1
|
Fernández AC, Estrella J, Oglesbee D, Larson AA, Van Hove JL. The clinical utility in hospital-wide use of growth differentiation factor 15 as a biomarker for mitochondrial DNA-related disorders. J Inherit Metab Dis 2025; 48:e12821. [PMID: 39582258 PMCID: PMC11671288 DOI: 10.1002/jimd.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Clinical recognition of primary mitochondrial disorders (PMD) is difficult due to the clinical and genetic heterogeneity. Whereas lactate has low sensitivity and specificity, in structured clinical studies growth differentiation factor 15 (GDF15) has shown promise with elevations in mitochondrial DNA (mtDNA)-related PMD, but its specificity has been questioned. In a tertiary care hospital-wide study, medical records were retrospectively reviewed from 418 cases where GDF15 levels were obtained by clinicians. Patients were classified into patients with PMD due to mtDNA-related defects (mtDNA maintenance, mtDNA deletions, and mtDNA-encoded tRNA variants), PMD due to structural defects or other nuclear causes, and in non-mitochondrial disease. Patients with liver disease or systemic critical illness were excluded. GDF15 was assayed in a clinical laboratory with a cutoff of 750 ng/L. There were 38 mtDNA-related PMD (GDF15 >750 pg/mL in 76%), 35 other nuclear DNA-encoded PMD or structural subunits (31% elevated GDF15), 309 non-mitochondrial disorders (13% elevated GDF15). Based on the highest Youden J-index, the optimal cut-off value to identify these target mtDNA-related disorders was 815 pg/mL, with sensitivity 76%, specificity 88%, positive predictive value of 41% and negative predictive value of 97%. At this optimized cutoff level, mtDNA-encoded PMD patients had elevated GDF15 in 76%, nuclear DNA-encoded PMD in 26%, and non-mitochondrial disorders in 11% of patients. Thus, in a real-life clinical setting, after excluding abnormal liver function and critical illness, GDF15 had good clinical utility increasing the odds at predicting mtDNA-related primary mitochondrial disorders 14-fold, but not for structural or other nuclear-encoded primary mitochondrial disorders.
Collapse
Affiliation(s)
- Andrea Cortés Fernández
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado, USA
| | - Jane Estrella
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado, USA
- Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic School of Medicine, Rochester, Minnesota, USA
| | - Austin A. Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado, USA
| | - Johan L.K. Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
2
|
Isik FI, Thomson S, Cueto JF, Spathos J, Breit SN, Tsai VWW, Brown DA, Finney CA. A systematic review of the neuroprotective role and biomarker potential of GDF15 in neurodegeneration. Front Immunol 2024; 15:1514518. [PMID: 39737171 PMCID: PMC11682991 DOI: 10.3389/fimmu.2024.1514518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Neurodegeneration is characteristically multifaceted, with limited therapeutic options. One of the chief pathophysiological mechanisms driving these conditions is neuroinflammation, prompting increasing clinical interest in immunomodulatory agents. Growth differentiation factor 15 (GDF15; previously also called macrophage inhibitory cytokine-1 or MIC-1), an anti-inflammatory cytokine with established neurotrophic properties, has emerged as a promising therapeutic agent in recent decades. However, methodological challenges and the delayed identification of its specific receptor GFRAL have hindered research progress. This review systematically examines literature about GDF15 in neurodegenerative diseases and neurotrauma. The evidence collated in this review indicates that GDF15 expression is upregulated in response to neurodegenerative pathophysiology and increasing its levels in preclinical models typically improves outcomes. Key knowledge gaps are addressed for future investigations to foster a more comprehensive understanding of the neuroprotective effects elicited by GDF15.
Collapse
Affiliation(s)
- Finula I. Isik
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Shannon Thomson
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - John F. Cueto
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Jessica Spathos
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Samuel N. Breit
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Vicky W. W. Tsai
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - David A. Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Western Sydney Local Health District, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, NSW, Australia
| | - Caitlin A. Finney
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Çakmak HM, Alpay M, Mahdızadeh C, Özalp SÇ, Türay S, Özde Ş, Kocabay K. Heightened Serum Mitochondrial Biomarkers; FGF21 and NOS in Pediatric Anemia and a Negative Correlation between GDF15 and Serum Ferritin. J Clin Med 2024; 13:4403. [PMID: 39124668 PMCID: PMC11313501 DOI: 10.3390/jcm13154403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Objective: Mitochondrial dysfunction is closely linked to chronic disorders. This study aims to explore the correlation between pediatric anemia and mitochondrial markers, specifically fibroblast growth factor 21 (FGF21), growth/differentiation factor 15 (GDF-15), and nitric oxide synthase (eNOS). Method: This study included 66 children, with 34 diagnosed with anemia and 32 in the healthy control group. Statistically significant biomarkers were determined through cutoff levels. Results: Among the participants, 34 children were classified as anemic, while 32 were categorized as healthy. The study revealed that FGF21 levels ≥ 0.745 pg/mL and eNOS levels ≥ 1.265 µg/mL predicted anemia. Hemoglobin levels exhibited a negative correlation with FGF21 (r = -0.381; p = 0.002) and eNOS levels (r = -0.462; p < 0.001). Furthermore, a significant negative correlation was observed between GDF-15 and ferritin (r = -0.311; p = 0.019), while eNOS levels correlated positively with folate (r = 0.313; p = 0.019). Conclusions: Anemia induced elevated mitochondrial biomarkers; FGF21 and eNOS levels. The findings suggest that the long-term ramifications of anemia in childhood may be associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hatice Mine Çakmak
- Pediatric Hematology-Oncology, Duzce University School of Medicine, Konuralp Provinence, 81620 Duzce, Turkey
| | - Merve Alpay
- Biochemistry, Duzce University School of Medicine, Konuralp Provinence, 81620 Duzce, Turkey
| | - Cansu Mahdızadeh
- Pediatrics, Duzce University School of Medicine, Konuralp Provinence, 81620 Duzce, Turkey
| | - Seray Çevikel Özalp
- Pediatrics, Duzce University School of Medicine, Konuralp Provinence, 81620 Duzce, Turkey
| | - Sevim Türay
- Pediatric Neurology, Duzce University School of Medicine, Konuralp Provinence, 81620 Duzce, Turkey
| | - Şükriye Özde
- Pediatrics, Duzce University School of Medicine, Konuralp Provinence, 81620 Duzce, Turkey
| | - Kenan Kocabay
- Pediatrics, Duzce University School of Medicine, Konuralp Provinence, 81620 Duzce, Turkey
| |
Collapse
|
4
|
Nakajima T, Fukuda T, Shibasaki I, Obi S, Sakuma M, Abe S, Fukuda H, Toyoda S, Nakajima T. Pathophysiological roles of the serum acylcarnitine level and acylcarnitine/free carnitine ratio in patients with cardiovascular diseases. IJC HEART & VASCULATURE 2024; 51:101386. [PMID: 38515869 PMCID: PMC10955663 DOI: 10.1016/j.ijcha.2024.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Introduction L-carnitine exerts protective effects, such as maintaining mitochondrial functions and decreasing reactive oxygen species, while acylcarnitine (AC) is linked to the development of heart failure and atherosclerosis. Hypothesis Serum carnitines play important pathophysiological roles in cardiovascular diseases. Methods Pre-operative biochemical data were obtained from 117 patients (71 men, average age 69.9 years) who underwent surgery for cardiovascular diseases. Measurements included pre-operative biochemical data including estimated glomerular filtration rate (eGFR), physical functions, skeletal muscle mass index (SMI) measured by bioelectrical impedance analysis, anterior thigh muscle thickness (MTh) measured by ultrasound, and routine echocardiography. Carnitine components were measured with the enzyme cycling method. Muscle wasting was diagnosed based on the Asian Working Group for Sarcopenia criteria. Results Plasma brain natriuretic peptide (BNP) level was correlated with serum free carnitine (FC) and AC level, and the acylcarnitine/free carnitine ratio (AC/FC). AC/FC was elevated with stage of chronic kidney disease. In multivariate analysis, log (eGFR) and log (BNP) were extracted as independent factors to define log (serum AC) (eGFR: β = 0.258, p = 0.008; BNP: β = 0.273, p = 0.011), even if corrected for age, sex and body mass index. AC/FC was negatively correlated with hand-grip strength (r = -0.387, p = 0.006), SMI (r = -0.314, p = 0.012), and anterior thigh MTh (r = -0.340, p = 0.014) in men. Conclusions A significant association between serum AC level and AC/FC, and chronic kidney disease and heart failure exists in patients with cardiovascular diseases who have undergone cardiovascular surgery. Skeletal muscle loss and muscle wasting are also linked to the elevation of serum AC level and AC/FC.
Collapse
Affiliation(s)
- Takafumi Nakajima
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Taira Fukuda
- Department of Liberal Arts and Sciences, Kanagawa University of Human Services, Yokosuka, Kanagawa, Japan
| | - Ikuko Shibasaki
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Syotaro Obi
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Masashi Sakuma
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Shichiro Abe
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Hirotsugu Fukuda
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| |
Collapse
|
5
|
Zhang Y, Tian XL, Li JQ, Wu DS, Li Q, Chen B. Mitochondrial dysfunction affects hepatic immune and metabolic remodeling in patients with hepatitis B virus-related acute-on-chronic liver failure. World J Gastroenterol 2024; 30:881-900. [PMID: 38516248 PMCID: PMC10950637 DOI: 10.3748/wjg.v30.i8.881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Immune dysregulation and metabolic derangement have been recognized as key factors that contribute to the progression of hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF). However, the mechanisms underlying immune and metabolic derangement in patients with advanced HBV-ACLF are unclear. AIM To identify the bioenergetic alterations in the liver of patients with HBV-ACLF causing hepatic immune dysregulation and metabolic disorders. METHODS Liver samples were collected from 16 healthy donors (HDs) and 17 advanced HBV-ACLF patients who were eligible for liver transplantation. The mitochondrial ultrastructure, metabolic characteristics, and immune microenvironment of the liver were assessed. More focus was given to organic acid metabolism as well as the function and subpopulations of macrophages in patients with HBV-ACLF. RESULTS Compared with HDs, there was extensive hepatocyte necrosis, immune cell infiltration, and ductular reaction in patients with ACLF. In patients, the liver suffered severe hypoxia, as evidenced by increased expression of hypoxia-inducible factor-1α. Swollen mitochondria and cristae were observed in the liver of patients. The number, length, width, and area of mitochondria were adaptively increased in hepatocytes. Targeted metabolomics analysis revealed that mitochondrial oxidative phosphorylation decreased, while anaerobic glycolysis was enhanced in patients with HBV-ACLF. These findings suggested that, to a greater extent, hepa-tocytes used the extra-mitochondrial glycolytic pathway as an energy source. Patients with HBV-ACLF had elevated levels of chemokine C-C motif ligand 2 in the liver homogenate, which stimulates peripheral monocyte infiltration into the liver. Characterization and functional analysis of macrophage subsets revealed that patients with ACLF had a high abundance of CD68+ HLA-DR+ macrophages and elevated levels of both interleukin-1β and transforming growth factor-β1 in their livers. The abundance of CD206+ CD163+ macrophages and expression of interleukin-10 decreased. The correlation analysis revealed that hepatic organic acid metabolites were closely associated with macrophage-derived cytokines/chemokines. CONCLUSION The results indicated that bioenergetic alteration driven by hypoxia and mitochondrial dysfunction affects hepatic immune and metabolic remodeling, leading to advanced HBV-ACLF. These findings highlight a new therapeutic target for improving the treatment of HBV-ACLF.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Xiao-Ling Tian
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Jie-Qun Li
- Department of Liver Transplant, Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Dong-Sheng Wu
- Department of Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Qiang Li
- Department of Liver Transplant, Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Bin Chen
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| |
Collapse
|
6
|
Manoli I, Sysol JR, Head PE, Epping MW, Gavrilova O, Crocker MK, Sloan JL, Koutsoukos SA, Wang C, Ktena YP, Mendelson S, Pass AR, Zerfas PM, Hoffmann V, Vernon HJ, Fletcher LA, Reynolds JC, Tsokos MG, Stratakis CA, Voss SD, Chen KY, Brown RJ, Hamosh A, Berry GT, Chen XS, Yanovski JA, Venditti CP. Lipodystrophy in methylmalonic acidemia associated with elevated FGF21 and abnormal methylmalonylation. JCI Insight 2024; 9:e174097. [PMID: 38271099 DOI: 10.1172/jci.insight.174097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
A distinct adipose tissue distribution pattern was observed in patients with methylmalonyl-CoA mutase deficiency, an inborn error of branched-chain amino acid (BCAA) metabolism, characterized by centripetal obesity with proximal upper and lower extremity fat deposition and paucity of visceral fat, that resembles familial multiple lipomatosis syndrome. To explore brown and white fat physiology in methylmalonic acidemia (MMA), body composition, adipokines, and inflammatory markers were assessed in 46 patients with MMA and 99 matched controls. Fibroblast growth factor 21 levels were associated with acyl-CoA accretion, aberrant methylmalonylation in adipose tissue, and an attenuated inflammatory cytokine profile. In parallel, brown and white fat were examined in a liver-specific transgenic MMA mouse model (Mmut-/- TgINS-Alb-Mmut). The MMA mice exhibited abnormal nonshivering thermogenesis with whitened brown fat and had an ineffective transcriptional response to cold stress. Treatment of the MMA mice with bezafibrates led to clinical improvement with beiging of subcutaneous fat depots, which resembled the distribution seen in the patients. These studies defined what we believe to be a novel lipodystrophy phenotype in patients with defects in the terminal steps of BCAA oxidation and demonstrated that beiging of subcutaneous adipose tissue in MMA could readily be induced with small molecules.
Collapse
Affiliation(s)
- Irini Manoli
- Metabolic Medicine Branch, National Human Genome Research Institute
| | - Justin R Sysol
- Metabolic Medicine Branch, National Human Genome Research Institute
| | | | | | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Melissa K Crocker
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development; and
| | - Jennifer L Sloan
- Metabolic Medicine Branch, National Human Genome Research Institute
| | | | - Cindy Wang
- Metabolic Medicine Branch, National Human Genome Research Institute
| | - Yiouli P Ktena
- Metabolic Medicine Branch, National Human Genome Research Institute
| | - Sophia Mendelson
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development; and
| | - Alexandra R Pass
- Metabolic Medicine Branch, National Human Genome Research Institute
| | - Patricia M Zerfas
- Office of Research Services, Division of Veterinary Resources, NIH, Bethesda, Maryland, USA
| | - Victoria Hoffmann
- Office of Research Services, Division of Veterinary Resources, NIH, Bethesda, Maryland, USA
| | - Hilary J Vernon
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Laura A Fletcher
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases
| | | | - Maria G Tsokos
- Ultrastructural Pathology Section, Center for Cancer Research; and
| | - Constantine A Stratakis
- Section on Endocrinology & Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Stephan D Voss
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Rebecca J Brown
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Ada Hamosh
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gerard T Berry
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoyuan Shawn Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, Maryland, USA
| | - Jack A Yanovski
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development; and
| | | |
Collapse
|
7
|
Miyahara H, Tamai C, Inoue M, Sekiguchi K, Tahara D, Tahara N, Takeda K, Arafuka S, Moriyoshi H, Koizumi R, Akagi A, Riku Y, Sone J, Yoshida M, Ihara K, Iwasaki Y. Neuropathological hallmarks in autopsied cases with mitochondrial diseases caused by the mitochondrial 3243A>G mutation. Brain Pathol 2023; 33:e13199. [PMID: 37534760 PMCID: PMC10580013 DOI: 10.1111/bpa.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
The mitochondrial (m.) 3243A>G mutation is known to be associated with various mitochondrial diseases including mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Their clinical symptoms have been estimated to occur with an increased mitochondrial DNA (mtDNA) heteroplasmy and reduced activity of oxidative phosphorylation (OXPHOS) complexes, but their trends in the central nervous system remain unknown. Six autopsied mutant cases and three disease control cases without the mutation were enrolled in this study. The mutant cases had a disease duration of 1-27 years. Five of six mutant cases were compatible with MELAS. In the mutant cases, cortical lesions including a laminar necrosis were frequently observed in the parietal, lateral temporal, and occipital lobes; less frequently in the frontal lobe including precentral gyrus; and not at all in the medial temporal lobe. The mtDNA heteroplasmy in brain tissue samples of the mutant cases was strikingly high, ranging from 53.8% to 85.2%. The medial temporal lobe was preserved despite an inhospitable environment having high levels of mtDNA heteroplasmy and lactic acid. OXPHOS complex I was widely decreased in the mutant cases. The swelling of smooth muscle cells in the vessels on the leptomeninges, with immunoreactivity (IR) against mitochondria antibody, and a decreased nuclear/cytoplasmic ratio of choroidal epithelial cells were observed in all mutant cases but in none without the mutation. Common neuropathological findings such as cortical laminar necrosis and basal ganglia calcification were not always observed in the mutant cases. A high level of mtDNA heteroplasmy was observed throughout the brain in spite of heterogeneous cortical lesions. A lack of medial temporal lesion, mitochondrial vasculopathy in vessels on the leptomeninges, and an increased cytoplasmic size of epithelial cells in the choroid plexus could be neuropathological hallmarks helpful in the diagnosis of mitochondrial diseases.
Collapse
Affiliation(s)
- Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Chisato Tamai
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Masanori Inoue
- Department of PediatricsOita University Faculty of MedicineOitaJapan
| | | | - Daisuke Tahara
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Nao Tahara
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Kazuhiro Takeda
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Shusei Arafuka
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Hideyuki Moriyoshi
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Ryuichi Koizumi
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Kenji Ihara
- Department of PediatricsOita University Faculty of MedicineOitaJapan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| |
Collapse
|
8
|
Igual Gil C, Löser A, Lossow K, Schwarz M, Weber D, Grune T, Kipp AP, Klaus S, Ost M. Temporal dynamics of muscle mitochondrial uncoupling-induced integrated stress response and ferroptosis defense. Front Endocrinol (Lausanne) 2023; 14:1277866. [PMID: 37941910 PMCID: PMC10627798 DOI: 10.3389/fendo.2023.1277866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Mitochondria play multifaceted roles in cellular function, and impairments across domains of mitochondrial biology are known to promote cellular integrated stress response (ISR) pathways as well as systemic metabolic adaptations. However, the temporal dynamics of specific mitochondrial ISR related to physiological variations in tissue-specific energy demands remains unknown. Here, we conducted a comprehensive 24-hour muscle and plasma profiling of male and female mice with ectopic mitochondrial respiratory uncoupling in skeletal muscle (mUcp1-transgenic, TG). TG mice are characterized by increased muscle ISR, elevated oxidative stress defense, and increased secretion of FGF21 and GDF15 as ISR-induced myokines. We observed a temporal signature of both cell-autonomous and systemic ISR in the context of endocrine myokine signaling and cellular redox balance, but not of ferroptotic signature which was also increased in TG muscle. We show a progressive increase of muscle ISR on transcriptional level during the active phase (night time), with a subsequent peak in circulating FGF21 and GDF15 in the early resting phase. Moreover, we found highest levels of muscle oxidative defense (GPX and NQO1 activity) between the late active to early resting phase, which could aim to counteract excessive iron-dependent lipid peroxidation and ferroptosis in muscle of TG mice. These findings highlight the temporal dynamics of cell-autonomous and endocrine ISR signaling under skeletal muscle mitochondrial uncoupling, emphasizing the importance of considering such dissociation in translational strategies and sample collection for diagnostic biomarker analysis.
Collapse
Affiliation(s)
- Carla Igual Gil
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Alina Löser
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Kristina Lossow
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Tilman Grune
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Anna P. Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Manoli I, Gebremariam A, McCoy S, Pass AR, Gagné J, Hall C, Ferry S, Van Ryzin C, Sloan JL, Sacchetti E, Catesini G, Rizzo C, Martinelli D, Spada M, Dionisi-Vici C, Venditti CP. Biomarkers to predict disease progression and therapeutic response in isolated methylmalonic acidemia. J Inherit Metab Dis 2023; 46:554-572. [PMID: 37243446 PMCID: PMC10330948 DOI: 10.1002/jimd.12636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Methylmalonic Acidemia (MMA) is a heterogenous group of inborn errors of metabolism caused by a defect in the methylmalonyl-CoA mutase (MMUT) enzyme or the synthesis and transport of its cofactor, 5'-deoxy-adenosylcobalamin. It is characterized by life-threatening episodes of ketoacidosis, chronic kidney disease, and other multiorgan complications. Liver transplantation can improve patient stability and survival and thus provides clinical and biochemical benchmarks for the development of hepatocyte-targeted genomic therapies. Data are presented from a US natural history protocol that evaluated subjects with different types of MMA including mut-type (N = 91), cblB-type (15), and cblA-type MMA (17), as well as from an Italian cohort of mut-type (N = 19) and cblB-type MMA (N = 2) subjects, including data before and after organ transplantation in both cohorts. Canonical metabolic markers, such as serum methylmalonic acid and propionylcarnitine, are variable and affected by dietary intake and renal function. We have therefore explored the use of the 1-13 C-propionate oxidation breath test (POBT) to measure metabolic capacity and the changes in circulating proteins to assess mitochondrial dysfunction (fibroblast growth factor 21 [FGF21] and growth differentiation factor 15 [GDF15]) and kidney injury (lipocalin-2 [LCN2]). Biomarker concentrations are higher in patients with the severe mut0 -type and cblB-type MMA, correlate with a decreased POBT, and show a significant response postliver transplant. Additional circulating and imaging markers to assess disease burden are necessary to monitor disease progression. A combination of biomarkers reflecting disease severity and multisystem involvement will be needed to help stratify patients for clinical trials and assess the efficacy of new therapies for MMA.
Collapse
Affiliation(s)
- Irini Manoli
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Abigael Gebremariam
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Samantha McCoy
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexandra R. Pass
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jack Gagné
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Camryn Hall
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Susan Ferry
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Carol Van Ryzin
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jennifer L. Sloan
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elisa Sacchetti
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Giulio Catesini
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Cristiano Rizzo
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Diego Martinelli
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Marco Spada
- Division of Hepatobiliopancreatic Surgery, Liver and Kidney Tranplantation, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- European Research Network TransplantChild
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Charles P. Venditti
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
10
|
Blood biomarkers of mitochondrial disease-One for all or all for one? HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:251-257. [PMID: 36813317 DOI: 10.1016/b978-0-12-821751-1.00006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The mitochondrial disease group consists of different disorders with unprecedented variability of clinical manifestations and tissue-specific symptoms. Their tissue-specific stress responses vary depending on the patients' age and type of dysfunction. These responses include secretion of metabolically active signal molecules to systemic circulation. Such signals-metabolites or metabokines-can be also utilized as biomarkers. During the past 10 years, metabolite and metabokine biomarkers have been described for mitochondrial disease diagnosis and follow-up, to complement the conventional blood biomarkers lactate, pyruvate and alanine. These new tools include metabokines FGF21 and GDF15; cofactors (NAD-forms); sets of metabolites (multibiomarkers) and the full metabolome. FGF21 and GDF15 are messengers of mitochondrial integrated stress response that together outperform the conventional biomarkers in specificity and sensitivity for muscle-manifesting mitochondrial diseases. Metabolite or metabolomic imbalance (e.g., NAD+ deficiency) is a secondary consequence to the primary cause in some diseases, but relevant as a biomarker and a potential indicator of therapy targets. For therapy trials, the optimal biomarker set needs to be tailored to match the disease of interest. The new biomarkers have increased the value of blood samples in mitochondrial disease diagnosis and follow-up, enabling prioritization of patients to different diagnostic paths and having crucial roles in follow-up of therapy effect.
Collapse
|
11
|
Yang L, Nao J. Focus on Alzheimer's Disease: The Role of Fibroblast Growth Factor 21 and Autophagy. Neuroscience 2023; 511:13-28. [PMID: 36372296 DOI: 10.1016/j.neuroscience.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is a disorder of the central nervous system that is typically marked by progressive cognitive impairment and memory loss. Amyloid β plaque deposition and neurofibrillary tangles with hyperphosphorylated tau are the two hallmark pathologies of AD. In mammalian cells, autophagy clears aberrant protein aggregates, thus maintaining proteostasis as well as neuronal health. Autophagy affects production and metabolism of amyloid β and accumulation of phosphorylated tau proteins, whose malfunction can lead to the progression of AD. On the other hand, defective autophagy has been found to induce the production of the neuroprotective factor fibroblast growth factor 21 (FGF21), although the underlying mechanism is unclear. In this review, we highlight the significance of aberrant autophagy in the pathogenesis of AD, discuss the possible mechanisms by which defective autophagy induces FGF21 production, and analyze the potential of FGF21 in the treatment of AD. The findings provide some insights into the potential role of FGF21 and autophagy in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
12
|
De Paepe B. The Cytokine Growth Differentiation Factor-15 and Skeletal Muscle Health: Portrait of an Emerging Widely Applicable Disease Biomarker. Int J Mol Sci 2022; 23:ijms232113180. [PMID: 36361969 PMCID: PMC9654287 DOI: 10.3390/ijms232113180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a stress-induced transforming growth factor-β superfamily cytokine with versatile functions in human health. Elevated GDF-15 blood levels associate with multiple pathological conditions, and are currently extensively explored for diagnosis, and as a means to monitor disease progression and evaluate therapeutic responses. This review analyzes GDF-15 in human conditions specifically focusing on its association with muscle manifestations of sarcopenia, mitochondrial myopathy, and autoimmune and viral myositis. The use of GDF-15 as a widely applicable health biomarker to monitor muscle disease is discussed, and its potential as a therapeutic target is explored.
Collapse
Affiliation(s)
- Boel De Paepe
- Neuromuscular Reference Center, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP. The Biochemical Assessment of Mitochondrial Respiratory Chain Disorders. Int J Mol Sci 2022; 23:ijms23137487. [PMID: 35806492 PMCID: PMC9267223 DOI: 10.3390/ijms23137487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Mitochondrial respiratory chain (MRC) disorders are a complex group of diseases whose diagnosis requires a multidisciplinary approach in which the biochemical investigations play an important role. Initial investigations include metabolite analysis in both blood and urine and the measurement of lactate, pyruvate and amino acid levels, as well as urine organic acids. Recently, hormone-like cytokines, such as fibroblast growth factor-21 (FGF-21), have also been used as a means of assessing evidence of MRC dysfunction, although work is still required to confirm their diagnostic utility and reliability. The assessment of evidence of oxidative stress may also be an important parameter to consider in the diagnosis of MRC function in view of its association with mitochondrial dysfunction. At present, due to the lack of reliable biomarkers available for assessing evidence of MRC dysfunction, the spectrophotometric determination of MRC enzyme activities in skeletal muscle or tissue from the disease-presenting organ is considered the ‘Gold Standard’ biochemical method to provide evidence of MRC dysfunction. The purpose of this review is to outline a number of biochemical methods that may provide diagnostic evidence of MRC dysfunction in patients.
Collapse
Affiliation(s)
- Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Neve Cufflin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Mollie Dewsbury
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Olivia Fitzpatrick
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Rahida Islam
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Lowidka Linares Watler
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Cara McPartland
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Sophie Whitelaw
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Caitlin Connor
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Charlotte Morris
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Jason Fang
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Ollie Gartland
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Liv Holt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|