1
|
Alfalfa Xeno-miR168b Target CPT1A to Regulate Milk Fat Synthesis in Bovine Mammary Epithelial Cells. Metabolites 2023; 13:metabo13010076. [PMID: 36677001 PMCID: PMC9866016 DOI: 10.3390/metabo13010076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
It was shown that microRNAs (miRNAs) play an important role in the synthesis of milk fat; thus, this manuscript evaluated whether exogenous miRNA (xeno-miRNAs) from alfalfa could influence the milk fat content in dairy cows. At first, mtr-miR168b was screened from dairy cow milk and blood. Then, EdU staining, flow cytometry, Oil Red O staining, qRT-PCR, and WB were applied to explore the effect of xeno-miR168b on the proliferation, apoptosis, and lipid metabolism of bovine mammary epithelial cells (BMECs). Finally, in order to clarify the pathway that regulated the lipid metabolism of BMECs using xeno-miR168b, a double-luciferase reporter assay was used to verify the target gene related to milk fat. These results showed that overexpression of xeno-miR168b inhibited cell proliferation but promoted apoptosis, which also decreased the expression of several lipid metabolism genes, including PPARγ, SCD1, C/EBPβ, and SREBP1, significantly inhibited lipid droplet formation, and reduced triglyceride content in BMECs. Furthermore, the targeting relationship between CPT1A and xeno-miR168b was determined and it was confirmed that CPT1A silencing reduced the expression of lipid metabolism genes and inhibited fat accumulation in BMECs. These findings identified xeno-miR168b from alfalfa as a cross-kingdom regulatory element that could influence milk fat content in dairy cows by modulating CPT1A expression.
Collapse
|
2
|
Xu Z, Hu W, Wang B, Xu T, Wang J, Wei D. Canagliflozin Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Lipid Metabolism and Inhibiting Inflammation through Induction of Autophagy. Yonsei Med J 2022; 63:619-631. [PMID: 35748073 PMCID: PMC9226837 DOI: 10.3349/ymj.2022.63.7.619] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Nonalcoholic fatty liver disease (NAFLD) is closely associated with metabolic diseases, including obesity and diabetes, and has gradually become the most common cause of chronic liver disease. We investigated the effects of sodium glucose cotransporter 2 (SGLT2) inhibitor canagliflozin on NAFLD in high-fat diet (HFD)-induced obese mice and possible underlying mechanisms. MATERIALS AND METHODS Male C57BL/6 mice were fed a normal-diet, HFD, or HFD with canagliflozin for 14 weeks. AML-12 hepatocytes were treated with canagliflozin. Expression of related pathways was assessed. RESULTS Canagliflozin administration reduced body weight and fat mass, compared with HFD alone. Canagliflozin improved glucose and lipid metabolic disorders. Compared with HFD-fed mice, liver weight, serum alanine transaminase (ALT) levels, and hepatic lipid accumulation were decreased after canagliflozin administration. Additionally, canagliflozin upregulated lipolysis markers (CPT1a, ACOX1, and ACADM), downregulated lipogenesis markers (SREBP-1c and FASN), and suppressed the production of inflammatory cytokines (TNFα, MCP1, IL-1β, and IL-6), consistent with significantly increased LC3 II/I and Atg7 levels in the liver following canagliflozin treatment. In vitro, canagliflozin increased CPT1a, ACOX1, and ACADM expression, decreased SREBP-1c and FASN protein expression, and reduced TNFα, MCP1, IL-1β, and IL-6 mRNA levels in lipid mixture (LM)-induced hepatocytes in a dose-dependent manner. These changes were reversed by 3-MA, an autophagy inhibitor. CONCLUSION Our findings suggest that canagliflozin ameliorates the pathogenesis of NAFLD by regulating lipid metabolism and inhibiting inflammation, which may be associated with its promotion of autophagy.
Collapse
Affiliation(s)
- Zhipeng Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
| | - Wenxin Hu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
| | - Bin Wang
- Department of Breast and Thyroid Surgery, Tengzhou Central People's Hospital, Zaozhuang, Shandong, China
| | - Ting Xu
- Department of Urology, Weifang Medical University, Weifang, Shandong, China
| | - Jianning Wang
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
| | - Dan Wei
- Department of Comprehensive Internal Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong, China.
| |
Collapse
|
3
|
Song Y, Li S, He C. PPARγ Gene Polymorphisms, Metabolic Disorders, and Coronary Artery Disease. Front Cardiovasc Med 2022; 9:808929. [PMID: 35402540 PMCID: PMC8984027 DOI: 10.3389/fcvm.2022.808929] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/22/2022] [Indexed: 01/14/2023] Open
Abstract
Being activated by endogenous and exogenous ligands, nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) enhances insulin sensitivity, promotes adipocyte differentiation, stimulates adipogenesis, and has the properties of anti-atherosclerosis, anti-inflammation, and anti-oxidation. The Human PPARγ gene (PPARG) contains thousands of polymorphic loci, among them two polymorphisms (rs10865710 and rs7649970) in the promoter region and two polymorphisms (rs1801282 and rs3856806) in the exonic region were widely reported to be significantly associated with coronary artery disease (CAD). Mechanistically, PPARG polymorphisms lead to abnormal expression of PPARG gene and/or dysfunction of PPARγ protein, causing metabolic disorders such as hypercholesterolemia and hypertriglyceridemia, and thereby increasing susceptibility to CAD.
Collapse
Affiliation(s)
- Yongyan Song
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Shujin Li
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Chuan He
- Department of Cardiology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
- *Correspondence: Chuan He,
| |
Collapse
|
4
|
Fang C, Guo F, Zhao X, Zhang Z, Lu J, Pan H, Xu T, Li W, Yang M, Huang Y, Zhao Y, Zhao S. Biological mechanisms of growth performance and meat quality in porcine muscle tissue. Anim Biotechnol 2021; 33:1246-1254. [PMID: 33704018 DOI: 10.1080/10495398.2021.1886939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Growth performance and meat quality are important traits for pig production. The aim of the present study was to investigate the molecular mechanisms underlying growth performance and meat quality, and to identify novel target molecules for predicting the growth performance and meat quality. The differentially expressed genes (DEGs) in Diannan small ears pigs (DSP) and Landrace pigs (LP) were assessed by RNA-sequencing analyzing technology. A total of 339 DEGs were obtained between DSP and LP. 146 DEGs were upregulated in LP compared with DSP and 193 DEGs were upregulated in DSP compared with LP. The DEGs were significantly enriched in 26 GO and 3 KEGG pathways. The protein-protein interaction (PPI) network with 201 nodes and 382 edges was constructed and 5 modules were extracted from the entire network. The identified upregulated expression of genes involved in glycolysis and myogenesis as well as extracellular matrix may be associated with fast body and muscle deposition rates in LP. Increased expression of genes involved in PPAR signaling pathway and fatty acid metabolism as well as oxidative phosphate processes could be related to the intramuscular fat deposition and meat quality in DSP. The present study may provide an improved understanding of the growth performance and meat quality.
Collapse
Affiliation(s)
- Chen Fang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Fei Guo
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Xiaoqi Zhao
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China.,Institute of Herbivorous Livestock, Yunnan Academy of Animal Sciences, Kunming, China
| | - Zining Zhang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Junlan Lu
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Hongbin Pan
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Taojie Xu
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Weizhen Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Minghua Yang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Ying Huang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Yanguang Zhao
- Research Institute of Pig and Animal Nutrition, Yunnan Academy of Animal Sciences, Kunming, China
| | - Sumei Zhao
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
5
|
Wei D, Liao L, Wang H, Zhang W, Wang T, Xu Z. Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro. Life Sci 2020; 247:117414. [PMID: 32035928 DOI: 10.1016/j.lfs.2020.117414] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 01/07/2023]
Abstract
AIMS Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been reported to significantly reduce body weight. This study investigated whether SGLT2 inhibitors directly affect adipose tissues and the underlying mechanisms in vivo and in vitro. MAIN METHODS Male C57BL/6 mice were fed a normal diet, high-fat diet (HFD), or HFD with canagliflozin for 14 weeks. 3T3-L1 adipocytes were treated with canagliflozin. Metabolic parameters were measured. KEY FINDINGS Canagliflozin reduced body weight, fat mass, and white adipose tissue (WAT) weight and inhibited adipocyte hypertrophy. Canagliflozin improved glucose and lipid metabolic disorders induced by HFD. Furthermore, canagliflozin treatment reversed the suppressed mRNA and protein expression of PGC-1α, NRF1, tfam and CPT1b, which are markers of mitochondrial biogenesis, function and fatty acid oxidation in mice with obesity. In vitro, canagliflozin increased mitochondrial DNA to nuclear DNA and upregulated the expression of PGC-1α, NRF1, tfam, COX5b, COX8b, Atp5o, and CPT1b mRNA and PGC-1α, NRF1, tfam, COX5b, CPT1b protein in 3T3-L1 adipocytes in a dose-dependent manner, while these increases were inhibited by GW6471, a PPARα antagonist. SIGNIFICANCE Our study showed that canagliflozin protected against HFD-induced obesity and obesity-related metabolic disorders by improving mitochondrial function and fatty acid oxidation in adipose tissue and adipocytes. Such energy-dissipating effects of canagliflozin may be mediated by PPARα.
Collapse
Affiliation(s)
- Dan Wei
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China; Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China.
| | - Lin Liao
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China; Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Huanjun Wang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China; Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Wei Zhang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China; Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Tingting Wang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China; Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Zhipeng Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China; Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
6
|
Loftis JM, Lasarev M, Shi X, Lapidus J, Janowsky A, Hoffman WF, Huckans M. Trace amine-associated receptor gene polymorphism increases drug craving in individuals with methamphetamine dependence. PLoS One 2019; 14:e0220270. [PMID: 31600226 PMCID: PMC6786581 DOI: 10.1371/journal.pone.0220270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/27/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Methamphetamine (MA) is a potent agonist at the trace amine-associated receptor 1 (TAAR1). This study evaluated a common variant (CV) in the human TAAR1 gene, synonymous single nucleotide polymorphism (SNP) V288V, to determine the involvement of TAAR1 in MA dependence. METHODS Participants (n = 106) with active MA dependence (MA-ACT), in remission from MA dependence (MA-REM), with active polysubstance dependence, in remission from polysubstance dependence, and with no history of substance dependence completed neuropsychiatric symptom questionnaires and provided blood samples. In vitro expression and function of CV and wild type TAAR1 receptors were also measured. RESULTS The V288V polymorphism demonstrated a 40% increase in TAAR1 protein expression in cell culture, but message sequence and protein function were unchanged, suggesting an increase in translation efficiency. Principal components analysis resolved neuropsychiatric symptoms into four components, PC1 (depression, anxiety, memory, and fatigue), PC2 (pain), PC3 (drug and alcohol craving), and PC4 (sleep disturbances). Analyses of study group and TAAR1 genotype revealed a significant interaction for PC3 (craving response) (p = 0.003). The control group showed no difference in PC3 associated with TAAR1, while adjusted mean craving for the MA-ACT and MA-REM groups, among those with at least one copy of V288V, was estimated to be, respectively, 1.55 (p = 0.036) and 1.77 (p = 0.071) times the adjusted mean craving for those without the TAAR1 SNP. CONCLUSIONS Neuroadaptation to chronic MA use may be altered by TAAR1 genotype and result in increased dopamine signaling and craving in individuals with the V288V genotype.
Collapse
Affiliation(s)
- Jennifer M. Loftis
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States of America
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
| | - Michael Lasarev
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
- Oregon Health & Science University and Portland State University School of Public Health, Portland, OR, United States of America
| | - Xiao Shi
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
| | - Jodi Lapidus
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
- Oregon Health & Science University and Portland State University School of Public Health, Portland, OR, United States of America
| | - Aaron Janowsky
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States of America
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States of America
| | - William F. Hoffman
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States of America
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States of America
- Mental Health and Clinical Neurosciences Division, VA Portland Health Care System, Portland, OR, United States of America
| | - Marilyn Huckans
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States of America
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
- Mental Health and Clinical Neurosciences Division, VA Portland Health Care System, Portland, OR, United States of America
| |
Collapse
|
7
|
Identification and Conservation Analysis of Cis-Regulatory Elements in Pig Liver. Genes (Basel) 2019; 10:genes10050348. [PMID: 31067820 PMCID: PMC6562536 DOI: 10.3390/genes10050348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 01/02/2023] Open
Abstract
The liver plays a key role in metabolism and affects pig production. However, the functional annotation of noncoding regions of the pig liver remains poorly understood. We revealed the landscape of cis-regulatory elements and their functional characterization in pig liver. We identified 102,373 cis-regulatory elements in the pig liver, including enhancers, promoters, super-enhancers, and broad H3K4me3 domains, and highlighted 26 core transcription regulatory factors in the pig liver as well. We found similarity of cis-regulatory elements among those of pigs, humans, and cattle. Despite the low proportion of functionally conserved enhancers (~30%) between pig and human liver tissue, ~78% of the pig liver enhancer orthologues sequence could play an enhancer role in other human tissues. Additionally, we observed that the ratio of consistent super-enhancer-associated genes was significantly higher than the ratio of functionally conserved super-enhancers. Approximately 54% of the core regulation factors driven by super-enhancers were consistent across the liver from these three species. Our pig liver annotation and functional characterization studies provide a system and resource for noncoding annotation for future gene regulatory studies in pigs. Furthermore, our study also showed the high level functional conservation of cis-regulatory elements in mammals; it also improved our understanding of regulation function of mammal cis-regulatory elements.
Collapse
|
8
|
Liu J, Ning C, Li B, Li R, Wu W, Liu H. Transcriptome comparison between prenatal and postnatal Large White livers identifies differences in the expression level of genes related to metabolism and postnatal growth. Gene 2018; 686:92-103. [PMID: 30321659 DOI: 10.1016/j.gene.2018.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/06/2018] [Accepted: 10/11/2018] [Indexed: 11/16/2022]
Abstract
The current study examined the liver transcriptomic profiles of the Large White different in developmental periods. It was performed on pigs of two developmental stages: 70-day fetus (P70) and 70-day piglets (D70). The objective of the study was to identify genes associated with Large White liver lipid metabolism, growth and development. We sequenced eight sRNA libraries of liver samples from four Large White at P70 and D70 respectively. We totally obtained 19,202 genes. 4916 of them were found to be differentially expressed (DEGs) (p < 0.05, fold change ≥ 1), of which 2502 were up-regulated and 2414 were down-regulated. GO enrichment and KEGG pathway analysis indicated that ACACA, ACADM, ACAA2 and HADH were simultaneously enriched in diverse pathways related to lipid metabolism, and so they were considered to be the promising candidate genes which could affect the porcine liver lipid metabolism. Notably, the gene insulin-like growth factor 1 (IGF1) which participated in somatotropic axis signaling was found to be up-regulated in D70 compared with P70. miRWalk and TargetScan softwares were used to screen the miRNAs which bound to the 3' untranslated region (3'UTR) of IGF1. After integration analysis with miRNAs sequencing data, miR-18b and miR-130b-3p were selected for further study. MiR-18b and miR-130b-3p were down-regulated in D70 compared with P70. Dual luciferase assays indicated that miR-18b and miR-130b-3p could obviously decrease (p < 0.05) the fluorescence activity of the group transfected with the wild-type vector of IGF1 3'UTR, while the relative luciferase activity of the group transfected with the mutant vector of IGF1 3'UTR did not change significantly. Taken together, it indicated that miR-18b and miR-130b-3p could target IGF1 directly.
Collapse
Affiliation(s)
- Jingge Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 21009, PR China
| | - Caibo Ning
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 21009, PR China.
| | - Bojiang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 21009, PR China
| | - Rongyang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 21009, PR China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 21009, PR China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 21009, PR China.
| |
Collapse
|
9
|
Khabou B, Tabebi M, Siala-Sahnoun O, Mkaouar-Rebai E, Rebai A, Fakhfakh F. Potential dysfunctional effects of synonymous variants: Insights from an exhaustive in silico analysis of the ABCB4 gene. Ann Hum Genet 2018; 82:457-468. [PMID: 30079523 DOI: 10.1111/ahg.12276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/27/2018] [Accepted: 07/04/2018] [Indexed: 11/30/2022]
Abstract
The multiple drug resistance 3 (MDR3) protein is a canalicular phospholipid translocator involved in the bile secretion and encoded by the ABCB4 gene. Its deficiency is related to a large spectrum of liver diseases. Taking into account the increased evidence about the involvement of synonymous variants in inherited diseases, this study aims to explore the putative effects of silent genetic variants on the ABCB4 expression. We performed an exhaustive computational approach using ESE finder, RegRNA 2.0, MFOLD, SNPfold, and %MinMax software added to the measurement of the Relative Synonymous Codon Usage. This analysis included 216 synonymous variants distributed throughout the ABCB4 gene. Results have shown that 11 synonymous coding SNPs decrease the ESE activity, while 8 of them change the codon frequency. Besides, the c.24C>T variation, located 21 nucleotides downstream the start A (Adenine) U (Uracil) G (Glutamine) AUG causes an increase in the local stability. Moreover, the computational analysis of the 3'UTR region showed that six of the eight variants located in this region affected the Wild Type (WT) pattern of the miRNA targets sites and/or their proper display. The 26 sSNPs retained as putatively functional possessed a very low allele frequency, supporting their pathogenicity. In conclusion, the obtained results suggest that some synonymous SNPs in the ABCB4 gene, considered up to now as neutral, may be involved in the MDR3 deficiency.
Collapse
Affiliation(s)
- Boudour Khabou
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences, University of Sfax, Tunisia
| | - Mouna Tabebi
- Department of clinical and experimental medicine, Faculty of health sciences, Linköping University, Sweden
| | - Olfa Siala-Sahnoun
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences, University of Sfax, Tunisia
| | - Emna Mkaouar-Rebai
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences, University of Sfax, Tunisia
| | - Ahmed Rebai
- Molecular and Cellular Screening Process Laboratory, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences, University of Sfax, Tunisia
| |
Collapse
|
10
|
Wang Z, Shang P, Li Q, Wang L, Chamba Y, Zhang B, Zhang H, Wu C. iTRAQ-based proteomic analysis reveals key proteins affecting muscle growth and lipid deposition in pigs. Sci Rep 2017; 7:46717. [PMID: 28436483 PMCID: PMC5402282 DOI: 10.1038/srep46717] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/23/2017] [Indexed: 02/06/2023] Open
Abstract
Growth rate and meat quality, two economically important traits in pigs, are controlled by multiple genes and biological pathways. In the present study, we performed a proteomic analysis of longissimus dorsi muscle from six-month-old pigs from two Chinese native mini-type breeds (TP and DSP) and two introduced western breeds (YY and LL) using isobaric tag for relative and absolute quantification (iTRAQ). In total, 4,815 peptides corresponding to 969 proteins were detected. Comparison of expression patterns between TP-DSP and YY-LL revealed 288 differentially expressed proteins (DEPs), of which 169 were up-regulated and 119 were down-regulated. Functional annotation suggested that 28 DEPs were related to muscle growth and 15 to lipid deposition. Protein interaction network predictions indicated that differences in muscle growth and muscle fibre between TP-DSP and YY-LL groups were regulated by ALDOC, ENO3, PGK1, PGK2, TNNT1, TNNT3, TPM1, TPM2, TPM3, MYL3, MYH4, and TNNC2, whereas differences in lipid deposition ability were regulated by LPL, APOA1, APOC3, ACADM, FABP3, ACADVL, ACAA2, ACAT1, HADH, and PECI. Twelve DEPs were analysed using parallel reaction monitoring to confirm the reliability of the iTRAQ analysis. Our findings provide new insights into key proteins involved in muscle growth and lipid deposition in the pig.
Collapse
Affiliation(s)
- Zhixiu Wang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing 100193, China
| | - Peng Shang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing 100193, China.,College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, 100086, China
| | - Qinggang Li
- Institute of Animal Sciences and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Liyuan Wang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing 100193, China
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, 100086, China
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing 100193, China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing 100193, China
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing 100193, China
| |
Collapse
|
11
|
Bien SA, Wojcik GL, Zubair N, Gignoux CR, Martin AR, Kocarnik JM, Martin LW, Buyske S, Haessler J, Walker RW, Cheng I, Graff M, Xia L, Franceschini N, Matise T, James R, Hindorff L, Le Marchand L, North KE, Haiman CA, Peters U, Loos RJF, Kooperberg CL, Bustamante CD, Kenny EE, Carlson CS, on behalf of PAGE Study. Strategies for Enriching Variant Coverage in Candidate Disease Loci on a Multiethnic Genotyping Array. PLoS One 2016; 11:e0167758. [PMID: 27973554 PMCID: PMC5156387 DOI: 10.1371/journal.pone.0167758] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/18/2016] [Indexed: 11/25/2022] Open
Abstract
Investigating genetic architecture of complex traits in ancestrally diverse populations is imperative to understand the etiology of disease. However, the current paucity of genetic research in people of African and Latin American ancestry, Hispanic and indigenous peoples in the United States is likely to exacerbate existing health disparities for many common diseases. The Population Architecture using Genomics and Epidemiology, Phase II (PAGE II), Study was initiated in 2013 by the National Human Genome Research Institute to expand our understanding of complex trait loci in ethnically diverse and well characterized study populations. To meet this goal, the Multi-Ethnic Genotyping Array (MEGA) was designed to substantially improve fine-mapping and functional discovery by increasing variant coverage across multiple ethnicities at known loci for metabolic, cardiovascular, renal, inflammatory, anthropometric, and a variety of lifestyle traits. Studying the frequency distribution of clinically relevant mutations, putative risk alleles, and known functional variants across multiple populations will provide important insight into the genetic architecture of complex diseases and facilitate the discovery of novel, sometimes population-specific, disease associations. DNA samples from 51,650 self-identified African ancestry (17,328), Hispanic/Latino (22,379), Asian/Pacific Islander (8,640), and American Indian (653) and an additional 2,650 participants of either South Asian or European ancestry, and other reference panels have been genotyped on MEGA by PAGE II. MEGA was designed as a new resource for studying ancestrally diverse populations. Here, we describe the methodology for selecting trait-specific content for use in multi-ethnic populations and how enriching MEGA for this content may contribute to deeper biological understanding of the genetic etiology of complex disease.
Collapse
Affiliation(s)
- Stephanie A. Bien
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail: (CSC); (SAB)
| | - Genevieve L. Wojcik
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Niha Zubair
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Christopher R. Gignoux
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Alicia R. Martin
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Jonathan M. Kocarnik
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lisa W. Martin
- Division of Cardiology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Steven Buyske
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ryan W. Walker
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Department of Preventive Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Iona Cheng
- Cancer Prevention Institute of California, Fremont, California, United States of America
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lucy Xia
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Tara Matise
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey, United States of America
| | - Regina James
- Division of Intramural Research, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lucia Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Loic Le Marchand
- Department of Epidemiology Program, University of Hawai’i Cancer Center, Honolulu, Hawai’i, United States of America
| | - Kari E. North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Department of Preventive Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Charles L. Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Carlos D. Bustamante
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Eimear E. Kenny
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Department of Preventive Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Christopher S. Carlson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (CSC); (SAB)
| | | |
Collapse
|
12
|
Khabou B, Siala-Sahnoun O, Gargouri L, Mkaouar-Rebai E, Keskes L, Hachicha M, Fakhfakh F. In silico investigation of the impact of synonymous variants in ABCB4 gene on mRNA stability/structure, splicing accuracy and codon usage: Potential contribution to PFIC3 disease. Comput Biol Chem 2016; 65:103-109. [PMID: 27788395 DOI: 10.1016/j.compbiolchem.2016.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/28/2016] [Accepted: 10/21/2016] [Indexed: 12/12/2022]
Abstract
Progressive Familial Intrahepatic Cholestasis type 3 (PFIC3) is an autosomal-recessive liver disease due to mutations in the ABCB4 gene encoding for the MDR3 protein. In the present study, we performed molecular and bioinformatic analyses in PFIC3 patients in order to understand the molecular basis of the disease. The three studied patients with PFIC3 were screened by PCR amplification followed by direct sequencing of the 27 coding exons of ABCB4. In silico analysis was performed by bioinformatic programs. We revealed three synonymous polymorphisms c.175C>T, c.504C>T, c.711A>T respectively in exon 4, 6, 8 and an intronic c.3487-16T>C variation in intron 26. The computational study of these polymorphic variants using Human Splicing Finder, ex-skip, Mfold and kineFold tools showed the putative impact on the composition of the cis-acting regulatory elements of splicing as well as on the mRNA structure and stability. Moreover, the protein level was affected by codon usage changes estimated by the calculation of ΔRSCU and ΔLog Ratio of codon frequencies interfering as consequence with the accurate folding of the MDR3 protein. As the first initiative of the mutational study of ABCB4 genes in Tunisia, our results are suggestive of a potential downstream molecular effect for the described polymorphisms on the expression pattern of the ABCB4 underlining the importance of synonymous variants.
Collapse
Affiliation(s)
- Boudour Khabou
- Laboratory of Human Molecular Genetics, Faculty of Medicine, University of Sfax, Tunisia.
| | - Olfa Siala-Sahnoun
- Department of Life Science, Faculty of Science of Sfax, University of Sfax., Tunisia
| | | | - Emna Mkaouar-Rebai
- Department of Life Science, Faculty of Science of Sfax, University of Sfax., Tunisia.
| | - Leila Keskes
- Laboratory of Human Molecular Genetics, Faculty of Medicine, University of Sfax, Tunisia
| | | | - Faiza Fakhfakh
- Department of Life Science, Faculty of Science of Sfax, University of Sfax., Tunisia
| |
Collapse
|
13
|
Bruun GH, Doktor TK, Borch-Jensen J, Masuda A, Krainer AR, Ohno K, Andresen BS. Global identification of hnRNP A1 binding sites for SSO-based splicing modulation. BMC Biol 2016; 14:54. [PMID: 27380775 PMCID: PMC4932749 DOI: 10.1186/s12915-016-0279-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/23/2016] [Indexed: 01/14/2023] Open
Abstract
Background Many pathogenic genetic variants have been shown to disrupt mRNA splicing. Besides splice mutations in the well-conserved splice sites, mutations in splicing regulatory elements (SREs) may deregulate splicing and cause disease. A promising therapeutic approach is to compensate for this deregulation by blocking other SREs with splice-switching oligonucleotides (SSOs). However, the location and sequence of most SREs are not well known. Results Here, we used individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) to establish an in vivo binding map for the key splicing regulatory factor hnRNP A1 and to generate an hnRNP A1 consensus binding motif. We find that hnRNP A1 binding in proximal introns may be important for repressing exons. We show that inclusion of the alternative cassette exon 3 in SKA2 can be significantly increased by SSO-based treatment which blocks an iCLIP-identified hnRNP A1 binding site immediately downstream of the 5’ splice site. Because pseudoexons are well suited as models for constitutive exons which have been inactivated by pathogenic mutations in SREs, we used a pseudoexon in MTRR as a model and showed that an iCLIP-identified hnRNP A1 binding site downstream of the 5′ splice site can be blocked by SSOs to activate the exon. Conclusions The hnRNP A1 binding map can be used to identify potential targets for SSO-based therapy. Moreover, together with the hnRNP A1 consensus binding motif, the binding map may be used to predict whether disease-associated mutations and SNPs affect hnRNP A1 binding and eventually mRNA splicing. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0279-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gitte H Bruun
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Jonas Borch-Jensen
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, NY, 11724, USA
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| |
Collapse
|
14
|
Seibold P, Schmezer P, Behrens S, Michailidou K, Bolla MK, Wang Q, Flesch-Janys D, Nevanlinna H, Fagerholm R, Aittomäki K, Blomqvist C, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, Lambrechts D, Wildiers H, Kristensen V, Alnæs GG, Nord S, Borresen-Dale AL, Hooning MJ, Hollestelle A, Jager A, Seynaeve C, Li J, Liu J, Humphreys K, Dunning AM, Rhenius V, Shah M, Kabisch M, Torres D, Ulmer HU, Hamann U, Schildkraut JM, Purrington KS, Couch FJ, Hall P, Pharoah P, Easton DF, Schmidt MK, Chang-Claude J, Popanda O. A polymorphism in the base excision repair gene PARP2 is associated with differential prognosis by chemotherapy among postmenopausal breast cancer patients. BMC Cancer 2015; 15:978. [PMID: 26674097 PMCID: PMC4682235 DOI: 10.1186/s12885-015-1957-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/27/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Personalized therapy considering clinical and genetic patient characteristics will further improve breast cancer survival. Two widely used treatments, chemotherapy and radiotherapy, can induce oxidative DNA damage and, if not repaired, cell death. Since base excision repair (BER) activity is specific for oxidative DNA damage, we hypothesized that germline genetic variation in this pathway will affect breast cancer-specific survival depending on treatment. METHODS We assessed in 1,408 postmenopausal breast cancer patients from the German MARIE study whether cancer specific survival after adjuvant chemotherapy, anthracycline chemotherapy, and radiotherapy is modulated by 127 Single Nucleotide Polymorphisms (SNPs) in 21 BER genes. For SNPs with interaction terms showing p<0.1 (likelihood ratio test) using multivariable Cox proportional hazard analyses, replication in 6,392 patients from nine studies of the Breast Cancer Association Consortium (BCAC) was performed. RESULTS rs878156 in PARP2 showed a differential effect by chemotherapy (p=0.093) and was replicated in BCAC studies (p=0.009; combined analysis p=0.002). Compared to non-carriers, carriers of the variant G allele (minor allele frequency=0.07) showed better survival after chemotherapy (combined allelic hazard ratio (HR)=0.75, 95% 0.53-1.07) and poorer survival when not treated with chemotherapy (HR=1.42, 95% 1.08-1.85). A similar effect modification by rs878156 was observed for anthracycline-based chemotherapy in both MARIE and BCAC, with improved survival in carriers (combined allelic HR=0.73, 95% CI 0.40-1.32). None of the SNPs showed significant differential effects by radiotherapy. CONCLUSIONS Our data suggest for the first time that a SNP in PARP2, rs878156, may together with other genetic variants modulate cancer specific survival in breast cancer patients depending on chemotherapy. These germline SNPs could contribute towards the design of predictive tests for breast cancer patients.
Collapse
Affiliation(s)
- Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Peter Schmezer
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69124, Heidelberg, Germany.
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Kyriaki Michailidou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
| | - Manjeet K Bolla
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
| | - Qin Wang
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
| | - Dieter Flesch-Janys
- Department of Cancer Epidemiology/Clinical Cancer Registry, University Cancer Center Hamburg (UCCH), Hamburg, Germany.
- Department of Medical Biometrics and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | - Rainer Fagerholm
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.
| | - Vesa Kataja
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.
- Central Finland Health Care District, Jyväskylä Central Hospital, Jyväskylä, Finland.
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.
| | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.
| | - Diether Lambrechts
- Vesalius Research Center (VRC), VIB, Leuven, Belgium.
- Department of Oncology, Laboratory for Translational Genetics, University of Leuven, Leuven, Belgium.
| | - Hans Wildiers
- Department of General Medical Oncology, Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium.
| | - Vessela Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway.
- Institute of Clinical Medicine, K.G. Jebsen Center for Breast Cancer Research, Faculty of Medicine, University of Oslo (UiO), Oslo, Norway.
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, University of Oslo (UiO), Oslo, Norway.
| | - Grethe Grenaker Alnæs
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway.
| | - Silje Nord
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway.
| | - Anne-Lise Borresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway.
- Institute of Clinical Medicine, K.G. Jebsen Center for Breast Cancer Research, Faculty of Medicine, University of Oslo (UiO), Oslo, Norway.
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Caroline Seynaeve
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Jingmei Li
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore.
| | - Jianjun Liu
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore.
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Alison M Dunning
- Department of Oncology, Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
| | - Valerie Rhenius
- Department of Oncology, Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
| | - Mitul Shah
- Department of Oncology, Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
| | - Maria Kabisch
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia.
| | | | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Joellen M Schildkraut
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| | - Kristen S Purrington
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, Michigan, USA.
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Michigan, USA.
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Paul Pharoah
- Department of Oncology, Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
| | - Doug F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
| | - Marjanka K Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Odilia Popanda
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69124, Heidelberg, Germany.
| |
Collapse
|
15
|
Peterlongo P, Catucci I, Colombo M, Caleca L, Mucaki E, Bogliolo M, Marin M, Damiola F, Bernard L, Pensotti V, Volorio S, Dall'Olio V, Meindl A, Bartram C, Sutter C, Surowy H, Sornin V, Dondon MG, Eon-Marchais S, Stoppa-Lyonnet D, Andrieu N, Sinilnikova OM, Mitchell G, James PA, Thompson E, Marchetti M, Verzeroli C, Tartari C, Capone GL, Putignano AL, Genuardi M, Medici V, Marchi I, Federico M, Tognazzo S, Matricardi L, Agata S, Dolcetti R, Della Puppa L, Cini G, Gismondi V, Viassolo V, Perfumo C, Mencarelli MA, Baldassarri M, Peissel B, Roversi G, Silvestri V, Rizzolo P, Spina F, Vivanet C, Tibiletti MG, Caligo MA, Gambino G, Tommasi S, Pilato B, Tondini C, Corna C, Bonanni B, Barile M, Osorio A, Benitez J, Balestrino L, Ottini L, Manoukian S, Pierotti MA, Renieri A, Varesco L, Couch FJ, Wang X, Devilee P, Hilbers FS, van Asperen CJ, Viel A, Montagna M, Cortesi L, Diez O, Balmaña J, Hauke J, Schmutzler RK, Papi L, Pujana MA, Lázaro C, Falanga A, Offit K, Vijai J, Campbell I, Burwinkel B, Kvist A, Ehrencrona H, Mazoyer S, Pizzamiglio S, Verderio P, Surralles J, Rogan PK, Radice P. FANCM c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor. Hum Mol Genet 2015; 24:5345-55. [PMID: 26130695 DOI: 10.1093/hmg/ddv251] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 06/25/2015] [Indexed: 11/15/2022] Open
Abstract
Numerous genetic factors that influence breast cancer risk are known. However, approximately two-thirds of the overall familial risk remain unexplained. To determine whether some of the missing heritability is due to rare variants conferring high to moderate risk, we tested for an association between the c.5791C>T nonsense mutation (p.Arg1931*; rs144567652) in exon 22 of FANCM gene and breast cancer. An analysis of genotyping data from 8635 familial breast cancer cases and 6625 controls from different countries yielded an association between the c.5791C>T mutation and breast cancer risk [odds ratio (OR) = 3.93 (95% confidence interval (CI) = 1.28-12.11; P = 0.017)]. Moreover, we performed two meta-analyses of studies from countries with carriers in both cases and controls and of all available data. These analyses showed breast cancer associations with OR = 3.67 (95% CI = 1.04-12.87; P = 0.043) and OR = 3.33 (95% CI = 1.09-13.62; P = 0.032), respectively. Based on information theory-based prediction, we established that the mutation caused an out-of-frame deletion of exon 22, due to the creation of a binding site for the pre-mRNA processing protein hnRNP A1. Furthermore, genetic complementation analyses showed that the mutation influenced the DNA repair activity of the FANCM protein. In summary, we provide evidence for the first time showing that the common p.Arg1931* loss-of-function variant in FANCM is a risk factor for familial breast cancer.
Collapse
Affiliation(s)
- Paolo Peterlongo
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine,
| | - Irene Catucci
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine
| | - Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine
| | - Laura Caleca
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine
| | - Eliseos Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Massimo Bogliolo
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona and Center for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Maria Marin
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona and Center for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Francesca Damiola
- Cancer Research Centre of Lyon, CNRS UMR5286, INSERM U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Loris Bernard
- Department of Experimental Oncology and Cogentech, Cancer Genetic Test Laboratory, Milan, Italy
| | - Valeria Pensotti
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Cogentech, Cancer Genetic Test Laboratory, Milan, Italy
| | - Sara Volorio
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Cogentech, Cancer Genetic Test Laboratory, Milan, Italy
| | - Valentina Dall'Olio
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Cogentech, Cancer Genetic Test Laboratory, Milan, Italy
| | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany
| | - Claus Bartram
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Christian Sutter
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Harald Surowy
- Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University Hospital Heidelberg, Heidelberg, Germany, Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Valérie Sornin
- Cancer Research Centre of Lyon, CNRS UMR5286, INSERM U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Marie-Gabrielle Dondon
- INSERM, U900, Paris, France, Institut Curie, Paris, France, Mines ParisTech, Fontainebleau, France
| | - Séverine Eon-Marchais
- INSERM, U900, Paris, France, Institut Curie, Paris, France, Mines ParisTech, Fontainebleau, France
| | - Dominique Stoppa-Lyonnet
- Service de Génétique Oncologique, Institut Curie, Paris, France, INSERM, U830, Paris, France, Université Paris-Descartes, Paris, France
| | - Nadine Andrieu
- INSERM, U900, Paris, France, Institut Curie, Paris, France, Mines ParisTech, Fontainebleau, France
| | - Olga M Sinilnikova
- Cancer Research Centre of Lyon, CNRS UMR5286, INSERM U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France, Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Centre Hospitalier Universitaire de Lyon/Centre Léon Bérard, Lyon, France
| | | | - Gillian Mitchell
- Familial Cancer Centre, Sir Peter MacCallum Department of Oncology and
| | - Paul A James
- Familial Cancer Centre, Sir Peter MacCallum Department of Oncology and
| | - Ella Thompson
- Cancer Genetics Laboratory and Sir Peter MacCallum Department of Oncology and
| | | | | | | | - Cristina Verzeroli
- Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer (kConFab), Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Carmen Tartari
- Department of Immunohematology and Transfusion Medicine and
| | - Gabriele Lorenzo Capone
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Firenze, Italy, FiorGen Foundation for Pharmacogenomics, Sesto Fiorentino, Italy
| | - Anna Laura Putignano
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Firenze, Italy, FiorGen Foundation for Pharmacogenomics, Sesto Fiorentino, Italy
| | - Maurizio Genuardi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Firenze, Italy, FiorGen Foundation for Pharmacogenomics, Sesto Fiorentino, Italy, Institute of Medical Genetics, 'A. Gemelli' School of Medicine, Catholic University, Rome, Italy
| | - Veronica Medici
- Dipartimento di Oncologia, Ematologia e Malattie dell'Apparato Respiratorio, Università di Modena e Reggio Emilia, Modena, Italy
| | - Isabella Marchi
- Dipartimento di Oncologia, Ematologia e Malattie dell'Apparato Respiratorio, Università di Modena e Reggio Emilia, Modena, Italy
| | - Massimo Federico
- Dipartimento di Oncologia, Ematologia e Malattie dell'Apparato Respiratorio, Università di Modena e Reggio Emilia, Modena, Italy
| | - Silvia Tognazzo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | - Laura Matricardi
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | - Simona Agata
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | | | - Lara Della Puppa
- Unit of Experimental Oncology 1, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| | - Giulia Cini
- Unit of Experimental Oncology 1, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| | - Viviana Gismondi
- Unit of Hereditary Cancers, IRCCS AOU San Martino - IST, Genoa, Italy
| | - Valeria Viassolo
- Unit of Hereditary Cancers, IRCCS AOU San Martino - IST, Genoa, Italy
| | - Chiara Perfumo
- Unit of Hereditary Cancers, IRCCS AOU San Martino - IST, Genoa, Italy
| | - Maria Antonietta Mencarelli
- Medical Genetics, University of Siena, Siena, Italy, Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy, Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine
| | - Gaia Roversi
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine
| | | | - Piera Rizzolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Maria Adelaide Caligo
- Section of Genetic Oncology, University Hospital and University of Pisa, Pisa, Italy
| | - Gaetana Gambino
- Section of Genetic Oncology, University Hospital and University of Pisa, Pisa, Italy
| | - Stefania Tommasi
- IRCCS Istituto Tumori 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari, Italy
| | - Brunella Pilato
- IRCCS Istituto Tumori 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari, Italy
| | - Carlo Tondini
- Unit of Medical Oncology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Corna
- Unit of Medical Oncology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Monica Barile
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Ana Osorio
- Human Cancer Genetics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain, Spanish Genotyping Centre (CEGEN), Madrid, Spain
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain, Spanish Genotyping Centre (CEGEN), Madrid, Spain
| | | | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy, Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Liliana Varesco
- Unit of Hereditary Cancers, IRCCS AOU San Martino - IST, Genoa, Italy
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Xianshu Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Peter Devilee
- Department of Human Genetics, Department of Pathology and
| | | | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alessandra Viel
- Unit of Experimental Oncology 1, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | - Laura Cortesi
- Dipartimento di Oncologia, Ematologia e Malattie dell'Apparato Respiratorio, Università di Modena e Reggio Emilia, Modena, Italy
| | - Orland Diez
- Oncogenetics Group, Hospital Universitari de la Vall d'Hebron, Barcelona, Spain, Vall d́Hebron Institute of Oncology (VHIO), Barcelona, Spain, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Balmaña
- Vall d́Hebron Institute of Oncology (VHIO), Barcelona, Spain, Department of Medical Oncology, Hospital Universitari de la Vall d́Hebron, Barcelona, Spain
| | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Laura Papi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Firenze, Italy
| | | | - Conxi Lázaro
- Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| | - Anna Falanga
- Department of Immunohematology and Transfusion Medicine and
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine and Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph Vijai
- Clinical Genetics Service, Department of Medicine and Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ian Campbell
- Cancer Genetics Laboratory and Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Barbara Burwinkel
- Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University Hospital Heidelberg, Heidelberg, Germany, Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anders Kvist
- Division of Oncology, Department of Clinical Sciences
| | - Hans Ehrencrona
- Department of Clinical Genetics, Laboratory Medicine, Office for Medical Services and Department of Clinical Genetics, Lund University, Lund, Sweden
| | - Sylvie Mazoyer
- Cancer Research Centre of Lyon, CNRS UMR5286, INSERM U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Sara Pizzamiglio
- Unit of Medical Statistics, Biometry and Bioinformatics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Verderio
- Unit of Medical Statistics, Biometry and Bioinformatics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Jordi Surralles
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona and Center for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Paolo Radice
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine
| |
Collapse
|
16
|
Korbolina EE, Ershov NI, Bryzgalov LO, Kolosova NG. Application of quantitative trait locus mapping and transcriptomics to studies of the senescence-accelerated phenotype in rats. BMC Genomics 2014; 15 Suppl 12:S3. [PMID: 25563673 PMCID: PMC4303943 DOI: 10.1186/1471-2164-15-s12-s3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Etiology of complex disorders, such as cataract and neurodegenerative diseases including age-related macular degeneration (AMD), remains poorly understood due to the paucity of animal models, fully replicating the human disease. Previously, two quantitative trait loci (QTLs) associated with early cataract, AMD-like retinopathy, and some behavioral aberrations in senescence-accelerated OXYS rats were uncovered on chromosome 1 in a cross between OXYS and WAG rats. To confirm the findings, we generated interval-specific congenic strains, WAG/OXYS-1.1 and WAG/OXYS-1.2, carrying OXYS-derived loci of chromosome 1 in the WAG strain. Both congenic strains displayed early cataract and retinopathy but differed clinically from OXYS rats. Here we applied a high-throughput RNA sequencing (RNA-Seq) strategy to facilitate nomination of the candidate genes and functional pathways that may be responsible for these differences and can contribute to the development of the senescence-accelerated phenotype of OXYS rats. Results First, the size and map position of QTL-derived congenic segments were determined by comparative analysis of coding single-nucleotide polymorphisms (SNPs), which were identified for OXYS, WAG, and congenic retinal RNAs after sequencing. The transferred locus was not what we expected in WAG/OXYS-1.1 rats. In rat retina, 15442 genes were expressed. Coherent sets of differentially expressed genes were identified when we compared RNA-Seq retinal profiles of 20-day-old WAG/OXYS-1.1, WAG/OXYS-1.2, and OXYS rats. The genes most different in the average expression level between the congenic strains included those generally associated with the Wnt, integrin, and TGF-β signaling pathways, widely involved in neurodegenerative processes. Several candidate genes (including Arhgap33, Cebpg, Gtf3c1, Snurf, Tnfaip3, Yme1l1, Cbs, Car9 and Fn1) were found to be either polymorphic in the congenic loci or differentially expressed between the strains. These genes may contribute to the development of cataract and retinopathy. Conclusions This study is the first RNA-Seq analysis of the rat retinal transcriptome generated with 40 mln sequencing read depth. The integration of QTL and transcriptomic analyses in our study forms the basis of future research into the relationship between the candidate genes within the congenic regions and specific changes in the retinal transcriptome as possible causal mechanisms that underlie age-associated disorders.
Collapse
|
17
|
Chang I, Fukuhara S, Wong DK, Gill A, Mitsui Y, Majid S, Saini S, Yamamura S, Chiyomaru T, Hirata H, Ueno K, Arora S, Shahryari V, Deng G, Tabatabai ZL, Greene KL, Shin DM, Enokida H, Shiina H, Nonomura N, Dahiya R, Tanaka Y. Cytochrome P450 1B1 polymorphisms and risk of renal cell carcinoma in men. Tumour Biol 2014; 35:10223-30. [DOI: 10.1007/s13277-014-2292-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/30/2014] [Indexed: 01/20/2023] Open
|
18
|
Hunt RC, Simhadri VL, Iandoli M, Sauna ZE, Kimchi-Sarfaty C. Exposing synonymous mutations. Trends Genet 2014; 30:308-21. [PMID: 24954581 DOI: 10.1016/j.tig.2014.04.006] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022]
Abstract
Synonymous codon changes, which do not alter protein sequence, were previously thought to have no functional consequence. Although this concept has been overturned in recent years, there is no unique mechanism by which these changes exert biological effects. A large repertoire of both experimental and bioinformatic methods has been developed to understand the effects of synonymous variants. Results from this body of work have provided global insights into how biological systems exploit the degeneracy of the genetic code to control gene expression, protein folding efficiency, and the coordinated expression of functionally related gene families. Although it is now clear that synonymous variants are important in a variety of contexts, from human disease to the safety and efficacy of therapeutic proteins, there is no clear consensus on the approaches to identify and validate these changes. Here, we review the diverse methods to understand the effects of synonymous mutations.
Collapse
Affiliation(s)
- Ryan C Hunt
- Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA.
| | - Vijaya L Simhadri
- Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | - Matthew Iandoli
- Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | - Zuben E Sauna
- Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA.
| | - Chava Kimchi-Sarfaty
- Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA.
| |
Collapse
|
19
|
Fung KL, Pan J, Ohnuma S, Lund PE, Pixley JN, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM. MDR1 synonymous polymorphisms alter transporter specificity and protein stability in a stable epithelial monolayer. Cancer Res 2013; 74:598-608. [PMID: 24305879 DOI: 10.1158/0008-5472.can-13-2064] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The drug efflux function of P-glycoprotein (P-gp) encoded by MDR1 can be influenced by genetic polymorphisms, including two synonymous changes in the coding region of MDR1. Here we report that the conformation of P-gp and its drug efflux activity can be altered by synonymous polymorphisms in stable epithelial monolayers expressing P-gp. Several cell lines with similar MDR1 DNA copy number were developed and termed LLC-MDR1-WT (expresses wild-type P-gp), LLC-MDR1-3H (expresses common haplotype P-gp), and LLC-MDR1-3HA (a mutant that carries a different valine codon in position 3435). These cell lines express similar levels of recombinant mRNA and protein. P-gp in each case is localized on the apical surface of polarized cells. However, the haplotype and its mutant P-gps fold differently from the wild-type, as determined by UIC2 antibody shift assays and limited proteolysis assays. Surface biotinylation experiments suggest that the non-wild-type P-gps have longer recycling times. Drug transport assays show that wild-type and haplotype P-gp respond differently to P-gp inhibitors that block efflux of rhodamine 123 or mitoxantrone. In addition, cytotoxicity assays show that the LLC-MDR1-3H cells are more resistant to mitoxantrone than the LLC-MDR1-WT cells after being treated with a P-gp inhibitor. Expression of polymorphic P-gp, however, does not affect the host cell's morphology, growth rate, or monolayer formation. Also, ATPase activity assays indicate that neither basal nor drug-stimulated ATPase activities are affected in the variant P-gps. Taken together, our findings indicate that "silent" polymorphisms significantly change P-gp function, which would be expected to affect interindividual drug disposition and response.
Collapse
Affiliation(s)
- King Leung Fung
- Authors' Affiliations: Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH; and Center for Biologics Evaluation and Research, Division of Hematology, Food and Drug Administration, Bethesda, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Jean-Philippe J, Paz S, Caputi M. hnRNP A1: the Swiss army knife of gene expression. Int J Mol Sci 2013; 14:18999-9024. [PMID: 24065100 PMCID: PMC3794818 DOI: 10.3390/ijms140918999] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic cells express a large variety of RNA binding proteins (RBPs), with diverse affinities and specificities towards target RNAs. These proteins play a crucial role in almost every aspect of RNA biogenesis, expression and function. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a complex and diverse family of RNA binding proteins. hnRNPs display multiple functions in the processing of heterogeneous nuclear RNAs into mature messenger RNAs. hnRNP A1 is one of the most abundant and ubiquitously expressed members of this protein family. hnRNP A1 plays multiple roles in gene expression by regulating major steps in the processing of nascent RNA transcripts. The transcription, splicing, stability, export through nuclear pores and translation of cellular and viral transcripts are all mechanisms modulated by this protein. The diverse functions played by hnRNP A1 are not limited to mRNA biogenesis, but extend to the processing of microRNAs, telomere maintenance and the regulation of transcription factor activity. Genomic approaches have recently uncovered the extent of hnRNP A1 roles in the development and differentiation of living organisms. The aim of this review is to highlight recent developments in the study of this protein and to describe its functions in cellular and viral gene expression and its role in human pathologies.
Collapse
Affiliation(s)
- Jacques Jean-Philippe
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431, USA.
| | | | | |
Collapse
|