1
|
Wiśniewska K, Żabińska M, Szulc A, Gaffke L, Węgrzyn G, Pierzynowska K. The Role of Gene Expression Dysregulation in the Pathogenesis of Mucopolysaccharidosis: A Comparative Analysis of Shared and Specific Molecular Markers in Neuronopathic and Non-Neuronopathic Types of the Disease. Int J Mol Sci 2024; 25:13447. [PMID: 39769211 PMCID: PMC11678658 DOI: 10.3390/ijms252413447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Mucopolysaccharidosis (MPS) comprises a group of inherited metabolic diseases. Each MPS type is caused by a deficiency in the activity of one kind of enzymes involved in glycosaminoglycan (GAG) degradation, resulting from the presence of pathogenic variant(s) of the corresponding gene. All types/subtypes of MPS, which are classified on the basis of all kinds of defective enzymes and accumulated GAG(s), are severe diseases. However, neuronopathy only occurs in some MPS types/subtypes (specifically severe forms of MPS I and MPS II, all subtypes of MPS III, and MPS VII), while in others, the symptoms related to central nervous system dysfunctions are either mild or absent. The early diagnosis of neuronopathy is important for the proper treatment and/or management of the disease; however, there are no specific markers that could be easily used for this in a clinical practice. Therefore, in this work, a comparative analysis of shared and specific gene expression alterations in neuronopathic and non-neuronopathic MPS types was performed using cultures of cells derived from patients. Using transcriptomic analyses (based on the RNA-seq method, confirmed by measuring the levels of a selected gene product), we identified genes (including PFN1, ADAMTSL1, and ABHD5) with dysregulated expression that are common for all, or almost all, types of MPS, suggesting their roles in MPS pathogenesis. Moreover, a distinct set of genes (including ARL6IP6 and PDIA3) exhibited expression changes only in neuronopathic MPS types/subtypes, but not in non-neuronopathic ones, suggesting their possible applications as biomarkers for neurodegeneration in MPS. These findings provide new insights into both the molecular mechanisms of MPS pathogenesis and the development of differentiation method(s) between neuronopathic and non-neuronopathic courses of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.)
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.)
| |
Collapse
|
2
|
Khan SA, Nidhi F, Leal AF, Celik B, Herreño-Pachón AM, Saikia S, Benincore-Flórez E, Ago Y, Tomatsu S. Glycosaminoglycans in mucopolysaccharidoses and other disorders. Adv Clin Chem 2024; 122:1-52. [PMID: 39111960 DOI: 10.1016/bs.acc.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Glycosaminoglycans (GAGs) are sulfated polysaccharides comprising repeating disaccharides, uronic acid (or galactose) and hexosamines, including chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate. Hyaluronan is an exception in the GAG family because it is a non-sulfated polysaccharide. Lysosomal enzymes are crucial for the stepwise degradation of GAGs to provide a normal function of tissues and extracellular matrix (ECM). The deficiency of one or more lysosomal enzyme(s) results in the accumulation of undegraded GAGs, causing cell, tissue, and organ dysfunction. Accumulation of GAGs in various tissues and ECM results in secretion into the circulation and then excretion in urine. GAGs are biomarkers of certain metabolic disorders, such as mucopolysaccharidoses (MPS) and mucolipidoses. GAGs are also elevated in patients with various conditions such as respiratory and renal disorders, fatty acid metabolism disorders, viral infections, vomiting disorders, liver disorders, epilepsy, hypoglycemia, myopathy, developmental disorders, hyperCKemia, heart disease, acidosis, and encephalopathy. MPS are a group of inherited metabolic diseases caused by the deficiency of enzymes required to degrade GAGs in the lysosome. Eight types of MPS are categorized based on lack or defect in one of twelve specific lysosomal enzymes and are described as MPS I through MPS X (excluding MPS V and VIII). Clinical features vary with the type of MPS and clinical severity of the disease. This chapter addresses the historical overview, synthesis, degradation, distribution, biological role, and method for measurement of GAGs.
Collapse
Affiliation(s)
- Shaukat A Khan
- Nemours Children's Health, Wilmington, DE, United States
| | - Fnu Nidhi
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | - Andrés Felipe Leal
- Nemours Children's Health, Wilmington, DE, United States; Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Betul Celik
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | | | - Sampurna Saikia
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | | | - Yasuhiko Ago
- Nemours Children's Health, Wilmington, DE, United States
| | - Shunji Tomatsu
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
3
|
Grant CL, López-Valdez J, Marsden D, Ezgü F. Mucopolysaccharidosis type VII (Sly syndrome) - What do we know? Mol Genet Metab 2024; 141:108145. [PMID: 38301529 DOI: 10.1016/j.ymgme.2024.108145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
Mucopolysaccharidosis type VII (MPS VII) is an ultra-rare, life-threatening, progressive disease caused by genetic mutations that affect lysosomal storage/function. MPS VII has an estimated prevalence of <1:1,000,000 and accounts for <3% of all MPS diagnoses. Given the rarity of MPS VII, comprehensive information on the disease is limited and we present a review of the current understanding. In MPS VII, intracellular glycosaminoglycans accumulate due to a deficiency in the lysosomal enzyme that is responsible for their degradation, β-glucuronidase, which is encoded by the GUSB gene. MPS VII has a heterogeneous presentation. Features can manifest across multiple systems and can vary in severity, age of onset and progression. The single most distinguishing clinical feature of MPS VII is non-immune hydrops fetalis (NIHF), which presents during pregnancy. MPS VII usually presents within one month of life and become more prominent at 3 to 4 years of age; key features are skeletal deformities, hepatosplenomegaly, coarse facies, and cognitive impairment, although phenotypic variation is a hallmark. Current treatments include hematopoietic stem cell transplantation and enzyme replacement therapy with vestronidase alfa. Care should be individualized for each patient. Development of consensus guidelines for MPS VII management and treatment is needed, as consolidation of expert knowledge and experience (for example, through the MPS VII Disease Monitoring Program) may provide a significant positive impact to patients.
Collapse
Affiliation(s)
- Christina L Grant
- Rare Disease Institute, Division of Genetics and Metabolism, Children's National Medical Center, Washington, DC, USA
| | - Jaime López-Valdez
- Department of Genetics, Centenario Hospital Miguel Hidalgo, Aguascalientes, Mexico
| | | | - Fatih Ezgü
- Department of Pediatric Metabolic and Genetic Disorders, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Penon-Portmann M, Blair DR, Harmatz P. Current and new therapies for mucopolysaccharidoses. Pediatr Neonatol 2023; 64 Suppl 1:S10-S17. [PMID: 36464587 DOI: 10.1016/j.pedneo.2022.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
The mucopolysaccharidoses (MPSs) are a subset of lysosomal storage diseases caused by deficiencies in the enzymes required to metabolize glycosaminoglycans (GAGs), a group of extracellular heteropolysaccharides that play diverse roles in human physiology. As a result, GAGs accumulate in multiple tissues, and affected patients typically develop progressive, multi-systemic symptoms in early childhood. Over the last 30 years, the treatments available for the MPSs have evolved tremendously. There are now multiple therapies that delay the progression of these debilitating disorders, although their effectiveness varies according to MPS sub-type. In this review, we discuss the basic principle underlying MPS treatment (enzymatic "cross correction"), and we review the three general modalities currently available: hematopoietic stem cell transplantation, enzymatic replacement, and gene therapy. For each treatment type, we discuss its effectiveness across the MPS subtypes, its inherent risks, and future directions. Long term, we suspect that treatment for the MPSs will continue to evolve, and through a combination of early diagnosis and effective management, these patients will continue to live longer lives with improved outcomes for quality of life.
Collapse
Affiliation(s)
- Monica Penon-Portmann
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA; Seattle Children's Hospital, Seattle, WA, USA.
| | - David R Blair
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA; Division of Medical Genetics and Genomics, Department of Pediatrics, UCSF, San Francisco, CA, USA
| | - Paul Harmatz
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| |
Collapse
|
5
|
Asumda FZ, Kraker JA, Thomas SC, Maleszewski J, Stone EM, Lanpher BC, Schimmenti LA. Left-sided valvular heart disease and retinopathy in a 38-year-old woman with attenuated mucopolysaccharidosis: a case report. THERAPEUTIC ADVANCES IN RARE DISEASE 2023; 4:26330040221145945. [PMID: 37181073 PMCID: PMC10032445 DOI: 10.1177/26330040221145945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/16/2022] [Indexed: 05/16/2023]
Abstract
Mucopolysaccharidoses (MPS) are a group of inherited lysosomal storage disorders caused by deficient levels and/or activity of glycosaminoglycan (GAG)-degradative enzymes. MPS are characterized by accumulation of the mucopolysaccharides heparan sulfate, dermatan sulfate, keratan sulfate, or chondroitin sulfate in tissues. We report the case of a 38-year-old woman with a history of joint restriction and retinitis pigmentosa who developed bivalvular heart failure requiring surgery. It was not until pathological examination of surgically excised valvular tissue that a diagnosis of MPS I was made. Her musculoskeletal and ophthalmologic symptoms, when placed in the context of MPS I, painted the diagnostic picture of a genetic syndrome that was overlooked until a diagnosis was made in late middle age.
Collapse
Affiliation(s)
- Faizal Z. Asumda
- Department of Pediatrics and Pathology, Medical
College of Georgia – Augusta University Medical Center, Augusta, GA,
USA
| | | | | | | | - Edwin M. Stone
- Department of Ophthalmology and Visual
Sciences, University of Iowa, Iowa City, IA, USA
| | | | - Lisa A. Schimmenti
- Department of Clinical Genetics, Mayo Clinic,
201 1st St SW, Rochester, MN 55905, USA
- Department of Otorhinolaryngology – Head and
Neck Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular
Biology, Mayo Clinic, Rochester, MN, USA
- Department of Ophthalmology, Mayo Clinic,
Rochester, MN, USA
| |
Collapse
|
6
|
An approach to recognising and identifying metabolic presentations in the paediatric Irish Traveller population. Eur J Pediatr 2023; 182:31-40. [PMID: 36374302 DOI: 10.1007/s00431-022-04697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/25/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
UNLABELLED The Irish Traveller population are an endogamous, traditionally nomadic, Irish population. Irish Travellers practice consanguinity in the majority of marriages, thus resulting in a higher rate of rare autosomal recessive conditions within the population due to homozygous variants. Herein, we outline the clinical phenotypes associated with metabolic conditions seen in this population presenting in the neonatal period, infancy and childhood. Although Irish Travellers are traditionally based in Ireland and the UK, there are populations also living in mainland Europe and the USA. While there is generally an understanding amongst Irish paediatricians of the recessive conditions seen with this population in Ireland, they may be less commonly encountered abroad. It is important to consider a non-genetic aetiology alongside any consideration for a metabolic disorder. CONCLUSION This paper acts as a comprehensive review of the metabolic conditions seen and provides a guide for the investigation of an Irish Traveller child with a suspected metabolic condition. WHAT IS KNOWN • The Irish Traveller population are an endogenous population. • There are higher rates of inherited metabolic conditions in this population compared to the general population in Ireland. WHAT IS NEW • This paper is a comprehensive review of all known inherited metabolic conditions encountered in the Irish Traveller population.
Collapse
|
7
|
Fachel FNS, Frâncio L, Poletto É, Schuh RS, Teixeira HF, Giugliani R, Baldo G, Matte U. Gene editing strategies to treat lysosomal disorders: The example of mucopolysaccharidoses. Adv Drug Deliv Rev 2022; 191:114616. [PMID: 36356930 DOI: 10.1016/j.addr.2022.114616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Lysosomal storage disorders are a group of progressive multisystemic hereditary diseases with a combined incidence of 1:4,800. Here we review the clinical and molecular characteristics of these diseases, with a special focus on Mucopolysaccharidoses, caused primarily by the lysosomal storage of glycosaminoglycans. Different gene editing techniques can be used to ameliorate their symptoms, using both viral and nonviral delivery methods. Whereas these are still being tested in animal models, early results of phase I/II clinical trials of gene therapy show how this technology may impact the future treatment of these diseases. Hurdles related to specific hard-to-reach organs, such as the central nervous system, heart, joints, and the eye must be tackled. Finally, the regulatory framework necessary to advance into clinical practice is also discussed.
Collapse
Affiliation(s)
- Flávia Nathiely Silveira Fachel
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Lariane Frâncio
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil
| | - Édina Poletto
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roselena Silvestri Schuh
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Departamento de Genética, UFRGS, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Departamento de Fisiologia, UFRGS, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Departamento de Genética, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Gnasso R, Corrado B, Iommazzo I, Migliore F, Magliulo G, Giardulli B, Ruosi C. Assessment, pharmacological therapy and rehabilitation management of musculoskeletal pain in children with mucopolysaccharidoses: a scoping review. Orphanet J Rare Dis 2022; 17:255. [PMID: 35804400 PMCID: PMC9264657 DOI: 10.1186/s13023-022-02402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pain of musculoskeletal origin is very common in young patients affected by Mucopolysaccharidoses. This scoping review evaluates the evidence for assessment, pharmacological treatment and rehabilitation management for musculoskeletal pain of the latter. METHODS A Medline search through PubMed has been performed for studies published in English at least for the past twenty years. Two investigators independently reviewed all search results and extracted those that met the inclusion criteria. RESULTS 29 studies have been selected and analysed in depth, of which 10 related to pain assessment, 11 concerned pharmacological approach, and 8 reported rehabilitation approaches. CONCLUSION Few data are available in literature concerning the classification and management of pain in children with Mucopolysaccharidoses. Notwithstanding, pain evaluation methods are effectively used to classify pain intensity, according to the age group and communication abilities of young Mucopolysaccharidoses patients. The review emphasizes that drug therapies have a palliative purpose, while rehabilitation reduces musculoskeletal pain and can provide a therapeutic effect on disabilities.
Collapse
Affiliation(s)
- R. Gnasso
- Physical Medicine and Rehabilitation, Department of Public Health, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - B. Corrado
- Physical Medicine and Rehabilitation, Department of Public Health, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - I. Iommazzo
- Physical Medicine and Rehabilitation, Department of Public Health, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - F. Migliore
- Physical Medicine and Rehabilitation, Department of Public Health, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - G. Magliulo
- Physical Medicine and Rehabilitation, Department of Public Health, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - B. Giardulli
- Physical Medicine and Rehabilitation, Department of Public Health, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - C. Ruosi
- Physical Medicine and Rehabilitation, Department of Public Health, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
9
|
Panthagani J, MacDonald T, Bruynseels A, Madathilethu SC, Jenyon T. Deposition keratopathy. Br J Hosp Med (Lond) 2022; 83:1-13. [DOI: 10.12968/hmed.2021.0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Material can be deposited in the cornea as a result of a wide range of systemic and ophthalmic diseases, as well as local and systemic therapies. Causes include local infection or trauma, systemic malignancy, a wide range of medications and a host of genetic and metabolic diseases. Some of these can be acutely life threatening, so generalists caring for both children and adults should have a basic awareness of the pattern and distribution of corneal deposits to facilitate timely diagnosis, investigation, management or onward referral to avoid significant morbidity or mortality. This article outlines causes of corneal deposits found in patients presenting to primary care, ophthalmic clinics or encountered on the wards to help generalists avoid missing serious pathology. It also provides insight into the natural history of underlying causative conditions and their possible treatments.
Collapse
Affiliation(s)
- Jesse Panthagani
- Birmingham and Midland Eye Centre, Birmingham, UK
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Trystan MacDonald
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Ophthalmology, University Hospitals Birmingham, Birmingham, UK
| | - Alice Bruynseels
- Birmingham and Midland Eye Centre, Birmingham, UK
- Department of Ophthalmology, Royal Shrewsbury Hospital, Shrewsbury, UK
| | | | - Thomas Jenyon
- Department of Ophthalmology, University Hospitals Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Bernardo Figueirêdo B, Reinaux C, Fuzari H, Sarmento A, Fernandes J, Dornelas de Andrade A. Chest wall volumes, diaphragmatic mobility, and functional capacity in patients with mucopolysaccharidoses. Disabil Rehabil 2022:1-10. [PMID: 35695376 DOI: 10.1080/09638288.2022.2084777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE We investigated respiratory muscle strength, diaphragm mobility, lung function, functional capacity, quality of life, body composition, breathing pattern, and chest wall (VT,CW) and compartmental volumes of Mucopolysaccharidosis (MPS) patients and compared these variables with matched healthy individuals. METHODS A cross-sectional study with data analyzed separately according to age group. A total of 68 individuals (34 MPS and 34 matched-healthy subjects) were included. Six-minute walking test assessed functional capacity and ultrasound assessed diaphragm mobility during quiet spontaneous breathing (QB). Optoelectronic plethysmography assessed VT,CW and breathing pattern during QB in two different positions: seated and supine (45° trunk inclination). RESULTS Body composition, lung function, respiratory muscle strength, and functional capacity were reduced in MPS (all p < 0.01). Diaphragm mobility was only reduced in adolescents (p = 0.01) and correlated with body composition and breathing pattern. Upper chest wall compartmental volumes were significantly lower in MPS, while abdominal volume only differed significantly in adolescents. Percentage contribution (%) of upper ribcage compartments to tidal volume was reduced in MPS children, whereas %AB was significantly increased compared with healthy subjects. CONCLUSION Lung function, respiratory muscle strength, functional capacity, diaphragm mobility, and quality of life are reduced in MPS compared with matched healthy subjects. VT,CW was mainly reduced due to pulmonary and abdominal ribcage impairment. Implications for RehabilitationReduction in respiratory muscle strength, functional capacity, diaphragm excursion and low lung volumes were found in individuals with Mucopolysaccharidoses (MPS).Chest wall volumes and the upper chest wall compartmental volumes during quiet spontaneous breathing are reduced in MPS.Assessment and monitoring of the respiratory system for individuals with MPS should be performed periodically through standardized assessments to enable identification of changes and early intervention by rehabilitation protocols.This study may provide the necessary basis for carrying out respiratoty rehabilitation protocols that can improving chest wall mechanics with breathing exercise in this group.
Collapse
Affiliation(s)
- Bárbara Bernardo Figueirêdo
- Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Brazil.,Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, Brazil
| | - Cyda Reinaux
- Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Brazil
| | - Helen Fuzari
- Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Brazil
| | - António Sarmento
- Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Brazil
| | - Juliana Fernandes
- Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Brazil
| | - Armèle Dornelas de Andrade
- Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Brazil.,Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
11
|
Stepien KM, Braunlin EA. Unmet Cardiac Clinical Needs in Adult Mucopolysaccharidoses. Front Cardiovasc Med 2022; 9:907175. [PMID: 35757333 PMCID: PMC9226406 DOI: 10.3389/fcvm.2022.907175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The Mucopolysaccharidoses (MPSs) are a group of heterogenous disorders with complex multisystemic presentations. Although Haematopoietic Cell Transplantation (HCT) and Enzyme Replacement Therapy (ERT) have extended the lifespan of individuals affected with MPS well into adulthood, reversal of pre-existing cardiac, skeletal and neurocognitive deficits does not occur, so there are no truly curative treatments available to these patients at present. The medical and surgical management of cardiovascular problems in adults with MPS is complicated by these pre-existing comorbidities, requiring the involvement of multidisciplinary and multispecialty perioperative teams. This review sets out to describe the unmet cardiac needs in adults with MPS disorders including the lack of effective treatments, monitoring guidelines, and the challenges regarding expertise and training, and psychosocial support.
Collapse
Affiliation(s)
- Karolina M. Stepien
- Inherited Metabolic Diseases Department, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- *Correspondence: Karolina M. Stepien
| | | |
Collapse
|
12
|
Pulock OS, Pinky SD, Hasan SH. Limited diagnostic facilities impeding the therapeutic approach of Mucopolysaccharidosis in Bangladesh: a case report. J Int Med Res 2022; 50:3000605221106412. [PMID: 35726580 PMCID: PMC9218466 DOI: 10.1177/03000605221106412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In resource-constrained settings, mucopolysaccharidosis (MPS) is a rare hereditary metabolic illness that frequently remains undiagnosed. We present a scenario that illustrates the challenges in diagnosing and managing MPS because of test inaccessibility, and we propose potential approaches to minimize the hurdles. We recommend that physicians anticipate a rare genetic disease, such as MPS, based on the clinical history findings from routine radiological investigations. Additionally, stakeholders should perform risk stratification and implement screening tests as soon as possible to ensure that patients are effectively enrolled in treatment programs.
Collapse
Affiliation(s)
- Orindom Shing Pulock
- Department of Pediatrics, Chattogram Medical College Hospital, Panchlaish, Chattogram, Bangladesh
| | - Susmita Dey Pinky
- Department of Pediatrics, Chattogram Medical College Hospital, Panchlaish, Chattogram, Bangladesh.,Laboratory Science and Services Division, International Center for Diarrheal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Syeda Humaida Hasan
- Department of Pediatrics, Chattogram Medical College Hospital, Panchlaish, Chattogram, Bangladesh
| |
Collapse
|
13
|
Al Dhahouri N, Ali A, Hertecant J, Al-Jasmi F. Case Report: Reinterpretation and Reclassification of ARSB:p.Arg159Cys Variant Identified in an Emirati Patient With Hearing Loss Caused by a Pathogenic Variant in the CDH23 Gene. Front Pediatr 2022; 9:803732. [PMID: 35186827 PMCID: PMC8850695 DOI: 10.3389/fped.2021.803732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/16/2021] [Indexed: 01/30/2023] Open
Abstract
Arylsulfatase B is an enzyme present in the lysosomes that involves in the breakdown of large sugar molecules known as glycosaminoglycans (GAGs). Arylsulfatase B chemically modifies two GAGs, namely, dermatan sulfate and chondroitin sulfate, by removing the sulfate group. Mutations in the gene encoding the arylsulfataseB enzyme causes lysosomal storage disorder, mucopolysaccharidosis type VI (MPS VI), or Maroteaux-Lamy syndrome. In this study, we report a case of congenital hearing loss with mild pigmentary changes in the retina, indicative of Usher syndrome, and a missense variant reported as likely pathogenic for MPS VI. Sequencing results identified a pathogenic missense variant p.Arg1746Gln in the CDH23 gene. However, another missense variant ARSB:p.Arg159Cys was reported as likely pathogenic to the treating physician. Mutations in ARSB gene have been associated with MPS VI. Subsequently, ARSB enzyme activity was found low twice in dried blood spot (DBS), suggestive of MPS VI. The patient did not have the clinical features of MPS VI, but considering the wide clinical spectrum, progressive nature of MPS VI, and the fact that a treatment for MPS VI is available to prevent disease progression, further biochemical, enzymatic, and in silico studies were performed to confirm the pathogenicity of this variant. In silico tools predicted this variant to be pathogenic. However, the results of urine and serum GAGs and ARSB enzyme levels measured from patient's fibroblast were found normal. Based on clinical and biochemical findings, ARSB:p.Arg159Cys is likely benign and did not support the diagnosis of MPS VI. However, CDH23:p.Arg1746Gln, a pathogenic variant, supports the underlying cause of hearing loss. This study highlights the importance of a robust correlation between genetic results and clinical presentation, and biochemical and enzymatic studies, to achieve a differential diagnosis.
Collapse
Affiliation(s)
- Nahid Al Dhahouri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Amanat Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Jozef Hertecant
- Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| |
Collapse
|
14
|
Denamur S, Touati G, Debelleix S, Damaj L, Barth M, Tardieu M, Gorce M, Broué P, Lacombe D, Labarthe F. Recommended respiratory tests are not routinely performed for mucopolysaccharidosis patients. ERJ Open Res 2022; 8:00567-2021. [PMID: 35141320 PMCID: PMC8819247 DOI: 10.1183/23120541.00567-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of rare genetic lysosomal storage disorders. The seven types of MPS exhibit a wide spectrum of clinical severity, including cognitive impairment, skeletal and joint abnormalities, short stature, coarsened facial features, vision loss, and cardiovascular and respiratory impairment, which are the leading causes of morbidity and mortality among MPS patients [1–3]. Ear, nose and throat (ENT) and upper airway manifestations are initially more pronounced, and may lead to the initial diagnosis. Lower airway disease becomes more frequent with increasing age. Symptoms can be tracheomalacia, stenosis and bronchomalacia. Bronchitis and pneumonia can appear, and are due to increased secretions and poor airway clearance. Restrictive lung disease predominates among patients with significant skeletal involvement, namely MPS-IV and MPS-VI. Sleep disturbances and obstructive sleep apnoea secondary to airway obstruction are common [4]. Specific therapy, such as enzyme replacement therapy (ERT), is available for most types of MPS. Recommended respiratory tests used as major outcomes in clinical trials for MPS treatment cannot be routinely performed in everyday practice because neurocognitive impairment and motor skill difficulties affect compliance for most MPS patientshttps://bit.ly/3G4qp8U
Collapse
|
15
|
MPS-IIIA or Autism Spectrum Disorder?: Discrimination and Treatment. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2022. [DOI: 10.1007/s40489-021-00298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Balikov DA, Jacobson A, Prasov L. Glaucoma Syndromes: Insights into Glaucoma Genetics and Pathogenesis from Monogenic Syndromic Disorders. Genes (Basel) 2021; 12:genes12091403. [PMID: 34573386 PMCID: PMC8471311 DOI: 10.3390/genes12091403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Monogenic syndromic disorders frequently feature ocular manifestations, one of which is glaucoma. In many cases, glaucoma in children may go undetected, especially in those that have other severe systemic conditions that affect other parts of the eye and the body. Similarly, glaucoma may be the first presenting sign of a systemic syndrome. Awareness of syndromes associated with glaucoma is thus critical both for medical geneticists and ophthalmologists. In this review, we highlight six categories of disorders that feature glaucoma and other ocular or systemic manifestations: anterior segment dysgenesis syndromes, aniridia, metabolic disorders, collagen/vascular disorders, immunogenetic disorders, and nanophthalmos. The genetics, ocular and systemic features, and current and future treatment strategies are discussed. Findings from rare diseases also uncover important genes and pathways that may be involved in more common forms of glaucoma, and potential novel therapeutic strategies to target these pathways.
Collapse
Affiliation(s)
- Daniel A. Balikov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (D.A.B.); (A.J.)
| | - Adam Jacobson
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (D.A.B.); (A.J.)
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (D.A.B.); (A.J.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
17
|
Carneiro NCR, Abreu LG, Milagres RMC, Amaral TMP, Flores-Mir C, Pordeus IA, Borges-Oliveira AC. Dental and maxillomandibular incidental findings in panoramic radiography among individuals with mucopolysaccharidosis: a cross-sectional study. J Appl Oral Sci 2021; 29:e20200978. [PMID: 33886944 PMCID: PMC8054648 DOI: 10.1590/1678-7757-2020-0978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/19/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022] Open
Abstract
Mucopolysaccharidosis (MPS) is a group of rare and inherited metabolic disorders caused by the accumulation of macromolecule glycosaminoglycans inside lysosomes. Affected individuals may have dental and craniofacial tissue alterations, facilitating the development of several oral diseases. OBJECTIVES To assess, with panoramic radiographic images, the frequency of dental and maxillomandibular incidental findings among MPS individuals and compare them with non-MPS individuals. METHODOLOGY A cross-sectional study evaluating a sample of 14 MPS individuals and 28 non-MPS individuals aged from 5 to 26 years was carried out. They were matched for sex and age on a 2:1 proportion. Panoramic radiographs were assessed for the presence/absence of the following dental and maxillomandibular alterations: dental anomalies of number (hypodontia/dental agenesis, supernumerary teeth); anomalies of form (microdontia, macrodontia, conoid teeth, taurodontism, and root dilaceration); anomalies of position (impacted tooth, inverted tooth, tooth migration, partially bony teeth, complete bony teeth); periapical alterations (furcation lesion, circumscribed bone rarefaction); other alterations (radiolucent bone lesions, radiopaque bone lesions, radiopacity in the maxillary sinus, condylar hypoplasia). Differences between groups were tested by the Fisher's exact test and chi-square test (p<0.05). RESULTS For intrarater agreement, Kappa values were 0.76 to 0.85. The presence of supernumerary teeth (p=0.003); conoid teeth (p=0.009); taurodontism (p<0.001); impacted teeth (p<0.001); partial bony teeth (p=0.040); complete bony teeth (p=0.013); and root dilaceration (p=0.047) were statistically more frequent in MPS individuals compared to non-MPS individuals. Bone rarefaction/furcation lesions (p=0.032), condylar hypoplasia (p<0.001), radiolucent bone lesions (p=0.001), and dentigerous cysts (p=0.002) were also more frequent in MPS individuals. CONCLUSION The presence of specific oral manifestations is more common in MPS individuals than non-MPS individuals.
Collapse
Affiliation(s)
- Natália Cristina Ruy Carneiro
- Universidade Federal de Minas Gerais, Faculdade de Odontologia, Departamento de Saúde Bucal da Criança e do Adolescente, Belo Horizonte, Brasil
| | - Lucas Guimarães Abreu
- Universidade Federal de Minas Gerais, Faculdade de Odontologia, Departamento de Saúde Bucal da Criança e do Adolescente, Belo Horizonte, Brasil
| | - Roselaine Moreira Coelho Milagres
- Universidade Federal de Minas Gerais, Faculdade de Odontologia, Departamento de Clínica, Patologia e Cirurgia, Belo Horizonte, Brasil
| | - Tania Mara Pimenta Amaral
- Universidade Federal de Minas Gerais, Faculdade de Odontologia, Departamento de Clínica, Patologia e Cirurgia, Belo Horizonte, Brasil
| | - Carlos Flores-Mir
- University of Alberta, School of Dentistry, Division of Orthodontics, Edmonton, Canada
| | - Isabela Almeida Pordeus
- Universidade Federal de Minas Gerais, Faculdade de Odontologia, Departamento de Saúde Bucal da Criança e do Adolescente, Belo Horizonte, Brasil
| | - Ana Cristina Borges-Oliveira
- Universidade Federal de Minas Gerais, Faculdade de Odontologia, Departamento de Odontologia Social e Preventiva, Belo Horizonte, Brasil
| |
Collapse
|
18
|
Corrêa T, Feltes BC, Gonzalez EA, Baldo G, Matte U. Network Analysis Reveals Proteins Associated with Aortic Dilatation in Mucopolysaccharidoses. Interdiscip Sci 2021; 13:34-43. [PMID: 33475959 DOI: 10.1007/s12539-020-00406-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Mucopolysaccharidoses are caused by a deficiency of enzymes involved in the degradation of glycosaminoglycans. Heart diseases are a significant cause of morbidity and mortality in MPS patients, even in conditions in which enzyme replacement therapy is available. In this sense, cardiovascular manifestations, such as heart hypertrophy, cardiac function reduction, increased left ventricular chamber, and aortic dilatation, are among the most frequent. However, the downstream events which influence the heart dilatation process are unclear. Here, we employed systems biology tools together with transcriptomic data to investigate new elements that may be involved in aortic dilatation in Mucopolysaccharidoses syndrome. We identified candidate genes involved in biological processes related to inflammatory responses, deposition of collagen, and lipid accumulation in the cardiovascular system that may be involved in aortic dilatation in the Mucopolysaccharidoses I and VII. Furthermore, we investigated the molecular mechanisms of losartan treatment in Mucopolysaccharidoses I mice to underscore how this drug acts to prevent aortic dilation. Our data indicate that the association between the TGF-b signaling pathway, Fos, and Col1a1 proteins can play an essential role in aortic dilation's pathophysiology and its subsequent improvement by losartan treatment.
Collapse
Affiliation(s)
- Thiago Corrêa
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
- Postgraduation Program on Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Bruno César Feltes
- Institute of Informatics, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Esteban Alberto Gonzalez
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
- Postgraduation Program on Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
- Postgraduation Program on Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil.
- Postgraduation Program on Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
19
|
Accogli A, Geraldo AF, Piccolo G, Riva A, Scala M, Balagura G, Salpietro V, Madia F, Maghnie M, Zara F, Striano P, Tortora D, Severino M, Capra V. Diagnostic Approach to Macrocephaly in Children. Front Pediatr 2021; 9:794069. [PMID: 35096710 PMCID: PMC8795981 DOI: 10.3389/fped.2021.794069] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/02/2021] [Indexed: 01/19/2023] Open
Abstract
Macrocephaly affects up to 5% of the pediatric population and is defined as an abnormally large head with an occipitofrontal circumference (OFC) >2 standard deviations (SD) above the mean for a given age and sex. Taking into account that about 2-3% of the healthy population has an OFC between 2 and 3 SD, macrocephaly is considered as "clinically relevant" when OFC is above 3 SD. This implies the urgent need for a diagnostic workflow to use in the clinical setting to dissect the several causes of increased OFC, from the benign form of familial macrocephaly and the Benign enlargement of subarachnoid spaces (BESS) to many pathological conditions, including genetic disorders. Moreover, macrocephaly should be differentiated by megalencephaly (MEG), which refers exclusively to brain overgrowth, exceeding twice the SD (3SD-"clinically relevant" megalencephaly). While macrocephaly can be isolated and benign or may be the first indication of an underlying congenital, genetic, or acquired disorder, megalencephaly is most likely due to a genetic cause. Apart from the head size evaluation, a detailed family and personal history, neuroimaging, and a careful clinical evaluation are crucial to reach the correct diagnosis. In this review, we seek to underline the clinical aspects of macrocephaly and megalencephaly, emphasizing the main differential diagnosis with a major focus on common genetic disorders. We thus provide a clinico-radiological algorithm to guide pediatricians in the assessment of children with macrocephaly.
Collapse
Affiliation(s)
- Andrea Accogli
- Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Ana Filipa Geraldo
- Diagnostic Neuroradiology Unit, Imaging Department, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Gianluca Piccolo
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Ganna Balagura
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Vincenzo Salpietro
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Francesca Madia
- Pediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mohamad Maghnie
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Pediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Valeria Capra
- Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| |
Collapse
|
20
|
Giraldo LJM, Satizabal JM, Gómez AS. Determination of the Population Allelic Frequency of the Variants of the MPS Complex in Southwestern Colombia. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2021. [DOI: 10.1590/2326-4594-jiems-2021-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Affiliation(s)
- Lina Johanna Moreno Giraldo
- Universidad del Valle, Colombia; Universidad Santiago de Cali, Colombia; Universidad Libre, Colombia; Universidad del Valle, Colombia
| | - José María Satizabal
- Universidad del Valle, Colombia; Universidad Santiago de Cali, Colombia; Universidad del Valle, Colombia
| | - Adalberto Sánchez Gómez
- Universidad del Valle, Colombia; Universidad Santiago de Cali, Colombia; Universidad del Valle, Colombia
| |
Collapse
|
21
|
Hollak CEM, Sirrs S, van den Berg S, van der Wel V, Langeveld M, Dekker H, Lachmann R, de Visser SJ. Registries for orphan drugs: generating evidence or marketing tools? Orphanet J Rare Dis 2020; 15:235. [PMID: 32883346 PMCID: PMC7469301 DOI: 10.1186/s13023-020-01519-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Independent disease registries for pre-and post-approval of novel treatments for rare diseases are increasingly important for healthcare professionals, patients, regulators and the pharmaceutical industry. Current registries for rare diseases to evaluate orphan drugs are mainly set up and owned by the pharmaceutical industry which leads to unacceptable conflicts of interest. To ensure independence from commercial interests, disease registries should be set up and maintained by healthcare professionals and patients. Public funding should be directed towards an early establishment of international registries for orphan diseases, ideally well before novel treatments are introduced. Regulatory bodies should insist on the use of data from independent disease registries rather than company driven, drug-oriented registries.
Collapse
Affiliation(s)
- Carla E M Hollak
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, F5-170, P.O. Box 22660, 1100, DD, Amsterdam, The Netherlands. .,Platform Medicine for Society at Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Sandra Sirrs
- Division of Endocrinology and Metabolism, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sibren van den Berg
- Platform Medicine for Society at Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent van der Wel
- Platform Medicine for Society at Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, F5-170, P.O. Box 22660, 1100, DD, Amsterdam, The Netherlands
| | - Hanka Dekker
- VKS, The Dutch patient association for Inherited Metabolic Diseases, Zwolle, Netherlands
| | - Robin Lachmann
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Saco J de Visser
- Platform Medicine for Society at Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Piechnik M, Sawamoto K, Ohnishi H, Kawamoto N, Ago Y, Tomatsu S. Evading the AAV Immune Response in Mucopolysaccharidoses. Int J Mol Sci 2020; 21:E3433. [PMID: 32414007 PMCID: PMC7279460 DOI: 10.3390/ijms21103433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022] Open
Abstract
The humoral immune response elicited by adeno-associated virus (AAV)-mediated gene therapy for the treatment of mucopolysaccharidoses (MPS) poses a significant challenge to achieving therapeutic levels of transgene expression. Antibodies targeting the AAV capsid as well as the transgene product diminish the production of glycosaminoglycan (GAG)-degrading enzymes essential for the treatment of MPS. Patients who have antibodies against AAV capsid increase in number with age, serotype, and racial background and are excluded from the clinical trials at present. In addition, patients who have undergone AAV gene therapy are often excluded from the additional AAV gene therapy with the same serotype, since their acquired immune response (antibody) against AAV will limit further efficacy of treatment. Several methods are being developed to overcome this immune response, such as novel serotype design, antibody reduction by plasmapheresis and immunosuppression, and antibody evasion using empty capsids and enveloped AAV vectors. In this review, we examine the mechanisms of the anti-AAV humoral immune response and evaluate the strengths and weaknesses of current evasion strategies in order to provide an evidence-based recommendation on evading the immune response for future AAV-mediated gene therapies for MPS.
Collapse
Affiliation(s)
- Matthew Piechnik
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (M.P.); (K.S.)
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (M.P.); (K.S.)
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (H.O.); (N.K.); (Y.A.)
| | - Norio Kawamoto
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (H.O.); (N.K.); (Y.A.)
| | - Yasuhiko Ago
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (H.O.); (N.K.); (Y.A.)
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (M.P.); (K.S.)
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (H.O.); (N.K.); (Y.A.)
- Department of Pediatrics, Shimane University, Shimane 690-8504, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
23
|
Wang Z, Xu Y, Jiang E, Wang J, Tomatsu S, Shen K. Pathophysiology of Hip Disorders in Patients with Mucopolysaccharidosis IVA. Diagnostics (Basel) 2020; 10:E264. [PMID: 32365519 PMCID: PMC7277472 DOI: 10.3390/diagnostics10050264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/12/2023] Open
Abstract
Patients with mucopolysaccharidoses IVA (MPS IVA) have a progressive accumulation of the specific glycosaminoglycans (GAGs): chondroitin-6-sulfate (C6S) and keratan sulfate (KS), leading to the degeneration of the cartilage matrix and its connective tissue perturbing the regular microarchitecture of cartilage and successively distorting bone ossification and growth. Impaired cartilage quality and poor bone mineralization lead to serious hip disorders in MPS IVA patients. Although hip dysplasia is seen widely in musculoskeletal abnormality of this disorder, the pathophysiology of the hip bone and cartilage morphology in these patients remains unclear. Until now, no systemic study of the hip joints in MPS IVA has been reported by using the combined images of plain film radiographs (PFR) and Magnetic Resonance Imaging (MRI). This study aimed to assess the bony and cartilaginous features of hip joints and to explore the potentially related factors of femoral head osteonecrosis (FHN) and hip subluxation/dislocation in patients with MPS IVA. Hip joints in MPS IVA patients were retrospectively reviewed, based on the findings of PFR and MRI data from 2014 to 2019. Demographic information was also collected and analyzed with imaging measurements. A total of 19 patients (eight boys and 11 girls) were recruited, and 38 hip joints in these patients were examined. Eleven patients (57.9%) had FHN. FHN patients were statistically compared with those without FHN. Correlations between cartilaginous femoral head coverage (CFHC) and acetabular index (AI), cartilaginous AI (CAI), or neck-shaft angle (NSA) were investigated in patients with hip subluxation or dislocation. The greater cartilaginous coverage of the hips than their osseous inherency was observed. Significant correlation was observed between CFHC and AI (r =-0.351, p = 0.049) or CAI (r =-0.381, p = 0.032). Severe subluxations or dislocations were more likely to be present in those with more dysplastic bony and cartilaginous hips. In conclusion, our study provides the first systemic description of bony and cartilaginous characteristics in the hip morphology of MPS IVA patients. We have demonstrated that plain radiography alone leads to a misunderstanding of hip morphology and that MRI measurements with PFR are an essential tool to evaluate the 'true' characterization of hips for MPS IVA patients.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Pediatric Orthopedics, Shanghai Children’s Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yunlan Xu
- Department of Pediatric Orthopedics, Shanghai Children’s Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Enze Jiang
- Department of Pediatric Orthopedics, Shanghai Children’s Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jianmin Wang
- Department of Hematology/Oncology, Shanghai Children’s Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shunji Tomatsu
- Departments of Orthopedics and BioMedical, Skeletal Dysplasia, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kaiying Shen
- Department of Pediatric Orthopedics, Shanghai Children’s Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
24
|
Kubaski F, de Oliveira Poswar F, Michelin-Tirelli K, Matte UDS, Horovitz DD, Barth AL, Baldo G, Vairo F, Giugliani R. Mucopolysaccharidosis Type I. Diagnostics (Basel) 2020; 10:161. [PMID: 32188113 PMCID: PMC7151028 DOI: 10.3390/diagnostics10030161] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by the deficiency of α-l-iduronidase, leading to the storage of dermatan and heparan sulfate. There is a broad phenotypical spectrum with the presence or absence of neurological impairment. The classical form is known as Hurler syndrome, the intermediate form as Hurler-Scheie, and the most attenuated form is known as Scheie syndrome. Phenotype seems to be largely influenced by genotype. Patients usually develop several somatic symptoms such as abdominal hernias, extensive dermal melanocytosis, thoracolumbar kyphosis odontoid dysplasia, arthropathy, coxa valga and genu valgum, coarse facial features, respiratory and cardiac impairment. The diagnosis is based on the quantification of α-l-iduronidase coupled with glycosaminoglycan analysis and gene sequencing. Guidelines for treatment recommend hematopoietic stem cell transplantation for young Hurler patients (usually at less than 30 months of age). Intravenous enzyme replacement is approved and is the standard of care for attenuated-Hurler-Scheie and Scheie-forms (without cognitive impairment) and for the late-diagnosed severe-Hurler-cases. Intrathecal enzyme replacement therapy is under evaluation, but it seems to be safe and effective. Other therapeutic approaches such as gene therapy, gene editing, stop codon read through, and therapy with small molecules are under development. Newborn screening is now allowing the early identification of MPS I patients, who can then be treated within their first days of life, potentially leading to a dramatic change in the disease's progression. Supportive care is very important to improve quality of life and might include several surgeries throughout the life course.
Collapse
Affiliation(s)
- Francyne Kubaski
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre 91501970, Brazil; (F.K.); (F.d.O.P.); (U.d.S.M.); (G.B.)
- Medical Genetics Service, HCPA, Porto Alegre 90035903, Brazil;
- INAGEMP, Porto Alegre 90035903, Brazil
- Biodiscovery Research Group, Experimental Research Center, HCPA, Porto Alegre 90035903, Brazil
| | - Fabiano de Oliveira Poswar
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre 91501970, Brazil; (F.K.); (F.d.O.P.); (U.d.S.M.); (G.B.)
- Medical Genetics Service, HCPA, Porto Alegre 90035903, Brazil;
| | - Kristiane Michelin-Tirelli
- Medical Genetics Service, HCPA, Porto Alegre 90035903, Brazil;
- Biodiscovery Research Group, Experimental Research Center, HCPA, Porto Alegre 90035903, Brazil
| | - Ursula da Silveira Matte
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre 91501970, Brazil; (F.K.); (F.d.O.P.); (U.d.S.M.); (G.B.)
- INAGEMP, Porto Alegre 90035903, Brazil
- Biodiscovery Research Group, Experimental Research Center, HCPA, Porto Alegre 90035903, Brazil
- Gene Therapy Center, HCPA, Porto Alegre 90035903, Brazil
- Department of Genetics, UFRGS, Porto Alegre 91501970, Brazil
| | - Dafne D. Horovitz
- Medical Genetics Department, National Institute of Women, Children, and Adolescent Health, Oswaldo Cruz Foundation, Rio de Janeiro 21040900, Brazil; (D.D.H.); (A.L.B.)
| | - Anneliese Lopes Barth
- Medical Genetics Department, National Institute of Women, Children, and Adolescent Health, Oswaldo Cruz Foundation, Rio de Janeiro 21040900, Brazil; (D.D.H.); (A.L.B.)
| | - Guilherme Baldo
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre 91501970, Brazil; (F.K.); (F.d.O.P.); (U.d.S.M.); (G.B.)
- INAGEMP, Porto Alegre 90035903, Brazil
- Biodiscovery Research Group, Experimental Research Center, HCPA, Porto Alegre 90035903, Brazil
- Gene Therapy Center, HCPA, Porto Alegre 90035903, Brazil
- Department of Physiology, UFRGS, Porto Alegre 90050170, Brazil
| | - Filippo Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Roberto Giugliani
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre 91501970, Brazil; (F.K.); (F.d.O.P.); (U.d.S.M.); (G.B.)
- Medical Genetics Service, HCPA, Porto Alegre 90035903, Brazil;
- INAGEMP, Porto Alegre 90035903, Brazil
- Biodiscovery Research Group, Experimental Research Center, HCPA, Porto Alegre 90035903, Brazil
- Gene Therapy Center, HCPA, Porto Alegre 90035903, Brazil
- Department of Genetics, UFRGS, Porto Alegre 91501970, Brazil
- Postgraduation Program in Medicine, Clinical Sciences, UFRGS, Porto Alegre 90035003, Brazil
| |
Collapse
|
25
|
Yuan X, Meng Y, Chen C, Liang S, Ma Y, Jiang W, Duan J, Wang C. Proteomic approaches in the discovery of potential urinary biomarkers of mucopolysaccharidosis type II. Clin Chim Acta 2019; 499:34-40. [PMID: 31469979 DOI: 10.1016/j.cca.2019.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/15/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
Abstract
Mucopolysaccharindosis type II (MPS II) is a rare lysosomal storage disorder caused by deficient or absent activity of the iduronate-2-sulfatase (IDS) enzyme, which leads to pathological accumulation of the glycosaminoglycans(GAGs). The absence of early diagnosis can result in irreversible developmental, neurological, and physiological damage. The lack of clear understanding of the etiology of physiological dysfunction in MPS II has been a major obstacle to the development of new treatment. Therefore, a reliable biomarker for early diagnosis and exploration of pathogenic mechanism are of great importance. Proteomics provides powerful tool for protein expression alterations and study of complicated pathological process. This study was performed to identify the differential protein profile in urine of MPS II patients using two-dimensional gel electrophoresis(2D-PAGE)combining with MALDI-TOF/TOF and a total of 15 differentially expressed proteins were identified. Content of alpha1-antitrypsin, Gm2 activator and lipocalin-type prostaglandin D synthase was measured by ELISA method. The value of urinary α1-AT/Cr in MPS II group was 0.79 ± 0.10 mg/mmol, significantly higher than 0.42 ± 0.05 mg/mmol in healthy control group; whereas the value of GM2A/Cr and L-PGDS/Cr in MPS II group was 1.30 ± 0.12 μg/mmol and 9.86 ± 1.16 ng/mmol respectively, which was significantly lower than 2.19 ± 0.19 μg/mmol and 13.98 ± 1.48 ng/mmol in healthy control group. The proteins can be considered as accessory diagnostic biomarkers for MPS II. This approach helped to discover early diagnostic markers and provided a better understanding of the pathogenic mechanism of MPS II.
Collapse
Affiliation(s)
- Xiaozhou Yuan
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Meng
- Department of pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Chen Chen
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuang Liang
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Yating Ma
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Wencan Jiang
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Jinyan Duan
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing 100853, China.
| | - Chengbin Wang
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
26
|
Abstract
Mucopolysaccharidosis VII is an extremely rare, autosomal recessive lysosomal storage disorder characterized by a deficiency of β-glucuronidase activity, resulting in partial degradation and accumulation of GAGs in numerous tissues throughout the body, with consequent cellular damage and organ dysfunction. Enzyme replacement therapy (ERT) with intravenous vestronidase alfa (Mepsevii™), a recombinant form of human β-glucuronidase, is the first disease-specific therapy approved for the treatment of mucopolysaccharidosis VII in pediatric and adult patients. In the pivotal, blind start, phase 3 trial, 24 weeks of vestronidase alfa therapy significantly reduced urinary GAG (uGAG) excretion in patients with mucopolysaccharidosis VII. Based on a Multi-Domain Responder Index (MDRI; comprises six clinically important morbidity domains, with prespecified minimally important differences for each domain), most evaluable patients experienced an improvement in ≥ 1 domain during the 24-week primary assessment period (overall positive mean change of 0.5 domains). The clinical benefits of vestronidase alfa were sustained during longer-term treatment, as was the reduction in uGAG excretion. Vestronidase alfa has a manageable tolerability profile, with most adverse reactions of mild to moderate severity. Given the lack of treatment options and the clinical benefits it provides, intravenous vestronidase alfa is an important emerging ERT for patients with mucopolysaccharidosis VII.
Collapse
Affiliation(s)
- Emma H McCafferty
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand
| | - Lesley J Scott
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|