NCOA4 attenuated the inhibition of quercetin on LDH release and mitochondrial membrane potential increase, and similar results were observed by adding FAC. Collectively, these findings demonstrated quercetin increased frataxin expression through regulating iron level, thereby mitigating ethanol-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Henan Center for Disease Control and Prevention, Zhengzhou 450016, China
| | - Huimin Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongkun Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shufen Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xueer Cheng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
7
|
Lynch DR, Mathews KD, Perlman S, Zesiewicz T, Subramony S, Omidvar O, Vogel AP, Krtolica A, Litterman N, van der Ploeg L, Heerinckx F, Milner P, Midei M. Double blind trial of a deuterated form of linoleic acid (RT001) in Friedreich ataxia. J Neurol 2023; 270:1615-1623. [PMID: 36462055 DOI: 10.1007/s00415-022-11501-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVES Friedreich ataxia is (FRDA) an autosomal recessive neurodegenerative disorder associated with intrinsic oxidative damage, suggesting that decreasing lipid peroxidation (LPO) might ameliorate disease progression. The present study tested the ability of RT001, a deuterated form of linoleic acid (D2-LA), to alter disease severity in patients with FRDA in a double-blind placebo-controlled trial. METHODS Sixty-five subjects were recruited across six sites and received either placebo or active drug for an 11-month study. Subjects were evaluated at 0, 4, 9, and 11 months, with the primary outcome measure being maximum oxygen consumption (MVO2) during cardiopulmonary exercise testing (CPET). A key secondary outcome measure was a composite statistical test using results from the timed 1-min walk (T1MW), peak workload, and MVO2. RESULTS Forty-five subjects completed the protocol. RT001 was well tolerated, with no serious adverse events related to drug. Plasma and red blood cell (RBC) membrane levels of D2-LA and its primary metabolite deuterated arachidonic acid (D2-AA) achieved steady-state concentrations by 4 months. No significant changes in MVO2 were observed for RT001 compared to placebo. Similarly, no differences between the groups were found in secondary or exploratory outcome measures. Post hoc evaluations also suggested minimal effects of RT001 at the dosages used in this study. INTERPRETATIONS The results of this study provide no evidence for a significant benefit of RT001 at the dosages tested in this Friedreich ataxia patient population.
Collapse
Affiliation(s)
- David R Lynch
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, 502F Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Katherine D Mathews
- Departments of Pediatrics and Neurology, University of Iowa Carver College of Medicine, Iowa City, USA
| | - Susan Perlman
- University of California Los Angeles, Los Angeles, USA
| | - Theresa Zesiewicz
- USF Ataxia Research Center, University of South Florida, James A. Haley Veteran's Hospital, Tampa, FL, USA
| | - Sub Subramony
- Norman Fixel Center for Neurological Disorders, University of Florida College of Medicine, Gainesville, USA
| | - Omid Omidvar
- University of California Los Angeles, Los Angeles, USA
| | - Adam P Vogel
- University of Melbourne, Parkville, Australia.,Redenlab Inc, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
Lynch DR, Chin MP, Boesch S, Delatycki MB, Giunti P, Goldsberry A, Hoyle JC, Mariotti C, Mathews KD, Nachbauer W, O'Grady M, Perlman S, Subramony SH, Wilmot G, Zesiewicz T, Meyer CJ. Efficacy of Omaveloxolone in Friedreich's Ataxia: Delayed-Start Analysis of the MOXIe Extension. Mov Disord 2023; 38:313-320. [PMID: 36444905 DOI: 10.1002/mds.29286] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND MOXIe was a two-part study evaluating the safety and efficacy of omaveloxolone in patients with Friedreich's ataxia, a rare, progressive neurological disease with no proven therapy. MOXIe part 2, a randomized double-blind placebo-controlled trial, showed omaveloxolone significantly improved modified Friedreich's Ataxia Rating Scale (mFARS) scores relative to placebo. Patients who completed part 1 or 2 were eligible to receive omaveloxolone in an open-label extension study. OBJECTIVE The delayed-start study compared mFARS scores at the end of MOXIe part 2 with those at 72 weeks in the open-label extension period (up to 144 weeks) for patients initially randomized to omaveloxolone versus those initially randomized to placebo. METHODS We performed a noninferiority test to compare the difference between treatment groups (placebo to omaveloxolone versus omaveloxolone to omaveloxolone) using a single mixed model repeated measures (MMRM) model. In addition, slopes of the change in mFARS scores were compared between both groups in the open-label extension. RESULTS The noninferiority testing demonstrated that the difference in mFARS between omaveloxolone and placebo observed at the end of placebo-controlled MOXIe part 2 (-2.17 ± 1.09 points) was preserved after 72 weeks in the extension (-2.91 ± 1.44 points). In addition, patients previously randomized to omaveloxolone in MOXIe part 2 continued to show no worsening in mFARS relative to their extension baseline through 144 weeks. CONCLUSIONS These results support the positive results of MOXIe part 2 and indicate a persistent benefit of omaveloxolone treatment on disease course in Friedreich's ataxia. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Sylvia Boesch
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Martin B Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Paola Giunti
- University College London Hospital, London, United Kingdom
| | | | - J Chad Hoyle
- Department of Neurology, Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | - Katherine D Mathews
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Wolfgang Nachbauer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Susan Perlman
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
| | - S H Subramony
- Department of Neurology, McKnight Brain Institute, University of Florida Health System, Gainesville, Florida, USA
| | - George Wilmot
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Theresa Zesiewicz
- Department of Neurology, University of South Florida Ataxia Research Center, Tampa, Florida, USA
| | | |
Collapse
|
9
|
Rodden LN, Rummey C, Dong YN, Lynch DR. Clinical Evidence for Variegated Silencing in Patients With Friedreich Ataxia. Neurol Genet 2022; 8:e683. [PMID: 35620135 PMCID: PMC9128033 DOI: 10.1212/nxg.0000000000000683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/30/2022] [Indexed: 11/15/2022]
Abstract
Background and Objectives Friedreich ataxia (FRDA) is a neurodegenerative disease caused by a GAA triplet repeat (GAA-TR) expansion in intron 1 of the FXN gene. Patients have 100-1,300 GAA triplets compared with less than 30 in healthy controls. The GAA-TR expansion leads to FXN silencing, and consequent frataxin protein deficiency results in progressive ataxia, scoliosis, cardiomyopathy, and diabetes. The overt heterogeneity in age at onset and disease severity is explained partly by the length of the GAA-TR, in which shorter repeats correlate with milder disease. Evidence of variegated silencing in FRDA suggests that patients with shorter repeats retain a significant proportion of cells with FXN genes that have escaped GAA-TR expansion-induced silencing, explaining the less severe frataxin deficiency in this subpopulation. In ex vivo experiments, the proportion of spared cells negatively correlates with GAA-TR length until it plateaus at 500 triplets, an indication that the maximal number of silenced cells has been reached. In this study, we assessed whether an analogous ceiling effect occurs in severity of clinical features of FRDA by analyzing clinical outcome data. Methods The FRDA Clinical Outcome Measures Study database was used for a cross-sectional analysis of 1,000 patients with FRDA. Frataxin levels were determined by lateral flow immunoassays. Results The length of the GAA-TR in our cohort predicted frataxin level (R2 = 0.38, p < 0.0001) and age at onset (R2 = 0.46, p < 0.0001) but only with GAA-TRs with ≤700 triplets. Age and disease duration predicted performance on clinical outcome measures, and such predictions in linear regression models statistically improved in the subcohort of patients with >700 GAA triplets. The prevalence of cardiomyopathy and scoliosis increased as GAA-TR length increased up to 700 GAA triplets where prevalence plateaued. Discussion Our data suggest that there is a ceiling effect on the clinical consequences of GAA-TR length in FRDA, as would be predicted by variegated silencing. Patients with GAA-TRs of >700 triplets represent a subgroup in which the severity of clinical manifestations based on GAA-TR length have reached maximal levels and therefore display limited clinical variability in disease progression.
Collapse
Affiliation(s)
- Layne N. Rodden
- From the Departments of Pediatrics and Neurology (L.N.R., Y.N.D., D.R.L.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; and Clinical Data Science GmbH (C.R.), Basel, Switzerland
| | - Christian Rummey
- From the Departments of Pediatrics and Neurology (L.N.R., Y.N.D., D.R.L.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; and Clinical Data Science GmbH (C.R.), Basel, Switzerland
| | - Yi Na Dong
- From the Departments of Pediatrics and Neurology (L.N.R., Y.N.D., D.R.L.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; and Clinical Data Science GmbH (C.R.), Basel, Switzerland
| | - David R. Lynch
- From the Departments of Pediatrics and Neurology (L.N.R., Y.N.D., D.R.L.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; and Clinical Data Science GmbH (C.R.), Basel, Switzerland
| |
Collapse
|
10
|
Correlation of Visual Quality of Life With Clinical and Visual Status in Friedreich Ataxia. J Neuroophthalmol 2021; 40:213-217. [PMID: 31977662 DOI: 10.1097/wno.0000000000000878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The primary objective was to determine the association of patient-reported vision-specific quality of life to disease status and visual function in patients with Friedreich's ataxia (FRDA). METHODS Patients with FRDA were assessed with the 25-Item National Eye Institute Visual Functioning Questionnaire (NEI-VFQ-25) along with measures of disease status (ataxia stage) and visual function (low- and high-contrast letter acuity scores). The relations of NEI-VFQ-25 scores to those for disease status and visual function were examined. RESULTS Scores for the NEI-VFQ-25 were lower in patients with FRDA (n = 99) compared with published disease-free controls, particularly reduced in a subgroup of FRDA patients with features of early onset, older age, and abnormal visual function. CONCLUSIONS The NEI-VFQ-25 captures the subjective component of visual function in patients with FRDA.
Collapse
|
11
|
Lynch DR, Schadt K, Kichula E, McCormack S, Lin KY. Friedreich Ataxia: Multidisciplinary Clinical Care. J Multidiscip Healthc 2021; 14:1645-1658. [PMID: 34234452 PMCID: PMC8253929 DOI: 10.2147/jmdh.s292945] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
Friedreich ataxia (FRDA) is a multisystem disorder affecting 1 in 50,000-100,000 person in the United States. Traditionally viewed as a neurodegenerative disease, FRDA patients also develop cardiomyopathy, scoliosis, diabetes and other manifestation. Although it usually presents in childhood, it continues throughout life, thus requiring expertise from both pediatric and adult subspecialist in order to provide optimal management. The phenotype of FRDA is unique, giving rise to specific loss of neuronal pathways, a unique form of cardiomyopathy with early hypertrophy and later fibrosis, and diabetes incorporating components of both type I and type II disease. Vision loss, hearing loss, urinary dysfunction and depression also occur in FRDA. Many agents are reaching Phase III trials; if successful, these will provide a variety of new treatments for FRDA that will require many specialists who are not familiar with FRDA to provide clinical therapy. This review provides a summary of the diverse manifestation of FRDA, existing symptomatic therapies, and approaches for integrative care for future therapy in FRDA.
Collapse
Affiliation(s)
- David R Lynch
- Division of Neurology, Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kim Schadt
- Division of Neurology, Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Elizabeth Kichula
- Division of Neurology, Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Shana McCormack
- Division of Endocrinology, Department of Pediatrics, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kimberly Y Lin
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
12
|
Mitochondrial and metabolic dysfunction in Friedreich ataxia: update on pathophysiological relevance and clinical interventions. Neuronal Signal 2021; 5:NS20200093. [PMID: 34046211 PMCID: PMC8132591 DOI: 10.1042/ns20200093] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Friedreich ataxia (FRDA) is a recessive disorder resulting from relative deficiency of the mitochondrial protein frataxin. Frataxin functions in the process of iron–sulfur (Fe–S) cluster synthesis. In this review, we update some of the processes downstream of frataxin deficiency that may mediate the pathophysiology. Based on cellular models, in vivo models and observations of patients, ferroptosis may play a major role in the pathogenesis of FRDA along with depletion of antioxidant reserves and abnormalities of mitochondrial biogenesis. Ongoing clinical trials with ferroptosis inhibitors and nuclear factor erythroid 2-related factor 2 (Nrf2) activators are now targeting each of the processes. In addition, better understanding of the mitochondrial events in FRDA may allow the development of improved imaging methodology for assessing the disorder. Though not technologically feasible at present, metabolic imaging approaches may provide a direct methodology to understand the mitochondrial changes occurring in FRDA and provide a methodology to monitor upcoming trials of frataxin restoration.
Collapse
|
13
|
Frempong B, Wilson RB, Schadt K, Lynch DR. The Role of Serum Levels of Neurofilament Light (NfL) Chain as a Biomarker in Friedreich Ataxia. Front Neurosci 2021; 15:653241. [PMID: 33737864 PMCID: PMC7960909 DOI: 10.3389/fnins.2021.653241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bernice Frempong
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Departments of Neurology and Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | - Robert B Wilson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kimberly Schadt
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Departments of Neurology and Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | - David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Departments of Neurology and Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Lynch DR, Johnson J. Omaveloxolone: potential new agent for Friedreich ataxia. Neurodegener Dis Manag 2021; 11:91-98. [PMID: 33430645 DOI: 10.2217/nmt-2020-0057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Friedreich ataxia is a slowly progressive neurodegenerative disorder leading to ataxia, dyscoordination, dysarthria and in many individuals vision and hearing loss. It is associated with cardiomyopathy, the leading cause of death in Friedreich ataxia (FRDA), diabetes and scoliosis. There are no approved therapies, but elucidation of the pathophysiology of FRDA suggest that agents that increase the activity of the transcription factor Nrf2 may provide a mechanism for ameliorating disease progression or severity. In this work, we review the evidence for use of omaveloxolone in FRDA from recent clinical trials. Though not at present approved for any indication, the present data suggest that this agent acting though increases in Nrf2 activity may provide a novel therapy for FRDA.
Collapse
Affiliation(s)
- David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Neurology & Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Johnson
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Shahandeh A, Bui BV, Finkelstein DI, Nguyen CTO. Therapeutic applications of chelating drugs in iron metabolic disorders of the brain and retina. J Neurosci Res 2020; 98:1889-1904. [DOI: 10.1002/jnr.24685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Ali Shahandeh
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne Parkville VIC Australia
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne Parkville VIC Australia
| | | | - Christine T. O. Nguyen
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne Parkville VIC Australia
| |
Collapse
|
16
|
Clay A, Obrochta KM, Soon RK, Russell CB, Lynch DR. Neurofilament light chain as a potential biomarker of disease status in Friedreich ataxia. J Neurol 2020; 267:2594-2598. [PMID: 32385683 DOI: 10.1007/s00415-020-09868-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND The present study evaluates serum neurofilament light chain (NfL) as a biomarker of disease features in Friedreich's ataxia (FRDA). METHODS NfL levels from serum of 117 subjects (85 FRDA patients, 13 carriers, and 19 controls) were assayed and correlated with disease features such as smaller GAA repeat length (GAA1), age, sex, and level of neurological dysfunction. RESULTS Mean serum NfL levels were higher in FRDA patients than in carriers or unaffected controls in two independent cohorts of subjects. In longitudinal samples from FRDA patients drawn monthly or 1 year apart, values changed minimally. No difference was noted between carriers and controls. NfL levels correlated positively with age in controls and carriers of similar age, (Rs = 0.72, p < 0.0005), whereas NfL levels inversely correlated with age in FRDA patients (Rs = - 0.63, p < 0.001). NfL levels were not associated with sex or GAA1 length in patients, and linear regression revealed a significant relationship between NfL levels in the cohort with age (coefficient = - 0.36, p < 0.001), but not sex (p = 0.64) or GAA1 (p = 0.13). CONCLUSION Because NfL is elevated in patients, but decreases with age and disease progression, our results suggest that age is the critical determinant of NfL in FRDA (rather than clinical or genetic severity).
Collapse
Affiliation(s)
- Alexandra Clay
- Department of Pediatrics and Neurology, The Children's Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kristin M Obrochta
- BioMarin Pharmaceutical Inc, 770 Lindaro Street, San Rafael, CA, 94901, USA
| | - Russell K Soon
- BioMarin Pharmaceutical Inc, 770 Lindaro Street, San Rafael, CA, 94901, USA
| | | | - David R Lynch
- Department of Pediatrics and Neurology, The Children's Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Oral administration of the iron chelator deferiprone protects against loss of retinal ganglion cells in a mouse model of glaucoma. Exp Eye Res 2020; 193:107961. [PMID: 32045598 DOI: 10.1016/j.exer.2020.107961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/10/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022]
Abstract
Glaucoma is a progressive neurodegenerative process affecting the retinal ganglion cells (RGCs) and the optic nerve. Oxidative stress has been implicated in glaucoma pathogenesis, and iron is a potent generator of oxidative stress. The oral iron chelator deferiprone (DFP) is protective against retinal degenerations associated with oxidative stress. To test whether DFP could be protective in glaucoma, we used microbead injections to induce elevated intraocular pressure (IOP) in a cohort of 3-month old C57BL/6J mice. One eye of each animal was injected with magnetic microbeads resulting in ocular hypertension for >7 weeks while the fellow eye was injected with saline and served as a normotensive internal control. While half of the cohort received oral DFP (1 mg/ml in the drinking water), the other half did not and served as controls. After 8 weeks, Brn3a immunolabeling of flat-mounted retinas was used for manual RGC quantification. Axon counts were obtained from thin sections of optic nerves using the AxonJ plugin for ImageJ. DFP administration was protective against RGC and optic nerve loss in the setting of elevated IOP. These results suggest that iron chelation by DFP may provide glaucoma neuroprotection.
Collapse
|
18
|
Xiong E, Lynch AE, Corben LA, Delatycki MB, Subramony SH, Bushara K, Gomez CM, Hoyle JC, Yoon G, Ravina B, Mathews KD, Wilmot G, Zesiewicz T, Susan Perlman M, Farmer JM, Rummey C, Lynch DR. Health related quality of life in Friedreich Ataxia in a large heterogeneous cohort. J Neurol Sci 2019; 410:116642. [PMID: 31901720 DOI: 10.1016/j.jns.2019.116642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION This study assessed the Health Related Quality of Life (HRQOL) of individuals with Friedreich Ataxia (FRDA) through responses to HRQOL questionnaires. METHODS The SF-36, a generic HRQOL instrument, and symptom specific scales examining vision, fatigue, pain and bladder function were administered to individuals with FRDA and analyzed by comparison with disease features. Multiple linear regression models were used to study independent effects of genetic severity and age. Assessments were performed at baseline then intermittently after that. RESULTS Subjects were on average young adults. For the SF36, the subscale with the lowest HRQOL score was the physical function scale, while the emotional well-being score was the highest. The physical function scale correlated with age of onset, duration, and subject age. In assessment of symptom specific scales, bladder control scores (BLCS) correlated with duration and age, while impact of visual impairment scores (IVIS) correlated with duration. In linear regression models, the BLCS, Pain Effect Score, and IVIS scores were predicted by age and GAA length; modified fatigue impact scale scores were predicted only by GAA length. Physical function and role limitation scores declined over time. No change was seen over time in other SF-36 subscores. Symptom specific scales also worsened over time, most notably the IVIS and BLCS. CONCLUSION The SF-36 and symptom specific scales capture dysfunction in FRDA in a manner that reflects disease status. HRQOL dysfunction was greatest on physically related scales; such scales correlated with disease duration, indicating that they worsen with progressing disease.
Collapse
Affiliation(s)
- Emily Xiong
- Division of Neurology, Children's Hospital of Philadelphia, 502 Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104-4318, United States of America
| | - Abigail E Lynch
- Division of Neurology, Children's Hospital of Philadelphia, 502 Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104-4318, United States of America
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville 3052, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville 3052, Victoria, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville 3052, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville 3052, Victoria, Australia
| | - S H Subramony
- Department of Neurology, McKnight Brain Institute, Room L3-100, 1149 Newell Drive, Gainesville, FL 32611, United States of America
| | | | | | | | - Grace Yoon
- Divisions of Neurology and Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, Canada Hospital, University of Toronto, Toronto, ON, United States of America
| | | | | | | | | | - M Susan Perlman
- Uniersity of California Los Angeles, United States of America
| | - Jennifer M Farmer
- Friedreich's Ataxia Research Alliance, 533 W Uwchlan Ave, Downingtown, PA 19335, United States of America
| | | | - David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia, 502 Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104-4318, United States of America.
| |
Collapse
|
19
|
Ferreira GC, Oberstaller J, Fonseca R, Keller TE, Adapa SR, Gibbons J, Wang C, Liu X, Li C, Pham M, Dayhoff Ii GW, Duong LM, Reyes LT, Laratelli LE, Franz D, Fatumo S, Bari AG, Freischel A, Fiedler L, Dokur O, Sharma K, Cragun D, Busby B, Jiang RHY. Iron Hack - A symposium/hackathon focused on porphyrias, Friedreich's ataxia, and other rare iron-related diseases. F1000Res 2019; 8:1135. [PMID: 31824661 PMCID: PMC6894363 DOI: 10.12688/f1000research.19140.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2019] [Indexed: 01/14/2023] Open
Abstract
Background: Basic and clinical scientific research at the University of South Florida (USF) have intersected to support a multi-faceted approach around a common focus on rare iron-related diseases. We proposed a modified version of the National Center for Biotechnology Information’s (NCBI) Hackathon-model to take full advantage of local expertise in building “Iron Hack”, a rare disease-focused hackathon. As the collaborative, problem-solving nature of hackathons tends to attract participants of highly-diverse backgrounds, organizers facilitated a symposium on rare iron-related diseases, specifically porphyrias and Friedreich’s ataxia, pitched at general audiences. Methods: The hackathon was structured to begin each day with presentations by expert clinicians, genetic counselors, researchers focused on molecular and cellular biology, public health/global health, genetics/genomics, computational biology, bioinformatics, biomolecular science, bioengineering, and computer science, as well as guest speakers from the American Porphyria Foundation (APF) and Friedreich’s Ataxia Research Alliance (FARA) to inform participants as to the human impact of these diseases. Results: As a result of this hackathon, we developed resources that are relevant not only to these specific disease-models, but also to other rare diseases and general bioinformatics problems. Within two and a half days, “Iron Hack” participants successfully built collaborative projects to visualize data, build databases, improve rare disease diagnosis, and study rare-disease inheritance. Conclusions: The purpose of this manuscript is to demonstrate the utility of a hackathon model to generate prototypes of generalizable tools for a given disease and train clinicians and data scientists to interact more effectively.
Collapse
Affiliation(s)
- Gloria C Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, MDC 7, Tampa, FL, 33612, USA
| | - Jenna Oberstaller
- Global and Planetary Health, College of Public Health, University of South Florida, USF Genomics Program, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Renée Fonseca
- Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Thomas E Keller
- University of South Florida, USF Genomics Program, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Swamy Rakesh Adapa
- Global and Planetary Health, College of Public Health, University of South Florida, USF Genomics Program, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Justin Gibbons
- Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Chengqi Wang
- Global and Planetary Health, College of Public Health, University of South Florida, USF Genomics Program, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Xiaoming Liu
- Global and Planetary Health, College of Public Health, University of South Florida, USF Genomics Program, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Chang Li
- Global and Planetary Health, College of Public Health, University of South Florida, USF Genomics Program, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Minh Pham
- Center for Urban Transportation Research, University of South Florida, 4202 E. Fowler Avenue, CUT100, Tampa, FL, 33620, USA
| | - Guy W Dayhoff Ii
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, FL, 33620-5250, USA
| | - Linh M Duong
- College of Public Health, University of South Florida, 13201 Bruce B. Downs Blvd., MDC 56, Tampa, FL, 33612, USA.,Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Luis Tañón Reyes
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Ave, ISA 2015 Tampa, FL, 33620, USA
| | - Luciano Enrique Laratelli
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, FL, 33620-5250, USA
| | - Douglas Franz
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, FL, 33620-5250, USA
| | - Segun Fatumo
- MRC/UVRI and LSHTM (Uganda Research Unit), Entebbe, Uganda
| | - Atm Golam Bari
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA
| | | | - Lindsey Fiedler
- College of Public Health, University of South Florida, 13201 Bruce B. Downs Blvd., MDC 56, Tampa, FL, 33612, USA
| | - Omkar Dokur
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA
| | | | - Deborah Cragun
- Global and Planetary Health, College of Public Health, University of South Florida, USF Genomics Program, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Ben Busby
- National Library of Medicine, 8600 Rockville Pike, Bethesda, MD, 20894-6075, USA
| | - Rays H Y Jiang
- Global and Planetary Health, College of Public Health, University of South Florida, USF Genomics Program, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| |
Collapse
|
20
|
Clay A, Hearle P, Schadt K, Lynch DR. New developments in pharmacotherapy for Friedreich ataxia. Expert Opin Pharmacother 2019; 20:1855-1867. [PMID: 31311349 DOI: 10.1080/14656566.2019.1639671] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Friedreich ataxia (FRDA), a rare disease caused by the deficiency of the mitochondrial matrix protein frataxin, affects roughly 1 in 50,000 individuals worldwide. Current and emerging therapies focus on reversing the deleterious effects of such deficiency including mitochondrial augmentation and increasing frataxin levels, providing the possibility of treatment options for this physiologically complex, multisystem disorder. Areas covered: In this review article, the authors discuss the current and prior in vivo and in vitro research studies related to the treatment of FRDA, with a particular interest in future implications of each therapy. Expert opinion: Since the discovery of FXN in 1996, multiple clinical trials have occurred or are currently occurring; at a rapid pace for a rare disease. These trials have been directed at the augmentation of mitochondrial function and/or alleviation of symptoms and are not regarded as potential cures in FRDA. Either a combination of therapies or a drug that replaces or increases the pathologically low levels of frataxin better represent potential cures in FRDA.
Collapse
Affiliation(s)
- Alexandra Clay
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Patrick Hearle
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Kim Schadt
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| |
Collapse
|
21
|
Cook A, Giunti P. Friedreich's ataxia: clinical features, pathogenesis and management. Br Med Bull 2017; 124:19-30. [PMID: 29053830 PMCID: PMC5862303 DOI: 10.1093/bmb/ldx034] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/06/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Friedreich's ataxia is the most common inherited ataxia. SOURCES OF DATA Literature search using PubMed with keywords Friedreich's ataxia together with published papers known to the authors. AREAS OF AGREEMENT The last decade has seen important advances in our understanding of the pathogenesis of disease. In particular, the genetic and epigenetic mechanisms underlying the disease now offer promising novel therapeutic targets. AREAS OF CONTROVERSY The search for effective disease-modifying agents continues. It remains to be determined whether the most effective approach to treatment lies with increasing frataxin protein levels or addressing the metabolic consequences of the disease, for example with antioxidants. AREAS TIMELY FOR DEVELOPING RESEARCH Management of Freidreich's ataxia is currently focussed on symptomatic management, delivered by the multidisciplinary team. Phase II clinical trials in agents that address the abberrant silencing of the frataxin gene need to be translated into large placebo-controlled Phase III trials to help establish their therapeutic potential.
Collapse
Affiliation(s)
- A Cook
- Department of Molecular Neuroscience, Ataxia Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - P Giunti
- Department of Molecular Neuroscience, Ataxia Centre, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
22
|
Kemp K, Dey R, Cook A, Scolding N, Wilkins A. Mesenchymal Stem Cell-Derived Factors Restore Function to Human Frataxin-Deficient Cells. CEREBELLUM (LONDON, ENGLAND) 2017; 16:840-851. [PMID: 28456899 PMCID: PMC5498643 DOI: 10.1007/s12311-017-0860-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Friedreich's ataxia is an inherited neurological disorder characterised by mitochondrial dysfunction and increased susceptibility to oxidative stress. At present, no therapy has been shown to reduce disease progression. Strategies being trialled to treat Friedreich's ataxia include drugs that improve mitochondrial function and reduce oxidative injury. In addition, stem cells have been investigated as a potential therapeutic approach. We have used siRNA-induced knockdown of frataxin in SH-SY5Y cells as an in vitro cellular model for Friedreich's ataxia. Knockdown of frataxin protein expression to levels detected in patients with the disorder was achieved, leading to decreased cellular viability, increased susceptibility to hydrogen peroxide-induced oxidative stress, dysregulation of key anti-oxidant molecules and deficiencies in both cell proliferation and differentiation. Bone marrow stem cells are being investigated extensively as potential treatments for a wide range of neurological disorders, including Friedreich's ataxia. The potential neuroprotective effects of bone marrow-derived mesenchymal stem cells were therefore studied using our frataxin-deficient cell model. Soluble factors secreted by mesenchymal stem cells protected against cellular changes induced by frataxin deficiency, leading to restoration in frataxin levels and anti-oxidant defences, improved survival against oxidative stress and stimulated both cell proliferation and differentiation down the Schwann cell lineage. The demonstration that mesenchymal stem cell-derived factors can restore cellular homeostasis and function to frataxin-deficient cells further suggests that they may have potential therapeutic benefits for patients with Friedreich's ataxia.
Collapse
Affiliation(s)
- Kevin Kemp
- Multiple Sclerosis and Stem Cell Group, School of Clinical Sciences, Clinical Neurosciences office, University of Bristol, 1st floor, Learning and Research building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Rimi Dey
- Multiple Sclerosis and Stem Cell Group, School of Clinical Sciences, Clinical Neurosciences office, University of Bristol, 1st floor, Learning and Research building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Amelia Cook
- Multiple Sclerosis and Stem Cell Group, School of Clinical Sciences, Clinical Neurosciences office, University of Bristol, 1st floor, Learning and Research building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Neil Scolding
- Multiple Sclerosis and Stem Cell Group, School of Clinical Sciences, Clinical Neurosciences office, University of Bristol, 1st floor, Learning and Research building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Alastair Wilkins
- Multiple Sclerosis and Stem Cell Group, School of Clinical Sciences, Clinical Neurosciences office, University of Bristol, 1st floor, Learning and Research building, Southmead Hospital, Bristol, BS10 5NB, UK
| |
Collapse
|
23
|
Ouellet DL, Cherif K, Rousseau J, Tremblay JP. Deletion of the GAA repeats from the human frataxin gene using the CRISPR-Cas9 system in YG8R-derived cells and mouse models of Friedreich ataxia. Gene Ther 2017; 24:265-274. [PMID: 28024081 DOI: 10.1038/gt.2016.89] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023]
Abstract
The Friedreich ataxia is a monogenic disease due to a hyperexpanded GAA triplet located within the first intron of the frataxin gene that causes transcriptional issues. The resulting frataxin protein deficiency leads to a Fe-S cluster biosynthesis dysfunction in the mitochondria and to oxidative stress and cell death. Here we use the CRISPR-Cas9 system to remove the mutated GAA expansion and restore the frataxin gene transcriptional activity and protein level. Both YG8R and YG8sR mouse models and cell lines derived from these mice were used to CRISPR-edited successfully the GAA expansion in vitro and in vivo. Nevertheless, our results suggest the YG8sR as a better and more suitable model for the study of the CRISPR-Cas9 edition of the mutated frataxin gene.
Collapse
Affiliation(s)
- D L Ouellet
- Centre de Recherche, Centre Hospitalier, Universitaire de Québec, Quebec City, QC, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, CHU de Québec, Université Laval, Québec City, QC, Canada
| | - K Cherif
- Centre de Recherche, Centre Hospitalier, Universitaire de Québec, Quebec City, QC, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, CHU de Québec, Université Laval, Québec City, QC, Canada
| | - J Rousseau
- Centre de Recherche, Centre Hospitalier, Universitaire de Québec, Quebec City, QC, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, CHU de Québec, Université Laval, Québec City, QC, Canada
| | - J P Tremblay
- Centre de Recherche, Centre Hospitalier, Universitaire de Québec, Quebec City, QC, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, CHU de Québec, Université Laval, Québec City, QC, Canada
| |
Collapse
|
24
|
Calatrava-Ferreras L, Gonzalo-Gobernado R, Reimers D, Herranz AS, Casarejos MJ, Jiménez-Escrig A, Regadera J, Velasco-Martín J, Vallejo-Muñoz M, Díaz-Gil JJ, Bazán E. Liver Growth Factor (LGF) Upregulates Frataxin Protein Expression and Reduces Oxidative Stress in Friedreich's Ataxia Transgenic Mice. Int J Mol Sci 2016; 17:E2066. [PMID: 27941692 PMCID: PMC5187866 DOI: 10.3390/ijms17122066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/28/2016] [Accepted: 12/06/2016] [Indexed: 01/03/2023] Open
Abstract
Friedreich's ataxia (FA) is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that includes neurological and non-neurological damage. Recent studies have proven the effectiveness of neurotrophic factors in a number of neurodegenerative diseases. Therefore, we intend to determine if liver growth factor (LGF), which has a demonstrated antioxidant and neuroprotective capability, could be a useful therapy for FA. To investigate the potential therapeutic activity of LGF we used transgenic mice of the FXNtm1MknTg (FXN)YG8Pook strain. In these mice, intraperitoneal administration of LGF (1.6 μg/mouse) exerted a neuroprotective effect on neurons of the lumbar spinal cord and improved cardiac hypertrophy. Both events could be the consequence of the increment in frataxin expression induced by LGF in spinal cord (1.34-fold) and heart (1.2-fold). LGF also upregulated by 2.6-fold mitochondrial chain complex IV expression in spinal cord, while in skeletal muscle it reduced the relation oxidized glutathione/reduced glutathione. Since LGF partially restores motor coordination, we propose LGF as a novel factor that may be useful in the treatment of FA.
Collapse
Affiliation(s)
- Lucía Calatrava-Ferreras
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Rafael Gonzalo-Gobernado
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Diana Reimers
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Antonio S Herranz
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - María J Casarejos
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | | | - Javier Regadera
- Departamento de Anatomía, Histología y Neurociencia Facultad de Medicina Universidad Autónoma de Madrid, 28400 Madrid, Spain.
| | - Juan Velasco-Martín
- Departamento de Anatomía, Histología y Neurociencia Facultad de Medicina Universidad Autónoma de Madrid, 28400 Madrid, Spain.
| | - Manuela Vallejo-Muñoz
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Juan José Díaz-Gil
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Eulalia Bazán
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| |
Collapse
|
25
|
Kumar S, Wang J, Rani R, Gandhi CR. Hepatic Deficiency of Augmenter of Liver Regeneration Exacerbates Alcohol-Induced Liver Injury and Promotes Fibrosis in Mice. PLoS One 2016; 11:e0147864. [PMID: 26808690 PMCID: PMC4726524 DOI: 10.1371/journal.pone.0147864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/08/2016] [Indexed: 12/29/2022] Open
Abstract
Why only a subpopulation (about 15%) of humans develops liver cirrhosis due to alcohol is a critical as yet unanswered question. Liver-specific depletion of augmenter of liver regeneration (ALR) protein in mice causes robust steatosis and hepatocyte apoptosis by 2 weeks; these pathologies regress subsequently with return of ALR expression even at lower than control levels, but the mice develop modest steatohepatitis by 8 weeks. We aimed to investigate whether chronic alcohol ingestion promotes excessive hepatic fibrosis in these ALR-deficient mice. Liver-specific ALR-deficient and wild type (WT) female mice (8–10 weeks old) were placed on 4% alcohol-supplemented or isocaloric diet for 4 weeks. Liver sections were examined for histopathology, and parameters of steatosis and fibrosis were quantified. The mRNA expression of alcohol dehydrogenase-1, acetaldehyde dehydrogenase-1 and cytochrome P450-2E1 increased in WT mice but decreased in ALR-deficient mice upon alcohol ingestion. While alcohol induced steatosis and mild inflammation in WT mice, ALR-deficient mice showed minimal steatosis, strong hepatocellular injury and inflammation, prominent ductular proliferation, and robust fibrosis. Compared to the WT mice, alcohol feeding of ALR-deficient mice resulted in significantly greater increase in hepatic TNFα and TGFβ, and oxidative stress; there was also hepatic iron accumulation, robust lipid peroxidation and mitochondrial DNA damage. Importantly, similar to ALR-deficient mice, lower hepatic ALR levels in human alcoholic liver cirrhosis were associated with increased iron content, reduced expression of alcohol dehydrogenase and acetaldehyde dehydrogenase, and elevated fibrogenic markers. We conclude that ALR deficiency or anomaly can play a critical role in alcohol-induced hepatic fibrosis/cirrhosis, mechanisms of which may involve dysregulation of alcohol metabolism and iron homeostasis, mitochondrial damage and oxidative injury.
Collapse
Affiliation(s)
- Sudhir Kumar
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Richa Rani
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
| | - Chandrashekhar R. Gandhi
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United states of America
- * E-mail:
| |
Collapse
|
26
|
Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 2015; 90:1-37. [DOI: 10.1007/s00204-015-1579-5] [Citation(s) in RCA: 535] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
|
27
|
Levy BJ, Schulz JF, Fornari ED, Wollowick AL. Complications associated with surgical repair of syndromic scoliosis. SCOLIOSIS 2015; 10:14. [PMID: 25949273 PMCID: PMC4422098 DOI: 10.1186/s13013-015-0035-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/13/2015] [Indexed: 11/23/2022]
Abstract
Background There are a number of syndromes that have historically been associated with scoliosis e.g.: Marfan, Down, and Neurofibromatosis. These syndromes have been grouped together as one etiology of scoliosis, known as syndromic scoliosis. While multiple studies indicate that these patients are at high risk for perioperative complications, there is a paucity of literature regarding the collective complication rates and surgical needs of this population. Methods PubMed and Embase databases were searched for literature encompassing the surgical complications associated with the surgical management of patients undergoing correction of scoliosis in the syndromic scoliosis population. Following exclusion criteria, 24 articles were analyzed for data regarding these complications. Results The collective complication rates and findings of these articles were categorized based on specific syndrome. The rates and types of complications for each syndrome and the special needs of patients with each syndrome are discussed. Several complication trends of note were observed, including but not limited to the universally nearly high rate of wound infections (>5% in each group), high rate of pulmonary complications in patients with Rett syndrome (29.2%), high rate (>10%) of dural tears in Marfan and Ehlers-Danlos syndrome patients, high rate (>20%) of implant failure in Down and Prader-Willi syndrome patients, and high rate (>25%) of pseudarthrosis in Down and Ehlers-Danlos patients. Conclusions Though these syndromes have been classically grouped together under the umbrella term “syndromic,” there may be specific needs for patients with each of these ailments. Given the high rate of complications, further research is necessary to understand the unique needs for each of these patient groups in the preoperative, intraoperative, and postoperative settings.
Collapse
Affiliation(s)
- Benjamin J Levy
- Montefiore Medical Center and Albert Einstein College of Medicine, 1250 Waters Place, 11th Floor, Bronx, NY 10461 USA
| | - Jacob F Schulz
- Montefiore Medical Center and Albert Einstein College of Medicine, 1250 Waters Place, 11th Floor, Bronx, NY 10461 USA
| | - Eric D Fornari
- Montefiore Medical Center and Albert Einstein College of Medicine, 1250 Waters Place, 11th Floor, Bronx, NY 10461 USA
| | - Adam L Wollowick
- Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, USA
| |
Collapse
|
28
|
Tamir S, Paddock ML, Darash-Yahana-Baram M, Holt SH, Sohn YS, Agranat L, Michaeli D, Stofleth JT, Lipper CH, Morcos F, Cabantchik IZ, Onuchic JN, Jennings PA, Mittler R, Nechushtai R. Structure-function analysis of NEET proteins uncovers their role as key regulators of iron and ROS homeostasis in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1294-315. [PMID: 25448035 DOI: 10.1016/j.bbamcr.2014.10.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/01/2014] [Accepted: 10/16/2014] [Indexed: 12/31/2022]
Abstract
A novel family of 2Fe-2S proteins, the NEET family, was discovered during the last decade in numerous organisms, including archea, bacteria, algae, plant and human; suggesting an evolutionary-conserved function, potentially mediated by their CDGSH Iron-Sulfur Domain. In human, three NEET members encoded by the CISD1-3 genes were identified. The structures of CISD1 (mitoNEET, mNT), CISD2 (NAF-1), and the plant At-NEET uncovered a homodimer with a unique "NEET fold", as well as two distinct domains: a beta-cap and a 2Fe-2S cluster-binding domain. The 2Fe-2S clusters of NEET proteins were found to be coordinated by a novel 3Cys:1His structure that is relatively labile compared to other 2Fe-2S proteins and is the reason of the NEETs' clusters could be transferred to apo-acceptor protein(s) or mitochondria. Positioned at the protein surface, the NEET's 2Fe-2S's coordinating His is exposed to protonation upon changes in its environment, potentially suggesting a sensing function for this residue. Studies in different model systems demonstrated a role for NAF-1 and mNT in the regulation of cellular iron, calcium and ROS homeostasis, and uncovered a key role for NEET proteins in critical processes, such as cancer cell proliferation and tumor growth, lipid and glucose homeostasis in obesity and diabetes, control of autophagy, longevity in mice, and senescence in plants. Abnormal regulation of NEET proteins was consequently found to result in multiple health conditions, and aberrant splicing of NAF-1 was found to be a causative of the neurological genetic disorder Wolfram Syndrome 2. Here we review the discovery of NEET proteins, their structural, biochemical and biophysical characterization, and their most recent structure-function analyses. We additionally highlight future avenues of research focused on NEET proteins and propose an essential role for NEETs in health and disease. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Sagi Tamir
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Mark L Paddock
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Merav Darash-Yahana-Baram
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Sarah H Holt
- Department of Biology, University of North Texas, Denton, TX 76203, USA
| | - Yang Sung Sohn
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Lily Agranat
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Dorit Michaeli
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Jason T Stofleth
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Colin H Lipper
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Faruck Morcos
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77050, USA; Department of Physics and Astronomy, Rice University, Houston, TX 77050, USA; Department of Chemistry, Rice University, Houston, TX 77050, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77050, USA
| | - Ioav Z Cabantchik
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Jose' N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77050, USA; Department of Physics and Astronomy, Rice University, Houston, TX 77050, USA; Department of Chemistry, Rice University, Houston, TX 77050, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77050, USA
| | - Patricia A Jennings
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ron Mittler
- Department of Biology, University of North Texas, Denton, TX 76203, USA
| | - Rachel Nechushtai
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
29
|
An AAV9 coding for frataxin clearly improved the symptoms and prolonged the life of Friedreich ataxia mouse models. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14044. [PMID: 26015982 PMCID: PMC4362356 DOI: 10.1038/mtm.2014.44] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022]
Abstract
Friedreich ataxia (FRDA) is a genetic disease due to increased repeats of the GAA trinucleotide in intron 1 of the frataxin gene. This mutation leads to a reduced expression of frataxin. We have produced an adeno-associated virus (AAV)9 coding for human frataxin (AAV9-hFXN). This AAV was delivered by intraperitoneal (IP) injection to young conditionally knockout mice in which the frataxin gene had been knocked-out in some tissues during embryogenesis by breeding them with mice expressing the Cre recombinase gene under the muscle creatine kinase (MCK) or the neuron-specific enolase (NSE) promoter. In the first part of the study, different doses of virus were tested from 6 × 1011 v.p. to 6 × 109 v.p. in NSE-cre mice and all leading to an increase in life spent of the mice. The higher and the lower dose were also tested in MCK-cre mice. A single administration of the AAV9-hFXN at 6 × 1011 v.p. more than doubled the life of these mice. In fact the MCK-cre mice treated with the AAV9-hFXN were sacrificed for further molecular investigations at the age of 29 weeks without apparent symptoms. Echography analysis of the heart function clearly indicated that the cardiac systolic function was better preserved in the mice that received 6 × 1011 v.p. of AAV9-hFXN. The human frataxin protein was detected by ELISA in the heart, brain, muscles, kidney, and liver with the higher dose of virus in both mouse models. Thus, gene therapy with an AAV9-hFXN is a potential treatment of FRDA.
Collapse
|
30
|
Mot AI, Wedd AG, Sinclair L, Brown DR, Collins SJ, Brazier MW. Metal attenuating therapies in neurodegenerative disease. Expert Rev Neurother 2014; 11:1717-45. [DOI: 10.1586/ern.11.170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Chapdelaine P, Coulombe Z, Chikh A, Gérard C, Tremblay JP. A Potential New Therapeutic Approach for Friedreich Ataxia: Induction of Frataxin Expression With TALE Proteins. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e119. [PMID: 24002729 PMCID: PMC4028015 DOI: 10.1038/mtna.2013.41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 12/31/2022]
Abstract
TALEs targeting a promoter sequence and fused with a transcription activation domain (TAD) may be used to specifically induce the expression of a gene as a potential treatment for haploinsufficiency. This potential therapeutic approach was applied to increase the expression of frataxin in fibroblasts of Friedreich ataxia (FRDA) patients. FRDA fibroblast cells were nucleofected with a pCR3.1 expression vector coding for TALEFrat#8 fused with VP64. A twofold increase of the frataxin mRNA (detected by quantitative reverse transcription-PCR (qRT-PCR)) associated with a similar increase of the mature form of the frataxin protein was observed. The frataxin mRNA and protein were also increased by this TALE in the fibroblasts of the YG8R mouse model. The addition of 5-aza-2′-deoxycytidine (5-Aza-dC) or of valproic acid (VPA) to the TALE treatment did not produce significant improvement. Other TADs (i.e., p65, TFAP2α, SRF, SP1, and MyoD) fused with the TALEFrat#8 gene did not produce a significant increase in the frataxin protein. Thus the TALEFrat#8-VP64 recombinant protein targeting the frataxin promoter could eventually be used to increase the frataxin expression and alleviate the FRDA symptoms.
Collapse
Affiliation(s)
- Pierre Chapdelaine
- 1] Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada [2] Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
32
|
Swarup V, Srivastava AK, Padma MV, Rajeswari MR. Quantitative profiling and identification of differentially expressed plasma proteins in friedreich's ataxia. J Neurosci Res 2013; 91:1483-91. [DOI: 10.1002/jnr.23262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/11/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Vishnu Swarup
- Department of Biochemistry; All India Institute of Medical Sciences; New Delhi India
| | - Achal K. Srivastava
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - Madakasira V. Padma
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - Moganty R. Rajeswari
- Department of Biochemistry; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
33
|
Analysis of the visual system in Friedreich ataxia. J Neurol 2013; 260:2362-9. [DOI: 10.1007/s00415-013-6978-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/20/2013] [Accepted: 05/25/2013] [Indexed: 10/26/2022]
|
34
|
Synthesis of frataxin genes by direct assembly of serial deoxyoligonucleotide primers and its expression in Escherichia coli. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Abstract
Friedreich ataxia is an inherited, severe, progressive neuro- and cardiodegenerative disorder for which there currently is no approved therapy. Friedreich ataxia is caused by the decreased expression and/or function of frataxin, a mitochondrial matrix protein that binds iron and is involved in the formation of iron-sulfur clusters. Decreased frataxin function leads to decreased iron-sulfur cluster formation, mitochondrial iron accumulation, cytosolic iron depletion, oxidative stress, and mitochondrial dysfunction. Cloning of the disease gene for Friedreich ataxia and elucidation of many aspects of the biochemical defects underlying the disorder have led to several major therapeutic initiatives aimed at increasing frataxin expression, reversing mitochondrial iron accumulation, and alleviating oxidative stress. These initiatives are in preclinical and clinical development and are reviewed herein.
Collapse
Affiliation(s)
- Robert B Wilson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Tremblay JP, Chapdelaine P, Coulombe Z, Rousseau J. Transcription activator-like effector proteins induce the expression of the frataxin gene. Hum Gene Ther 2012; 23:883-90. [PMID: 22587705 DOI: 10.1089/hum.2012.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genes encoding transcription activator-like effector (TALE) proteins may be engineered to target specific DNA sequences. TALEs fused with a transcription activator can be used to specifically induce the expression of a gene. This could lead to completely new therapies for several diseases. We have applied this potential therapeutic approach to Friedreich ataxia (FRDA), as an example. FRDA is due to reduced expression of frataxin because of elongation of a trinucleotide (GAA) repeat in intron 1. Our aim was to develop a potential treatment for FRDA by increasing the expression of the frataxin gene. We engineered 12 TALE genes (TALE(Frat)) encoding TALE(Frat) proteins, each specifically targeting different 14-bp DNA sequences within the proximal region of the human frataxin promoter. When the genes encoding these TALE(Frat) proteins were fused with a transcription activator, that is, four VP16 peptides (i.e., VP64), the resulting TALE(Frat)-VP64 proteins induced the expression of an mCherry reporter gene fused to a mini-cytomegalovirus promoter able to be activated by the insertion of the frataxin proximal promoter upstream to the minipromoter. These TALE(Frat)-VP64 proteins also increased, by 2- to 3-fold, frataxin gene expression (detected by qRT-PCR) in the cells. We conclude that TALE(Frat) proteins targeting the frataxin promoter may be used to increase the expression of frataxin mRNA and potentially could alleviate the symptoms of Friedreich ataxia. TALE methodology opens a new field of research, which could be used to develop TALE proteins to treat other diseases by inducing the expression of specific genes.
Collapse
Affiliation(s)
- Jacques P Tremblay
- Department of Molecular Medicine, Laval University, and Centre de Recherche du Centre Hospitalier Universitaire de, 2705 boul. Laurier Québec, PQ G1V4G2, Canada.
| | | | | | | |
Collapse
|
37
|
Abstract
It is now established that a small fraction of genomic DNA does adopt the non-canonical B-DNA structure or 'unusual' DNA structure. The unusual DNA structures like DNA-hairpin, cruciform, Z-DNA, triplex and tetraplex are represented as hotspots of chromosomal breaks, homologous recombination and gross chromosomal rearrangements since they are prone to the structural alterations. Friedreich's ataxia (FRDA), the autosomal recessive degenerative disorder of nervous and muscles tissue, is caused by the massive expansion of (GAA) repeats that occur in the first intron of Frataxin gene X25 on chromosome 9q13-q21.1. The purine strand of the DNA in the expanded (GAA) repeat region folds back to form the (R.R*Y) type of triplex, which further inhibits the frataxin gene expression, and this clearly suggests that the shape of DNA is the determining factor in the cellular function. FRDA is the only disease known so far to be associated with DNA triplex. Structural characterization of GAA-containing DNA triplexes using some simple biophysical methods like UV melting, UV absorption, circular dichroic spectroscopy and electrophoretic mobility shift assay are discussed. Further, the clinical aspects and genetic analysis of FRDA patients who carry (GAA) repeat expansions are presented. The potential of some small molecules that do not favour the DNA triplex formation as therapeutics for FRDA are also briefly discussed.
Collapse
Affiliation(s)
- Moganty R Rajeswari
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110 029, India.
| |
Collapse
|
38
|
Lee DC, Romero R, Kim JS, Tarca AL, Montenegro D, Pineles BL, Kim E, Lee J, Kim SY, Draghici S, Mittal P, Kusanovic JP, Chaiworapongsa T, Hassan SS, Kim CJ. miR-210 targets iron-sulfur cluster scaffold homologue in human trophoblast cell lines: siderosis of interstitial trophoblasts as a novel pathology of preterm preeclampsia and small-for-gestational-age pregnancies. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 179:590-602. [PMID: 21801864 DOI: 10.1016/j.ajpath.2011.04.035] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 04/05/2011] [Accepted: 04/29/2011] [Indexed: 01/08/2023]
Abstract
This study was performed to assess the biological significance of miR-210 in preeclampsia and small-for-gestational-age (SGA) pregnancies. Placental miR-210 expression was evaluated by quantitative RT-PCR (RT-qPCR) in the following groups: i) appropriate-for-gestational-age pregnancies (n = 72), ii) preeclampsia (n = 52), iii) SGA (n = 66), and iv)preeclampsia with SGA (n = 31). The effects of hypoxia (1% O(2)) on miR-210 and iron-sulfur cluster scaffold homologue (ISCU) expressions and miR-210 binding to ISCU 3' UTR were examined in Swan 71 and BeWo cell lines. Perls' reaction (n = 229) and electron microscopy (n = 3) were conducted to verify siderosis of trophoblasts. miR-210 expression was increased in preeclampsia and SGA cases and was decreased with birth weight and gestational age. In both cell lines, miR-210 was induced by hypoxia, whereas ISCU expression was decreased. The luciferase assay confirmed miR-210 binding to ISCU mRNA 3' UTR. RNA interference knockdown of ISCU expression in Swan 71, but not in BeWo, cells resulted in autophagosomal and siderosomal iron accumulation and a fourfold decrease of Matrigel invasion (P = 0.004). Placental ISCU expression was decreased in preeclampsia (P = 0.002) and SGA (P = 0.002) cases. Furthermore, hemosiderin-laden trophoblasts were more frequent in the placental bed of preterm preeclampsia and/or SGA births than in control cases (48.7% versus 17.9%; P = 0.004). Siderosis of interstitial trophoblasts is a novel pathological feature of preeclampsia and SGA. The findings herein suggest that ISCU down-regulation by miR-210 perturbing trophoblast iron metabolism is associated with defective placentation.
Collapse
Affiliation(s)
- Deug-Chan Lee
- Department of Health and Human Services, Perinatology Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dunaief JL. Ironing out neurodegeneration: iron chelation for neuroprotection. Free Radic Biol Med 2011; 51:1480-1. [PMID: 21616141 PMCID: PMC4380125 DOI: 10.1016/j.freeradbiomed.2011.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
Affiliation(s)
- Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Kemp K, Mallam E, Hares K, Witherick J, Scolding N, Wilkins A. Mesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in Friedreich ataxia fibroblasts. PLoS One 2011; 6:e26098. [PMID: 22016819 PMCID: PMC3189234 DOI: 10.1371/journal.pone.0026098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/19/2011] [Indexed: 01/01/2023] Open
Abstract
Dramatic advances in recent decades in understanding the genetics of Friedreich ataxia (FRDA)--a GAA triplet expansion causing greatly reduced expression of the mitochondrial protein frataxin--have thus far yielded no therapeutic dividend, since there remain no effective treatments that prevent or even slow the inevitable progressive disability in affected individuals. Clinical interventions that restore frataxin expression are attractive therapeutic approaches, as, in theory, it may be possible to re-establish normal function in frataxin deficient cells if frataxin levels are increased above a specific threshold. With this in mind several drugs and cytokines have been tested for their ability to increase frataxin levels. Cell transplantation strategies may provide an alternative approach to this therapeutic aim, and may also offer more widespread cellular protective roles in FRDA. Here we show a direct link between frataxin expression in fibroblasts derived from FRDA patients with both decreased expression of hydrogen peroxide scavenging enzymes and increased sensitivity to hydrogen peroxide-mediated toxicity. We demonstrate that normal human mesenchymal stem cells (MSCs) induce both an increase in frataxin gene and protein expression in FRDA fibroblasts via secretion of soluble factors. Finally, we show that exposure to factors produced by human MSCs increases resistance to hydrogen peroxide-mediated toxicity in FRDA fibroblasts through, at least in part, restoring the expression of the hydrogen peroxide scavenging enzymes catalase and glutathione peroxidase 1. These findings suggest, for the first time, that stem cells may increase frataxin levels in FRDA and transplantation of MSCs may offer an effective treatment for these patients.
Collapse
Affiliation(s)
- Kevin Kemp
- Multiple Sclerosis and Stem Cell Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom.
| | | | | | | | | | | |
Collapse
|
41
|
Schipper HM. Neurodegeneration with brain iron accumulation - clinical syndromes and neuroimaging. Biochim Biophys Acta Mol Basis Dis 2011; 1822:350-60. [PMID: 21782937 DOI: 10.1016/j.bbadis.2011.06.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 12/14/2022]
Abstract
Iron participates in a wide array of cellular functions and is essential for normal neural development and physiology. However, if inappropriately managed, the transition metal is capable of generating neurotoxic reactive oxygen species. A number of hereditary conditions perturb body iron homeostasis and some, collectively referred to as neurodegeneration with brain iron accumulation (NBIA), promote pathological deposition of the metal predominantly or exclusively within the central nervous system (CNS). In this article, we discuss seven NBIA disorders with emphasis on the clinical syndromes and neuroimaging. The latter primarily entails magnetic resonance scanning using iron-sensitive sequences. The conditions considered are Friedreich ataxia (FA), pantothenate kinase 2-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), FA2H-associated neurodegeneration (FAHN), Kufor-Rakeb disease (KRD), aceruloplasminemia, and neuroferritinopathy. An approach to differential diagnosis and the status of iron chelation therapy for several of these entities are presented. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.
Collapse
Affiliation(s)
- Hyman M Schipper
- Centre for Neurotranslational Research, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2.
| |
Collapse
|
42
|
Xu XM, Møller SG. Iron-sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Antioxid Redox Signal 2011; 15:271-307. [PMID: 20812788 DOI: 10.1089/ars.2010.3259] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Iron-sulfur clusters [Fe-S] are small, ubiquitous inorganic cofactors representing one of the earliest catalysts during biomolecule evolution and are involved in fundamental biological reactions, including regulation of enzyme activity, mitochondrial respiration, ribosome biogenesis, cofactor biogenesis, gene expression regulation, and nucleotide metabolism. Although simple in structure, [Fe-S] biogenesis requires complex protein machineries and pathways for assembly. [Fe-S] are assembled from cysteine-derived sulfur and iron onto scaffold proteins followed by transfer to recipient apoproteins. Several predominant iron-sulfur biogenesis systems have been identified, including nitrogen fixation (NIF), sulfur utilization factor (SUF), iron-sulfur cluster (ISC), and cytosolic iron-sulfur protein assembly (CIA), and many protein components have been identified and characterized. In eukaryotes ISC is mainly localized to mitochondria, cytosolic iron-sulfur protein assembly to the cytosol, whereas plant sulfur utilization factor is localized mainly to plastids. Because of this spatial separation, evidence suggests cross-talk mediated by organelle export machineries and dual targeting mechanisms. Although research efforts in understanding iron-sulfur biogenesis has been centered on bacteria, yeast, and plants, recent efforts have implicated inappropriate [Fe-S] biogenesis to underlie many human diseases. In this review we detail our current understanding of [Fe-S] biogenesis across species boundaries highlighting evolutionary conservation and divergence and assembling our knowledge into a cellular context.
Collapse
Affiliation(s)
- Xiang Ming Xu
- Centre for Organelle Research CORE, University of Stavanger, Norway
| | | |
Collapse
|
43
|
Marmolino D. Friedreich's ataxia: past, present and future. BRAIN RESEARCH REVIEWS 2011; 67:311-30. [PMID: 21550666 DOI: 10.1016/j.brainresrev.2011.04.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/29/2011] [Accepted: 04/12/2011] [Indexed: 01/26/2023]
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive inherited disorder characterized by progressive gait and limb ataxia, dysarthria, areflexia, loss of vibratory and position sense, and a progressive motor weakness of central origin. Additional features include hypertrophic cardiomyopathy and diabetes. Large GAA repeat expansions in the first intron of the FXN gene are the most common mutation underlying FRDA. Patients show severely reduced levels of a FXN-encoded mitochondrial protein called frataxin. Frataxin deficiency is associated with abnormalities of iron metabolism: decreased iron-sulfur cluster (ISC) biogenesis, accumulation of iron in mitochondria and depletion in the cytosol, enhanced cellular iron uptake. Some models have also shown reduced heme synthesis. Evidence for oxidative stress has been reported. Respiratory chain dysfunction aggravates oxidative stress by increasing leakage of electrons and the formation of superoxide. In vitro studies have demonstrated that Frataxin deficient cells not only generate more free radicals, but also show a reduced capacity to mobilize antioxidant defenses. The search for experimental drugs increasing the amount of frataxin is a very active and timely area of investigation. In cellular and in animal model systems, the replacement of frataxin function seems to alleviate the symptoms or even completely reverse the phenotype. Therefore, drugs increasing the amount of frataxin are attractive candidates for novel therapies. This review will discuss recent findings on FRDA pathogenesis, frataxin function, new treatments, as well as recent animal and cellular models. Controversial aspects are also discussed.
Collapse
Affiliation(s)
- Daniele Marmolino
- Laboratoire de Neurologie experimentale, Universite Libre de Bruxeles, Route de Lennik 808, Campus Erasme, 1070 Bruxelles, Belgium.
| |
Collapse
|
44
|
Swarup V, Srivastava AK, Padma MV, Rajeswari MR. Quantification of Circulating Plasma DNA in Friedreich's Ataxia and Spinocerebellar Ataxia Types 2 and 12. DNA Cell Biol 2011; 30:389-94. [DOI: 10.1089/dna.2010.1165] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Vishnu Swarup
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Achal K. Srivastava
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Madakasira V. Padma
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Moganty R. Rajeswari
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
45
|
Bohic S, Ghersi-Egea JF, Gibon J, Paoletti P, Arnaud J, Hunot S, Boom A, Bouron A. [Biological roles of trace elements in the brain with special focus on Zn and Fe]. Rev Neurol (Paris) 2010; 167:269-79. [PMID: 21056442 DOI: 10.1016/j.neurol.2010.07.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/14/2010] [Accepted: 07/20/2010] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Many metals like iron (Fe), copper (Cu) or zinc (Zn) fulfil various essential biological functions and are thus vital for all living organisms. For instance, they play important roles in nervous tissue, participating in a wide range of processes such as neurotransmitter synthesis, myelination or synaptic transmission. STATE OF THE ART As in other tissues, brain cells tightly control the concentration of metals but any excess or deficit can lead to deleterious responses and alter cognitive functions. Of note, certain metals such as Zn, Fe or Cu accumulate in specific brain structures over lifespan and several neurodegenerative diseases are associated with a dysregulation of the homeostatic mechanisms controlling the concentration of these cations. CONCLUSION AND PERSPECTIVES This review will address some of the cellular and molecular processes controlling the entry and distribution of selected metals (mainly Zn and Fe) in the brain, as well as their roles in synaptic transmission, in the pathogenesis of some neurologic diseases such as Parkinson's disease and Alzheimer's disease, and their impact on cognitive functions.
Collapse
Affiliation(s)
- S Bohic
- Inserm U836, équipe 6 Rayonnement synchrotron et recherches médicales, Grenoble institut des neurosciences, 38054 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
47
|
Deutsch EC, Santani AB, Perlman SL, Farmer JM, Stolle CA, Marusich MF, Lynch DR. A rapid, noninvasive immunoassay for frataxin: utility in assessment of Friedreich ataxia. Mol Genet Metab 2010; 101:238-45. [PMID: 20675166 PMCID: PMC2996613 DOI: 10.1016/j.ymgme.2010.07.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/01/2010] [Accepted: 07/01/2010] [Indexed: 11/20/2022]
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by reduced amounts of the mitochondrial protein frataxin. Frataxin levels in research studies are typically measured via Western blot analysis from patient fibroblasts, lymphocytes, or muscle biopsies; none of these is ideal for rapid detection in large scale clinical studies. Recently, a rapid, noninvasive lateral flow immunoassay was developed to accurately measure picogram levels of frataxin protein and shown to distinguish lymphoblastoid cells from FRDA carriers, patients and controls. We expanded the immunoassay to measure frataxin directly in buccal cells and whole blood from a large cohort of controls, known carriers and patients typical of a clinical trial population. The assay in buccal cells shared a similar degree of variability with previous studies conducted in lymphoblastoid cells (~10% coefficient of variation in controls). Significant differences in frataxin protein quantity were seen between the mean group values of controls, carriers, and patient buccal cells (100, 50.2, and 20.9% of control, respectively) and in protein extracted from whole blood (100, 75.3, and 32.2%, respectively), although there was some overlap between the groups. In addition, frataxin levels were inversely related to GAA repeat length and correlated directly with age of onset. Subjects with one expanded GAA repeat and an identified frataxin point mutation also carried frataxin levels in the disease range. Some patients displaying an FRDA phenotype but carrying only a single identifiable mutation had frataxin levels in the FRDA patient range. One patient from this group has a novel deletion that included exons 2 and 3 of the FXN gene based on multiplex ligation-dependent probe amplification (MLPA) analysis of the FXN gene. The lateral flow immunoassay may be a useful means to noninvasively assess frataxin levels repetitively with minimal discomfort in FRDA patients in specific situations such as clinical trials, and as a complementary diagnostic tool to aid in identification and characterization of atypical patients.
Collapse
Affiliation(s)
- Eric C. Deutsch
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Avni B. Santani
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Susan L. Perlman
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095
| | - Jennifer M. Farmer
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Catherine A. Stolle
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | | | - David R. Lynch
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
48
|
Santos R, Lefevre S, Sliwa D, Seguin A, Camadro JM, Lesuisse E. Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal 2010; 13:651-90. [PMID: 20156111 PMCID: PMC2924788 DOI: 10.1089/ars.2009.3015] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/08/2010] [Accepted: 02/14/2010] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction and oxidative damage are at the origin of numerous neurodegenerative diseases like Friedreich ataxia and Alzheimer and Parkinson diseases. Friedreich ataxia (FRDA) is the most common hereditary ataxia, with one individual affected in 50,000. This disease is characterized by progressive degeneration of the central and peripheral nervous systems, cardiomyopathy, and increased incidence of diabetes mellitus. FRDA is caused by a dynamic mutation, a GAA trinucleotide repeat expansion, in the first intron of the FXN gene. Fewer than 5% of the patients are heterozygous and carry point mutations in the other allele. The molecular consequences of the GAA triplet expansion is transcription silencing and reduced expression of the encoded mitochondrial protein, frataxin. The precise cellular role of frataxin is not known; however, it is clear now that several mitochondrial functions are not performed correctly in patient cells. The affected functions include respiration, iron-sulfur cluster assembly, iron homeostasis, and maintenance of the redox status. This review highlights the molecular mechanisms that underlie the disease phenotypes and the different hypothesis about the function of frataxin. In addition, we present an overview of the most recent therapeutic approaches for this severe disease that actually has no efficient treatment.
Collapse
Affiliation(s)
- Renata Santos
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Sophie Lefevre
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
- University Pierre et Marie Curie, Paris, France
| | - Dominika Sliwa
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Alexandra Seguin
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Jean-Michel Camadro
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Emmanuel Lesuisse
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| |
Collapse
|
49
|
Diehl B, Lee MS, Reid JR, Nielsen CD, Natowicz MR. Atypical, perhaps under-recognized? An unusual phenotype of Friedreich ataxia. Neurogenetics 2010; 11:261-5. [PMID: 20162437 DOI: 10.1007/s10048-009-0233-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 12/29/2009] [Indexed: 01/26/2023]
Abstract
Friedreich ataxia (FRDA) is typically characterized by slowly progressive ataxia, depressed tendon reflexes, dysarthria, pyramidal signs, and loss of position and vibration sense with onset before 25 years. While several atypical forms of FRDA are recognized, profound vision deficit is rare. We describe here a 41-year-old man with profound vision deficit and episodic complete blindness associated with marked optic atrophy, spastic paraparesis, and sensory neuropathy without ataxia whose diagnostic evaluation revealed compound heterozygosity for two frataxin mutations, a 994 GAA repeat intronic expansion and c.389G > T (p.G130V) missense mutation. This case emphasizes that FRDA should be considered for individuals with significant vision deficit with optic atrophy and sensory neuropathy, even in the absence of ataxia. This case also raises the additional, related concern that prior studies may underestimate the frequency and varieties of variant forms of FRDA.
Collapse
Affiliation(s)
- Beate Diehl
- National Hospital for Neurology and Neurosurgery, London, UK
| | | | | | | | | |
Collapse
|
50
|
Ugalde C, Morán M, Blázquez A, Arenas J, Martín MA. Mitochondrial Disorders Due to Nuclear OXPHOS Gene Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:85-116. [DOI: 10.1007/978-90-481-2813-6_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|