1
|
Lee A, Weisenberg J, Toolan E, Shinawi M. Treatment and Improved Outcomes of Three Adult Patients With Guanidinoacetate Methyltransferase (GAMT) Deficiency. JIMD Rep 2025; 66:e70019. [PMID: 40330029 PMCID: PMC12053078 DOI: 10.1002/jmd2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
Guanidinoacetate methyltransferase (GAMT) deficiency is a creatine synthesis disorder caused by biallelic pathogenic variants in GAMT. Early diagnosis and treatment can lead to normal neurocognitive outcomes, which has prompted its recent addition to the Recommended Uniform Screening Panel. Treatment typically includes creatine and ornithine supplementation, with or without arginine restriction or sodium benzoate. Here, we present the clinical outcomes of 3 adult patients with GAMT deficiency who began creatine and ornithine supplementation at varying ages. One patient started on treatment at 14 months of age and has had near-normal neurocognitive outcomes, highlighting the positive clinical impact of early treatment. Our findings also emphasize the need to continue treatment throughout adulthood, but further research is required to understand the natural history and determine the optimal treatment of GAMT deficiency in adults.
Collapse
Affiliation(s)
- Angela Lee
- Department of Pediatrics, Division of GeneticsChildren's Mercy Kansas City, UMKC School of MedicineKansas CityMissouriUSA
| | - Judith Weisenberg
- Departments of Pediatrics and NeurologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Elizabeth Toolan
- Department of Pediatrics, Division of Genetics and Genomic MedicineWashington University School of MedicineSaint LouisMissouriUSA
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic MedicineWashington University School of MedicineSaint LouisMissouriUSA
| |
Collapse
|
2
|
Tse J, Abu-Qamar A, Youssef O, Pejka SL. Biotin-Thiamine-Responsive Basal Ganglia Disease: A Case Report. Case Rep Neurol 2025; 17:1-8. [PMID: 39981030 PMCID: PMC11781812 DOI: 10.1159/000542886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/26/2024] [Indexed: 02/22/2025] Open
Abstract
Introduction Biotin-thiamine responsive basal ganglia disease (BTBGD) is a rare autosomal recessive neurometabolic disorder characterized by diverse and variable phenotypic features, which can make diagnosis challenging. However, prompt treatment with thiamine and biotin can effectively manage the condition. Diagnosis relies on the identification of biallelic pathogenic variants in the SLC19A3 gene. This case report describes two novel variants of uncertain significance in the SLC19A3 gene, which may be correlated with the phenotypic manifestations of BTBGD. Case Presentation Our case is a 7-month-old female infant who presented with a 3-week history of irritability, altered behavior, and refusal of newly introduced solid foods. Symptoms started with an upper respiratory tract infection, followed by lethargy, floppiness, and abnormal movements. The patient was admitted to the pediatric ward with a broad differential diagnosis. Extensive laboratory evaluations revealed lactic acidosis. MRI brain showed symmetric restricted diffusion affecting the bilateral basal ganglia, thalami, and cortical regions. Whole genome sequencing identified biallelic variants of the SLC19A3: a c.1364T>G p.Met455Arg missense variant in the maternal allele and a 2.3 kb deletion of intron 3 of the paternal allele. Both variants were identified as variants of uncertain significance. However, given the clinical picture, MRI brain findings, resolution of symptoms with empiric biotin and thiamine supplementation, and biallelic SLC19A3 variants of unknown significance, the patient most likely suffers from BTBGD. Patient continues to show sustained developmental progress on biotin and thiamine supplementation. Conclusion This case highlights the fact that genetic testing remains a vital but improvable tool for the diagnosis of BTBGD. As of yet, genetic testing and diagnosis of BTBGD continues to be limited by the knowledge of which SLC19A3 variants are established to be pathogenic variants. Thus, further research is required to study other SCL19A3 variants of unknown significance to further improve genetic testing and diagnosis of BTBGD in the future.
Collapse
Affiliation(s)
- Jonathan Tse
- Western Michigan University Homer Stryker School of Meidcine, Kalamazoo, MI, USA
| | - Asem Abu-Qamar
- Western Michigan University Homer Stryker School of Meidcine, Kalamazoo, MI, USA
| | - Omar Youssef
- Western Michigan University Homer Stryker School of Meidcine, Kalamazoo, MI, USA
| | - Sherry L. Pejka
- Department of Pediatrics and Adolescent Medicine, Bronson Methodist Hospital, Kalamazoo, MI, USA
| |
Collapse
|
3
|
Nasseri Moghaddam Z, Reinhardt EK, Thurm A, Potter BK, Smith M, Graham C, Tiller BH, Baker SA, Bilder DA, Bogar R, Britz J, Cafferty R, Coller DP, DeGrauw TJ, Hall V, Lipshutz GS, Longo N, Mercimek-Andrews S, Miller JS, Pasquali M, Salomons GS, Schulze A, Wheaton CP, Williams KF, Young SP, Li J, Balog S, Selucky T, Stockler-Ipsiroglu S, Wallis H. Establishing a Core Outcome Set for Creatine Transporter Deficiency and Guanidinoacetate Methyltransferase Deficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.06.24313213. [PMID: 39371127 PMCID: PMC11451665 DOI: 10.1101/2024.09.06.24313213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Creatine transporter (CTD) and guanidinoacetate methyltransferase (GAMT) deficiencies are rare inborn errors of creatine metabolism, resulting in cerebral creatine deficiency. Patients commonly exhibit intellectual and developmental disabilities, often accompanied by behavior problems, delayed speech, seizures, and motor impairments. There is currently no efficacious treatment for CTD, while the current management for GAMT requires lifelong treatment with a protein restricted diet and intake of high amounts of oral supplements. Efforts to develop effective, sustainable treatments for these disorders are limited by the lack of clinical and patient-derived meaningful outcomes. A core outcome set (COS) can facilitate consensus about outcomes for inclusion in studies. Unfortunately, patient and caregiver perspectives have historically been overlooked in the COS development process, thus limiting their input into the outcome selection. We partnered with caregivers and health professionals to establish the first COS for CTD and GAMT. The COS developed includes seven outcomes ("Adaptive Functioning", "Cognitive Functioning", "Emotional Dysregulation", "MRS Brain Creatine", "Seizure/Convulsions", "Expressive Communication", and "Fine Motor Functions") for both CTD and GAMT, and an additional outcome for GAMT ("Serum/Plasma Guanidinoacetate") that are important to stakeholders and consequently should be considered for measurement in every clinical trial. Caregivers were valued partners throughout the COS development process, which increased community engagement and facilitated caregiver empowerment. We expect this COS will ensure a patient-centered approach for accelerating drug development for CTD and GAMT, make clinical trial results comparable, minimize bias in clinical trial outcome selection, and promote efficient use of resources.
Collapse
Affiliation(s)
| | - Emily K. Reinhardt
- Board of Directors & Staff, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Audrey Thurm
- National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Beth K. Potter
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Maureen Smith
- Patient Partner, University of Ottawa, Ottawa, ON, Canada
| | - Celeste Graham
- Board of Directors & Staff, Association for Creatine Deficiencies, Carlsbad, CA, USA
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Beth H. Tiller
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Steven A. Baker
- Department of Transfusion Medicine, University of Utah, Salt Lake City, UT, USA
| | - Deborah A. Bilder
- Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Regina Bogar
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Jacobus Britz
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Rachel Cafferty
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Daniel P. Coller
- Board of Directors & Staff, Association for Creatine Deficiencies, Carlsbad, CA, USA
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Ton J. DeGrauw
- Scientific Medical Advisory Board, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Vicky Hall
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Gerald S. Lipshutz
- David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, CA, USA
| | - Nicola Longo
- Scientific Medical Advisory Board, Association for Creatine Deficiencies, Carlsbad, CA, USA
- David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, CA, USA
| | - Saadet Mercimek-Andrews
- Scientific Medical Advisory Board, Association for Creatine Deficiencies, Carlsbad, CA, USA
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Judith S. Miller
- Center for Autism Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marzia Pasquali
- Scientific Medical Advisory Board, Association for Creatine Deficiencies, Carlsbad, CA, USA
- ARUP Laboratories, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Gajja S. Salomons
- Scientific Medical Advisory Board, Association for Creatine Deficiencies, Carlsbad, CA, USA
- Laboratory Genetic Metabolic Diseases & Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Andreas Schulze
- Scientific Medical Advisory Board, Association for Creatine Deficiencies, Carlsbad, CA, USA
- Hospital for Sick Children & University of Toronto, Toronto, ON, Canada
| | - Celine P. Wheaton
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Kayla F. Williams
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Sarah P. Young
- Scientific Medical Advisory Board, Association for Creatine Deficiencies, Carlsbad, CA, USA
- Division of Genetics and Metabolism, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Jasmine Li
- Department Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Sofia Balog
- Board of Directors & Staff, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | | | - Sylvia Stockler-Ipsiroglu
- Department Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Scientific Medical Advisory Board, Association for Creatine Deficiencies, Carlsbad, CA, USA
- Division Biochemical Diseases, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - Heidi Wallis
- Board of Directors & Staff, Association for Creatine Deficiencies, Carlsbad, CA, USA
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| |
Collapse
|
4
|
Goldstein J, Thomas-Wilson A, Groopman E, Aggarwal V, Bianconi S, Fernandez R, Hart K, Longo N, Liang N, Reich D, Wallis H, Weaver M, Young S, Mercimek-Andrews S. ClinGen variant curation expert panel recommendations for classification of variants in GAMT, GATM and SLC6A8 for cerebral creatine deficiency syndromes. Mol Genet Metab 2024; 142:108362. [PMID: 38452609 PMCID: PMC11874059 DOI: 10.1016/j.ymgme.2024.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Cerebral creatine deficiency syndromes (CCDS) are inherited metabolic phenotypes of creatine synthesis and transport. There are two enzyme deficiencies, guanidinoacetate methyltransferase (GAMT), encoded by GAMT and arginine-glycine amidinotransferase (AGAT), encoded by GATM, which are involved in the synthesis of creatine. After synthesis, creatine is taken up by a sodium-dependent membrane bound creatine transporter (CRTR), encoded by SLC6A8, into all organs. Creatine uptake is very important especially in high energy demanding organs such as the brain, and muscle. To classify the pathogenicity of variants in GAMT, GATM, and SLC6A8, we developed the CCDS Variant Curation Expert Panel (VCEP) in 2018, supported by The Clinical Genome Resource (ClinGen), a National Institutes of Health (NIH)-funded resource. We developed disease-specific variant classification guidelines for GAMT-, GATM-, and SLC6A8-related CCDS, adapted from the American College of Medical Genetics/Association of Molecular Pathology (ACMG/AMP) variant interpretation guidelines. We applied specific variant classification guidelines to 30 pilot variants in each of the three genes that have variants associated with CCDS. Our CCDS VCEP was approved by the ClinGen Sequence Variant Interpretation Working Group (SVI WG) and Clinical Domain Oversight Committee in July 2022. We curated 181 variants including 72 variants in GAMT, 45 variants in GATM, and 64 variants in SLC6A8 and submitted these classifications to ClinVar, a public variant database supported by the National Center for Biotechnology Information. Missense variants were the most common variant type in all three genes. We submitted 32 new variants and reclassified 34 variants with conflicting interpretations. We report specific phenotype (PP4) using a points system based on the urine and plasma guanidinoacetate and creatine levels, brain magnetic resonance spectroscopy (MRS) creatine level, and enzyme activity or creatine uptake in fibroblasts ranging from PP4, PP4_Moderate and PP4_Strong. Our CCDS VCEP is one of the first panels applying disease specific variant classification algorithms for an X-linked disease. The availability of these guidelines and classifications can guide molecular genetics and genomic laboratories and health care providers to assess the molecular diagnosis of individuals with a CCDS phenotype.
Collapse
Affiliation(s)
- Jennifer Goldstein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Emily Groopman
- Children’s National Hospital, 111 Michigan Ave NW, Washington, DC, USA
| | - Vimla Aggarwal
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Simona Bianconi
- Kaiser Permanente, Southern California Permanente Group, CA, USA
| | - Raquel Fernandez
- American College of Medical Genetics and Genomics, Bethesda, MD, USA
| | - Kim Hart
- Newborn Screening Program, Utah Public Health Laboratory, Department of Health and Human Services, Salt Lake City, UT, USA
| | - Nicola Longo
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | | | - Daniel Reich
- Newborn Screening Program, Utah Public Health Laboratory, Department of Health and Human Services, Salt Lake City, UT, USA
| | - Heidi Wallis
- Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Meredith Weaver
- American College of Medical Genetics and Genomics, Bethesda, MD, USA
| | - Sarah Young
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
5
|
Yıldız Y, Ardıçlı D, Göçmen R, Yalnızoğlu D, Topçu M, Coşkun T, Tokatlı A, Haliloğlu G. Electro-clinical features and long-term outcomes in guanidinoacetate methyltransferase (GAMT) deficiency. Eur J Paediatr Neurol 2024; 49:66-72. [PMID: 38394710 DOI: 10.1016/j.ejpn.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE To evaluate clinical characteristics and long-term outcomes in patients with guanidinoacetate methyltransferase (GAMT) deficiency with a special emphasis on seizures and electroencephalography (EEG) findings. METHODS We retrospectively analyzed the clinical and molecular characteristics, seizure types, EEG findings, neuroimaging features, clinical severity scores, and treatment outcomes in six patients diagnosed with GAMT deficiency. RESULTS Median age at presentation and diagnosis were 11.5 months (8-12 months) and 63 months (18 months -11 years), respectively. Median duration of follow-up was 14 years. Global developmental delay (6/6) and seizures (5/6) were the most common symptoms. Four patients presented with febrile seizures. The age at seizure-onset ranged between 8 months and 4 years. Most common seizure types were generalized tonic seizures (n = 4) and motor seizures resulting in drop attacks (n = 3). Slow background activity (n = 5) and generalized irregular sharp and slow waves (n = 3) were the most common EEG findings. Burst-suppression and electrical status epilepticus during slow-wave sleep (ESES) pattern was present in one patient. Three of six patients had drug-resistant epilepsy. Post-treatment clinical severity scores showed improvement regarding movement disorders and epilepsy. All patients were seizure-free in the follow-up. CONCLUSIONS Epilepsy is one of the main symptoms in GAMT deficiency with various seizure types and non-specific EEG findings. Early diagnosis and initiation of treatment are crucial for better seizure and cognitive outcomes. This long-term follow up study highlights to include cerebral creatine deficiency syndromes in the differential diagnosis of patients with global developmental delay and epilepsy and describes the course under treatment.
Collapse
Affiliation(s)
- Yılmaz Yıldız
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Turkey.
| | - Didem Ardıçlı
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Turkey
| | - Rahşan Göçmen
- Hacettepe University Faculty of Medicine, Department of Radiology, Turkey.
| | - Dilek Yalnızoğlu
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Turkey.
| | - Meral Topçu
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Turkey
| | - Turgay Coşkun
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Turkey
| | - Ayşegül Tokatlı
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Turkey.
| | - Göknur Haliloğlu
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Turkey.
| |
Collapse
|
6
|
Ream MA, Lam WK, Grosse SD, Ojodu J, Jones E, Prosser LA, Rose AM, Comeau AM, Tanksley S, Powell CM, Kemper AR. Evidence and Recommendation for Guanidinoacetate Methyltransferase Deficiency Newborn Screening. Pediatrics 2023; 152:e2023062100. [PMID: 37465909 PMCID: PMC10527896 DOI: 10.1542/peds.2023-062100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 07/20/2023] Open
Abstract
Guanidinoacetate methyltransferase (GAMT) deficiency is an autosomal recessive disorder of creatine biosynthesis due to pathogenic variants in the GAMT gene that lead to cerebral creatine deficiency and neurotoxic levels of guanidinoacetate. Untreated, GAMT deficiency is associated with hypotonia, significant intellectual disability, limited speech development, recurrent seizures, behavior problems, and involuntary movements. The birth prevalence of GAMT deficiency is likely between 0.5 and 2 per million live births. On the basis of small case series and sibling data, presymptomatic treatment with oral supplements of creatine, ornithine, and sodium benzoate, and a protein-restricted diet to reduce arginine intake, appear to substantially improve health and developmental outcomes. Without newborn screening, diagnosis typically happens after the development of significant impairment, when treatment has limited utility. GAMT deficiency newborn screening can be incorporated into the tandem-mass spectrometry screening that is already routinely used for newborn screening, with about 1 per 100 000 newborns screening positive. After a positive screen, diagnosis is established by finding an elevated guanidinoacetate concentration and low creatine concentration in the blood. Although GAMT deficiency is significantly more rare than other conditions included in newborn screening, the feasibility of screening, the low number of positive results, the relative ease of diagnosis, and the expected benefit of presymptomatic dietary therapy led to a recommendation from the Advisory Committee on Heritable Disorders in Newborns and Children to the Secretary of Health and Human Services that GAMT deficiency be added to the Recommended Uniform Screening Panel. This recommendation was accepted in January 2023.
Collapse
Affiliation(s)
- Margie A. Ream
- Division of Child Neurology, Nationwide Children’s Hospital, Columbus, Ohio
| | - Wendy K.K. Lam
- Duke Clinical and Translational Science Institute, Duke University School of Medicine, Durham, North Carolina
| | - Scott D. Grosse
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jelili Ojodu
- Association of Public Health Laboratories, Silver Spring, Maryland
| | - Elizabeth Jones
- Association of Public Health Laboratories, Silver Spring, Maryland
| | - Lisa A. Prosser
- Susan B. Meister Child Health Evaluation and Research Center, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Angela M. Rose
- Susan B. Meister Child Health Evaluation and Research Center, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Anne Marie Comeau
- New England Newborn Screening Program, Department of Pediatrics, UMass Chan School of Medicine, Worcester, Massachusetts
| | - Susan Tanksley
- Texas Department of State Health Services, Laboratory Services Section, Austin, Texas
| | - Cynthia M. Powell
- Division of Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alex R. Kemper
- Division of Primary Care Pediatrics, Nationwide Children’s Hospital, Columbus, Ohio
| |
Collapse
|
7
|
Expanding the neuroimaging findings of guanidinoacetate methyltransferase deficiency in an Iranian girl with a homozygous frameshift variant in the GAMT. Neurogenetics 2023; 24:67-78. [PMID: 36633690 DOI: 10.1007/s10048-022-00708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
Guanidinoacetate methyltransferase deficiency (GAMTD) is a treatable neurodevelopmental disorder with normal or nonspecific imaging findings. Here, we reported a 14-month-old girl with GAMTD and novel findings on brain magnetic resonance imaging (MRI).A 14-month-old female patient was referred to Myelin Disorders Clinic due to onset of seizures and developmental regression following routine vaccination at 4 months of age. Brain MRI, prior to initiation of treatment, showed high signal intensity in T2-weighted imaging in bilateral thalami, globus pallidus, subthalamic nuclei, substantia nigra, dentate nuclei, central tegmental tracts in the brainstem, and posterior periventricular white matter which was masquerading for mitochondrial leukodystrophy. Basic metabolic tests were normal except for low urine creatinine; however, exome sequencing identified a homozygous frameshift deletion variant [NM_000156: c.491del; (p.Gly164AlafsTer14)] in the GAMT. Biallelic pathogenic or likely pathogenic variants cause GAMTD. We confirmed the homozygous state for this variant in the proband, as well as the heterozygote state in the parents by Sanger sequencing.MRI features in GAMTD can mimic mitochondrial leukodystrophy. Pediatric neurologists should be aware of variable MRI findings in GAMTD since they would be misleading to other diagnoses.
Collapse
|
8
|
Almaghrabi MA, Muthaffar OY, Alahmadi SA, Abdulsbhan MA, Bamusa M, Aljezani MA, Bahowarth SY, Alyazidi AS, Aggad WS. GAMT Deficiency Among Pediatric Population: Clinical and Molecular Characteristics and Management. Child Neurol Open 2023; 10:2329048X231215630. [PMID: 38020815 PMCID: PMC10655665 DOI: 10.1177/2329048x231215630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Objective: Analyze the treatment modalities used in real practice by synthesizing available literature. Methods: We reviewed and evaluated 52 cases of GAMT deficiency including 4 novel cases from Saudi Arabia diagnosed using whole-exome sequencing. All data utilized graphical presentation in the form of line charts and illustrated graphs. Results: The mean current age of was 117 months (±29.03) (range 12-372 months). The mean age of disease onset was 28.32 months (±13.68) (range 8 days - 252 months). The most prevalent symptom was developmental delays, mainly speech and motor, seizures, and intellectual disability. The male-to-female ratio was 3:1. Multiple treatments were used, with 54 pharmacological interventions, valproic acid being the most common. Creatinine monohydrate was the prevalent dietary intervention, with 25 patients reporting an improvement. Conclusion: The study suggests that efficient treatment with appropriate dietary intervention can improve patients' health, stressing that personalized treatment programs are essential in managing this disorder.
Collapse
Affiliation(s)
- Majdah A. Almaghrabi
- Division of Pediatrics Neurology, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Y. Muthaffar
- Division of Pediatrics Neurology, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sereen A. Alahmadi
- Division of Pediatrics Neurology, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mashael A. Abdulsbhan
- Division of Pediatrics Neurology, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mashael Bamusa
- Division of Pediatrics Neurology, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maram Ahmed Aljezani
- Division of Pediatrics Neurology, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Anas S. Alyazidi
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waheeb S. Aggad
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Stezin A, Pal PK. Treatable Ataxias: How to Find the Needle in the Haystack? J Mov Disord 2022; 15:206-226. [PMID: 36065614 DOI: 10.14802/jmd.22069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
Treatable ataxias are a group of ataxic disorders with specific treatments. These disorders include genetic and metabolic disorders, immune-mediated ataxic disorders, and ataxic disorders associated with infectious and parainfectious etiology, vascular causes, toxins and chemicals, and endocrinopathies. This review provides a comprehensive overview of different treatable ataxias. The major metabolic and genetic treatable ataxic disorders include ataxia with vitamin E deficiency, abetalipoproteinemia, cerebrotendinous xanthomatosis, Niemann-Pick disease type C, autosomal recessive cerebellar ataxia due to coenzyme Q10 deficiency, glucose transporter type 1 deficiency, and episodic ataxia type 2. The treatment of these disorders includes the replacement of deficient cofactors and vitamins, dietary modifications, and other specific treatments. Treatable ataxias with immune-mediated etiologies include gluten ataxia, anti-glutamic acid decarboxylase antibody-associated ataxia, steroid-responsive encephalopathy associated with autoimmune thyroiditis, Miller-Fisher syndrome, multiple sclerosis, and paraneoplastic cerebellar degeneration. Although dietary modification with a gluten-free diet is adequate in gluten ataxia, other autoimmune ataxias are managed by short-course steroids, plasma exchange, or immunomodulation. For autoimmune ataxias secondary to malignancy, treatment of tumor can reduce ataxic symptoms. Chronic alcohol consumption, antiepileptics, anticancer drugs, exposure to insecticides, heavy metals, and recreational drugs are potentially avoidable and treatable causes of ataxia. Infective and parainfectious causes of cerebellar ataxias include acute cerebellitis, postinfectious ataxia, Whipple's disease, meningoencephalitis, and progressive multifocal leukoencephalopathy. These disorders are treated with steroids and antibiotics. Recognizing treatable disorders is of paramount importance when dealing with ataxias given that early treatment can prevent permanent neurological sequelae.
Collapse
Affiliation(s)
- Albert Stezin
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India.,Centre for Brain Research, Indian Institute of Science, Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| |
Collapse
|
10
|
McGinn RJ, Von Stein EL, Summers Stromberg JE, Li Y. Precision medicine in epilepsy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:147-188. [DOI: 10.1016/bs.pmbts.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Hart K, Rohrwasser A, Wallis H, Golsan H, Shao J, Anderson T, Wang X, Szabo-Fresnais N, Morrissey M, Kay DM, Wojcik M, Galvin-Parton PA, Longo N, Caggana M, Pasquali M. Prospective identification by neonatal screening of patients with guanidinoacetate methyltransferase deficiency. Mol Genet Metab 2021; 134:60-64. [PMID: 34389248 DOI: 10.1016/j.ymgme.2021.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Guanidinoacetate methyltransferase (GAMT) deficiency is an inherited metabolic disorder that impairs the synthesis of creatine (CRE). Lack of CRE in the brain can cause intellectual disability, autistic-like behavior, seizures, and movement disorders. Identification at birth and immediate therapy can prevent intellectual disability and seizures. Here we report the first two cases of GAMT deficiency identified at birth by newborn screening (NBS) in Utah and New York. METHODS NBS dried blood spots were analyzed by tandem mass spectrometry (MS/MS) using either derivatized or non-derivatized assays to detect guanidinoacetate (GUAC) and CRE. For any positive samples, a second-tier test using a more selective method, ultra-performance liquid chromatography (UPLC) combined with MS/MS, was performed to separate GUAC from potential isobaric interferences. RESULTS NBS for GAMT deficiency began in Utah on June 1, 2015 using a derivatized method for the detection of GUAC and CRE. In May 2019, the laboratory and method transitioned to a non-derivatized method. GAMT screening was added to the New York State NBS panel on October 1, 2018 using a derivatized method. In New York, a total of 537,408 babies were screened, 23 infants were referred and one newborn was identified with GAMT deficiency. In Utah, a total of 273,902 infants were screened (195,425 with the derivatized method, 78,477 with the non-derivatized method), three infants referred and one was identified with GAMT deficiency. Mean levels of GUAC and CRE were similar between methods (Utah derivatized: GUAC = 1.20 ± 0.43 μmol/L, CRE = 238 ± 96 μmol/L; Utah non-derivatized: GUAC = 1.23 ± 0.61 μmol/L, CRE = 344 ± 150 μmol/L, New York derivatized: GUAC = 1.34 ± 0.57 μmol/L, CRE = 569 ± 155 μmol/L). With either Utah method, similar concentrations of GUAC are observed in first (collected around 1 day of age) and the second NBS specimens (routinely collected at 7-16 days of age), while CRE concentrations decreased in the second NBS specimens. Both infants identified with GAMT deficiency started therapy by 2 weeks of age and are growing and developing normally at 7 (Utah) and 4 (New York) months of age. CONCLUSIONS Newborn screening allows for the prospective identification of GAMT deficiency utilizing elevated GUAC concentration as a marker. First-tier screening may be incorporated into existing methods for amino acids and acylcarnitines without the need for new equipment or staff. Newborn screening performed by either derivatized or non-derivatized methods and coupled with second-tier testing, has a very low false positive rate and can prospectively identify affected children. SummaryCerebral creatine deficiency syndromes caused by defects in creatine synthesis can result in intellectual disability, and are preventable if therapy is initiated early in life. This manuscript reports the identification of two infants with GAMT deficiency (one of the cerebral creatine deficiency syndromes) by newborn screening and demonstrates NBS feasibility using a variety of methods.
Collapse
Affiliation(s)
- Kim Hart
- Utah Department of Health, Salt Lake City, UT, USA.
| | | | - Heidi Wallis
- Utah Department of Health, Salt Lake City, UT, USA; Association for Creatine Deficiencies, Carlsbad, CA, USA
| | | | - Jianyin Shao
- Utah Department of Health, Salt Lake City, UT, USA
| | | | - Xiaoli Wang
- Utah Department of Health, Salt Lake City, UT, USA
| | | | - Mark Morrissey
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Denise M Kay
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Matthew Wojcik
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Nicola Longo
- Department of Pathology, University of Utah, ARUP Laboratories, Salt Lake City, UT, USA; Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Michele Caggana
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah, ARUP Laboratories, Salt Lake City, UT, USA; Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
12
|
Intellectual Disability and Brain Creatine Deficit: Phenotyping of the Genetic Mouse Model for GAMT Deficiency. Genes (Basel) 2021; 12:genes12081201. [PMID: 34440375 PMCID: PMC8391262 DOI: 10.3390/genes12081201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/17/2022] Open
Abstract
Guanidinoacetate methyltransferase deficiency (GAMT-D) is one of three cerebral creatine (Cr) deficiency syndromes due to pathogenic variants in the GAMT gene (19p13.3). GAMT-D is characterized by the accumulation of guanidinoacetic acid (GAA) and the depletion of Cr, which result in severe global developmental delay (and intellectual disability), movement disorder, and epilepsy. The GAMT knockout (KO) mouse model presents biochemical alterations in bodily fluids, the brain, and muscles, including increased GAA and decreased Cr and creatinine (Crn) levels, which are similar to those observed in humans. At the behavioral level, only limited and mild alterations have been reported, with a large part of analyzed behaviors being unaffected in GAMT KO as compared with wild-type mice. At the cerebral level, decreased Cr and Crn and increased GAA and other guanidine compound levels have been observed. Nevertheless, the effects of Cr deficiency and GAA accumulation on many neurochemical, morphological, and molecular processes have not yet been explored. In this review, we summarize data regarding behavioral and cerebral GAMT KO phenotypes, and focus on uncharted behavioral alterations that are comparable with the clinical symptoms reported in GAMT-D patients, including intellectual disability, poor speech, and autistic-like behaviors, as well as unexplored Cr-induced cerebral alterations.
Collapse
|
13
|
Kritioti E, Theodosiou A, Parpaite T, Alexandrou A, Nicolaou N, Papaevripidou I, Séjourné N, Coste B, Christophidou-Anastasiadou V, Tanteles GA, Sismani C. Unravelling the genetic causes of multiple malformation syndromes: A whole exome sequencing study of the Cypriot population. PLoS One 2021; 16:e0253562. [PMID: 34324503 PMCID: PMC8320927 DOI: 10.1371/journal.pone.0253562] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/08/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple malformation syndromes (MMS) belong to a group of genetic disorders characterised by neurodevelopmental anomalies and congenital malformations. Here we explore for the first time the genetic aetiology of MMS using whole-exome sequencing (WES) in undiagnosed patients from the Greek-Cypriot population after prior extensive diagnostics workup including karyotype and array-CGH. A total of 100 individuals (37 affected), from 32 families were recruited and family-based WES was applied to detect causative single-nucleotide variants (SNVs) and indels. A genetic diagnosis was reported for 16 MMS patients (43.2%), with 10/17 (58.8%) of the findings being novel. All autosomal dominant findings occurred de novo. Functional studies were also performed to elucidate the molecular mechanism relevant to the abnormal phenotypes, in cases where the clinical significance of the findings was unclear. The 17 variants identified in our cohort were located in 14 genes (PCNT, UBE3A, KAT6A, SPR, POMGNT1, PIEZO2, PXDN, KDM6A, PHIP, HECW2, TFAP2A, CNOT3, AGTPBP1 and GAMT). This study has highlighted the efficacy of WES through the high detection rate (43.2%) achieved for a challenging category of undiagnosed patients with MMS compared to other conventional diagnostic testing methods (10-20% for array-CGH and ~3% for G-banding karyotype analysis). As a result, family-based WES could potentially be considered as a first-tier cost effective diagnostic test for patients with MMS that facilitates better patient management, prognosis and offer accurate recurrence risks to the families.
Collapse
Affiliation(s)
- Evie Kritioti
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Clinical Genetics Clinic, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Athina Theodosiou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Angelos Alexandrou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nayia Nicolaou
- Clinical Genetics Clinic, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ioannis Papaevripidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nina Séjourné
- Aix Marseille Université, CNRS, LNC-UMR 7291, Marseille, France
| | - Bertrand Coste
- Aix Marseille Université, CNRS, LNC-UMR 7291, Marseille, France
| | | | - George A. Tanteles
- Clinical Genetics Clinic, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Carolina Sismani
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
14
|
Modi BP, Khan HN, van der Lee R, Wasim M, Haaxma CA, Richmond PA, Drögemöller B, Shah S, Salomons G, van der Kloet FM, Vaz FM, van der Crabben SN, Ross CJ, Wasserman WW, van Karnebeek CD, Awan FR. Adult GAMT deficiency: A literature review and report of two siblings. Mol Genet Metab Rep 2021; 27:100761. [PMID: 33996490 PMCID: PMC8093930 DOI: 10.1016/j.ymgmr.2021.100761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 11/02/2022] Open
Abstract
Guanidinoacetate methyltransferase (GAMT) deficiency is a creatine deficiency disorder and an inborn error of metabolism presenting with progressive intellectual and neurological deterioration. As most cases are identified and treated in early childhood, adult phenotypes that can help in understanding the natural history of the disorder are rare. We describe two adult cases of GAMT deficiency from a consanguineous family in Pakistan that presented with a history of global developmental delay, cognitive impairments, excessive drooling, behavioral abnormalities, contractures and apparent bone deformities initially presumed to be the reason for abnormal gait. Exome sequencing identified a homozygous nonsense variant in GAMT: NM_000156.5:c.134G>A (p.Trp45*). We also performed a literature review and compiled the genetic and clinical characteristics of all adult cases of GAMT deficiency reported to date. When compared to the adult cases previously reported, the musculoskeletal phenotype and the rapidly progressive nature of neurological and motor decline seen in our patients is striking. This study presents an opportunity to gain insights into the adult presentation of GAMT deficiency and highlights the need for in-depth evaluation and reporting of clinical features to expand our understanding of the phenotypic spectrum.
Collapse
Affiliation(s)
- Bhavi P. Modi
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Correspondence to: B. P. Modi, University of British Columbia, BC Children's Hospital Research Institute, 938 W 28 Ave, Vancouver, BC V5Z 4H4, Canada.
| | - Haq Nawaz Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Robin van der Lee
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Charlotte A. Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Phillip A. Richmond
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Britt Drögemöller
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Suleman Shah
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Gajja Salomons
- Laboratory for Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Frans M. van der Kloet
- Laboratory for Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, the Netherlands
| | - Fred M. Vaz
- Laboratory for Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, the Netherlands
- Dept. of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, the Netherlands
| | | | - Colin J. Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wyeth W. Wasserman
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Clara D.M. van Karnebeek
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, Netherlands
- Department of Pediatric Metabolic Diseases, Amalia Children's Hospital, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
- United for Metabolic Diseases, the Netherlands
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Correspondence to: F. R. Awan, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan.
| |
Collapse
|
15
|
Fei Y, Shi R, Song Z, Wu J. Metabolic Control of Epilepsy: A Promising Therapeutic Target for Epilepsy. Front Neurol 2020; 11:592514. [PMID: 33363507 PMCID: PMC7753014 DOI: 10.3389/fneur.2020.592514] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a common neurological disease that is not always controlled, and the ketogenic diet shows good antiepileptic effects drug-resistant epilepsy or seizures caused by specific metabolic defects via regulating the metabolism. The brain is a vital organ with high metabolic demands, and epileptic foci tend to exhibit high metabolic characteristics. Accordingly, there has been growing interest in the relationship between brain metabolism and epilepsy in recent years. To date, several new antiepileptic therapies targeting metabolic pathways have been proposed (i.e., inhibiting glycolysis, targeting lactate dehydrogenase, and dietary therapy). Promising strategies to treat epilepsy via modulating the brain's metabolism could be expected, while a lack of thorough understanding of the role of brain metabolism in the control of epilepsy remains. Herein, this review aims to provide insight into the state of the art concerning the brain's metabolic patterns and their association with epilepsy. Regulation of neuronal excitation via metabolic pathways and antiepileptic therapies targeting metabolic pathways are emphasized, which could provide a better understanding of the role of metabolism in epilepsy and could reveal potential therapeutic targets.
Collapse
Affiliation(s)
- Yanqing Fei
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ruting Shi
- Department of Rehabilitation, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinze Wu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Ortigoza-Escobar JD. A Proposed Diagnostic Algorithm for Inborn Errors of Metabolism Presenting With Movements Disorders. Front Neurol 2020; 11:582160. [PMID: 33281718 PMCID: PMC7691570 DOI: 10.3389/fneur.2020.582160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Inherited metabolic diseases or inborn errors of metabolism frequently manifest with both hyperkinetic (dystonia, chorea, myoclonus, ataxia, tremor, etc.) and hypokinetic (rigid-akinetic syndrome) movement disorders. The diagnosis of these diseases is in many cases difficult, because the same movement disorder can be caused by several diseases. Through a literature review, two hundred and thirty one inborn errors of metabolism presenting with movement disorders have been identified. Fifty-one percent of these diseases exhibits two or more movement disorders, of which ataxia and dystonia are the most frequent. Taking into account the wide range of these disorders, a methodical evaluation system needs to be stablished. This work proposes a six-step diagnostic algorithm for the identification of inborn errors of metabolism presenting with movement disorders comprising red flags, characterization of the movement disorders phenotype (type of movement disorder, age and nature of onset, distribution and temporal pattern) and other neurological and non-neurological signs, minimal biochemical investigation to diagnose treatable diseases, radiological patterns, genetic testing and ultimately, symptomatic, and disease-specific treatment. As a strong action, it is emphasized not to miss any treatable inborn error of metabolism through the algorithm.
Collapse
Affiliation(s)
- Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII and European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| |
Collapse
|
17
|
Inherited Metabolic Disorders Presenting with Ataxia. Int J Mol Sci 2020; 21:ijms21155519. [PMID: 32752260 PMCID: PMC7432519 DOI: 10.3390/ijms21155519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Ataxia is a common clinical feature in inherited metabolic disorders. There are more than 150 inherited metabolic disorders in patients presenting with ataxia in addition to global developmental delay, encephalopathy episodes, a history of developmental regression, coarse facial features, seizures, and other types of movement disorders. Seizures and a history of developmental regression especially are important clinical denominators to consider an underlying inherited metabolic disorder in a patient with ataxia. Some of the inherited metabolic disorders have disease specific treatments to improve outcomes or prevent early death. Early diagnosis and treatment affect positive neurodevelopmental outcomes, so it is important to think of inherited metabolic disorders in the differential diagnosis of ataxia.
Collapse
|
18
|
Sinha A, Ahmed S, George C, Tsagaris M, Naufer A, von Both I, Tkachyova I, van Eede M, Henkelman M, Schulze A. Magnetic resonance imaging reveals specific anatomical changes in the brain of Agat- and Gamt-mice attributed to creatine depletion and guanidinoacetate alteration. J Inherit Metab Dis 2020; 43:827-842. [PMID: 31951021 DOI: 10.1002/jimd.12215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 11/07/2022]
Abstract
Arginine:glycine amidinotransferase- and guanidinoacetate methyltransferase deficiency are severe neurodevelopmental disorders. It is not known whether mouse models of disease express a neuroanatomical phenotype. High-resolution magnetic resonance imaging (MRI) with advanced image analysis was performed in perfused, fixed mouse brains encapsulated with the skull from male, 10-12 week old Agat -exc and B6J.Cg-Gamt tm1Isb mice (n = 48; n = 8 per genotype, strain). T2-weighted MRI scans were nonlinearly aligned to a 3D atlas of the mouse brain with 62 structures identified. Local differences in brain shape related to genotype were assessed by analysis of deformation fields. Creatine (Cr) and guanidinoacetate (GAA) were measured with high-performance liquid chromatography (HPLC) in brain homogenates (n = 24; n = 4 per genotype, strain) after whole-body perfusion. Cr was decreased in the brain of Agat- and Gamt mutant mice. GAA was decreased in Agat-/- and increased in Gamt-/- . Body weight and brain volume were lower in Agat-/- than in Gamt-/- . The analysis of entire brain structures revealed corpus callosum, internal capsule, fimbria and hypothalamus being different between the genotypes in both strains. Eighteen and fourteen significant peaks (local areas of difference in relative size) were found in Agat- and Gamt mutants, respectively. Comparing Agat-/- with Gamt-/- , we found changes in three brain regions, lateral septum, amygdala, and medulla. Intra-strain differences in four brain structures can be associated with Cr deficiency, while the inter-strain differences in three brain structures of the mutant mice may relate to GAA. Correlating these neuroanatomical findings with gene expression data implies the role of Cr metabolism in the developing brain and the importance of early intervention in patients with Cr deficiency syndromes.
Collapse
Affiliation(s)
- Ankit Sinha
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sohail Ahmed
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chris George
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melina Tsagaris
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amriya Naufer
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ingo von Both
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ilona Tkachyova
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matthijs van Eede
- Mouse Imaging Centre, Toronto Center of Phenogenomics, Toronto, Ontario, Canada
| | - Mark Henkelman
- Mouse Imaging Centre, Toronto Center of Phenogenomics, Toronto, Ontario, Canada
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andreas Schulze
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Treatment outcome of twenty-two patients with guanidinoacetate methyltransferase deficiency: An international retrospective cohort study. Eur J Paediatr Neurol 2018; 22:369-379. [PMID: 29506905 DOI: 10.1016/j.ejpn.2018.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 11/23/2022]
Abstract
PURPOSE Guanidinoacetate methyltransferase (GAMT) deficiency is an autosomal recessive disorder caused by pathogenic variants in GAMT. Brain creatine depletion and guanidinoacetate accumulation cause developmental delay, seizures and movement disorder. Treatment consists of creatine, ornithine and arginine-restricted diet. We initiated an international treatment registry using Research Electronic Data Capture (REDCap) software to evaluate treatment outcome. METHODS Physicians completed an online REDCap questionnaire. Clinical severity score applied pre-treatment and on treatment. RESULTS There were 22 patients. All had developmental delay, 18 had seizures and 8 had movement disorder. Based on the clinical severity score, 5 patients had a severe, 14 patients had a moderate and 3 patients had a mild phenotype. All patients had pathogenic variants in GAMT. The phenotype ranged from mild to moderate in patients with the most common c.327G > A variant. The phenotype ranged from mild to severe in patients with truncating variants. All patients were on creatine, 18 patients were on ornithine and 15 patients were on arginine- or protein-restricted diet. Clinical severity score improved in 13 patients on treatment. Developmental delay improved in five patients. One patient achieved normal development. Eleven patients became seizure free. Movement disorder resolved in four patients. CONCLUSION In our small patient cohort, there seems to be no phenotype-genotype correlation. Creatine and ornithine and/or arginine- or protein-restricted diet were the most useful treatment to improve phenotype.
Collapse
|
20
|
Iqbal F, Hoeger H, Lubec G, Bodamer O. Biochemical and behavioral phenotype of AGAT and GAMT deficient mice following long-term Creatine monohydrate supplementation. Metab Brain Dis 2017; 32:1951-1961. [PMID: 28808834 DOI: 10.1007/s11011-017-0092-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
Abstract
The creatine/phosphocreatine system is essential for cellular phosphate coupled energy storage and production. We investigated the utility of creatine monohydrate supplementation in two different creatine deficient knockout mouse models. Following weaning, female Arginine: Glycine Amidinotransferase (AGAT) and Guanidinoacetate: methyltransferase (GAMT) knockouts and wild type mice were studied based on their genotypes and dietary supplementation (creatine free or 2% creatine monohydrate supplemented diet) for 10 weeks, using a series of behavioral tests and biochemical analyzes. An improved Rota rod performance was observed in both AGAT (p = 0.02) and GAMT knockout mice (p < 0.001) supplemented with 2% creatine. During Morris water maze probe trial, creatine supplemented AGAT knockout mice took less time to reach virtual platform (p = 0.03) and more frequently crossed this area (p = 0.001) than mice on creatine free diet. Similar observations were recorded for GAMT knockout mice. Urinary creatinine concentrations for AGAT (p = 0.001) and GAMT (p = 0.05) knockout mice were increased following creatine supplementation. Creatine supplementation has a potential to improve neuro-muscular coordination, spatial learning in both AGAT and GAMT knockout mice. Long term Creatine supplementation results in increased urine creatinine concentrations indicating improved creatine metabolism in knockout mice.
Collapse
Affiliation(s)
- Furhan Iqbal
- Department of Pediatrics and Adolescent Medicine, Laboratory for Inherited Metabolic Disorders, Medical University of Vienna, Vienna, Austria.
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Herald Hoeger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Brauhausgasse 34, A-2235, Himberg, Austria
| | - Gurt Lubec
- Department of Pediatrics and Adolescent Medicine, Laboratory for Inherited Metabolic Disorders, Medical University of Vienna, Vienna, Austria
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
21
|
Abstract
OPINION STATEMENT In the absence of a culprit epileptogenic lesion, pharmacoresistant seizures should prompt the physician to consider potentially treatable metabolic epilepsies, especially in the presence of developmental delays. Even though the anti-seizure treatment of the epilepsies remains symptomatic and usually tailored to an electroclinical phenotype rather than to an underlying etiology, a thorough metabolic workup might reveal a disease with an etiology-specific treatment. Early diagnosis is essential in the case of treatable metabolic epilepsies allowing timely intervention. Despite the advances in genetic testing, biochemical testing including cerebrospinal fluid studies are still needed to expedite the diagnostic workup and potential therapeutic trials. The diagnostician should have a high index of suspicion despite potential clinical digressions from seminal publications describing the initial cases, as these index patients may represent the most severe form of the condition rather than its most common presenting form. The often gratifying developmental outcome and seizure control with early treatment calls for a prompt diagnostic consideration of treatable metabolic diseases; even though relatively rare or potentially only seemingly so.
Collapse
|
22
|
Abstract
Creatine deficiency syndromes are a group of disorders of creatine (Cr) synthesis and transport characterized by intellectual disability, language delay, epilepsy, autism spectrum disorder, and movement disorders secondary to decrease of Cr concentration in the brain. Synthesis defects are treatable, therefore an early diagnosis and treatment is essential. The aim of this article is to review the Cr metabolism and function in the central nervous system. We describe the optimal diagnostic protocol in Cr deficiency syndromes based on biochemical methods, neuroradiological (1H-MRS), and molecular analysis. Finally, a treatment approach of the different Cr deficiency syndromes is described.
Collapse
Affiliation(s)
- Carmen Fons
- From the Pediatric Neurology Department, Sant Joan de Déu Hospital, Barcelona University, Barcelona, Spain.
| | - Jaume Campistol
- From the Pediatric Neurology Department, Sant Joan de Déu Hospital, Barcelona University, Barcelona, Spain
| |
Collapse
|
23
|
Marques EP, Wyse ATS. Guanidinoacetate Methyltransferase Deficiency. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2016. [DOI: 10.1177/2326409816669371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Eduardo P. Marques
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angela T. S. Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
24
|
Joncquel-Chevalier Curt M, Voicu PM, Fontaine M, Dessein AF, Porchet N, Mention-Mulliez K, Dobbelaere D, Soto-Ares G, Cheillan D, Vamecq J. Creatine biosynthesis and transport in health and disease. Biochimie 2015; 119:146-65. [DOI: 10.1016/j.biochi.2015.10.022] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022]
|
25
|
Hope S, Johannessen CH, Aanonsen NO, Strømme P. The investigation of inborn errors of metabolism as an underlying cause of idiopathic intellectual disability in adults in Norway. Eur J Neurol 2015; 23 Suppl 1:36-44. [DOI: 10.1111/ene.12884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 12/17/2022]
Affiliation(s)
- S. Hope
- Department of Neuro Habilitation; Oslo University Hospital, Ullevål; Oslo Norway
- NORMENT; KG Jebsen Centre for Psychosis Research; Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - C. H. Johannessen
- Department of Neuro Habilitation; Oslo University Hospital, Ullevål; Oslo Norway
| | - N. O. Aanonsen
- Department of Neuro Habilitation; Oslo University Hospital, Ullevål; Oslo Norway
| | - P. Strømme
- Department of Clinical Neurosciences for Children; Women and Children′s Division; Oslo University Hospital, Ullevål; Oslo Norway
- University of Oslo; Oslo Norway
| |
Collapse
|
26
|
Mercimek-Mahmutoglu S, Pop A, Kanhai W, Fernandez Ojeda M, Holwerda U, Smith D, Loeber JG, Schielen PCJI, Salomons GS. A pilot study to estimate incidence of guanidinoacetate methyltransferase deficiency in newborns by direct sequencing of the GAMT gene. Gene 2015; 575:127-31. [PMID: 26319512 DOI: 10.1016/j.gene.2015.08.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND GAMT deficiency is an autosomal recessive disorder of creatine biosynthesis causing developmental delays or intellectual disability in untreated patients as a result of irreversible brain damage occurring prior to diagnosis. Normal neurodevelopmental outcome has been reported in patients treated from neonatal period highlighting the importance of early treatment. METHODS Five hundred anonymized newborns from the National Newborn Screening Program of The Netherlands were included into this pilot study. Direct sequencing of the coding region of the GAMT gene was applied following DNA extraction. The disease causing nature of novel missense variants in the GAMT gene was studied by overexpression studies. GAA and creatine was measured in blood dot spots. RESULTS We detected two carriers, one with a known common (c.327G>A) and one with a novel mutation (c.297_309dup (p.Arg105Glyfs*) in the GAMT gene. The estimated incidence of GAMT deficiency was 1:250,000. We also detected five novel missense variants. Overexpression of these variants in GAMT deficient fibroblasts did restore GAMT activity and thus all were considered rare, but not disease causing variants including the c.131G>T (p.Arg44Leu) variant. Interestingly, this variant was predicted to be pathogenic by in silico analysis. The variants were included in the Leiden Open Variation Database (LOVD) database (www.LOVD.nl/GAMT). The average GAA level was 1.14μmol/L±0.45 standard deviations. The average creatine level was 408μmol/L±106. The average GAA/creatine ratio was 2.94±0.136. CONCLUSION The estimated incidence of GAMT deficiency is 1:250,000 newborns based on our pilot study. The newborn screening for GAMT deficiency should be implemented to identify patients at the asymptomatic stage to achieve normal neurodevelopmental outcome for this treatable neurometabolic disease. Biochemical investigations including GAA, creatine and GAMT enzyme activity measurements are essential to confirm the diagnosis of GAMT deficiency. According to availability, all missense variants can be assessed functionally, as in silico prediction analysis of missense variants is not sufficient to confirm the pathogenicity of missense variants.
Collapse
Affiliation(s)
- S Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, Canada; Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada.
| | - A Pop
- Metabolic Unit, Department of Clinical Chemistry, VU Medical Center, Neurosciences Campus, Amsterdam, The Netherlands
| | - W Kanhai
- Metabolic Unit, Department of Clinical Chemistry, VU Medical Center, Neurosciences Campus, Amsterdam, The Netherlands
| | - M Fernandez Ojeda
- Metabolic Unit, Department of Clinical Chemistry, VU Medical Center, Neurosciences Campus, Amsterdam, The Netherlands
| | - U Holwerda
- Metabolic Unit, Department of Clinical Chemistry, VU Medical Center, Neurosciences Campus, Amsterdam, The Netherlands
| | - D Smith
- Metabolic Unit, Department of Clinical Chemistry, VU Medical Center, Neurosciences Campus, Amsterdam, The Netherlands
| | - J G Loeber
- National Institute for Public Health and the Environment, Centre for Infectious Diseases Research, and Screening, Bilthoven, The Netherlands
| | - P C J I Schielen
- National Institute for Public Health and the Environment, Centre for Infectious Diseases Research, and Screening, Bilthoven, The Netherlands
| | - G S Salomons
- Metabolic Unit, Department of Clinical Chemistry, VU Medical Center, Neurosciences Campus, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Clark JF, Cecil KM. Diagnostic methods and recommendations for the cerebral creatine deficiency syndromes. Pediatr Res 2015; 77:398-405. [PMID: 25521922 DOI: 10.1038/pr.2014.203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/15/2014] [Indexed: 12/29/2022]
Abstract
Primary care pediatricians and a variety of specialist physicians strive to define an accurate diagnosis for children presenting with impairment of expressive speech and delay in achieving developmental milestones. Within the past two decades, a group of disorders featuring this presentation have been identified as cerebral creatine deficiency syndromes (CCDS). Patients with these disorders were initially discerned using proton magnetic resonance spectroscopy of the brain within a magnetic resonance imaging (MRI) examination. The objective of this review is to provide the clinician with an overview of the current information available on identifying and treating these conditions. We explain the salient features of creatine metabolism, synthesis, and transport required for normal development. We propose diagnostic approaches for confirming a CCDS diagnosis. Finally, we describe treatment approaches for managing patients with these conditions.
Collapse
Affiliation(s)
- Joseph F Clark
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kim M Cecil
- 1] Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio [2] Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio [3] Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio [4] Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
28
|
van de Kamp JM, Mancini GM, Salomons GS. X-linked creatine transporter deficiency: clinical aspects and pathophysiology. J Inherit Metab Dis 2014; 37:715-33. [PMID: 24789340 DOI: 10.1007/s10545-014-9713-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 12/22/2022]
Abstract
Creatine transporter deficiency was discovered in 2001 as an X-linked cause of intellectual disability characterized by cerebral creatine deficiency. This review describes the current knowledge regarding creatine metabolism, the creatine transporter and the clinical aspects of creatine transporter deficiency. The condition mainly affects the brain while other creatine requiring organs, such as the muscles, are relatively spared. Recent studies have provided strong evidence that creatine synthesis also occurs in the brain, leading to the intriguing question of why cerebral creatine is deficient in creatine transporter deficiency. The possible mechanisms explaining the cerebral creatine deficiency are discussed. The creatine transporter knockout mouse provides a good model to study the disease. Over the past years several treatment options have been explored but no treatment has been proven effective. Understanding the pathogenesis of creatine transporter deficiency is of paramount importance in the development of an effective treatment.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/diagnosis
- Amino Acid Metabolism, Inborn Errors/drug therapy
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/pathology
- Animals
- Brain Diseases, Metabolic, Inborn/complications
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/physiopathology
- Creatine/deficiency
- Creatine/genetics
- Genetic Diseases, X-Linked/genetics
- Humans
- Intellectual Disability/etiology
- Intellectual Disability/genetics
- Membrane Transport Proteins/deficiency
- Membrane Transport Proteins/genetics
- Mental Retardation, X-Linked/complications
- Mental Retardation, X-Linked/genetics
- Mental Retardation, X-Linked/physiopathology
- Mice
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/genetics
Collapse
Affiliation(s)
- Jiddeke M van de Kamp
- Department of Clinical Genetics, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
29
|
Reid CA, Mullen S, Kim TH, Petrou S. Epilepsy, energy deficiency and new therapeutic approaches including diet. Pharmacol Ther 2014; 144:192-201. [PMID: 24924701 DOI: 10.1016/j.pharmthera.2014.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 02/08/2023]
Abstract
Metabolic dysfunction leading to epilepsy is well recognised. Dietary therapy, in particular the ketogenic diet, is now considered an effective option. Recent genetic studies have highlighted the central role that metabolism can play in setting seizure susceptibility. Here we discuss various metabolic disorders implicated in epilepsy focusing on energy deficiency due to genetic and environmental causes. We argue that low, uncompensated brain glucose levels can precipitate seizures. We will also explore mechanisms of disease and therapy in an attempt to identify common metabolic pathways involved in modulating seizure susceptibility. Finally, newer therapeutic approaches based on diet manipulation in the context of energy deficiency are discussed.
Collapse
Affiliation(s)
- Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| | - Saul Mullen
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Tae Hwan Kim
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia; Centre for Neural Engineering, The University of Melbourne, Parkville, Melbourne, Australia; Department of Electrical Engineering, The University of Melbourne, Parkville, Melbourne, Australia
| |
Collapse
|
30
|
Mercimek-Mahmutoglu S, Ndika J, Kanhai W, de Villemeur TB, Cheillan D, Christensen E, Dorison N, Hannig V, Hendriks Y, Hofstede FC, Lion-Francois L, Lund AM, Mundy H, Pitelet G, Raspall-Chaure M, Scott-Schwoerer JA, Szakszon K, Valayannopoulos V, Williams M, Salomons GS. Thirteen new patients with guanidinoacetate methyltransferase deficiency and functional characterization of nineteen novel missense variants in the GAMT gene. Hum Mutat 2014; 35:462-9. [PMID: 24415674 DOI: 10.1002/humu.22511] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/06/2014] [Indexed: 11/08/2022]
Abstract
Guanidinoacetate methyltransferase deficiency (GAMT-D) is an autosomal recessively inherited disorder of creatine biosynthesis. Creatine deficiency on cranial proton magnetic resonance spectroscopy, and elevated guanidinoacetate levels in body fluids are the biomarkers of GAMT-D. In 74 patients, 50 different mutations in the GAMT gene have been identified with missense variants being the most common. Clinical and biochemical features of the patients with missense variants were obtained from their physicians using a questionnaire. In 20 patients, 17 missense variants, 25% had a severe, 55% a moderate, and 20% a mild phenotype. The effect of these variants on GAMT enzyme activity was overexpressed using primary GAMT-D fibroblasts: 17 variants retained no significant activity and are therefore considered pathogenic. Two additional variants, c.22C>A (p.Pro8Thr) and c.79T>C (p.Tyr27His) (the latter detected in control cohorts) are in fact not pathogenic as these alleles restored GAMT enzyme activity, although both were predicted to be possibly damaging by in silico analysis. We report 13 new patients with GAMT-D, six novel mutations and functional analysis of 19 missense variants, all being included in our public LOVD database. Our functional assay is important for the confirmation of the pathogenicity of identified missense variants in the GAMT gene.
Collapse
Affiliation(s)
- Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada; Metabolic Laboratory, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Stockler-Ipsiroglu S, van Karnebeek C, Longo N, Korenke GC, Mercimek-Mahmutoglu S, Marquart I, Barshop B, Grolik C, Schlune A, Angle B, Araújo HC, Coskun T, Diogo L, Geraghty M, Haliloglu G, Konstantopoulou V, Leuzzi V, Levtova A, Mackenzie J, Maranda B, Mhanni AA, Mitchell G, Morris A, Newlove T, Renaud D, Scaglia F, Valayannopoulos V, van Spronsen FJ, Verbruggen KT, Yuskiv N, Nyhan W, Schulze A. Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol Genet Metab 2014; 111:16-25. [PMID: 24268530 DOI: 10.1016/j.ymgme.2013.10.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 11/25/2022]
Abstract
We collected data on 48 patients from 38 families with guanidinoacetate methyltransferase (GAMT) deficiency. Global developmental delay/intellectual disability (DD/ID) with speech/language delay and behavioral problems as the most affected domains was present in 44 participants, with additional epilepsy present in 35 and movement disorder in 13. Treatment regimens included various combinations/dosages of creatine-monohydrate, l-ornithine, sodium benzoate and protein/arginine restricted diets. The median age at treatment initiation was 25.5 and 39 months in patients with mild and moderate DD/ID, respectively, and 11 years in patients with severe DD/ID. Increase of cerebral creatine and decrease of plasma/CSF guanidinoacetate levels were achieved by supplementation with creatine-monohydrate combined with high dosages of l-ornithine and/or an arginine-restricted diet (250 mg/kg/d l-arginine). Therapy was associated with improvement or stabilization of symptoms in all of the symptomatic cases. The 4 patients treated younger than 9 months had normal or almost normal developmental outcomes. One with inconsistent compliance had a borderline IQ at age 8.6 years. An observational GAMT database will be essential to identify the best treatment to reduce plasma guanidinoacetate levels and improve long-term outcomes.
Collapse
Affiliation(s)
| | - Clara van Karnebeek
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Nicola Longo
- Division of Medical Genetics, University of Utah, Salt Lake City, UT, USA
| | | | | | - Iris Marquart
- Department of Pediatric Neurology, Children's Hospital Oldenburg, Germany
| | - Bruce Barshop
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Christiane Grolik
- Department of Pediatric Neurology, Children's Hospital Cologne, Germany
| | - Andrea Schlune
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Brad Angle
- Division of Birth Defects and Metabolism, Children's Memorial Hospital, Chicago, IL, USA
| | | | - Turgay Coskun
- Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Luisa Diogo
- Pediatric Hospital CHUC-EPE, Coimbra, Portugal
| | - Michael Geraghty
- Department of Pediatrics, CHEO, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Vincenzo Leuzzi
- Department of Pediatrics, Child Neurology and Psychiatry, La Sapienza University of Rome, Rome, Italy
| | - Alina Levtova
- Department of Pediatrics, Sainte Justine University Hospital Centre, Montreal, QC, Canada
| | | | - Bruno Maranda
- Division of Genetics, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Aizeddin A Mhanni
- Department of Pediatrics and Child Health, University of Mannitoba, Winnipeg, MB, Canada
| | - Grant Mitchell
- Department of Pediatrics, Sainte Justine University Hospital Centre, Montreal, QC, Canada; Sainte Justine University Research Center, Montreal, QC, Canada
| | - Andrew Morris
- Department of Genetic Medicine, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Theresa Newlove
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Deborah Renaud
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Vassili Valayannopoulos
- Reference Center for Inborn Errors of Metabolism, Hopital Necker Enfants Malades, Paris, France
| | - Francjan J van Spronsen
- Beatrix Children's Hospital, University Medical Center of Groningen, University of Groningen, The Netherlands
| | - Krijn T Verbruggen
- Beatrix Children's Hospital, University Medical Center of Groningen, University of Groningen, The Netherlands
| | - Nataliya Yuskiv
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - William Nyhan
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Andreas Schulze
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, ON, Canada; Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
32
|
Viau KS, Ernst SL, Pasquali M, Botto LD, Hedlund G, Longo N. Evidence-based treatment of guanidinoacetate methyltransferase (GAMT) deficiency. Mol Genet Metab 2013; 110:255-62. [PMID: 24071436 DOI: 10.1016/j.ymgme.2013.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Guanidinoacetate methyltransferase (GAMT) deficiency causes cerebral creatine deficiency. Patients can have autistic behavior, seizures, intellectual disability, and severe speech delay. The goal of therapy is to increase creatine while reducing potentially neurotoxic guanidinoacetate concentrations. Here we evaluate how different therapies affect plasma guanidinoacetate levels in patients with GAMT deficiency. METHODS Retrospective analysis of data from five new patients with GAMT deficiency (four with delays and seizures, one diagnosed at birth). RESULTS The four symptomatic patients had decreased brain creatine by magnetic resonance spectroscopy and three also had abnormal globi pallidi by MRI. GAMT sequencing identified four previously reported mutations and one novel missense mutation (c.233T>A/p.V78E). Treatment with creatine (250-1000 mg/kg/day), ornithine (100-800 mg/kg/day), and sodium benzoate (50-135 mg/kg/day) supplements along with dietary protein restriction (0.8-1.5 g/kg/day) improved seizures and development with all patients becoming verbal. The patient treated at birth remains developmentally normal. Reduction in glycine and increase in ornithine levels significantly decreased plasma guanidinoacetate, with glycine levels being the best predictor of guanidinoacetate levels. In contrast, arginine levels were not significantly correlated with plasma guanidinoacetate. CONCLUSIONS Our results show that supplements of creatine, sodium benzoate (to reduce glycine) and ornithine reduce guanidinoacetate levels in patients with GAMT deficiency (dietary therapy was not evaluated in our study). Normal development with early therapy renders GAMT deficiency an ideal candidate for inclusion in newborn screening panels.
Collapse
Affiliation(s)
- Krista S Viau
- Department of Pediatrics, Division of Medical Genetics, University of Utah, 50 North Mario Capecchi Drive, 2C412 SOM, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Comeaux MS, Wang J, Wang G, Kleppe S, Zhang VW, Schmitt ES, Craigen WJ, Renaud D, Sun Q, Wong LJ. Biochemical, molecular, and clinical diagnoses of patients with cerebral creatine deficiency syndromes. Mol Genet Metab 2013; 109:260-8. [PMID: 23660394 DOI: 10.1016/j.ymgme.2013.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 01/09/2023]
Abstract
Cerebral creatine deficiency syndromes (CCDS) are a group of inborn errors of creatine metabolism that involve AGAT and GAMT for creatine biosynthesis disorders and SLC6A8 for creatine transporter (CT1) deficiency. Deficiencies in the three enzymes can be distinguished by intermediate metabolite levels, and a definitive diagnosis relies on the presence of deleterious mutations in the causative genes. Mutations and unclassified variants were identified in 41 unrelated patients, and 22 of these mutations were novel. Correlation of sequencing and biochemical data reveals that using plasma guanidinoacetate (GAA) as a biomarker has 100% specificity for both AGAT and GAMT deficiencies, but AGAT deficiency has decreased sensitivity in this assay. Furthermore, the urine creatine:creatinine ratio is an effective screening test with 100% specificity in males suspected of having creatine transporter deficiency. This test has a high false-positive rate due to dietary factors or dilute urine samples and lacks sensitivity in females. We conclude that biochemical screening for plasma GAA and measuring of the urine creatine:creatinine ratio should be performed for suspected CCDS patients prior to sequencing. Also, based on the results of this study, we feel that sequencing should only be considered if a patient has abnormal biochemical results on repeat testing.
Collapse
MESH Headings
- Amidinotransferases/blood
- Amidinotransferases/chemistry
- Amidinotransferases/deficiency
- Amidinotransferases/genetics
- Amidinotransferases/metabolism
- Amino Acid Metabolism, Inborn Errors/diagnosis
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/metabolism
- Brain Diseases, Metabolic, Inborn/diagnosis
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/metabolism
- Creatine/deficiency
- Creatine/genetics
- Creatine/metabolism
- Creatinine/urine
- Developmental Disabilities/diagnosis
- Developmental Disabilities/genetics
- Developmental Disabilities/metabolism
- Female
- Guanidinoacetate N-Methyltransferase/blood
- Guanidinoacetate N-Methyltransferase/deficiency
- Guanidinoacetate N-Methyltransferase/genetics
- Guanidinoacetate N-Methyltransferase/metabolism
- Humans
- Intellectual Disability/diagnosis
- Intellectual Disability/genetics
- Intellectual Disability/metabolism
- Language Development Disorders/diagnosis
- Language Development Disorders/genetics
- Language Development Disorders/metabolism
- Male
- Membrane Transport Proteins/genetics
- Mental Retardation, X-Linked/diagnosis
- Mental Retardation, X-Linked/genetics
- Mental Retardation, X-Linked/metabolism
- Models, Molecular
- Movement Disorders/congenital
- Movement Disorders/diagnosis
- Movement Disorders/genetics
- Movement Disorders/metabolism
- Mutation
- Phenotype
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/genetics
- Plasma Membrane Neurotransmitter Transport Proteins/metabolism
- Protein Conformation
- Speech Disorders/diagnosis
- Speech Disorders/genetics
- Speech Disorders/metabolism
- Syndrome
Collapse
Affiliation(s)
- Matthew S Comeaux
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
El-Gharbawy AH, Goldstein JL, Millington DS, Vaisnins AE, Schlune A, Barshop BA, Schulze A, Koeberl DD, Young SP. Elevation of guanidinoacetate in newborn dried blood spots and impact of early treatment in GAMT deficiency. Mol Genet Metab 2013; 109:215-7. [PMID: 23583224 DOI: 10.1016/j.ymgme.2013.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/08/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
Abstract
Guanidinoacetate methyltransferase (GAMT) deficiency is a good candidate disorder for newborn screening because early treatment appears to improve outcomes. We report elevation of guanidinoacetate in archived newborn dried blood spots for 3 cases (2 families) of GAMT deficiency compared with an unaffected carrier and controls. We also report a new case of a patient treated from birth with normal developmental outcome at the age of 42 months.
Collapse
Affiliation(s)
- Areeg H El-Gharbawy
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The lack of creatine in the central nervous system causes a severe but treatable neurological disease. Three inherited defects, AGAT, GAMT, and CrT deficiency, compromising synthesis and transport of creatine have been discovered recently. Together these so-called creatine deficiency syndromes (CDS) might represent the most frequent metabolic disorders with a primarily neurological phenotype. Patients with CDS present with global developmental delays, mental retardation, speech impairment especially affecting active language, seizures, extrapyramidal movement disorder, and autism spectrum disorder. The two defects in the creatine synthesis, AGAT and GAMT, are autosomal recessive disorders. They can be diagnosed by analysis of the creatine, guanidinoacetate, and creatinine in body fluids. Treatment is available and, especially when introduced in infancy, has a good outcome. The defect of creatine transport, CrT, is an X-linked condition and perhaps the most frequent reasons for X-linked mental retardation. Diagnosis is made by an increased ratio of creatine to creatinine in urine, but successful treatment still needs to be explored. CDS are under-diagnosed because easy to miss in standard diagnostic workup. Because CDS represent a frequent cause of cognitive and neurological impairment that is treatable they warrant consideration in the workup for genetic mental retardation syndromes, for intractable seizure disorders, and for neurological diseases with a predominant lack of active speech.
Collapse
Affiliation(s)
- Andreas Schulze
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, Research Institute, Hospital for Sick Children and University of Toronto, Toronto, Canada.
| |
Collapse
|
36
|
Cheillan D, Curt MJC, Briand G, Salomons GS, Mention-Mulliez K, Dobbelaere D, Cuisset JM, Lion-François L, Portes VD, Chabli A, Valayannopoulos V, Benoist JF, Pinard JM, Simard G, Douay O, Deiva K, Afenjar A, Héron D, Rivier F, Chabrol B, Prieur F, Cartault F, Pitelet G, Goldenberg A, Bekri S, Gerard M, Delorme R, Tardieu M, Porchet N, Vianey-Saban C, Vamecq J. Screening for primary creatine deficiencies in French patients with unexplained neurological symptoms. Orphanet J Rare Dis 2012; 7:96. [PMID: 23234264 PMCID: PMC3552865 DOI: 10.1186/1750-1172-7-96] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 12/07/2012] [Indexed: 12/11/2022] Open
Abstract
A population of patients with unexplained neurological symptoms from six major French university hospitals was screened over a 28-month period for primary creatine disorder (PCD). Urine guanidinoacetate (GAA) and creatine:creatinine ratios were measured in a cohort of 6,353 subjects to identify PCD patients and compile their clinical, 1H-MRS, biochemical and molecular data. Six GAMT [N-guanidinoacetatemethyltransferase (EC 2.1.1.2)] and 10 X-linked creatine transporter (SLC6A8) but no AGAT (GATM) [L-arginine/glycine amidinotransferase (EC 2.1.4.1)] deficient patients were identified in this manner. Three additional affected sibs were further identified after familial inquiry (1 brother with GAMT deficiency and 2 brothers with SLC6A8 deficiency in two different families). The prevalence of PCD in this population was 0.25% (0.09% and 0.16% for GAMT and SLC6A8 deficiencies, respectively). Seven new PCD-causing mutations were discovered (2 nonsense [c.577C > T and c.289C > T] and 1 splicing [c.391 + 15G > T] mutations for the GAMT gene and, 2 missense [c.1208C > A and c.926C > A], 1 frameshift [c.930delG] and 1 splicing [c.1393-1G > A] mutations for the SLC6A8 gene). No hot spot mutations were observed in these genes, as all the mutations were distributed throughout the entire gene sequences and were essentially patient/family specific. Approximately one fifth of the mutations of SLC6A8, but not GAMT, were attributed to neo-mutation, germinal or somatic mosaicism events. The only SLC6A8-deficient female patient in our series presented with the severe phenotype usually characterizing affected male patients, an observation in agreement with recent evidence that is in support of the fact that this X-linked disorder might be more frequent than expected in the female population with intellectual disability.
Collapse
Affiliation(s)
- David Cheillan
- Hospices Civils de Lyon, Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Groupement Hospitalier Est, Bron, 69677, France
| | - Marie Joncquel-Chevalier Curt
- Département de Biochimie et Biologie Moléculaire, Laboratoire d’Hormonologie, Métabolisme-Nutrition & Oncologie (HMNO)–Centre de Biologie et Pathologie (CBP) Pierre-Marie Degand, CHRU Lille, Lille, 59037, France
| | - Gilbert Briand
- Département de Biochimie et Biologie Moléculaire, Laboratoire d’Hormonologie, Métabolisme-Nutrition & Oncologie (HMNO)–Centre de Biologie et Pathologie (CBP) Pierre-Marie Degand, CHRU Lille, Lille, 59037, France
- Mass Spectrometry Application Laboratory, University of Lille 2, Lille, 59045, France
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Karine Mention-Mulliez
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Jeanne de Flandres, CHRU Lille, Lille, 59037, France
| | - Dries Dobbelaere
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Jeanne de Flandres, CHRU Lille, Lille, 59037, France
| | - Jean-Marie Cuisset
- Service de Neurologie Infantile, Hôpital Roger Salengro, CHRU Lille, Lille, 59037, France
| | - Laurence Lion-François
- Service de neurologie pédiatrique, CHU de Lyon-GH Est - Hôpital Femme Mère Enfant, Bron Cedex, 69677, France
| | - Vincent Des Portes
- Service de neurologie pédiatrique, CHU de Lyon-GH Est - Hôpital Femme Mère Enfant, Bron Cedex, 69677, France
| | - Allel Chabli
- Laboratory of Biochemistry, Necker – Enfants Malades Hospital and Université Paris Descartes, Paris, 75015, France
| | - Vassili Valayannopoulos
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Necker des Enfants Malades and Université Paris Descartes, 149 rue de Sèvres, Paris, 75015, France
| | - Jean-François Benoist
- Département de Biochimie-Hormonologie, CHU Hôpital Robert Debré, Paris, 75019, France
| | - Jean-Marc Pinard
- Unité de Neurologie Pédiatrique, Département de Pédiatrie, Hôpital Raymond Poincare, Paris-IdF-Ouest University, Paris, France
| | - Gilles Simard
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Angers, Angers, 49033, France
| | - Olivier Douay
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Angers, Angers, 49033, France
| | - Kumaran Deiva
- Service de Neuropédiatrie - CHU de Bicêtre, Le Kremlin Bicêtre Cedex, 94275, France
| | - Alexandra Afenjar
- Service de Neuropédiatrie, Hôpital Armand Trousseau, Groupement hospitalier universitaire Est, Paris, 75012, France
| | - Delphine Héron
- Unité Fonctionnelle de Génétique Médicale AP-HP, Département de Génétique et Cytogénétique, Centre de Référence «Déficiences intellectuelles de causes rares », CRicm, UMR-S975, Groupe Hospitalier Pitié-Salpêtrière, Paris, F-75013, France
| | - François Rivier
- Neuropédiatrie, CHRU Montpellier, & Inserm U1046, Université Montpellier 1 & 2, Montpellier Cedex 5, 34295, France
| | - Brigitte Chabrol
- Service Neuropédiatrie, AP-HM Hôpital de la Timone, Marseille Cedex 5, 13385, France
| | - Fabienne Prieur
- Service de Génétique, CHU de Saint-Étienne Hôpital Nord, Saint-Etienne Cédex 2, 42055, France
| | - François Cartault
- Service de génétique Centre hospitalier Felix Guyon (Saint-Denis) Bellepierre, Saint-Denis cedex, 97405, France
| | - Gaëlle Pitelet
- Service de Neuropédiatrie, Hôpital de l’Archet 2, Nice Cedex 3, 06202, France
| | - Alice Goldenberg
- Service de Génétique Médicale, CHU Ch. Nicolle, Rouen Cedex, 76031, France
| | - Soumeya Bekri
- Institut de Biologie Clinique, CHU Ch. Nicolle, Rouen Cedex, 76031, France
| | - Marion Gerard
- Service de Génétique, CHU Clémenceau, Caen, 14033, France
| | - Richard Delorme
- Service de Pédopsychiatrie CHU Hôpital Robert Debré, Paris, 75019, France
| | - Marc Tardieu
- Service de Neuropédiatrie - CHU de Bicêtre, Le Kremlin Bicêtre Cedex, 94275, France
| | - Nicole Porchet
- Département de Biochimie et Biologie Moléculaire, Laboratoire d’Hormonologie, Métabolisme-Nutrition & Oncologie (HMNO)–Centre de Biologie et Pathologie (CBP) Pierre-Marie Degand, CHRU Lille, Lille, 59037, France
| | - Christine Vianey-Saban
- Hospices Civils de Lyon, Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Groupement Hospitalier Est, Bron, 69677, France
| | - Joseph Vamecq
- Département de Biochimie et Biologie Moléculaire, Laboratoire d’Hormonologie, Métabolisme-Nutrition & Oncologie (HMNO)–Centre de Biologie et Pathologie (CBP) Pierre-Marie Degand, CHRU Lille, Lille, 59037, France
- Inserm, Laboratoire Externe, Département du Prof. Nicole Porchet, HMNO, Centre de Biologie et Pathologie (CBP) Pierre-Marie Degand, CHRU Lille, Lille, 59037, France
| |
Collapse
|
37
|
Leuzzi V, Mastrangelo M, Battini R, Cioni G. Inborn errors of creatine metabolism and epilepsy. Epilepsia 2012; 54:217-27. [DOI: 10.1111/epi.12020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
38
|
Mercimek-Mahmutoglu S, Sinclair G, van Dooren SJM, Kanhai W, Ashcraft P, Michel OJ, Nelson J, Betsalel OT, Sweetman L, Jakobs C, Salomons GS. Guanidinoacetate methyltransferase deficiency: first steps to newborn screening for a treatable neurometabolic disease. Mol Genet Metab 2012; 107:433-7. [PMID: 23031365 DOI: 10.1016/j.ymgme.2012.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 07/27/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND GAMT deficiency is an autosomal recessive disorder of creatine biosynthesis resulting in severe neurological complications in untreated patients. Currently available treatment is only successful to stop disease progression, but is not sufficient to reverse neurological complications occurring prior to diagnosis. Normal neurodevelopmental outcome in a patient, treated in the newborn period, highlights the importance of early diagnosis. METHODS Targeted mutation analysis (c.59G>C and c.327G>A) in the GAMT gene by the QIAxcel system and GAA measurement by a novel two-tier method were performed in 3000 anonymized newborn blood dot spot cards. RESULTS None of the targeted mutations were detected in any newborn. Two novel heterozygous variants (c.283_285dupGTC; p.Val95dup and c.278_283delinsCTCGATGCAC; p.Asp93AlafsX35) were identified by coincidence. Carrier frequency for these insertion/deletion types of GAMT mutations was 1/1475 in this small cohort of newborns. GAA levels were at or above the 99th percentile (3.12 μmol/l) in 4 newborns. Second-tier testing showed normal results for 4 newborns revealing 0.1% false positive rate. No GAMT mutations were identified in 4 of the newborns with elevated GAA levels in the first tier testing. CONCLUSION This is the first two-tier study to investigate carrier frequency of GAMT deficiency in the small cohort of newborn population to establish evidence base for the first steps toward newborn screening for this treatable neurometabolic disorder.
Collapse
Affiliation(s)
- S Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ipser JC, Syal S, Bentley J, Adnams CM, Steyn B, Stein DJ. 1H-MRS in autism spectrum disorders: a systematic meta-analysis. Metab Brain Dis 2012; 27:275-87. [PMID: 22426803 DOI: 10.1007/s11011-012-9293-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
We conducted a systematic review and meta-analysis of proton magnetic resonance spectroscopy (1H-MRS) studies comparing autism spectrum disorder (ASD) patients with healthy controls, with the aim of profiling ASD-associated changes in the metabolites N-acetyl-aspartate (NAA) and Creatine (Cr). Meta-regression models of NAA and Cr levels were employed, using data from 20 eligible studies (N = 852), to investigate age-dependent differences in both global brain and region-specific metabolite levels, while controlling for measurement method (Cr-ratio versus absolute concentrations). Decreased NAA concentrations that were specific to children were found for whole-brain grey and white matter. In addition, a significant decrease in NAA was evident across age categories in the parietal cortex, the cerebellum, and the anterior cingulate cortex. Higher levels of Cr were observed for ASD adults than children in global grey matter, with specific increases for adults in the temporal lobe and decreased Cr in the occipital lobe in children. No differences were found for either NAA or Cr in the frontal lobes. These data provide some evidence that ASD is characterized by age-dependent fluctuations in metabolite levels across the whole brain and at the level of specific regions thought to underlie ASD-associated behavioural and affective deficits. Differences in Cr as a function of age and brain region suggests caution in the interpretation of Cr-based ratio measures of metabolites. Despite efforts to control for sources of heterogeneity, considerable variability in metabolite levels was observed in frontal and temporal regions, warranting further investigation.
Collapse
Affiliation(s)
- Jonathan C Ipser
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | | | |
Collapse
|
40
|
Mercimek-Mahmutoglu S, Dunbar M, Friesen A, Garret S, Hartnett C, Huh L, Sinclair G, Stockler S, Wellington S, Pouwels PJW, Salomons GS, Jakobs C. Evaluation of two year treatment outcome and limited impact of arginine restriction in a patient with GAMT deficiency. Mol Genet Metab 2012; 105:155-8. [PMID: 22019491 DOI: 10.1016/j.ymgme.2011.09.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 01/10/2023]
Abstract
A 4-year-old female with history of developmental regression and autistic features was diagnosed with guanidinoacetate methyltransferase deficiency at age 21 months. Upon treatment, she showed improvements in her developmental milestones, sensorial-neural hearing loss and brain atrophy on cranial-MRI. The creatine/choline ratio increased 82% in basal ganglia and 88% in white matter on cranial MR-spectroscopy. The CSF guanidinoacetate decreased 80% after six months of ornithine and creatine supplementation and an additional 8% after 18 months of additional arginine restricted diet. We report the most favorable clinical and biochemical outcome on treatment in our patient.
Collapse
Affiliation(s)
- Saadet Mercimek-Mahmutoglu
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Longo N, Ardon O, Vanzo R, Schwartz E, Pasquali M. Disorders of creatine transport and metabolism. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2011; 157C:72-8. [PMID: 21308988 DOI: 10.1002/ajmg.c.30292] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Creatine is a nitrogen containing compound that serves as an energy shuttle between the mitochondrial sites of ATP production and the cytosol where ATP is utilized. There are two known disorders of creatine synthesis (both transmitted as autosomal recessive traits: arginine: glycine amidinotransferase (AGAT) deficiency; OMIM 602360; and guanidinoacetate methyltransferase (GAMT) deficiency (OMIM 601240)) and one disorder of creatine transport (X-linked recessive SLC6A8 creatine transporter deficiency (OMIM 300036)). All these disorders are characterized by brain creatine deficiency, detectable by magnetic resonance spectroscopy. Affected patients can have mental retardation, hypotonia, autism or behavioral problems and seizures. The diagnosis of these conditions relies on the measurement of plasma and urine creatine and guanidinoacetate. Creatine levels in plasma are reduced in both creatine synthesis defects and guanidinoacetate is increased in GAMT deficiency. The urine creatine/creatinine ratio is elevated in creatine transporter deficiency with normal plasma levels of creatine and guanidinoacetate. The diagnosis is confirmed in all cases by DNA testing or functional studies. Defects of creatine biosynthesis are treated with creatine supplements and, in GAMT deficiency, with ornithine and dietary restriction of arginine through limitation of protein intake. No causal therapy is yet available for creatine transporter deficiency and supplementation with the guanidinoacetate precursors arginine and glycine is being explored. The excellent response to therapy of early identified patients with GAMT or AGAT deficiency candidates these condition for inclusion in newborn screening programs.
Collapse
Affiliation(s)
- Nicola Longo
- Division of Medical Genetics, University of Utah, Salt Lake City, 84132, USA.
| | | | | | | | | |
Collapse
|
42
|
Alcaide P, Merinero B, Ruiz-Sala P, Richard E, Navarrete R, Arias A, Ribes A, Artuch R, Campistol J, Ugarte M, Rodríguez-Pombo P. Defining the pathogenicity of creatine deficiency syndrome. Hum Mutat 2011; 32:282-91. [PMID: 21140503 DOI: 10.1002/humu.21421] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/12/2010] [Indexed: 01/09/2023]
Abstract
This work examined nine patients with creatine deficiency syndrome (CDS): six with a creatine transport (CRTR) defect and three with a GAMT defect. Eleven nucleotide variations were detected: six in SLC6A8 and five in GAMT. These changes were analyzed at the mRNA level and specific alleles (most of which bore premature stop codons) were selected as nulls because they provoked nonsense-mediated decay activation. The impact of these CDS mutations on metabolic stress (ROS production, p38MAPK activation, aberrant proliferation and apoptosis) was analyzed in patient fibroblast cultures. Oxidative stress contributed toward the severe form of CDS, with increases seen in the intracellular ROS content and the percentage of apoptotic cells. An altered cell cycle was also seen in a number of CRTR and GAMT fibroblast cell lines (mostly those carrying null alleles). p38MAPK activation only correlated with oxidative stress in the CRTR cells. Based on intracellular creatine levels, the contribution of energy depletion toward metabolic stress was demonstrable only in selected CRTR cells. Together, these findings suggest that the apoptotic response to genotoxic damage in the present CDS cells may have been triggered by different cell signaling pathways. They also suggest that reducing oxidative stress could be helpful in treating CDS. Hum Mutat 32:1-10, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Patricia Alcaide
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nasrallah F, Feki M, Briand G, Kaabachi N. GC/MS determination of guanidinoacetate and creatine in urine: A routine method for creatine deficiency syndrome diagnosis. Clin Biochem 2010; 43:1356-61. [DOI: 10.1016/j.clinbiochem.2010.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 07/29/2010] [Accepted: 08/05/2010] [Indexed: 11/16/2022]
|
44
|
Nasrallah F, Feki M, Kaabachi N. Creatine and creatine deficiency syndromes: biochemical and clinical aspects. Pediatr Neurol 2010; 42:163-71. [PMID: 20159424 DOI: 10.1016/j.pediatrneurol.2009.07.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/10/2009] [Accepted: 07/30/2009] [Indexed: 11/28/2022]
Abstract
Creatine deficiency syndromes, which have only recently been described, represent a group of inborn errors of creatine synthesis (L-arginine-glycine amidinotransferase deficiency and guanidinoacetate methyltransferase deficiency) and transport (creatine transporter deficiency). Patients with creatine deficiency syndromes present with mental retardation expressive speech and language delay, and epilepsy. Patients with guanidinoacetate methyltransferase deficiency or creatine transporter deficiency may exhibit autistic behavior. The common denominator of these disorders is the depletion of the brain creatine pool, as demonstrated by in vivo proton magnetic resonance spectroscopy. For diagnosis, laboratory investigations start with analysis of guanidinoacetate, creatine, and creatinine in plasma and urine. Based on these findings, enzyme assays or DNA mutation analysis may be performed. The creatine deficiency syndromes are underdiagnosed, so the possibility should be considered in all children affected by unexplained mental retardation, seizures, and speech delay. Guanidinoacetate methyltransferase deficiency and arginine-glycine amidinotransferase deficiency are treatable by oral creatine supplementation, but patients with creatine transporter deficiency do not respond to this type of treatment.
Collapse
|
45
|
Tassini M, Zannolli R, Buoni S, Engelke U, Vivi A, Valensin G, Salomons GS, De Nicola A, Strambi M, Monti L, Morava E, Wevers RA, Hayek J. [(1)H] magnetic resonance spectroscopy of urine: diagnosis of a guanidinoacetate methyl transferase deficiency case. J Child Neurol 2010; 25:98-101. [PMID: 19461121 DOI: 10.1177/0883073809336120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For the first time, the use of urine [(1)H] magnetic resonance spectroscopy has allowed the detection of 1 case of guanidinoacetate methyl transferase in a database sample of 1500 pediatric patients with a diagnosis of central nervous system impairment of unknown origin. The urine [(1)H] magnetic resonance spectroscopy of a 9-year-old child, having severe epilepsy and nonprogressive mental and motor retardation with no apparent cause, revealed a possible guanidinoacetic acid increase. The definitive assignment of guanidinoacetic acid was checked by addition of pure substance to the urine sample and by measuring [(1)H]-[(1)H] correlation spectroscopy. Diagnosis of guanidinoacetate methyl transferase deficiency was further confirmed by liquid chromatography-mass spectrometry, brain [(1)H] magnetic resonance spectroscopy, and mutational analysis of the guanidinoacetate methyl transferase gene. The replacement therapy was promptly started and, after 1 year, the child was seizure free. We conclude that for this case, urine [(1)H] magnetic resonance spectroscopy screening was able to diagnose guanidinoacetate methyl transferase deficiency.
Collapse
|
46
|
García Silva MT. [Brain creatine defects: how can these uncommon diseases be diagnosed and their evolution changed]. Med Clin (Barc) 2009; 133:752-3. [PMID: 19880147 DOI: 10.1016/j.medcli.2009.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
|
47
|
Deficiencia cerebral de creatina: primeros pacientes españoles con mutaciones en el gen GAMT. Med Clin (Barc) 2009; 133:745-9. [DOI: 10.1016/j.medcli.2009.06.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/25/2009] [Indexed: 11/24/2022]
|