1
|
Jiang X, Meng H, Wei H, Ouyang Y, Zhang H, Zhao Z, Xu J, Huang S. N-acetylglucosaminyl 1-phosphate transferase (GPT) is a facilitator in Bombyx mori Nucleopolyhedrovirus proliferation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 165:105336. [PMID: 39923926 DOI: 10.1016/j.dci.2025.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
GPT is a conserved ER-resident transmembrane protein that catalyzes the initial step of protein N-glycosylation in vertebrates. However, to date, there have been no reports on GPT in silkworms. In the present study, we identified a GPT ortholog in the B. mori genome. Spatiotemporal expression profiles showed that BmGPT was highly expressed in the majority of silkworm's organs. BmGPT regulates multiple cellular processes such as cell viability, proliferation, and cell death. In addition, BmGPT overexpression increased BmNPV proliferation in BmN cells, whereas BmGPT inhibition by siRNA or a chemical inhibitor suppressed BmNPV proliferation both in vitro and in vivo. These results suggested that BmGPT facilitates BmNPV proliferation by regulating cell proliferation and apoptosis. This study identifies a potential molecular target for BmNPV prevention and for silkworm breeding.
Collapse
Affiliation(s)
- Xiaochun Jiang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Haonan Meng
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hailong Wei
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yunqi Ouyang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Haoxiang Zhang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ziming Zhao
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jiaping Xu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Shoujun Huang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
2
|
Heckmann K, Iuso A, Reunert J, Grüneberg M, Seelhöfer A, Rust S, Fiermonte G, Paradies E, Piazzolla C, Mannil M, Marquardt T. Expanding the genetic and clinical spectrum of SLC25A42-associated disorders and testing of pantothenic acid to improve CoA level in vitro. JIMD Rep 2024; 65:417-425. [PMID: 39512436 PMCID: PMC11540568 DOI: 10.1002/jmd2.12441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 11/15/2024] Open
Abstract
SLC25A42 encodes the mitochondrial coenzyme A (CoA) transporter localized at the inner mitochondrial membrane. SLC25A42 deficiency leads to a congenital disease with a heterogeneous clinical presentation, including myopathy, developmental delay, lactic acidosis, and encephalopathy. Twenty-one patients have been described so far. In the current study, we report on the identification of new biallelic variants in SLC25A42 in three siblings. Patients presented with symmetrical T2 hyperintensity of the putamen with minor volume depression at the brain MRI, elevated lactate, reduced oxygen consumption rates in muscle and fibroblasts, and reduced CoA levels in fibroblasts. Administration of pantothenic acid led to clinical stabilization and increased CoA levels in fibroblasts, thus confirming a role for SLC25A42 in energy metabolism and CoA homeostasis.
Collapse
Affiliation(s)
- Katharina Heckmann
- Department of General PediatricsUniversity Hospital MünsterMünsterGermany
| | - Arcangela Iuso
- Institute of Neurogenomics, Helmholtz Zentrum MünchenNeuherbergGermany
- Institute of Human GeneticsTechnical University of MunichMunichGermany
| | - Janine Reunert
- Department of General PediatricsUniversity Hospital MünsterMünsterGermany
| | - Marianne Grüneberg
- Department of General PediatricsUniversity Hospital MünsterMünsterGermany
| | - Anja Seelhöfer
- Department of General PediatricsUniversity Hospital MünsterMünsterGermany
| | - Stephan Rust
- Department of General PediatricsUniversity Hospital MünsterMünsterGermany
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
| | - Eleonora Paradies
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
| | - Carmela Piazzolla
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
| | - Manoj Mannil
- Clinic of RadiologyUniversity Hospital MünsterMünsterGermany
| | - Thorsten Marquardt
- Department of General PediatricsUniversity Hospital MünsterMünsterGermany
| |
Collapse
|
3
|
Tao H, Sun Y, Zhai J, Wu J. DPAGT1-CDG: Recurrent fetal death. Birth Defects Res 2023; 115:1185-1191. [PMID: 37421173 DOI: 10.1002/bdr2.2219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are a series of relatively uncommon genetic disorders, and variants in the dolichyl-phosphate N-acetylglucosamine-1-phosphotransferase (DPAGT1) gene can cause DPAGT1-CDG, which is characterized by multisystem abnormalities: failure to thrive, psychomotor retardation, seizures, etc. PATIENTS: Two fetuses in a nonconsanguineous family recurrently presented with irregular skull morphology, micrognathia, adduction and supination by prenatal ultrasound. They were finally found dead in utero. Pedigree whole exome sequencing revealed novel compound heterozygous variants in the DPAGT1 gene. We also reviewed 11 previous reports associated with DPAGT1-CDG. CONCLUSIONS We report novel variants in the DPAGT1 gene in two fetuses from the same family with intrauterine death.
Collapse
Affiliation(s)
- Huimin Tao
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Brain Diseases, Bioinformation of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Yu Sun
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Brain Diseases, Bioinformation of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Department of Obstetrics, Fengxian People's hospital, Xuzhou, Jiangsu, China
| | - Jingfang Zhai
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Brain Diseases, Bioinformation of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jiebin Wu
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Brain Diseases, Bioinformation of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Yoon D, Moon JH, Cho A, Boo H, Cha JS, Lee Y, Yoo J. Structure-Based Insight on the Mechanism of N-Glycosylation Inhibition by Tunicamycin. Mol Cells 2023; 46:337-344. [PMID: 37190766 PMCID: PMC10258461 DOI: 10.14348/molcells.2023.0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 05/17/2023] Open
Abstract
N-glycosylation, a common post-translational modification, is widely acknowledged to have a significant effect on protein stability and folding. N-glycosylation is a complex process that occurs in the endoplasmic reticulum (ER) and requires the participation of multiple enzymes. GlcNAc-1-P-transferase (GPT) is essential for initiating N-glycosylation in the ER. Tunicamycin is a natural product that inhibits N-glycosylation and produces ER stress, and thus it is utilized in research. The molecular mechanism by which GPT triggers N-glycosylation is discussed in this review based on the GPT structure. Based on the structure of the GPT-tunicamycin complex, we also discuss how tunicamycin reduces GPT activity, which prevents N-glycosylation. This review will be highly useful for understanding the role of GPT in the N-glycosylation of proteins, as well as presents a potential for considering tunicamycin as an antibiotic treatment.
Collapse
Affiliation(s)
- Danbi Yoon
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Ju Heun Moon
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Anna Cho
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hyejoon Boo
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jeong Seok Cha
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jiho Yoo
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
5
|
Lebedeva IV, Wagner MV, Sahdeo S, Lu YF, Anyanwu-Ofili A, Harms MB, Wadia JS, Rajagopal G, Boland MJ, Goldstein DB. Precision genetic cellular models identify therapies protective against ER stress. Cell Death Dis 2021; 12:770. [PMID: 34354042 PMCID: PMC8342410 DOI: 10.1038/s41419-021-04045-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/08/2022]
Abstract
Rare monogenic disorders often share molecular etiologies involved in the pathogenesis of common diseases. Congenital disorders of glycosylation (CDG) and deglycosylation (CDDG) are rare pediatric disorders with symptoms that range from mild to life threatening. A biological mechanism shared among CDG and CDDG as well as more common neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis, is endoplasmic reticulum (ER) stress. We developed isogenic human cellular models of two types of CDG and the only known CDDG to discover drugs that can alleviate ER stress. Systematic phenotyping confirmed ER stress and identified elevated autophagy among other phenotypes in each model. We screened 1049 compounds and scored their ability to correct aberrant morphology in each model using an agnostic cell-painting assay based on >300 cellular features. This primary screen identified multiple compounds able to correct morphological phenotypes. Independent validation shows they also correct cellular phenotypes and alleviate each of the ER stress markers identified in each model. Many of the active compounds are associated with microtubule dynamics, which points to new therapeutic opportunities for both rare and more common disorders presenting with ER stress, such as Alzheimer's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Michelle V Wagner
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
- Janssen R&D US, San Diego, CA, USA
| | - Sunil Sahdeo
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
- Janssen R&D US, San Diego, CA, USA
| | - Yi-Fan Lu
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Matthew B Harms
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jehangir S Wadia
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
- Janssen R&D US, San Diego, CA, USA
| | | | - Michael J Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
6
|
Palombo F, Piccolo B, Saccani E, Fiorini C, Capristo M, Caporali L, Pisani F, Carelli V. A novel ALG14 missense variant in an alive child with myopathy, epilepsy, and progressive cerebral atrophy. Am J Med Genet A 2021; 185:1918-1921. [PMID: 33751823 DOI: 10.1002/ajmg.a.62153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Benedetta Piccolo
- Child Neuropsychiatric Unit, Mother and Child Department, AOU di Parma, Parma, Italy
| | - Elena Saccani
- Dipartimento di Medicina Generale e Specialistica, U.O Neurologia, AOU di Parma, Parma, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Mariantonietta Capristo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Francesco Pisani
- Child Neuropsychiatric Unit, Medicine and Surgery Department, Neuroscience Section, University of Parma, Parma, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Dong YY, Wang H, Pike ACW, Cochrane SA, Hamedzadeh S, Wyszyński FJ, Bushell SR, Royer SF, Widdick DA, Sajid A, Boshoff HI, Park Y, Lucas R, Liu WM, Lee SS, Machida T, Minall L, Mehmood S, Belaya K, Liu WW, Chu A, Shrestha L, Mukhopadhyay SMM, Strain-Damerell C, Chalk R, Burgess-Brown NA, Bibb MJ, Barry Iii CE, Robinson CV, Beeson D, Davis BG, Carpenter EP. Structures of DPAGT1 Explain Glycosylation Disease Mechanisms and Advance TB Antibiotic Design. Cell 2019; 175:1045-1058.e16. [PMID: 30388443 PMCID: PMC6218659 DOI: 10.1016/j.cell.2018.10.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/01/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022]
Abstract
Protein N-glycosylation is a widespread post-translational modification. The first committed step in this process is catalysed by dolichyl-phosphate N-acetylglucosamine-phosphotransferase DPAGT1 (GPT/E.C. 2.7.8.15). Missense DPAGT1 variants cause congenital myasthenic syndrome and disorders of glycosylation. In addition, naturally-occurring bactericidal nucleoside analogues such as tunicamycin are toxic to eukaryotes due to DPAGT1 inhibition, preventing their clinical use. Our structures of DPAGT1 with the substrate UDP-GlcNAc and tunicamycin reveal substrate binding modes, suggest a mechanism of catalysis, provide an understanding of how mutations modulate activity (thus causing disease) and allow design of non-toxic “lipid-altered” tunicamycins. The structure-tuned activity of these analogues against several bacterial targets allowed the design of potent antibiotics for Mycobacterium tuberculosis, enabling treatment in vitro, in cellulo and in vivo, providing a promising new class of antimicrobial drug. Structures of DPAGT1 with UDP-GlcNAc and tunicamycin reveal mechanisms of catalysis DPAGT1 mutations in patients with glycosylation disorders modulate DPAGT1 activity Structures, kinetics and biosynthesis reveal role of lipid in tunicamycin Lipid-altered, tunicamycin analogues give non-toxic antibiotics against TB
Collapse
Affiliation(s)
- Yin Yao Dong
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Hua Wang
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Ashley C W Pike
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Stephen A Cochrane
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK; School of Chemistry and Chemical Engineering, Queen's University, Belfast, UK
| | - Sadra Hamedzadeh
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Filip J Wyszyński
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Simon R Bushell
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sylvain F Royer
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - David A Widdick
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Andaleeb Sajid
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yumi Park
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ricardo Lucas
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Wei-Min Liu
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Seung Seo Lee
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Takuya Machida
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Leanne Minall
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | | | - Katsiaryna Belaya
- Neurosciences Group, Nuffield Department of Clinical Neuroscience, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Wei-Wei Liu
- Neurosciences Group, Nuffield Department of Clinical Neuroscience, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Amy Chu
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Leela Shrestha
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | - Rod Chalk
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Mervyn J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Clifton E Barry Iii
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | - David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neuroscience, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Benjamin G Davis
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
8
|
Congenital myasthenia and congenital disorders of glycosylation caused by mutations in the DPAGT1 gene. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2017.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Helman G, Sharma S, Crawford J, Patra B, Jain P, Bent SJ, Urtizberea JA, Saran RK, Taft RJ, van der Knaap MS, Simons C. Leukoencephalopathy due to variants in GFPT1-associated congenital myasthenic syndrome. Neurology 2019; 92:e587-e593. [PMID: 30635494 DOI: 10.1212/wnl.0000000000006886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/06/2018] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To determine the molecular etiology of disease in 4 individuals from 2 unrelated families who presented with proximal muscle weakness and features suggestive of mitochondrial disease. METHODS Clinical information and neuroimaging were reviewed. Genome sequencing was performed on affected individuals and biological parents. RESULTS All affected individuals presented with muscle weakness and difficulty walking. In one family, both children had neonatal respiratory distress while the other family had 2 children with episodic deteriorations. In each family, muscle biopsy demonstrated ragged red fibers. MRI was suggestive of a mitochondrial leukoencephalopathy, with extensive deep cerebral white matter T2 hyperintense signal and selective involvement of the middle blade of the corpus callosum. Through genome sequencing, homozygous GFPT1 missense variants were identified in the affected individuals of each family. The variants detected (p.Arg14Leu and p.Thr151Lys) are absent from population databases and predicted to be damaging by in silico prediction tools. Following the genetic diagnosis, nerve conduction studies were performed and demonstrated a decremental response to repetitive nerve stimulation, confirming the diagnosis of myasthenia. Treatment with pyridostigmine was started in one family with favorable response. CONCLUSIONS GFPT1 encodes a widely expressed protein that controls the flux of glucose into the hexosamine-biosynthesis pathway that produces precursors for glycosylation of proteins. GFPT1 variants and defects in other enzymes of this pathway have previously been associated with congenital myasthenia. These findings identify leukoencephalopathy as a previously unrecognized phenotype in GFPT1-related disease and suggest that mitochondrial dysfunction could contribute to this disorder.
Collapse
Affiliation(s)
- Guy Helman
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Suvasini Sharma
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Joanna Crawford
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Bijoy Patra
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Puneet Jain
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Stephen J Bent
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - J Andoni Urtizberea
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Ravindra K Saran
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Ryan J Taft
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Marjo S van der Knaap
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands.
| | - Cas Simons
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Ng BG, Underhill HR, Palm L, Bengtson P, Rozet JM, Gerber S, Munnich A, Zanlonghi X, Stevens CA, Kircher M, Nickerson DA, Buckingham KJ, Josephson KD, Shendure J, Bamshad MJ, Freeze HH, Eklund EA. DPAGT1 Deficiency with Encephalopathy (DPAGT1-CDG): Clinical and Genetic Description of 11 New Patients. JIMD Rep 2018; 44:85-92. [PMID: 30117111 DOI: 10.1007/8904_2018_128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Pathogenic mutations in DPAGT1 cause a rare type of a congenital disorder of glycosylation termed DPAGT1-CDG or, alternatively, a milder version with only myasthenia known as DPAGT1-CMS. Fourteen disease-causing mutations in 28 patients from 10 families have previously been reported to cause the systemic form, DPAGT1-CDG. We here report on another 11 patients from 8 families and add 10 new mutations. Most patients have a very severe disease course, where common findings are pronounced muscular hypotonia, intractable epilepsy, global developmental delay/intellectual disability, and early death. We also present data on three affected females that are young adults and have a somewhat milder, stable disease. Our findings expand both the molecular and clinical knowledge of previously published data but also widen the phenotypic spectrum of DPAGT1-CDG.
Collapse
Affiliation(s)
- Bobby G Ng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Hunter R Underhill
- Division of Medical Genetics, University of Utah, Salt Lake City, UT, USA
| | - Lars Palm
- Division of Pediatrics, Skane University Hospital, Malmö, Sweden
| | - Per Bengtson
- Clinical Chemistry, Skane University Hospital, Lund, Sweden
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, Paris, France
| | - Sylvie Gerber
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, Paris, France
| | - Arnold Munnich
- Department of Genetics, Hôpital Necker-Enfants Malades, APHP, Paris Descartes University, Paris, France
| | | | - Cathy A Stevens
- Department of Pediatrics, University of Tennessee College of Medicine, Chattanooga, TN, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Kati J Buckingham
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Hudson H Freeze
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Erik A Eklund
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA. .,Division of Pediatrics, Lund University, Lund, Sweden.
| |
Collapse
|
11
|
Beecroft SJ, Lombard M, Mowat D, McLean C, Cairns A, Davis M, Laing NG, Ravenscroft G. Genetics of neuromuscular fetal akinesia in the genomics era. J Med Genet 2018; 55:505-514. [PMID: 29959180 DOI: 10.1136/jmedgenet-2018-105266] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/22/2018] [Accepted: 04/19/2018] [Indexed: 12/27/2022]
Abstract
Fetal hypokinesia or akinesia encompasses a broad spectrum of disorders, united by impaired movement in utero. Often, the underlying aetiology is genetic in origin, affecting part of the neuromuscular system. The affordable and high-throughput nature of next-generation DNA sequencing has led to an explosion in disease gene discovery across rare diseases, including fetal akinesias. A genetic diagnosis has clinical utility as it may affect management and prognosis and informs recurrence risk, facilitating family planning decisions. More broadly, knowledge of disease genes increasingly allows population-based preconception carrier screening, which has reduced the incidence of recessive diseases in several populations. Despite gains in knowledge of the genetics of fetal akinesia, many families lack a genetic diagnosis. In this review, we describe the developments in Mendelian genetics of neuromuscular fetal akinesia in the genomics era. We examine genetic diagnoses with neuromuscular causes, specifically including the lower motor neuron, peripheral nerve, neuromuscular junction and muscle.
Collapse
Affiliation(s)
- Sarah Jane Beecroft
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Harry Perkins Institute of Medical Research, QQ Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Marcus Lombard
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Harry Perkins Institute of Medical Research, QQ Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - David Mowat
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Catriona McLean
- Victorian Neuromuscular Laboratory, Alfred Health, Melbourne, Victoria, Australia
| | - Anita Cairns
- Department of Neurology, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - Mark Davis
- Neurogenetics Laboratory, Department of Diagnostic Genomics, PP Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Harry Perkins Institute of Medical Research, QQ Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Gianina Ravenscroft
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Harry Perkins Institute of Medical Research, QQ Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
12
|
Yoo J, Mashalidis EH, Kuk ACY, Yamamoto K, Kaeser B, Ichikawa S, Lee SY. GlcNAc-1-P-transferase-tunicamycin complex structure reveals basis for inhibition of N-glycosylation. Nat Struct Mol Biol 2018; 25:217-224. [PMID: 29459785 PMCID: PMC5840018 DOI: 10.1038/s41594-018-0031-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
Abstract
N-linked glycosylation is a predominant post-translational modification of protein in eukaryotes, and its dysregulation is the etiology of several human disorders. The enzyme UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosaminephosphotransferase (GlcNAc-1-P-transferase, GPT) catalyzes the first and committed step of N-linked glycosylation in the endoplasmic reticulum membrane, and it is the target of the natural product tunicamycin. Tunicamycin has potent antibacterial activity by inhibiting the bacterial cell wall synthesis enzyme MraY, but its usefulness as an antibiotic is limited by off-target inhibition of human GPT. Our understanding of how tunicamycin inhibits N-linked glycosylation and efforts to selectively target MraY are hampered by a lack of structural information. Here we present crystal structures of human GPT in complex with tunicamycin. Our structural and functional analyses reveal the difference between GPT and MraY in their mechanisms of inhibition by tunicamycin. We demonstrate that this difference could be exploited for the design of MraY-specific inhibitors as potential antibiotics.
Collapse
Affiliation(s)
- Jiho Yoo
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | | | - Alvin C Y Kuk
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Kazuki Yamamoto
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Benjamin Kaeser
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
13
|
Beeson D, Cossins J, Rodriguez-Cruz P, Maxwell S, Liu WW, Palace J. Myasthenic syndromes due to defects in COL13A1 and in the N-linked glycosylation pathway. Ann N Y Acad Sci 2018; 1413:163-169. [DOI: 10.1111/nyas.13576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Affiliation(s)
- David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neuroscience; Weatherall Institute of Molecular Medicine; The John Radcliffe Oxford UK
| | - Judith Cossins
- Neurosciences Group, Nuffield Department of Clinical Neuroscience; Weatherall Institute of Molecular Medicine; The John Radcliffe Oxford UK
| | - Pedro Rodriguez-Cruz
- Neurosciences Group, Nuffield Department of Clinical Neuroscience; Weatherall Institute of Molecular Medicine; The John Radcliffe Oxford UK
| | - Susan Maxwell
- Neurosciences Group, Nuffield Department of Clinical Neuroscience; Weatherall Institute of Molecular Medicine; The John Radcliffe Oxford UK
| | - Wei-Wei Liu
- Neurosciences Group, Nuffield Department of Clinical Neuroscience; Weatherall Institute of Molecular Medicine; The John Radcliffe Oxford UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neuroscience; Level 3 The West Wing; The John Radcliffe Oxford UK
| |
Collapse
|
14
|
Schorling DC, Rost S, Lefeber DJ, Brady L, Müller CR, Korinthenberg R, Tarnopolsky M, Bönnemann CG, Rodenburg RJ, Bugiani M, Beytia M, Krüger M, van der Knaap M, Kirschner J. Early and lethal neurodegeneration with myasthenic and myopathic features: A new ALG14-CDG. Neurology 2017; 89:657-664. [PMID: 28733338 DOI: 10.1212/wnl.0000000000004234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/28/2017] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE To describe the presentation and identify the cause of a new clinical phenotype, characterized by early severe neurodegeneration with myopathic and myasthenic features. METHODS This case study of 5 patients from 3 families includes clinical phenotype, serial MRI, electrophysiologic testing, muscle biopsy, and full autopsy. Genetic workup included whole exome sequencing and segregation analysis of the likely causal mutation. RESULTS All 5 patients showed severe muscular hypotonia, progressive cerebral atrophy, and therapy-refractory epilepsy. Three patients had congenital contractures. All patients died during their first year of life. In 2 of our patients, electrophysiologic testing showed abnormal decrement, but treatment with pyridostigmine led only to temporary improvement. Causative mutations in ALG14 were identified in all patients. The mutation c.220 G>A (p.Asp74Asn) was homozygous in 2 patients and heterozygous in the other 3 patients. Additional heterozygous mutations were c.422T>G (p.Val141Gly) and c.326G>A (p.Arg109Gln). In all cases, parents were found to be heterozygous carriers. None of the identified variants has been described previously. CONCLUSIONS We report a genetic syndrome combining myasthenic features and severe neurodegeneration with therapy-refractory epilepsy. The underlying cause is a glycosylation defect due to mutations in ALG14. These cases broaden the phenotypic spectrum associated with ALG14 congenital disorders of glycosylation as previously only isolated myasthenia has been described.
Collapse
Affiliation(s)
- David C Schorling
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Simone Rost
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Dirk J Lefeber
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Lauren Brady
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Clemens R Müller
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Rudolf Korinthenberg
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Mark Tarnopolsky
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Carsten G Bönnemann
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Richard J Rodenburg
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marianna Bugiani
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Maria Beytia
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marcus Krüger
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marjo van der Knaap
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jan Kirschner
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Congenital myasthenia and congenital disorders of glycosylation caused by mutations in the DPAGT1 gene. Neurologia 2017; 34:139-141. [PMID: 28712839 DOI: 10.1016/j.nrl.2017.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/24/2017] [Accepted: 05/11/2017] [Indexed: 01/18/2023] Open
|
16
|
DPAGT1-CDG: Functional analysis of disease-causing pathogenic mutations and role of endoplasmic reticulum stress. PLoS One 2017; 12:e0179456. [PMID: 28662078 PMCID: PMC5491010 DOI: 10.1371/journal.pone.0179456] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/29/2017] [Indexed: 11/23/2022] Open
Abstract
Pathogenic mutations in DPAGT1 are manifested as two possible phenotypes: congenital disorder of glycosylation DPAGT1-CDG (also known as CDG-Ij), and limb-girdle congenital myasthenic syndrome (CMS) with tubular aggregates. UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosamine phosphotransferase (GPT), the protein encoded by DPAGT1, is an endoplasmic reticulum (ER)-resident protein involved in an initial step in the N-glycosylation pathway. The aim of the present study was to examine the effect of six variants in DPAGT1 detected in patients with DPAGT1-CDG, and the role of endoplasmic reticulum stress, as part of the search for therapeutic strategies to use against DPAGT1-CDG. The effect of the six mutations, i.e., c.358C>A (p.Leu120Met), c.791T>G (p.Val264Gly), c.901C>T (p.Arg301Cys), c.902G>A (p.Arg301His), c.1154T>G (p.Leu385Arg), and of the novel mutation c.329T>C (p.Phe110Ser), were examined via the analysis of DPAGT1 transcriptional profiles and GTP levels in patient-derived fibroblasts. In addition, the transient expression of different mutations was analysed in COS-7 cells. The results obtained, together with those of bioinformatic studies, revealed these mutations to affect the splicing process, the stability of GTP, or the ability of this protein to correctly localise in the ER membrane. The unfolded protein response (UPR; the response to ER stress) was found not to be active in patient-derived fibroblasts, unlike that seen in cells from patients with PMM2-CDG or DPM1-CDG. Even so, the fibroblasts of patients with DPAGT1-CDG seemed to be more sensitive to the stressor tunicamycin. The present work improves our knowledge of DPAGT1-CDG and provides bases for developing tailored splicing and folding therapies.
Collapse
|
17
|
Niewiadomska M, Janik A, Perlińska-Lenart U, Piłsyk S, Palamarczyk G, Kruszewska JS. The role of Alg13 N-acetylglucosaminyl transferase in the expression of pathogenic features of Candida albicans. Biochim Biophys Acta Gen Subj 2017; 1861:789-801. [DOI: 10.1016/j.bbagen.2017.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 01/09/2023]
|
18
|
AglH, a thermophilic UDP-N-acetylglucosamine-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase initiating protein N-glycosylation pathway in Sulfolobus acidocaldarius, is capable of complementing the eukaryal Alg7. Extremophiles 2016; 21:121-134. [PMID: 27822701 PMCID: PMC5222938 DOI: 10.1007/s00792-016-0890-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/24/2016] [Indexed: 10/31/2022]
Abstract
AglH, a predicted UDP-GlcNAc-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase, is initiating the protein N-glycosylation pathway in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. AglH successfully replaced the endogenous GlcNAc-1-phosphotransferase activity of Alg7 in a conditional lethal Saccharomyces cerevisiae strain, in which the first step of the eukaryal protein N-glycosylation process was repressed. This study is one of the few examples of cross-domain complementation demonstrating a conserved polyprenyl phosphate transferase reaction within the eukaryal and archaeal domain like it was demonstrated for Methanococcus voltae (Shams-Eldin et al. 2008). The topology prediction and the alignment of the AglH membrane protein with GlcNAc-1-phosphotransferases from the three domains of life show significant conservation of amino acids within the different proposed cytoplasmic loops. Alanine mutations of selected conserved amino acids in the putative cytoplasmic loops II (D100), IV (F220) and V (F264) demonstrated the importance of these amino acids for cross-domain AlgH activity in in vitro complementation assays in S. cerevisiae. Furthermore, antibiotic treatment interfering directly with the activity of dolichyl phosphate GlcNAc-1-phosphotransferases confirmed the essentiality of N-glycosylation for cell survival.
Collapse
|
19
|
Identification and characterization of transcriptional control region of the human beta 1,4-mannosyltransferase gene. Cytotechnology 2015; 69:417-434. [PMID: 26608959 DOI: 10.1007/s10616-015-9929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022] Open
Abstract
All asparagine-linked glycans (N-glycans) on the eukaryotic glycoproteins are primarily derived from dolichol-linked oligosaccharides (DLO), synthesized on the rough endoplasmic reticulum membrane. We have previously reported cloning and identification of the human gene, HMT-1, which encodes chitobiosyldiphosphodolichol beta-mannosyltransferase (β1,4-MT) involved in the early assembly of DLO. Considering that N-glycosylation is one of the most ubiquitous post-translational modifications for many eukaryotic proteins, the HMT-1 could be postulated as one of the housekeeping genes, but its transcriptional regulation remains to be investigated. Here we screened a 1 kb region upstream from HMT-1 open reading frame (ORF) for transcriptionally regulatory sequences by using chloramphenicol acetyl transferase (CAT) assay, and found that the region from -33 to -1 positions might act in HMT-1 transcription at basal level and that the region from -200 to -42 should regulate its transcription either positively or negatively. In addition, results with CAT assays suggested the possibility that two GATA-1 motifs and an Sp1 motif within a 200 bp region upstream from HMT-1 ORF might significantly upregulate HMT-1 transcription. On the contrary, the observations obtained from site-directed mutational analyses revealed that an NF-1/AP-2 overlapping motif located at -148 to -134 positions should serve as a strong silencer. The control of the HMT-1 transcription by these motifs resided within the 200 bp region could partially explain the variation of expression level among various human tissues, suggesting availability and importance of this region for regulatory role in HMT-1 expression.
Collapse
|
20
|
Jaeken J, Lefeber D, Matthijs G. Clinical utility gene card for: DPAGT1 defective congenital disorder of glycosylation. Eur J Hum Genet 2015; 23:ejhg2015177. [PMID: 26242989 DOI: 10.1038/ejhg.2015.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/30/2015] [Indexed: 12/25/2022] Open
Affiliation(s)
- Jaak Jaeken
- Department of Development and Regeneration, Centre for Metabolic Disease, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Dirk Lefeber
- Department of Neurology, Translational Metabolic Laboratory, Radboudumc, Nijmegen, The Netherlands
| | - Gert Matthijs
- Department of Human Genetics, Centre for Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Ganetzky R, Izumi K, Edmondson A, Muraresku CC, Zackai E, Deardorff M, Ganesh J. Fetal akinesia deformation sequence due to a congenital disorder of glycosylation. Am J Med Genet A 2015; 167A:2411-7. [DOI: 10.1002/ajmg.a.37184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 05/15/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Rebecca Ganetzky
- Division of Genetics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Section of Biochemical Genetics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Kosuke Izumi
- Division of Genetics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Section of Biochemical Genetics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Andrew Edmondson
- The Perelman School of Medicine at The University of Pennsylvania; Philadelphia Pennsylvania
| | - Colleen Clarke Muraresku
- Section of Biochemical Genetics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Elaine Zackai
- Division of Genetics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- The Perelman School of Medicine at The University of Pennsylvania; Philadelphia Pennsylvania
| | - Matthew Deardorff
- Division of Genetics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- The Perelman School of Medicine at The University of Pennsylvania; Philadelphia Pennsylvania
| | - Jaya Ganesh
- Genetics Program, Children's Regional Hospital; Cooper University Health Care
| |
Collapse
|
22
|
Klein A, Robb S, Rushing E, Liu WW, Belaya K, Beeson D. Congenital myasthenic syndrome caused by mutations in DPAGT. Neuromuscul Disord 2014; 25:253-6. [PMID: 25500013 DOI: 10.1016/j.nmd.2014.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 11/28/2022]
Abstract
Congenital myasthenic syndromes with prominent limb girdle involvement are an important differential diagnosis for congenital myopathies because of the therapeutic considerations. We present a case where accurate diagnosis was delayed for many years. Fluctuations of weakness were misinterpreted as effects of alternative treatments. Weakness was generalised, most prominently in the arms. Fatigability was more prominent in less affected muscles revealed by a positive Simpson test. Stimulation single fibre electromyography confirmed the suspected neuromuscular transmission defect. The marked response to pyridostigmine and cognitive impairment pointed to a myasthenic syndrome due to impaired glycosylation. Two mutations in trans were found in DPAGT1, the gene coding for dolichyl-phosphate N-acetylglucosaminephosphotransferase, one novel, the other previously reported in a rare form of congenital disorder of glycosylation. Gene expression studies revealed that both mutations reduce DPAGT1 expression. Phenotypic features not previously described for DPAGT1 CMS included restricted ocular abduction and long finger flexor contractures.
Collapse
Affiliation(s)
- Andrea Klein
- Department of Paediatric Neurology, University Children's Hospital Zürich, Zürich, Switzerland.
| | - Stephanie Robb
- Dubowitz Neuromuscular Centre, Institute of Child Health, Great Ormond Street Hospital, London, United Kingdom
| | - Elisabeth Rushing
- Department of Neuropathology, University Hospital Zürich, Zürich, Switzerland
| | - Wei-Wei Liu
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Kasiaryna Belaya
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
23
|
Selcen D, Shen XM, Brengman J, Li Y, Stans AA, Wieben E, Engel AG. DPAGT1 myasthenia and myopathy: genetic, phenotypic, and expression studies. Neurology 2014; 82:1822-30. [PMID: 24759841 DOI: 10.1212/wnl.0000000000000435] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate patients with DPAGT1 (UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase 1)-associated myasthenic syndrome. METHODS We performed exome and Sanger sequencing, determined glycoprotein expression in patient muscles, assessed pathogenicity of the mutant proteins by examining their expression and enzymatic activity in transfected cells, evaluated structural changes in muscle and the neuromuscular junction, and examined electrophysiologic aspects of neuromuscular transmission in vitro. RESULTS Patients 1 and 2, 16 and 14 years of age, had progressive fatigable weakness since infancy and are intellectually disabled. Patient 3, a less severely affected brother of patient 1, also has autistic features. Each patient harbors 2 novel heteroallelic mutations in DPAGT1, an enzyme subserving protein N-glycosylation. Patients 1 and 3 harbor Met1Leu, which reduces protein expression, and His375Tyr, which decreases enzyme activity. Patient 2 carries Val264Met, which abolishes enzyme activity, and a synonymous Leu120Leu mutation that markedly augments exon skipping, resulting in some skipped and infrequent nonskipped alleles. Therefore, the nonskipped allele rescues the phenotype. Intracellular microelectrode studies indicate combined pre- and postsynaptic defects of neuromuscular transmission with evidence for somatic mosaicism in patient 2. Structural studies reveal hypoplastic endplates, fiber-type disproportion, tubular aggregates, and degeneration of muscle fiber organelles resulting in autophagocytosis. CONCLUSIONS DPAGT1 myasthenia affects multiple parameters of neuromuscular transmission, causes fiber-type disproportion and an autophagic myopathy, and can be associated with intellectual disability. We speculate that hypoglycosylation of synapse-specific proteins causes defects in central as well as motor synapses.
Collapse
Affiliation(s)
- Duygu Selcen
- From the Departments of Neurology and Neuromuscular Research Laboratory (D.S., X.-M.S., J.B., A.G.E.), Biomedical Informatics and Statistics (Y.L.), Orthopedic Surgery (A.A.S.), and Biochemistry and Molecular Biology (E.W.), Mayo Clinic, Rochester, MN.
| | - Xin-Ming Shen
- From the Departments of Neurology and Neuromuscular Research Laboratory (D.S., X.-M.S., J.B., A.G.E.), Biomedical Informatics and Statistics (Y.L.), Orthopedic Surgery (A.A.S.), and Biochemistry and Molecular Biology (E.W.), Mayo Clinic, Rochester, MN
| | - Joan Brengman
- From the Departments of Neurology and Neuromuscular Research Laboratory (D.S., X.-M.S., J.B., A.G.E.), Biomedical Informatics and Statistics (Y.L.), Orthopedic Surgery (A.A.S.), and Biochemistry and Molecular Biology (E.W.), Mayo Clinic, Rochester, MN
| | - Ying Li
- From the Departments of Neurology and Neuromuscular Research Laboratory (D.S., X.-M.S., J.B., A.G.E.), Biomedical Informatics and Statistics (Y.L.), Orthopedic Surgery (A.A.S.), and Biochemistry and Molecular Biology (E.W.), Mayo Clinic, Rochester, MN
| | - Anthony A Stans
- From the Departments of Neurology and Neuromuscular Research Laboratory (D.S., X.-M.S., J.B., A.G.E.), Biomedical Informatics and Statistics (Y.L.), Orthopedic Surgery (A.A.S.), and Biochemistry and Molecular Biology (E.W.), Mayo Clinic, Rochester, MN
| | - Eric Wieben
- From the Departments of Neurology and Neuromuscular Research Laboratory (D.S., X.-M.S., J.B., A.G.E.), Biomedical Informatics and Statistics (Y.L.), Orthopedic Surgery (A.A.S.), and Biochemistry and Molecular Biology (E.W.), Mayo Clinic, Rochester, MN
| | - Andrew G Engel
- From the Departments of Neurology and Neuromuscular Research Laboratory (D.S., X.-M.S., J.B., A.G.E.), Biomedical Informatics and Statistics (Y.L.), Orthopedic Surgery (A.A.S.), and Biochemistry and Molecular Biology (E.W.), Mayo Clinic, Rochester, MN
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Congenital myasthenic syndromes (CMSs) form a heterogeneous group of genetic diseases characterized by a dysfunction of neuromuscular transmission because of mutations in numerous genes. This review will focus on the causative genes recently identified and on the therapy of CMSs. RECENT FINDINGS Advances in exome sequencing allowed the discovery of a new group of genes that did not code for the known molecular components of the neuromuscular junction, and the definition of a new group of glycosylation-defective CMS. Rather than the specific drugs used, some of them having been known for decades, it is the rigorous therapeutic strategy that is now offered to the patient in relation to the identified mutated gene that is novel and promising. SUMMARY In addition to the above main points, we also present new data on the genes that were already known with an emphasis on the clinic and on animal models that may be of use to understand the pathophysiology of the disease. We also stress not only the diagnosis difficulties between congenital myopathies and CMSs, but also the continuum that may exist between the two.
Collapse
|
25
|
Wolthuis DFGJ, Janssen MC, Cassiman D, Lefeber DJ, Morava E, Morava-Kozicz E. Defining the phenotype and diagnostic considerations in adults with congenital disorders of N-linked glycosylation. Expert Rev Mol Diagn 2014; 14:217-24. [PMID: 24524732 DOI: 10.1586/14737159.2014.890052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Congenital disorders of N-glycosylation (CDG) form a rapidly growing group of more than 20 inborn errors of metabolism. Most patients are identified at the pediatric age with multisystem disease. There is no systematic review on the long-term outcome and clinical presentation in adult patients. Here, we review the adult phenotype in 78 CDG patients diagnosed with 18 different forms of N-glycosylation defects. Characteristics include intellectual disability, speech disorder and abnormal gait. After puberty, symptoms might remain non-progressive and patients may lead a socially functional life. Thrombosis and progressive symptoms, such as peripheral neuropathy, scoliosis and visual demise are specifically common in PMM2-CDG. Especially in adult patients, diagnostic glycosylation screening can be mildly abnormal or near-normal, hampering diagnosis. Features of adult CDG patients significantly differ from the pediatric phenotype. Non-syndromal intellectual disability, or congenital malformations in different types of CDG and decreasing sensitivity of screening might be responsible for the CDG cases remaining undiagnosed until adulthood.
Collapse
Affiliation(s)
- David F G J Wolthuis
- Hayward Genetics Center, Tulane University Medical School, New Orleans, LA, 70112, USA
| | | | | | | | | | | |
Collapse
|
26
|
ALG1-CDG: a new case with early fatal outcome. Gene 2013; 534:345-51. [PMID: 24157261 DOI: 10.1016/j.gene.2013.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 11/20/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a growing group of inherited metabolic disorders where enzymatic defects in the formation or processing of glycolipids and/or glycoproteins lead to variety of different diseases. The deficiency of GDP-Man:GlcNAc2-PP-dolichol mannosyltransferase, encoded by the human ortholog of ALG1 from yeast, is known as ALG1-CDG (CDG-Ik). The phenotypical, molecular and biochemical analysis of a severely affected ALG1-CDG patient is the focus of this paper. The patient's main symptoms were feeding problems and diarrhea, profound hypoproteinemia with massive ascites, muscular hypertonia, seizures refractory to treatment, recurrent episodes of apnoea, cardiac and hepatic involvement and coagulation anomalies. Compound heterozygosity for the mutations c.1145T>C (M382T) and c.1312C>T (R438W) was detected in the patient's ALG1-coding sequence. In contrast to a previously reported speculation on R438W we confirmed both mutations as disease-causing in ALG1-CDG.
Collapse
|
27
|
Finlayson S, Palace J, Belaya K, Walls TJ, Norwood F, Burke G, Holton JL, Pascual-Pascual SI, Cossins J, Beeson D. Clinical features of congenital myasthenic syndrome due to mutations in DPAGT1. J Neurol Neurosurg Psychiatry 2013; 84:1119-25. [PMID: 23447650 PMCID: PMC6044426 DOI: 10.1136/jnnp-2012-304716] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND A newly defined congenital myasthenic syndrome (CMS) caused by DPAGT1 mutations has recently been reported. While many other CMS-associated proteins have discrete roles localised to the neuromuscular junction, DPAGT1 is ubiquitously expressed, modifying many proteins, and as such is an unexpected cause of isolated neuromuscular involvement. METHODS We present detailed clinical characteristics of five patients with CMS caused by DPAGT1 mutations. RESULTS Patients have prominent limb girdle weakness and minimal craniobulbar symptoms. Tubular aggregates on muscle biopsy are characteristic but may not be apparent on early biopsies. Typical myasthenic features such as pyridostigmine and 3, 4- diaminopyridine responsiveness, and decrement on repetitive nerve stimulation are present. CONCLUSIONS These patients mimic myopathic disorders and are likely to be under-diagnosed. The descriptions here should facilitate recognition of this disorder. In particular minimal craniobulbar involvement and tubular aggregates on muscle biopsy help to distinguish DPAGT1 CMS from the majority of other forms of CMS. Patients with DPAGT1 CMS share similar clinical features with patients who have CMS caused by mutations in GFPT1, another recently identified CMS subtype.
Collapse
Affiliation(s)
- Sarah Finlayson
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Clinical features in a large Iranian family with a limb-girdle congenital myasthenic syndrome due to a mutation in DPAGT1. Neuromuscul Disord 2013; 23:469-72. [PMID: 23591138 PMCID: PMC3746154 DOI: 10.1016/j.nmd.2013.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/28/2013] [Accepted: 03/06/2013] [Indexed: 12/26/2022]
Abstract
Mutations in DPAGT1 are a newly recognised cause of congenital myasthenic syndrome. DPAGT1 encodes an early component of the N-linked glycosylation pathway. Initially mutations in DPAGT1 have been associated with the onset of the severe multisystem disorder – congenital disorder of glycosylation type 1J. However, recently it was established that certain mutations in this gene can cause symptoms restricted to muscle weakness resulting from defective neuromuscular transmission. We report four cases from a large Iranian pedigree with prominent limb-girdle weakness and minimal craniobulbar symptoms who harbour a novel mutation in DPAGT1, c.652C>T, p.Arg218Trp. This myasthenic syndrome may mimic myopathic disorders and is likely under-diagnosed.
Collapse
|
29
|
Cossins J, Belaya K, Hicks D, Salih MA, Finlayson S, Carboni N, Liu WW, Maxwell S, Zoltowska K, Farsani GT, Laval S, Seidhamed MZ, Donnelly P, Bentley D, McGowan SJ, Müller J, Palace J, Lochmüller H, Beeson D. Congenital myasthenic syndromes due to mutations in ALG2 and ALG14. Brain 2013; 136:944-56. [PMID: 23404334 PMCID: PMC3580273 DOI: 10.1093/brain/awt010] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 01/22/2023] Open
Abstract
Congenital myasthenic syndromes are a heterogeneous group of inherited disorders that arise from impaired signal transmission at the neuromuscular synapse. They are characterized by fatigable muscle weakness. We performed linkage analysis, whole-exome and whole-genome sequencing to determine the underlying defect in patients with an inherited limb-girdle pattern of myasthenic weakness. We identify ALG14 and ALG2 as novel genes in which mutations cause a congenital myasthenic syndrome. Through analogy with yeast, ALG14 is thought to form a multiglycosyltransferase complex with ALG13 and DPAGT1 that catalyses the first two committed steps of asparagine-linked protein glycosylation. We show that ALG14 is concentrated at the muscle motor endplates and small interfering RNA silencing of ALG14 results in reduced cell-surface expression of muscle acetylcholine receptor expressed in human embryonic kidney 293 cells. ALG2 is an alpha-1,3-mannosyltransferase that also catalyses early steps in the asparagine-linked glycosylation pathway. Mutations were identified in two kinships, with mutation ALG2p.Val68Gly found to severely reduce ALG2 expression both in patient muscle, and in cell cultures. Identification of DPAGT1, ALG14 and ALG2 mutations as a cause of congenital myasthenic syndrome underscores the importance of asparagine-linked protein glycosylation for proper functioning of the neuromuscular junction. These syndromes form part of the wider spectrum of congenital disorders of glycosylation caused by impaired asparagine-linked glycosylation. It is likely that further genes encoding components of this pathway will be associated with congenital myasthenic syndromes or impaired neuromuscular transmission as part of a more severe multisystem disorder. Our findings suggest that treatment with cholinesterase inhibitors may improve muscle function in many of the congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Judith Cossins
- Neurosciences Group, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Houlden H. Defective N-linked protein glycosylation pathway in congenital myasthenic syndromes. Brain 2013; 136:692-5. [PMID: 23436500 PMCID: PMC3580274 DOI: 10.1093/brain/awt042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Iqbal Z, Shahzad M, Vissers LELM, van Scherpenzeel M, Gilissen C, Razzaq A, Zahoor MY, Khan SN, Kleefstra T, Veltman JA, de Brouwer APM, Lefeber DJ, van Bokhoven H, Riazuddin S. A compound heterozygous mutation in DPAGT1 results in a congenital disorder of glycosylation with a relatively mild phenotype. Eur J Hum Genet 2012; 21:844-9. [PMID: 23249953 DOI: 10.1038/ejhg.2012.257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/05/2012] [Accepted: 10/11/2012] [Indexed: 01/07/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are a large group of recessive multisystem disorders caused by impaired protein or lipid glycosylation. The CDG-I subgroup is characterized by protein N-glycosylation defects originating in the endoplasmic reticulum. The genetic defect is known for 17 different CDG-I subtypes. Patients in the few reported DPAGT1-CDG families exhibit severe intellectual disability (ID), epilepsy, microcephaly, severe hypotonia, facial dysmorphism and structural brain anomalies. In this study, we report a non-consanguineous family with two affected adults presenting with a relatively mild phenotype consisting of moderate ID, epilepsy, hypotonia, aggressive behavior and balance problems. Exome sequencing revealed a compound heterozygous missense mutation, c.85A>T (p.I29F) and c.503T>C (p.L168P), in the DPAGT1 gene. The affected amino acids are located in the first and fifth transmembrane domains of the protein. Isoelectric focusing and high-resolution mass spectrometry analyses of serum transferrin revealed glycosylation profiles that are consistent with a CDG-I defect. Our results show that the clinical spectrum of DPAGT1-CDG is much broader than appreciated so far.
Collapse
Affiliation(s)
- Zafar Iqbal
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Belaya K, Finlayson S, Cossins J, Liu WW, Maxwell S, Palace J, Beeson D. Identification of DPAGT1 as a new gene in which mutations cause a congenital myasthenic syndrome. Ann N Y Acad Sci 2012; 1275:29-35. [PMID: 23278575 PMCID: PMC6044425 DOI: 10.1111/j.1749-6632.2012.06790.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Congenital myasthenic syndromes (CMS) are a group of inherited disorders that arise from impaired signal transmission at the neuromuscular synapse. They are characterized by fatigable muscle weakness. This is a heterogenous group of disorders with 15 different genes implicated in the development of the disease. Using whole-exome sequencing we identified DPAGT1 as a new gene associated with CMS. DPAGT1 catalyses the first step of N-linked protein glycosylation. DPAGT1 patients are characterized by weakness of limb muscles, response to treatment with cholinesterase inhibitors, and the presence of tubular aggregates on muscle biopsy. We showed that DPAGT1 is required for glycosylation of acetylcholine receptor (AChR) subunits and efficient export of AChR to the cell surface. We suggest that the primary pathogenic mechanism of DPAGT1-associated CMS is reduced levels of AChRs at the endplate region. This finding demonstrates that impairment of the N-linked glycosylation pathway can lead to the development of CMS.
Collapse
Affiliation(s)
- Katsiaryna Belaya
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
33
|
Belaya K, Finlayson S, Slater C, Cossins J, Liu W, Maxwell S, McGowan S, Maslau S, Twigg S, Walls T, Pascual Pascual S, Palace J, Beeson D. Mutations in DPAGT1 cause a limb-girdle congenital myasthenic syndrome with tubular aggregates. Am J Hum Genet 2012; 91:193-201. [PMID: 22742743 PMCID: PMC3397259 DOI: 10.1016/j.ajhg.2012.05.022] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/18/2012] [Accepted: 05/29/2012] [Indexed: 11/28/2022] Open
Abstract
Congenital myasthenic syndromes are a heterogeneous group of inherited disorders that arise from impaired signal transmission at the neuromuscular synapse. They are characterized by fatigable muscle weakness. We performed whole-exome sequencing to determine the underlying defect in a group of individuals with an inherited limb-girdle pattern of myasthenic weakness. We identify DPAGT1 as a gene in which mutations cause a congenital myasthenic syndrome. We describe seven different mutations found in five individuals with DPAGT1 mutations. The affected individuals share a number of common clinical features, including involvement of proximal limb muscles, response to treatment with cholinesterase inhibitors and 3,4-diaminopyridine, and the presence of tubular aggregates in muscle biopsies. Analyses of motor endplates from two of the individuals demonstrate a severe reduction of endplate acetylcholine receptors. DPAGT1 is an essential enzyme catalyzing the first committed step of N-linked protein glycosylation. Our findings underscore the importance of N-linked protein glycosylation for proper functioning of the neuromuscular junction. Using the DPAGT1-specific inhibitor tunicamycin, we show that DPAGT1 is required for efficient glycosylation of acetylcholine-receptor subunits and for efficient export of acetylcholine receptors to the cell surface. We suggest that the primary pathogenic mechanism of DPAGT1 mutations is reduced levels of acetylcholine receptors at the endplate region. These individuals share clinical features similar to those of congenital myasthenic syndrome due to GFPT1 mutations, and their disorder might be part of a larger subgroup comprising the congenital myasthenic syndromes that result from defects in the N-linked glycosylation pathway and that manifest through impaired neuromuscular transmission.
Collapse
Affiliation(s)
- Katsiaryna Belaya
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Sarah Finlayson
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Clarke R. Slater
- Institute of Neuroscience, Newcastle Biomedicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Judith Cossins
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Wei Wei Liu
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Susan Maxwell
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Simon J. McGowan
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Siarhei Maslau
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Stephen R.F. Twigg
- Clinical Genetics, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Timothy J. Walls
- Department of Neurology, Regional Neurosciences Centre, Newcastle General Hospital, Newcastle upon Tyne NE1 4LP, UK
| | - Samuel I. Pascual Pascual
- Servicio de Neurologia Pediátrica. Hospital Universitario La Paz, Departamento de Pediatria, Universidad Autónoma de Madrid, Madrid 28046, Spain
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
34
|
Carrera IA, Matthijs G, Perez B, Cerdá CP. DPAGT1-CDG: report of a patient with fetal hypokinesia phenotype. Am J Med Genet A 2012; 158A:2027-30. [PMID: 22786653 DOI: 10.1002/ajmg.a.35472] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/20/2012] [Indexed: 01/12/2023]
Abstract
Congenital disorders of glycosylation (CDG) are due to either defects in the synthesis of the glycan moiety of glycoproteins or glycolipids and in the attachment of the glycans to proteins and lipids. Some 50 CDG have been identified. They represent a challenge for clinicians because most are multisystem diseases with a heterogeneous spectrum of clinical manifestations with involvement of any organ and system. We report on a patient with a mutation in the glycosyltransferase encoded by the DPAGT1 gene, an infrequent CDG. He showed severe fetal hypokinesia phenotype with decreased fetal movements and polyhydramnios. At birth he showed decreased facial expression, without nasolabial folds, soft long ears, U-shaped vermilion of the upper lip, thick skin, hypertrichosis, camptodactyly, moderate multiple contractures, hypotonia and severe hypokinesia, no spontaneous movements, and very limited movements with stimuli; he died at 1½ months. Isoelectrofocusing of serum transferrin showed a type 1 pattern with increased asialo- and disialotransferrin. The study of the DPAGT1 gene showed he was a compound heterozygote for two novel point missense mutations [c.901C>T]+[c.1094T>G]. This phenotype expands the clinical features of the few DPATG1-CDG patients reported.
Collapse
|