1
|
Stone D, Aubert M, Jerome KR. Adeno-associated virus vectors and neurotoxicity-lessons from preclinical and human studies. Gene Ther 2025; 32:60-73. [PMID: 37165032 PMCID: PMC11247785 DOI: 10.1038/s41434-023-00405-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
Over 15 years after hepatotoxicity was first observed following administration of an adeno-associated virus (AAV) vector during a hemophilia B clinical trial, recent reports of treatment-associated neurotoxicity in animals and humans have brought the potential impact of AAV-associated toxicity back to prominence. In both pre-clinical studies and clinical trials, systemic AAV administration has been associated with neurotoxicity in peripheral nerve ganglia and spinal cord. Neurological signs have also been seen following direct AAV injection into the brain, both in non-human primates and in a clinical trial for late infantile Batten disease. Neurotoxic events appear variable across species, and preclinical animal studies do not fully predict clinical observations. Accumulating data suggest that AAV-associated neurotoxicity may be underdiagnosed and may differ between species in terms of frequency and/or severity. In this review, we discuss the different animal models that have been used to demonstrate AAV-associated neurotoxicity, its potential causes and consequences, and potential approaches to blunt AAV-associated neurotoxicity.
Collapse
Affiliation(s)
- Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Bolon B, Buza E, Galbreath E, Wicks J, Cargnin F, Hordeaux J. Neuropathological Findings in Nonclinical Species Following Administration of Adeno-Associated Virus (AAV)-Based Gene Therapy Vectors. Toxicol Pathol 2024; 52:489-505. [PMID: 39668663 DOI: 10.1177/01926233241300314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Adeno-associated virus (AAV) gene therapy vectors are an accepted platform for treating severe neurological diseases. Test article (TA)-related and procedure-related neuropathological effects following administration of AAV-based vectors are observed in the central nervous system (CNS) and peripheral nervous system (PNS). Leukocyte accumulation (mononuclear cell infiltration > inflammation) may occur in brain, spinal cord, spinal nerve roots (SNRs), sensory and autonomic ganglia, and rarely nerves. Leukocyte accumulation may be associated with neuron necrosis (sensory ganglia > CNS) and/or glial changes (microgliosis and/or astrocytosis in the CNS, increased satellite glial cellularity in ganglia and/or Schwann cellularity in nerves). Axonal degeneration secondary to neuronal injury may occur in the SNR (dorsal > ventral), spinal cord (dorsal and occasionally lateral funiculi), and brainstem centrally and in nerves peripherally. Patterns of AAV-associated microscopic findings in the CNS and PNS differ for TAs administered into brain parenchyma (where tissue at the injection site is affected most) versus TAs delivered into cerebrospinal fluid (CSF) or systemically (which primarily impacts sensory ganglion neurons and their processes in SNR and spinal cord). Changes related to the TA and procedure may overlap. While often interpreted as adverse, AAV-associated neuronal necrosis and axonal degeneration of limited severity generally do not preclude clinical testing.
Collapse
Affiliation(s)
| | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Joan Wicks
- Spark Therapeutics, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
3
|
Lyu P, Yadav MK, Yoo KW, Jiang C, Li Q, Atala A, Lu B. Gene therapy of Dent disease type 1 in newborn ClC-5 null mice for sustained transgene expression and gene therapy effects. Gene Ther 2024; 31:563-571. [PMID: 39322766 DOI: 10.1038/s41434-024-00490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Dent disease type 1 is caused by changes in the chloride voltage-gated channel 5 (CLCN5) gene on chromosome X, resulting in the lack or dysfunction of chloride channel ClC-5. Individuals affected by Dent disease type 1 show proteinuria and hypercalciuria. Previously we found that lentiviral vector-mediated hCLCN5 cDNA supplementary therapy in ClC-5 null mice was effective only for three months following gene delivery, and the therapeutic effects disappeared four months after treatment, most likely due to immune responses to the ClC-5 proteins expressed in the treated cells. Here we tried two strategies to reduce possible immune responses: 1) confining the expression of ClC-5 expression to the tubular cells with tubule-specific Npt2a and Sglt2 promoters, and 2) performing gene therapy in newborn mutant mice whose immune system has not fully developed. We found that although Npt2a and Sglt2 promoters successfully drove ClC-5 expression in the kidneys of the mutant mice, the treatment did not ameliorate the phenotypes. However, gene delivery to the kidneys of newborn Clcn5 mutant mice enabled long-term transgene expression and phenotype improvement. Our data suggest that performing gene therapy on Dent disease affected subjects soon after birth could be a promising strategy to attenuate immune responses in Dent disease type 1 gene therapy.
Collapse
Affiliation(s)
- Pin Lyu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Manish Kumar Yadav
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kyung Whan Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cuili Jiang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Qingqi Li
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
4
|
Aubert M, Haick AK, Strongin DE, Klouser LM, Loprieno MA, Stensland L, Santo TK, Huang ML, Hyrien O, Stone D, Jerome KR. Gene editing for latent herpes simplex virus infection reduces viral load and shedding in vivo. Nat Commun 2024; 15:4018. [PMID: 38740820 DOI: 10.1038/s41467-024-47940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Anti-HSV therapies are only suppressive because they do not eliminate latent HSV present in ganglionic neurons, the source of recurrent disease. We have developed a potentially curative approach against HSV infection, based on gene editing using HSV-specific meganucleases delivered by adeno-associated virus (AAV) vectors. Gene editing performed with two anti-HSV-1 meganucleases delivered by a combination of AAV9, AAV-Dj/8, and AAV-Rh10 can eliminate 90% or more of latent HSV DNA in mouse models of orofacial infection, and up to 97% of latent HSV DNA in mouse models of genital infection. Using a pharmacological approach to reactivate latent HSV-1, we demonstrate that ganglionic viral load reduction leads to a significant decrease of viral shedding in treated female mice. While therapy is well tolerated, in some instances, we observe hepatotoxicity at high doses and subtle histological evidence of neuronal injury without observable neurological signs or deficits. Simplification of the regimen through use of a single serotype (AAV9) delivering single meganuclease targeting a duplicated region of the HSV genome, dose reduction, and use of a neuron-specific promoter each results in improved tolerability while retaining efficacy. These results reinforce the curative potential of gene editing for HSV disease.
Collapse
Affiliation(s)
- Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Anoria K Haick
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Daniel E Strongin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98133, USA
| | - Lindsay M Klouser
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98133, USA
| | - Michelle A Loprieno
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Laurence Stensland
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98133, USA
| | - Tracy K Santo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98133, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98133, USA
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98133, USA.
| |
Collapse
|
5
|
İnci A, Ezgü FS, Tümer L. Advances in Immune Tolerance Induction in Enzyme Replacement Therapy. Paediatr Drugs 2024; 26:287-308. [PMID: 38664313 PMCID: PMC11074017 DOI: 10.1007/s40272-024-00627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 05/07/2024]
Abstract
Inborn errors of metabolism (IEMs) are a group of genetic diseases that occur due to the either deficiency of an enzyme involved in a metabolic/biochemical pathway or other disturbances in the metabolic pathway including transport protein or activator protein deficiencies, cofactor deficiencies, organelle biogenesis, maturation or trafficking problems. These disorders are collectively significant due to their substantial impact on both the well-being and survival of affected individuals. In the quest for effective treatments, enzyme replacement therapy (ERT) has emerged as a viable strategy for patients with many of the lysosomal storage disorders (LSD) and enzyme substitution therapy in the rare form of the other inborn errors of metabolism including phenylketonuria and hypophosphatasia. However, a major challenge associated with enzyme infusion in patients with these disorders, mainly LSD, is the development of high antibody titres. Strategies focusing on immunomodulation have shown promise in inducing immune tolerance to ERT, leading to improved overall survival rates. The implementation of immunomodulation concurrent with ERT administration has also resulted in a decreased occurrence of IgG antibody development compared with cases treated solely with ERT. By incorporating the knowledge gained from current approaches and analysing the outcomes of immune tolerance induction (ITI) modalities from clinical and preclinical trials have demonstrated significant improvement in the efficacy of ERT. In this comprehensive review, the progress in ITI modalities is assessed, drawing insights from both clinical and preclinical trials. The focus is on evaluating the advancements in ITI within the context of IEM, specifically addressing LSDs managed through ERT.
Collapse
Affiliation(s)
- Aslı İnci
- Department of Paediatric Metabolism and Nutrition, Gazi University School of Medicine, Emniyet Street, Yenimahalle, Ankara, Turkey.
| | - Fatih Süheyl Ezgü
- Department of Paediatric Metabolism and Nutrition, Gazi University School of Medicine, Emniyet Street, Yenimahalle, Ankara, Turkey
- Department of Paediatric Genetic, Gazi University School of Medicine, Ankara, Turkey
| | - Leyla Tümer
- Department of Paediatric Metabolism and Nutrition, Gazi University School of Medicine, Emniyet Street, Yenimahalle, Ankara, Turkey
| |
Collapse
|
6
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer SD, Crawford LK, Engelhardt JA, Galbreath EJ, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Technical Review: Biology and Pathology of Ganglia in Animal Species Used for Nonclinical Safety Testing. Toxicol Pathol 2023; 51:278-305. [PMID: 38047294 DOI: 10.1177/01926233231213851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dorsal root ganglia (DRG), trigeminal ganglia (TG), other sensory ganglia, and autonomic ganglia may be injured by some test article classes, including anti-neoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, nerve growth factor inhibitors, and aminoglycoside antibiotics. This article reviews ganglion anatomy, cytology, and pathology (emphasizing sensory ganglia) among common nonclinical species used in assessing product safety for such test articles (TAs). Principal histopathologic findings associated with sensory ganglion injury include neuron degeneration, necrosis, and/or loss; increased satellite glial cell and/or Schwann cell numbers; and leukocyte infiltration and/or inflammation. Secondary nerve fiber degeneration and/or glial reactions may occur in nerves, dorsal spinal nerve roots, spinal cord (dorsal and occasionally lateral funiculi), and sometimes the brainstem. Ganglion findings related to TA administration may result from TA exposure and/or trauma related to direct TA delivery into the central nervous system or ganglia. In some cases, TA-related effects may need to be differentiated from a spectrum of artifactual and/or spontaneous background changes.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
7
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
8
|
Chen X, Lim DA, Lawlor MW, Dimmock D, Vite CH, Lester T, Tavakkoli F, Sadhu C, Prasad S, Gray SJ. Biodistribution of Adeno-Associated Virus Gene Therapy Following Cerebrospinal Fluid-Directed Administration. Hum Gene Ther 2023; 34:94-111. [PMID: 36606687 DOI: 10.1089/hum.2022.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Adeno-associated virus (AAV)-based gene therapies, exemplified by the approved therapy for spinal muscular atrophy, have the potential to deliver disease-course-altering treatments for central nervous system (CNS) indications. However, several clinical trials have reported severe adverse events, including patient deaths following high-dose systemic administration for muscle-directed gene transfer, highlighting the need to explore approaches utilizing lower doses when targeting the CNS. Animal models of disease provide insight into the response to new AAV therapies. However, translation from small to larger animals and eventually to humans is hampered by anatomical and biological differences across the species and their impact on AAV delivery. We performed a literature review of preclinical studies of AAV gene therapy biodistribution following cerebrospinal fluid (CSF) delivery (intracerebroventricular, intra-cisterna magna, and intrathecal lumbar). The reviewed literature varies greatly in the reported biodistribution of AAV following administration into the CSF. Differences between studies, including animal model, vector serotype used, method used to assess biodistribution, and route of administration, among other variables, contribute to differing outcomes and difficulties in translating these preclinical results. For example, only half of the published AAV-based gene therapy studies report vector copy number, the most direct readout following administration of a vector; none of these studies reported details such as the empty:full capsid ratio and quality of encapsidated genome. Analysis of the last decade's literature focusing on AAV-based gene therapies targeting the CNS underscores limitations of the body of knowledge and room for continued research. In particular, there is a need to understand the biodistribution achieved by different CSF-directed routes of administration and determining if specific cell types/structures of interest will be transduced. Our findings point to a clear need for a more systematic approach across the field to align the assessments and elements reported in preclinical research to enable more reliable translation across animal models and into human studies.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel A Lim
- Department of Neurological Surgery, Eli and Edythe Broad Center for Regeneration Medicine, and the Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Michael W Lawlor
- Medical College of Wisconsin and Diverge Translational Science Laboratory, Milwaukee, Wisconsin, USA
| | - David Dimmock
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Charles H Vite
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and
| | | | | | | | | | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
[Application of adeno-associated virus-mediated gene therapy in lysosomal storage diseases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:1281-1287. [PMID: 36398557 PMCID: PMC9678058 DOI: 10.7499/j.issn.1008-8830.2207055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of single-gene inherited metabolic diseases caused by defects in lysosomal enzymes or function-related proteins. Enzyme replacement therapy is the main treatment method in clinical practice, but it has a poor effect in patients with neurological symptoms. With the rapid development of multi-omics, sequencing technology, and bioengineering, gene therapy has been applied in patients with LSDs. As one of the vectors of gene therapy, adeno-associated virus (AAV) has good prospects in the treatment of genetic and metabolic diseases. More and more studies have shown that AAV-mediated gene therapy is effective in LSDs. This article reviews the application of AAV-mediated gene therapy in LSDs.
Collapse
|
10
|
De Andres J, Hayek S, Perruchoud C, Lawrence MM, Reina MA, De Andres-Serrano C, Rubio-Haro R, Hunt M, Yaksh TL. Intrathecal Drug Delivery: Advances and Applications in the Management of Chronic Pain Patient. FRONTIERS IN PAIN RESEARCH 2022; 3:900566. [PMID: 35782225 PMCID: PMC9246706 DOI: 10.3389/fpain.2022.900566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
Advances in our understanding of the biology of spinal systems in organizing and defining the content of exteroceptive information upon which higher centers define the state of the organism and its role in the regulation of somatic and automatic output, defining the motor response of the organism, along with the unique biology and spatial organization of this space, have resulted in an increased focus on therapeutics targeted at this extracranial neuraxial space. Intrathecal (IT) drug delivery systems (IDDS) are well-established as an effective therapeutic approach to patients with chronic non-malignant or malignant pain and as a tool for management of patients with severe spasticity and to deliver therapeutics that address a myriad of spinal pathologies. The risk to benefit ratio of IDD makes it a useful interventional approach. While not without risks, this approach has a significant therapeutic safety margin when employed using drugs with a validated safety profile and by skilled practioners. The present review addresses current advances in our understanding of the biology and dynamics of the intrathecal space, therapeutic platforms, novel therapeutics, delivery technology, issues of safety and rational implementation of its therapy, with a particular emphasis upon the management of pain.
Collapse
Affiliation(s)
- Jose De Andres
- Surgical Specialties Department, Valencia University Medical School, Valencia, Spain
- Anesthesia Critical Care and Pain Management Department, Valencia, Spain
- *Correspondence: Jose De Andres
| | - Salim Hayek
- Department of Anesthesiology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Christophe Perruchoud
- Pain Center and Department of Anesthesia, La Tour Hospital, Geneva, Switzerland
- Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melinda M. Lawrence
- Department of Anesthesiology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Miguel Angel Reina
- Department of Anesthesiology, Montepríncipe University Hospital, Madrid, Spain
- CEU-San-Pablo University School of Medicine, Madrid, Spain
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States
- Facultad de Ciencias de la Salud Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Ruben Rubio-Haro
- Anesthesia and Pain Management Department, Provincial Hospital, Castellon, Spain
- Multidisciplinary Pain Clinic, Vithas Virgen del Consuelo Hospital, Valencia, Spain
| | - Mathew Hunt
- Department of Physiology, Karolinska Institute, Stockholm, Sweden
| | - Tony L. Yaksh
- Departments of Anesthesiology and Pharmacology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Consiglieri G, Bernardo ME, Brunetti-Pierri N, Aiuti A. Ex Vivo and In Vivo Gene Therapy for Mucopolysaccharidoses: State of the Art. Hematol Oncol Clin North Am 2022; 36:865-878. [DOI: 10.1016/j.hoc.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Hordeaux J, Jeffrey BA, Jian J, Choudhury GR, Michalson K, Mitchell TW, Buza EL, Chichester J, Dyer C, Bagel J, Vite CH, Bradbury AM, Wilson JM. Efficacy and Safety of a Krabbe Disease Gene Therapy. Hum Gene Ther 2022; 33:499-517. [PMID: 35333110 PMCID: PMC9142772 DOI: 10.1089/hum.2021.245] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Krabbe disease is a lysosomal storage disease caused by mutations in the gene that encodes galactosylceramidase, in which galactosylsphingosine (psychosine) accumulation drives demyelination in the central and peripheral nervous systems, ultimately progressing to death in early childhood. Gene therapy, alone or in combination with transplant, has been developed for almost two decades in mouse models, with increasing therapeutic benefit paralleling the improvement of next-generation adeno-associated virus (AAV) vectors. This effort has recently shown remarkable efficacy in the canine model of the disease by two different groups that used either systemic or cerebrospinal fluid (CSF) administration of AAVrh10 or AAV9. Building on our experience developing CSF-delivered, AAV-based drug products for a variety of neurodegenerative disorders, we conducted efficacy, pharmacology, and safety studies of AAVhu68 delivered to the CSF in two relevant natural Krabbe animal models, and in nonhuman primates. In newborn Twitcher mice, the highest dose (1 × 1011 genome copies [GC]) of AAVhu68.hGALC injected into the lateral ventricle led to a median survival of 130 days compared to 40.5 days in vehicle-treated mice. When this dose was administered intravenously, the median survival was 49 days. A single intracisterna magna injection of AAVhu68.cGALC at 3 × 1013 GC into presymptomatic Krabbe dogs increased survival for up to 85 weeks compared to 12 weeks in controls. It prevented psychosine accumulation in the CSF, preserved peripheral nerve myelination, ambulation, and decreased brain neuroinflammation and demyelination, although some regions remained abnormal. In a Good Laboratory Practice-compliant toxicology study, we administered the clinical candidate into the cisterna magna of 18 juvenile rhesus macaques at 3 doses that displayed efficacy in mice. We observed no dose-limiting toxicity and sporadic minimal degeneration of dorsal root ganglia (DRG) neurons. Our studies demonstrate the efficacy, scalability, and safety of a single cisterna magna AAVhu68 administration to treat Krabbe disease. ClinicalTrials.Gov ID: NCT04771416.
Collapse
Affiliation(s)
- Juliette Hordeaux
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brianne A Jeffrey
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jinlong Jian
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gourav R Choudhury
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kristofer Michalson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas W Mitchell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth L Buza
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Chichester
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cecilia Dyer
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Bagel
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Allison M Bradbury
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Wood SR, Bigger BW. Delivering gene therapy for mucopolysaccharide diseases. Front Mol Biosci 2022; 9:965089. [PMID: 36172050 PMCID: PMC9511407 DOI: 10.3389/fmolb.2022.965089] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Mucopolysaccharide diseases are a group of paediatric inherited lysosomal storage diseases that are caused by enzyme deficiencies, leading to a build-up of glycosaminoglycans (GAGs) throughout the body. Patients have severely shortened lifespans with a wide range of symptoms including inflammation, bone and joint, cardiac, respiratory and neurological disease. Current treatment approaches for MPS disorders revolve around two main strategies. Enzyme replacement therapy (ERT) is efficacious in treating somatic symptoms but its effect is limited for neurological functions. Haematopoietic stem cell transplant (HSCT) has the potential to cross the BBB through monocyte trafficking, however delivered enzyme doses limit its use almost exclusively to MPSI Hurler. Gene therapy is an emerging therapeutic strategy for the treatment of MPS disease. In this review, we will discuss the various vectors that are being utilised for gene therapy in MPS as well as some of the most recent gene-editing approaches undergoing pre-clinical and clinical development.
Collapse
|
14
|
Seven-year follow-up of durability and safety of AAV CNS gene therapy for a lysosomal storage disorder in a large animal. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:370-389. [PMID: 34761052 PMCID: PMC8550992 DOI: 10.1016/j.omtm.2021.09.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Delivery of adeno-associated viral vectors (AAVs) to cerebrospinal fluid (CSF) has emerged as a promising approach to achieve widespread transduction of the central nervous system (CNS) and peripheral nervous system (PNS), with direct applicability to the treatment of a wide range of neurological diseases, particularly lysosomal storage diseases. Although studies in small animal models have provided proof of concept and experiments in large animals demonstrated feasibility in bigger brains, there is not much information on long-term safety or durability of the effect. Here, we report a 7-year study in healthy beagle dogs after intra-CSF delivery of a single, clinically relevant dose (2 × 1013 vg/dog) of AAV9 vectors carrying the canine sulfamidase, the enzyme deficient in mucopolysaccharidosis type IIIA. Periodic monitoring of CSF and blood, clinical and neurological evaluations, and magnetic resonance and ultrasound imaging of target organs demonstrated no toxicity related to treatment. AAV9-mediated gene transfer resulted in detection of sulfamidase activity in CSF throughout the study. Analysis at tissue level showed widespread sulfamidase expression and activity in the absence of histological findings in any region of encephalon, spinal cord, or dorsal root ganglia. Altogether, these results provide proof of durability of expression and long-term safety for intra-CSF delivery of AAV-based gene transfer vectors encoding therapeutic proteins to the CNS.
Collapse
|
15
|
DBS Screening for Glycogen Storage Disease Type 1a: Detection of c.648G>T Mutation in G6PC by Combination of Modified Competitive Oligonucleotide Priming-PCR and Melting Curve Analysis. Int J Neonatal Screen 2021; 7:ijns7040079. [PMID: 34842616 PMCID: PMC8628980 DOI: 10.3390/ijns7040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
Glycogen storage disease type Ia (GSDIa) is an autosomal recessive disorder caused by glucose-6-phosphatase (G6PC) deficiency. GSDIa causes not only life-threatening hypoglycemia in infancy, but also hepatocellular adenoma as a long-term complication. Hepatocellular adenoma may undergo malignant transformation to hepatocellular carcinoma. New treatment approaches are keenly anticipated for the prevention of hepatic tumors. Gene replacement therapy (GRT) is a promising approach, although early treatment in infancy is essential for its safety and efficiency. Thus, GRT requires screening systems for early disease detection. In this study, we developed a screening system for GSDIa using dried blood spots (DBS) on filter paper, which can detect the most common causative mutation in the East-Asian population, c.648G>T in the G6PC gene. Our system consisted of nested PCR analysis with modified competitive oligonucleotide priming (mCOP)-PCR in the second round and melting curve analysis of the amplified products. Here, we tested 54 DBS samples from 50 c.648G (wild type) controls and four c.648T (mutant) patients. This system, using DBS samples, specifically amplified and clearly detected wild-type and mutant alleles from controls and patients, respectively. In conclusion, our system will be applicable to newborn screening for GSDIa in the real world.
Collapse
|
16
|
Hurt SC, Dickson PI, Curiel DT. Mucopolysaccharidoses type I gene therapy. J Inherit Metab Dis 2021; 44:1088-1098. [PMID: 34189746 PMCID: PMC8525653 DOI: 10.1002/jimd.12414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Mucopolysaccharidoses type I (MPS I) is an inherited metabolic disease characterized by a malfunction of the α-l-iduronidase (IDUA) enzyme leading to the storage of glycosaminoglycans in the lysosomes. This disease has longtime been studied as a therapeutic target for those studying gene therapy and many studies have been done using various vectors to deliver the IDUA gene for corrective treatment. Many vectors have difficulties with efficacy and insertional mutagenesis concerns including adeno-associated viral (AAV) vectors. Studies of AAV vectors treating MPS I have seemed promising, but recent deaths in gene therapy clinical trials for other inherited diseases using AAV vectors have left questions about their safety. Additionally, the recent modifications to adenoviral vectors leading them to target the vascular endothelium minimizing the risk of hepatotoxicity could lead to them being a viable option for MPS I gene therapy when coupled with gene editing technologies like CRISPR/Cas9.
Collapse
Affiliation(s)
- Sarah C. Hurt
- Cancer Biology Division, Department of Radiation OncologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
| | - Patricia I. Dickson
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PediatricsWashington University School of MedicineSt. LouisMissouriUSA
| | - David T. Curiel
- Cancer Biology Division, Department of Radiation OncologyWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
17
|
Ziobro JM, Eschbach K, Shellhaas RA. Novel Therapeutics for Neonatal Seizures. Neurotherapeutics 2021; 18:1564-1581. [PMID: 34386906 PMCID: PMC8608938 DOI: 10.1007/s13311-021-01085-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Neonatal seizures are a common neurologic emergency for which therapies have not significantly changed in decades. Improvements in diagnosis and pathophysiologic understanding of the distinct features of acute symptomatic seizures and neonatal-onset epilepsies present exceptional opportunities for development of precision therapies with potential to improve outcomes. Herein, we discuss the pathophysiology of neonatal seizures and review the evidence for currently available treatment. We present emerging therapies in clinical and preclinical development for the treatment of acute symptomatic neonatal seizures. Lastly, we discuss the role of precision therapies for genetic neonatal-onset epilepsies and address barriers and goals for developing new therapies for clinical care.
Collapse
Affiliation(s)
- Julie M Ziobro
- Department of Pediatrics, Michigan Medicine, C.S. Mott Children's Hospital, University of Michigan, 1540 E. Hospital Dr, Ann Arbor, MI, USA.
| | - Krista Eschbach
- Department of Pediatrics, Section of Neurology, Denver Anschutz School of Medicine, Children's Hospital Colorado, University of Colorado, Aurora, CO, 80045, USA
| | - Renée A Shellhaas
- Department of Pediatrics, Michigan Medicine, C.S. Mott Children's Hospital, University of Michigan, 1540 E. Hospital Dr, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Massaro G, Geard AF, Liu W, Coombe-Tennant O, Waddington SN, Baruteau J, Gissen P, Rahim AA. Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development. Biomolecules 2021; 11:611. [PMID: 33924076 PMCID: PMC8074255 DOI: 10.3390/biom11040611] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Rare monogenic disorders such as lysosomal diseases have been at the forefront in the development of novel treatments where therapeutic options are either limited or unavailable. The increasing number of successful pre-clinical and clinical studies in the last decade demonstrates that gene therapy represents a feasible option to address the unmet medical need of these patients. This article provides a comprehensive overview of the current state of the field, reviewing the most used viral gene delivery vectors in the context of lysosomal storage disorders, a selection of relevant pre-clinical studies and ongoing clinical trials within recent years.
Collapse
Affiliation(s)
- Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Amy F. Geard
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Wenfei Liu
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Oliver Coombe-Tennant
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Simon N. Waddington
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Gene Transfer Technology Group, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK
| | - Julien Baruteau
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK;
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Paul Gissen
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Ahad A. Rahim
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| |
Collapse
|
19
|
Furtado Araújo J, Andrioli A, Pinheiro RR, Sider LH, de Sousa ALM, de Azevedo DAA, Peixoto RM, Lima AMC, Damasceno EM, Souza SCR, Teixeira MFDS. Vertical transmissibility of small ruminant lentivirus. PLoS One 2020; 15:e0239916. [PMID: 33206648 PMCID: PMC7673514 DOI: 10.1371/journal.pone.0239916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate by means of Nested Polymerase Chain Reaction (nPCR), co-cultivation and sequencing, with genetic comparison between strains (mother/newborn), the occurrence of vertical transmission of Small Ruminant Lentiviruses (SRLV) from naturally occurring nannies infected for their offspring. For the detection of SRLV seropositive progenitors, blood was collected from 42 nannies in the final third of gestation in tubes with and without anticoagulant. The diagnostic tests used were Western Blot (WB) and nPCR. During the period of birth, the same blood collection procedure was performed on 73 newborns at zero hours of birth, with the same diagnostic tests. Seventeen blood samples from seven-day-old kids, proven positive for SRLV by nPCR, chosen at random, were subjected to coculture in goat synovial membrane (GSM) cells for 105 days. The pro-viral DNA extracted from the cell supernatant from the coculture was subjected to nPCR. For DNA sequencing from the nPCR products, nine positive samples were chosen at random, four nannies with their respective offspring, also positive. Each sample was performed in triplicate, thus generating 27 nPCR products of which only 19 were suitable for analysis. Among the 42 pregnant goats, in 50% (21/42) pro-viral DNA was detected by nPCR, while in the WB, only 7.14% (3/42) presented antibodies against SRLV. Regarding neonates, of the 73 kids, 34 (46.57%) were positive for the virus, using the nPCR technique, while in the serological test (WB), three positive animals (4.10%) were observed. The coculture of the 17 samples with a positive result in the nPCR was confirmed in viral isolation by amplification of the SRLV pro-viral DNA. When aligned, the pro-viral DNA sequences (nannies and their respective offspring) presented homology in relation to the standard strain CAEV Co. It was concluded that the transmission of SRLV through intrauterine route was potentially the source of infection in the newborn goats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Renato Mesquita Peixoto
- Embrapa Goats and Sheep, Sobral, Ceará, Brazil
- Scholarship for Regional Scientific Development of the National Council for Scientific and Technological Development (DCR-CNPq/FUNCAP), level C, Brasilia, Distrito Federal–DF, Brazil
| | | | | | | | | |
Collapse
|
20
|
Ou L, Przybilla MJ, Ahlat O, Kim S, Overn P, Jarnes J, O'Sullivan MG, Whitley CB. A Highly Efficacious PS Gene Editing System Corrects Metabolic and Neurological Complications of Mucopolysaccharidosis Type I. Mol Ther 2020; 28:1442-1454. [PMID: 32278382 PMCID: PMC7264433 DOI: 10.1016/j.ymthe.2020.03.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/06/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Our previous study delivered zinc finger nucleases to treat mice with mucopolysaccharidosis type I (MPS I), resulting in a phase I/II clinical trial (ClinicalTrials.gov: NCT02702115). However, in the clinical trial, the efficacy needs to be improved due to the low transgene expression level. To this end, we designed a proprietary system (PS) gene editing approach with CRISPR to insert a promoterless α-l-iduronidase (IDUA) cDNA sequence into the albumin locus of hepatocytes. In this study, adeno-associated virus 8 (AAV8) vectors delivering the PS gene editing system were injected into neonatal and adult MPS I mice. IDUA enzyme activity in the brain significantly increased, while storage levels were normalized. Neurobehavioral tests showed that treated mice had better memory and learning ability. Also, histological analysis showed efficacy reflected by the absence of foam cells in the liver and vacuolation in neuronal cells. No vector-associated toxicity or increased tumorigenesis risk was observed. Moreover, no off-target effects were detected through the unbiased genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) analysis. In summary, these results showed the safety and efficacy of the PS in treating MPS I and paved the way for clinical studies. Additionally, as a therapeutic platform, the PS has the potential to treat other lysosomal diseases.
Collapse
Affiliation(s)
- Li Ou
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Michael J Przybilla
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ozan Ahlat
- Comparative Pathology Shared Resource, University of Minnesota Masonic Cancer Center, Saint Paul, MN 55108, USA
| | - Sarah Kim
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paula Overn
- Comparative Pathology Shared Resource, University of Minnesota Masonic Cancer Center, Saint Paul, MN 55108, USA
| | - Jeanine Jarnes
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - M Gerard O'Sullivan
- Comparative Pathology Shared Resource, University of Minnesota Masonic Cancer Center, Saint Paul, MN 55108, USA
| | - Chester B Whitley
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Story BD, Miller ME, Bradbury AM, Million ED, Duan D, Taghian T, Faissler D, Fernau D, Beecy SJ, Gray-Edwards HL. Canine Models of Inherited Musculoskeletal and Neurodegenerative Diseases. Front Vet Sci 2020; 7:80. [PMID: 32219101 PMCID: PMC7078110 DOI: 10.3389/fvets.2020.00080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Mouse models of human disease remain the bread and butter of modern biology and therapeutic discovery. Nonetheless, more often than not mouse models do not reproduce the pathophysiology of the human conditions they are designed to mimic. Naturally occurring large animal models have predominantly been found in companion animals or livestock because of their emotional or economic value to modern society and, unlike mice, often recapitulate the human disease state. In particular, numerous models have been discovered in dogs and have a fundamental role in bridging proof of concept studies in mice to human clinical trials. The present article is a review that highlights current canine models of human diseases, including Alzheimer's disease, degenerative myelopathy, neuronal ceroid lipofuscinosis, globoid cell leukodystrophy, Duchenne muscular dystrophy, mucopolysaccharidosis, and fucosidosis. The goal of the review is to discuss canine and human neurodegenerative pathophysiologic similarities, introduce the animal models, and shed light on the ability of canine models to facilitate current and future treatment trials.
Collapse
Affiliation(s)
- Brett D. Story
- Auburn University College of Veterinary Medicine, Auburn, AL, United States
- University of Florida College of Veterinary Medicine, Gainesville, FL, United States
| | - Matthew E. Miller
- Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Allison M. Bradbury
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily D. Million
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Toloo Taghian
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dominik Faissler
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States
| | - Deborah Fernau
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sidney J. Beecy
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States
| | - Heather L. Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
22
|
Gurda BL, Vite CH. Large animal models contribute to the development of therapies for central and peripheral nervous system dysfunction in patients with lysosomal storage diseases. Hum Mol Genet 2020; 28:R119-R131. [PMID: 31384936 DOI: 10.1093/hmg/ddz127] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/16/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of 70 monogenic disorders characterized by the lysosomal accumulation of a substrate. As a group, LSDs affect ~1 in 5000 live births; however, each individual storage disease is rare, limiting the ability to perform natural history studies or to perform clinical trials. Perhaps in no other biomedical field have naturally occurring large animal (canine, feline, ovine, caprine, and bovine) models been so essential for understanding the fundamentals of disease pathogenesis and for developing safe and effective therapies. These models were critical for the development of hematopoietic stem cell transplantation in α- and β- mannosidosis, fucosidosis, and the mucopolysaccharidoses; enzyme replacement therapy for fucosidosis, the mucopolysaccharidoses, and neuronal ceroid lipofuscinosis; and small molecule therapy in Niemann-Pick type C disease. However, their most notable contributions to the biomedical field are in the development of gene therapy for LSDs. Adeno-associated viral vectors to treat nervous system disease have been evaluated in the large animal models of α-mannosidosis, globoid cell leukodystrophy, GM1 and GM2 gangliosidosis, the mucopolysaccharidoses, and neuronal ceroid lipofuscinosis. This review article will summarize the large animal models available for study as well as their contributions to the development of central and peripheral nervous system dysfunction in LSDs.
Collapse
Affiliation(s)
- Brittney L Gurda
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Cognitive Abilities of Dogs with Mucopolysaccharidosis I: Learning and Memory. Animals (Basel) 2020; 10:ani10030397. [PMID: 32121123 PMCID: PMC7143070 DOI: 10.3390/ani10030397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023] Open
Abstract
Mucopolysaccharidosis I (MPS I) results from a deficiency of a lysosomal enzyme, alpha-L-iduronidase (IDUA). IDUA deficiency leads to glycosaminoglycan (GAG) accumulation resulting in cellular degeneration and multi-organ dysfunction. The primary aims of this pilot study were to determine the feasibility of cognitive testing MPS I affected dogs and to determine their non-social cognitive abilities with and without gene therapy. Fourteen dogs were tested: 5 MPS I untreated, 5 MPS I treated, and 4 clinically normal. The treated group received intrathecal gene therapy as neonates to replace the IDUA gene. Cognitive tests included delayed non-match to position (DNMP), two-object visual discrimination (VD), reversal learning (RL), attention oddity (AO), and two-scent discrimination (SD). Responses were recorded as correct, incorrect, or no response, and analyzed using mixed effect logistic regression analysis. Significant differences were not observed among the three groups for DNMP, VD, RL, or AO. The MPS I untreated dogs were excluded from AO testing due to failing to pass acquisition of the task, potentially representing a learning or executive function deficit. The MPS I affected group (treated and untreated) was significantly more likely to discriminate between scents than the normal group, which may be due to an age effect. The normal group was comprised of the oldest dogs, and a mixed effect logistic model indicated that older dogs were more likely to respond incorrectly on scent discrimination. Overall, this study found that cognition testing of MPS I affected dogs to be feasible. This work provides a framework to refine future cognition studies of dogs affected with diseases, including MPS I, in order to assess therapies in a more comprehensive manner.
Collapse
|
24
|
Abstract
Mucopolysaccharidoses (MPSs) are caused by deficiencies of specific lysosomal enzymes that affect the degradation of mucopolysaccharides or glycosaminoglycans (GAGs). Enzyme replacement therapies are available for an increasing number of MPSs since more than 15 years. Together with hematopoietic stem cell transplantation, these enzyme therapies are currently the gold standard of causal treatment in MPS. Both treatments can improve symptoms and prognosis, but they do not cure these severe conditions. The limitations of intravenous enzyme replacement and cell therapy can be summarized as the development of immune reactions against the therapeutic molecules/cells and failure to restore enduring and sufficient drug exposures in all relevant tissues. Thus innovative approaches include small molecules and encapsulated cells that do not induce immune reactions, gene therapy approaches that aim for sustained enzyme expression, and new enzymes that are able to penetrate barriers to drug distribution like the blood-brain barrier. This chapter provides an update on the state of development of these new therapies and highlights current challenges.
Collapse
Affiliation(s)
- Florian B Lagler
- Institute for Inborn Errors of Metabolism and Department of Paediatrics, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
25
|
Shafaat M, Hashemi M, Majd A, Abiri M, Zeinali S. Genetic testing of Mucopolysaccharidoses disease using multiplex PCR- based panels of STR markers: in silico analysis of novel mutations. Metab Brain Dis 2019; 34:1447-1455. [PMID: 31236806 DOI: 10.1007/s11011-019-00434-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022]
Abstract
The Mucopolysaccharidoses (MPS) are group of inherited metabolic diseases caused by the deficiency of enzymes required to degrade glycosaminoglycans (GAGs) in the lysosomes. GAGs are sulfated polysaccharides involving repeating disaccharides, uronic acid and hexosamines including chondroitin sulfate (CS), dermatan sulfate (DS), heparan sulfate (HS) and keratan sulfate (KS). Hyaluronan is excluded in terms of being non-sulfated in the GAG family. Different types of mutations have been identified as the causative agent in all types of MPS. Herein, we planned to investigate the pathogenic mutations in different types of MPS including type I (IDUA gene), IIIA (SGSH) and IIIB (NAGLU) in the eight Iranian patients. Autozygosity mapping was performed to identify the potential pathogenic variants in these 8 patients indirectly with the clinical diagnosis of MPSs. so three panels of STR (Short Tandem Repeat) markres flanking IDUA, SGSH and NAGLU genes were selected for multiplex PCR amplification. Then in each family candidate gene was sequenced to identify the pathogenic mutation. Our study showed two novel mutations c.469 T > C and c.903C > G in the IDUA gene, four recurrent mutations: c.1A > C in IDUA, c.220C > T, c.1298G > A in SGSH gene and c.457G > A in the NAGLU gene. The c.1A > C in IDUA was the most common mutation in our study. In silico analysis were performed as well to predict the pathogenicity of the novel variants.
Collapse
Affiliation(s)
- Mehdi Shafaat
- Department of Biology, Faculty of Science, North Tehran Branch of Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ahmad Majd
- Department of Biology, Faculty of Science, North Tehran Branch of Islamic Azad University, Tehran, Iran
| | - Maryam Abiri
- Department of Medical Genetics and Molecular biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sirous Zeinali
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St, Tehran, Iran.
- Dr. Zeinali's Medical Genetics Lab, Kawsar Human Genetics Center, No. 41 Majlesi St., Vali Asr St., Postal Code, Tehran, 1595645513, Iran.
| |
Collapse
|
26
|
Abstract
In the last decade, the gene therapy (GT) field experienced a renaissance, thanks to crucial understandings and innovations in vector design, stem cell manipulation, conditioning protocols, and cell/vector delivery. These efforts were successfully coupled with unprecedented clinical results of the trials employing the newly developed technology and with the novel establishment of academic-industrial partnerships. A renewed and strengthened interest is rising in the development of gene-based approaches for inherited neurometabolic disorders with severe neurological involvement. Inherited metabolic disorders are monogenetic diseases caused by enzymatic or structural deficiencies affecting the lysosomal or peroxisomal metabolic activity. The metabolic defect can primarily affect the central nervous system, leading to neuronal death, microglial activation, inflammatory demyelination, and axonal degeneration. This review provides an overview of the GT strategies currently under clinical investigation for neurometabolic lysosomal and peroxisomal storage diseases, such as adrenoleukodystrophy and metachromatic leukodystrophy, as well as novel emerging indications such as mucopolysaccharidoses, gangliosidoses, and neuronal ceroid lipofuscinoses, with a comprehensive elucidation of the main features and mechanisms at the basis of a successful GT approach for these devastating diseases.
Collapse
Affiliation(s)
- Valentina Poletti
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Alessandra Biffi
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts.,Pediatric Hematology, Oncology and Stem Cell Transplant, Woman's and Child Health Department, University of Padova, Padova, Italy
| |
Collapse
|
27
|
Hordeaux J, Hinderer C, Buza EL, Louboutin JP, Jahan T, Bell P, Chichester JA, Tarantal AF, Wilson JM. Safe and Sustained Expression of Human Iduronidase After Intrathecal Administration of Adeno-Associated Virus Serotype 9 in Infant Rhesus Monkeys. Hum Gene Ther 2019; 30:957-966. [PMID: 31017018 DOI: 10.1089/hum.2019.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many neuropathic diseases cause early, irreversible neurologic deterioration, which warrants therapeutic intervention during the first months of life. In the case of mucopolysaccharidosis type I, a recessive lysosomal storage disorder that results from a deficiency of the lysosomal enzyme α-l-iduronidase (IDUA), one of the most promising treatment approaches is to restore enzyme expression through gene therapy. Specifically, administering pantropic adeno-associated virus (AAV) encoding IDUA into the cerebrospinal fluid (CSF) via suboccipital administration has demonstrated remarkable efficacy in large animals. Preclinical safety studies conducted in adult nonhuman primates supported a positive risk-benefit profile of the procedure while highlighting potential subclinical toxicity to primary sensory neurons located in the dorsal root ganglia (DRG). This study investigated the long-term performance of intrathecal cervical AAV serotype 9 gene transfer of human IDUA administered to 1-month-old rhesus monkeys (N = 4) with half of the animals tolerized to the human transgene at birth via systemic administration of an AAV serotype 8 vector expressing human IDUA from the liver. Sustained expression of the transgene for almost 4 years is reported in all animals. Transduced cells were primarily pyramidal neurons in the cortex and hippocampus, Purkinje cells in the cerebellum, lower motor neurons, and DRG neurons. Both tolerized and non-tolerized animals were robust and maintained transgene expression as measured by immunohistochemical analysis of brain tissue. However, the presence of antibodies in the non-tolerized animals led to a loss of measurable levels of secreted enzyme in the CSF. These results support the safety and efficiency of treating neonatal rhesus monkeys with AAV serotype 9 gene therapy delivered into the CSF.
Collapse
Affiliation(s)
- Juliette Hordeaux
- 1Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Christian Hinderer
- 1Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Elizabeth L Buza
- 1Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jean-Pierre Louboutin
- 2Section of Anatomy, Department of Basic Medical Sciences, University of West Indies, Kingston, Jamaica
| | - Tahsin Jahan
- 1Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Peter Bell
- 1Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jessica A Chichester
- 1Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Alice F Tarantal
- 3Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases, Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, California
| | - James M Wilson
- 1Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Ginocchio VM, Brunetti-Pierri N. Recent progress in gene therapies for mucopolysaccharidoses. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1529564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Virginia Maria Ginocchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Translational Medicine, “Federico II” University Hospital, Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Translational Medicine, “Federico II” University Hospital, Naples, Italy
| |
Collapse
|
29
|
Katz N, Goode T, Hinderer C, Hordeaux J, Wilson JM. Standardized Method for Intra-Cisterna Magna Delivery Under Fluoroscopic Guidance in Nonhuman Primates. Hum Gene Ther Methods 2018; 29:212-219. [PMID: 30032644 DOI: 10.1089/hgtb.2018.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intrathecal delivery of adeno-associated virus vectors and other therapeutics are currently being evaluated for the treatment of central nervous system sequelae of lysosomal storage diseases, motor neuron diseases, and neurodegenerative diseases. As products transition from preclinical to clinical studies, a standardized and clinically relevant method of intrathecal delivery is increasingly germane. Here, we describe a method of intrathecal delivery via suboccipital puncture into the cisterna magna under fluoroscopic guidance in nonhuman primates. This procedure is suitable for use in good laboratory practice compliant studies, has an excellent safety profile, and is highly similar to the procedure currently being explored for use in humans.
Collapse
Affiliation(s)
- Nathan Katz
- Gene Therapy Program, Department of Medicine, University of Pennsylvania , Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Tamara Goode
- Gene Therapy Program, Department of Medicine, University of Pennsylvania , Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Christian Hinderer
- Gene Therapy Program, Department of Medicine, University of Pennsylvania , Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Juliette Hordeaux
- Gene Therapy Program, Department of Medicine, University of Pennsylvania , Perelman School of Medicine, Philadelphia, Pennsylvania
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania , Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Hordeaux J, Hinderer C, Goode T, Katz N, Buza EL, Bell P, Calcedo R, Richman LK, Wilson JM. Toxicology Study of Intra-Cisterna Magna Adeno-Associated Virus 9 Expressing Human Alpha-L-Iduronidase in Rhesus Macaques. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:79-88. [PMID: 30073179 PMCID: PMC6070681 DOI: 10.1016/j.omtm.2018.06.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/07/2018] [Indexed: 01/01/2023]
Abstract
Mucopolysaccharidosis type I is a recessive genetic disease caused by deficiency of the lysosomal enzyme α-L-iduronidase, which leads to a neurodegenerative and systemic disease called Hurler syndrome in its most severe form. Several clinical trials are evaluating adeno-associated virus serotype 9 (AAV9) for the treatment of neurodegenerative diseases. Although these trials focus on systemic or lumbar administration, intrathecal administration via suboccipital puncture into the cisterna magna has demonstrated remarkable efficacy in large animals. We, therefore, conducted a good laboratory practice-compliant non-clinical study to investigate the safety of suboccipital AAV9 gene transfer of human α-L-iduronidase into nonhuman primates. We dosed 22 rhesus macaques, including three immunosuppressed animals, with vehicle or one of two doses of vector. We assessed in-life safety and immune responses. Animals were euthanized 14, 90, or 180 days post-vector administration and evaluated for histopathology and biodistribution. No procedure-related lesions or adverse events occurred. All vector-treated animals showed a dose-dependent mononuclear pleocytosis in the cerebrospinal fluid and minimal to moderate asymptomatic degeneration of dorsal root ganglia neurons and associated axons. These studies support the clinical development of suboccipital AAV delivery for Hurler syndrome and highlight a potential sensory neuron toxicity that warrants careful monitoring in first-in-human studies.
Collapse
Affiliation(s)
- Juliette Hordeaux
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christian Hinderer
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tamara Goode
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathan Katz
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elizabeth L Buza
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Roberto Calcedo
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Laura K Richman
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Toxicology Study of Intra-Cisterna Magna Adeno-Associated Virus 9 Expressing Iduronate-2-Sulfatase in Rhesus Macaques. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:68-78. [PMID: 30073178 PMCID: PMC6070702 DOI: 10.1016/j.omtm.2018.06.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/07/2018] [Indexed: 11/21/2022]
Abstract
Hunter syndrome is an X-linked recessive disease caused by deficiency of the lysosomal enzyme iduronate-2-sulfatase. The severe form of this progressive, systemic, and neurodegenerative disease results in loss of cognitive skills and early death. Several clinical trials are evaluating adeno-associated virus 9 for the treatment of neurodegenerative diseases using systemic or intrathecal lumbar administration. In large animals, administration via suboccipital puncture gives better brain transduction than lumbar administration. Here, we conducted a good laboratory practice-compliant investigational new drug-enabling study to determine the safety of suboccipital adeno-associated virus 9 gene transfer of human iduronate-2-sulfatase into nonhuman primates. Thirteen rhesus macaques received vehicle or one of two doses of vector with or without immunosuppression. We assessed in-life safety and immune responses. Animals were euthanized 90 days post-administration and sampled for histopathology and biodistribution. The procedure was well tolerated in all animals. Minimal mononuclear cerebrospinal fluid pleocytosis occurred in some animals. Asymptomatic minimal-to-moderate toxicity to some dorsal root ganglia sensory neurons and their associated axons occurred in all vector-treated animals. This study supports the clinical development of suboccipital adeno-associated virus 9 delivery for severe Hunter syndrome and highlights a potential toxicity that warrants monitoring in first-in-human studies.
Collapse
|
32
|
Sawamoto K, Chen HH, Alméciga-Díaz CJ, Mason RW, Tomatsu S. Gene therapy for Mucopolysaccharidoses. Mol Genet Metab 2018; 123:59-68. [PMID: 29295764 PMCID: PMC5986190 DOI: 10.1016/j.ymgme.2017.12.434] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/19/2022]
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders (LSDs) caused by a deficiency of lysosomal enzymes, leading to a wide range of various clinical symptoms depending upon the type of MPS or its severity. Enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), substrate reduction therapy (SRT), and various surgical procedures are currently available for patients with MPS. However, there is no curative treatment for this group of disorders. Gene therapy should be a one-time permanent therapy, repairing the cause of enzyme deficiency. Preclinical studies of gene therapy for MPS have been developed over the past three decades. Currently, clinical trials of gene therapy for some types of MPS are ongoing in the United States, some European countries, and Australia. Here, in this review, we summarize the development of gene therapy for MPS in preclinical and clinical trials.
Collapse
Affiliation(s)
- Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Hui-Hsuan Chen
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Medical Laboratory Sciences, University of Delaware, Newark, DE, United States
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Pediatrics, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
33
|
Hinderer C, Katz N, Louboutin JP, Bell P, Tolar J, Orchard PJ, Lund TC, Nayal M, Weng L, Mesaros C, de Souza CFM, Dalla Corte A, Giugliani R, Wilson JM. Abnormal polyamine metabolism is unique to the neuropathic forms of MPS: potential for biomarker development and insight into pathogenesis. Hum Mol Genet 2018; 26:3837-3849. [PMID: 28934395 DOI: 10.1093/hmg/ddx277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022] Open
Abstract
The mucopolysaccharidoses (MPS) are rare genetic disorders marked by severe somatic and neurological symptoms. Development of treatments for the neurological manifestations of MPS has been hindered by the lack of objective measures of central nervous system disease burden. Identification of biomarkers for central nervous system disease in MPS patients would facilitate the evaluation of new agents in clinical trials. High throughput metabolite screening of cerebrospinal fluid (CSF) samples from a canine model of MPS I revealed a marked elevation of the polyamine, spermine, in affected animals, and gene therapy studies demonstrated that reduction of CSF spermine reflects correction of brain lesions in these animals. In humans, CSF spermine was elevated in neuropathic subtypes of MPS (MPS I, II, IIIA, IIIB), but not in subtypes in which cognitive function is preserved (MPS IVA, VI). In MPS I patients, elevated CSF spermine was restricted to patients with genotypes associated with CNS disease and was reduced following hematopoietic stem cell transplantation, which is the only therapy currently capable of improving cognitive outcomes. Additional studies in cultured neurons from MPS I mice showed that elevated spermine was essential for the abnormal neurite overgrowth exhibited by MPS neurons. These findings offer new insights into the pathogenesis of CNS disease in MPS patients, and support the use of spermine as a new biomarker to facilitate the development of next generation therapeutics for MPS.
Collapse
Affiliation(s)
- Christian Hinderer
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathan Katz
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Pierre Louboutin
- Section of Anatomy, Department of Basic Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Paul J Orchard
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Troy C Lund
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Mohamad Nayal
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liwei Weng
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clementina Mesaros
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carolina F M de Souza
- Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, RS Porto Alegre 90035-903, Brazil
| | - Amauri Dalla Corte
- Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, RS Porto Alegre 90035-903, Brazil.,Post-Graduate Course in Medical Sciences, UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - Roberto Giugliani
- Medical Genetics Service, HCPA.,Post-Graduate Course in Medical Sciences, UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Giugliani R, Vairo F, Kubaski F, Poswar F, Riegel M, Baldo G, Saute JA. Neurological manifestations of lysosomal disorders and emerging therapies targeting the CNS. THE LANCET CHILD & ADOLESCENT HEALTH 2017; 2:56-68. [PMID: 30169196 DOI: 10.1016/s2352-4642(17)30087-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
Abstract
Lysosomal disorders have been an area of interest since intravenous enzyme replacement therapy was successfully introduced for the treatment of Gaucher's disease in the early 1990s. This treatment approach has also been developed for several other lysosomal disorders, including Fabry's disease, Pompe's disease, lysosomal acid lipase deficiency, and five types of mucopolysaccharidosis. Despite the benefits of enzyme replacement therapy, it has limitations-most importantly, its ineffectiveness in treating the neurological components of lysosomal disorders, as only a small proportion of recombinant enzymes can cross the blood-brain barrier. Development of strategies to improve drug delivery to the CNS is now the primary focus in lysosomal disorder research. This Review discusses the neurological manifestations and emerging therapies for the CNS component of these diseases. The therapies in development (which are now in phase 1 or phase 2 clinical trials) might be for specific lysosomal disorders (enzyme replacement therapy via intrathecal or intracerebroventricular routes or with fusion proteins, or gene therapy) or applicable to more than one lysosomal disorder (haemopoietic stem cell transplantation, pharmacological chaperones, substrate reduction therapy, or stop codon readthrough). The combination of early diagnosis with effective therapies should change the outlook for patients with lysosomal disorders with neurological involvement in the next 5-10 years.
Collapse
Affiliation(s)
- Roberto Giugliani
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | - Fabiano Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariluce Riegel
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Baldo
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jonas Alex Saute
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
35
|
Gurda BL, Bradbury AM, Vite CH. Canine and Feline Models of Human Genetic Diseases and Their Contributions to Advancing Clinical Therapies
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:417-431. [PMID: 28955181 PMCID: PMC5612185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
For many lethal or debilitating genetic disorders in patients there are no satisfactory therapies. Several barriers exist that hinder the developments of effective therapies including the limited availability of clinically relevant animal models that faithfully recapitulate human genetic disease. In 1974, the Referral Center for Animal Models of Human Genetic Disease (RCAM) was established by Dr. Donald F. Patterson and continued by Dr. Mark E. Haskins at the University of Pennsylvania with the mission to discover, understand, treat, and maintain breeding colonies of naturally occurring hereditary disorders in dogs and cats that are orthologous to those found in human patients. Although non-human primates, sheep, and pig models are also available within the medical community, naturally occurring diseases are rarely identified in non-human primates, and the vast behavioral, clinicopathological, physiological, and anatomical knowledge available regarding dogs and cats far surpasses what is available in ovine and porcine species. The canine and feline models that are maintained at RCAM are presented here with a focus on preclinical therapy data. Clinical studies that have been generated from preclinical work in these models are also presented.
Collapse
Affiliation(s)
| | | | - Charles H. Vite
- To whom all correspondence should be addressed: Dr. Charles H. Vite, 209 Rosenthal Building, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, Tel: 215-898-9473, .
| |
Collapse
|