1
|
Zheng TT, Liu JH, Huang WT, Hong B, Wang D, Liu CY, Zhang J, Li SS, Wu SW, Wang Q, Chen L, Jin L. Single-nucleotide polymorphisms in genes involved in folate metabolism or selected other metabolites and risk for gestational diabetes mellitus. World J Diabetes 2025; 16:103602. [DOI: 10.4239/wjd.v16.i5.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/09/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND There are conflicting results on the potential correlation between folic acid and gestational diabetes mellitus (GDM), and the correlation between genetic factors related to folic acid metabolism pathways and GDM remains to be revealed.
AIM To examine the association between single-nucleotide polymorphisms (SNPs) of enzyme genes in the folate metabolite pathway as well as that between GDM-related genes and risk for GDM.
METHODS A nested case-control study was conducted with GDM cases (n = 412) and healthy controls (n = 412). DNA was extracted blood samples and SNPs were genotyped using Agena Bioscience’s MassARRAY gene mass spectrometry system. The associations between different SNPs of genes and the risk for GDM were estimated using logistic regression models. The generalized multi-factor dimensionality reduction (GMDR) method was used to analyze gene-gene and gene-environment interactions using the GMDR 0.9 software.
RESULTS The variation allele frequency of melatonin receptor 1B (MTNR1B) rs10830963 was higher in the GDM group than in controls (P < 0.05). MTNR1B rs10830963 mutant G was associated with risk for GDM [adjusted odds ratio (aOR): 1.43; 95% confidence interval (95%CI): 1.13-1.80] in the additive model. MTNR1B rs10830963 GG + GC was significantly associated with the risk for GDM (aOR: 1.65; 95%CI: 1.23-2.22) in the dominant model. The two-locus model of MTNR1B rs10830963 and CHEMERIN rs4721 was the best model (P < 0.05) for gene-gene interactions in the GMDR results. The high-risk rs10830963 × rs4721 type of interaction was a risk factor for GDM (aOR: 2.09; 95%CI: 1.49-2.93).
CONCLUSION This study does not find an association between SNPs of folate metabolic enzymes and risk for GDM. The G mutant allele of MTNR1B rs10830963 is identified as a risk factor for GDM in the additive model, and there may be gene-gene interactions between MTNR1B rs10830963 and CHEMERIN rs4721. It is conducive to studying the causes of GDM and provides a new perspective for the precise prevention of this disease.
Collapse
Affiliation(s)
- Ting-Ting Zheng
- Department of Obstetrics and Gynecology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Department of Gynecology, Jinan Maternal and Child Care Hospital, Jinan 250000, Shandong Province, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of PLA General Hospital, Beijing 100191, China
| | - Jia-He Liu
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, China
- Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Wan-Tong Huang
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, China
- Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Bo Hong
- Department of Obstetrics and Gynecology, Haidian Maternal and Child Health Care Hospital of Beijing, Beijing 100191, China
| | - Di Wang
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, China
- Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Chun-Yi Liu
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, China
- Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jie Zhang
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, China
- Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Si-Si Li
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, China
- Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Shao-Wei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Health Science Center, Xi'an 710000, Shaanxi Province, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Lei Chen
- Department of Obstetrics and Gynecology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of PLA General Hospital, Beijing 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, China
- Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Chen X, Wang R, Wang X, Liu M, Liu Z, Yin T, Li C. Repetitive transcranial magnetic stimulation elicits weight loss and improved insulin sensitivity in type 2 diabetic rats. Animal Model Exp Med 2025; 8:739-749. [PMID: 39439134 PMCID: PMC12008436 DOI: 10.1002/ame2.12483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/19/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) accounts for the majority of diabetes incidences and remains a widespread global chronic disorder. Apart from early lifestyle changes, intervention options for T2D are mainly pharmaceutical. METHODS Repetitive transcranial magnetic stimulation (rTMS) has been approved by the FDA as a therapeutic intervention option for major depressive disorders, with further studies also indicating its role in energy metabolism and appetite. Considering its safe and non-invasive properties, we evaluated the effects of rTMS on systemic metabolism using T2D rats. RESULTS We observed that rTMS improved glucose tolerance and insulin sensitivity in T2D rats after a 10-day exposure. Improved systemic insulin sensitivity was maintained after a 21-day treatment period, accompanied by modest yet significant weight loss. Circulating serum lipid levels, including those of cholesteryl ester, tryglyceride and ceramides, were also reduced following rTMS application. RNA-seq analyses further revealed a changed expression profile of hepatic genes that are related to sterol production and fatty acid metabolism. Altered expression of hypothalamic genes that are related to appetite regulation, neural activity and ether lipid metabolism were also implicated. CONCLUSION In summary, our data report a positive impact of rTMS on systemic insulin sensitivity and weight management of T2D rats. The underlying mechanisms via which rTMS regulates systemic metabolic parameters partially involve lipid utilization in the periphery as well as central regulation of energy intake and lipid metabolism.
Collapse
Affiliation(s)
- Xuanjin Chen
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Ruru Wang
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Xin Wang
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Ming Liu
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Zhipeng Liu
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Tao Yin
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Chen Li
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| |
Collapse
|
3
|
Sowton AP, Holzner LMW, Krause FN, Baxter R, Mocciaro G, Krzyzanska DK, Minnion M, O'Brien KA, Harrop MC, Darwin PM, Thackray BD, Vacca M, Feelisch M, Griffin JL, Murray AJ. Chronic inorganic nitrate supplementation does not improve metabolic health and worsens disease progression in mice with diet-induced obesity. Am J Physiol Endocrinol Metab 2025; 328:E69-E91. [PMID: 39653040 DOI: 10.1152/ajpendo.00256.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 01/11/2025]
Abstract
Inorganic nitrate (NO3-) has been proposed to be of therapeutic use as a dietary supplement in obesity and related conditions including the metabolic syndrome (MetS), type II diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD). Administration of NO3- to endothelial nitric oxide synthase-deficient mice reversed aspects of MetS; however, the impact of NO3- supplementation in diet-induced obesity is not well understood. Here we investigated the whole body metabolic phenotype and cardiac and hepatic metabolism in mice fed a high-fat, high-sucrose (HFHS) diet for up to 12 mo of age, supplemented with 1 mM NaNO3 (or NaCl) in their drinking water. HFHS feeding was associated with a progressive obesogenic and diabetogenic phenotype, which was not ameliorated by NO3-. Furthermore, HFHS-fed mice supplemented with NO3- showed elevated levels of cardiac fibrosis and accelerated progression of MASLD including development of hepatocellular carcinoma in comparison with NaCl-supplemented mice. NO3- did not enhance mitochondrial β-oxidation capacity in any tissue assayed and did not suppress hepatic lipid accumulation, suggesting it does not prevent lipotoxicity. We conclude that NO3- is ineffective in preventing the metabolic consequences of an obesogenic diet and may instead be detrimental to metabolic health against the background of HFHS feeding. This is the first report of an unfavorable effect of long-term nitrate supplementation in the context of the metabolic challenges of overfeeding, warranting urgent further investigation into the mechanism of this interaction.NEW & NOTEWORTHY Inorganic nitrate has been suggested to be of therapeutic benefit in obesity-related conditions, as it increases nitric oxide bioavailability, enhances mitochondrial β-oxidation, and reverses metabolic syndrome in eNOS-/- mice. However, we here show that over 12 months nitrate was ineffective in preventing metabolic consequences in high fat, high sucrose-fed mice and worsened aspects of metabolic health, impairing cholesterol handling, increasing cardiac fibrosis, and exacerbating steatotic liver disease progression, with acceleration to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Alice P Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Lorenz M W Holzner
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Fynn N Krause
- Department of Biochemistry and Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ruby Baxter
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Gabriele Mocciaro
- Department of Biochemistry and Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Dominika K Krzyzanska
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Magdalena Minnion
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Katie A O'Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Matthew C Harrop
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Paula M Darwin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin D Thackray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Michele Vacca
- Department of Biochemistry and Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Martin Feelisch
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Julian L Griffin
- Department of Biochemistry and Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Song C, Long X, He J, Huang Y. Recent evaluation about inflammatory mechanisms in nonalcoholic fatty liver disease. Front Pharmacol 2023; 14:1081334. [PMID: 37007030 PMCID: PMC10061077 DOI: 10.3389/fphar.2023.1081334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is common chronic metabolic liver disorder which is associated with fat accumulation in the liver. It causes a wide range of pathological effects such as insulin resistance, obesity, hypertension, diabetes, non-alcoholic steatohepatitis (NASH) and cirrhosis, cardiovascular diseases. The molecular mechanisms that cause the initiation and progression of NAFLD remain fully unclear. Inflammation is regarded as a significant mechanism which could result in cell death and tissue injury. Accumulation of leukocytes and hepatic inflammation are important contributors in NAFLD. Excessive inflammatory response can deteriorate the tissue injury in NAFLD. Thus, inhibition of inflammation improves NAFLD by reducing intrahepatic fat content, increasing β-oxidation of fatty acids, inducing hepato-protective autophagy, overexpressing peroxisome proliferator-activated receptor- γ (PPAR-γ), as well as attenuating hepatocyte apoptosis and increasing insulin sensitivity. Therefore, understanding the molecules and signaling pathways suggests us valuable information about NAFLD progression. This review aimed to evaluate the inflammation in NAFLD and the molecular mechanism on NAFLD.
Collapse
Affiliation(s)
- Chong Song
- Medicine School, Changsha Social Work College, Changsha, Hunan, China
| | - Xian Long
- Medicine School, Changsha Social Work College, Changsha, Hunan, China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Huaihua, Affiliated to University of South China, Huaihua, Hunan, China
- *Correspondence: Yongpan Huang, ; Jianbin He,
| | - Yongpan Huang
- Medicine School, Changsha Social Work College, Changsha, Hunan, China
- *Correspondence: Yongpan Huang, ; Jianbin He,
| |
Collapse
|
5
|
Couto-Silva CM, Nunes K, Venturini G, Araújo Castro e Silva M, Pereira LV, Comas D, Pereira A, Hünemeier T. Indigenous people from Amazon show genetic signatures of pathogen-driven selection. SCIENCE ADVANCES 2023; 9:eabo0234. [PMID: 36888716 PMCID: PMC9995071 DOI: 10.1126/sciadv.abo0234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Ecological conditions in the Amazon rainforests are historically favorable for the transmission of numerous tropical diseases, especially vector-borne diseases. The high diversity of pathogens likely contributes to the strong selective pressures for human survival and reproduction in this region. However, the genetic basis of human adaptation to this complex ecosystem remains unclear. This study investigates the possible footprints of genetic adaptation to the Amazon rainforest environment by analyzing the genomic data of 19 native populations. The results based on genomic and functional analysis showed an intense signal of natural selection in a set of genes related to Trypanosoma cruzi infection, which is the pathogen responsible for Chagas disease, a neglected tropical parasitic disease native to the Americas that is currently spreading worldwide.
Collapse
Affiliation(s)
- Cainã M. Couto-Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
| | - Kelly Nunes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
| | - Gabriela Venturini
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marcos Araújo Castro e Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
- Institut de Biologia Evolutiva, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Lygia V. Pereira
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
| | - David Comas
- Institut de Biologia Evolutiva, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Alexandre Pereira
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
- Institut de Biologia Evolutiva (CSIC/Universitat Pompeu Fabra), Barcelona 08003, Spain
| |
Collapse
|
6
|
Lopez-Tello J, Salazar-Petres E, Webb L, Fowden AL, Sferruzzi-Perri AN. Ablation of PI3K-p110alpha Impairs Maternal Metabolic Adaptations to Pregnancy. Front Cell Dev Biol 2022; 10:928210. [PMID: 35846351 PMCID: PMC9283861 DOI: 10.3389/fcell.2022.928210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 01/03/2023] Open
Abstract
Pregnancy requires adaptations in maternal metabolism to support fetal growth. The phosphoinositol-3-kinase (PI3K) signalling pathway controls multiple biological processes and defects in this pathway are linked to metabolic disorders including insulin resistance and glucose intolerance in non-pregnant animals. However, relatively little is known about the contribution of PI3K signalling to the maternal metabolic adaptations during pregnancy. Using mice with partial inactivation of the PI3K isoform, p110α (due to a heterozygous dominant negative mutation; Pik3ca-D933A), the effects of impaired PI3K-p110α signalling on glucose and insulin handling were examined in the pregnant and non-pregnant states and related to the morphological, molecular, and mitochondrial changes in key metabolic organs. The results show that non-pregnant mice lacking PI3K-p110α are glucose intolerant but exhibit compensatory increases in pancreatic glucose-stimulated insulin release and adipose tissue mitochondrial respiratory capacity and fatty acid oxidation. However, in pregnancy, mutant mice failed to show the normal increment in glucose intolerance and pancreatic β-cell mass observed in wild-type pregnant dams and exhibited further enhanced adipose tissue mitochondrial respiratory capacity. These maladaptations in pregnant mutant mice were associated with fetal growth restriction. Hence, PI3K-p110α is a key regulator of metabolic adaptations that support fetal growth during normal pregnancy.
Collapse
Affiliation(s)
| | | | | | | | - Amanda N. Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Ding DX, Wang Y, Yan W, Fu WN. MYCT1 alters the glycogen shunt by regulating selective translation of RACK1-mediated enzymes. iScience 2022; 25:103955. [PMID: 35281731 PMCID: PMC8908216 DOI: 10.1016/j.isci.2022.103955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 11/09/2022] Open
Abstract
MYCT1 has been shown to function as a tumor suppressor in various tumors, but its role in metabolism has never been reported. Here, we showed that global inactivation of Myct1 in mice led to progressive accumulation of glycogen in the liver, which was accompanied by aberrant changes in intermediates of the glycogen metabolic pathway. Mechanistically, MYCT1 appeared to promote translation efficiency of PGM1, UGP2 and GSK3A in hepatic cells in a RACK1-dependent manner. Consequently, upregulation of the three enzymes enhanced the glycogen shunt. Our data reveal a critical role of MYCT1 as a switch for the glycogen shunt in tumor cells. Myct1 depletion causes glycogen accumulation in mouse liver MYCT1 affects glycogen shunt in tumor and normal cells MYCT1 regulates translation efficiency of glycogen enzymes MYCT1 alters the glycogen shunt in a RACK1 dependent manner
Collapse
|
8
|
Sun B, Williams CM, Li T, Speakman JR, Jin Z, Lu H, Luo L, Du W. Higher metabolic plasticity in temperate compared to tropical lizards suggests increased resilience to climate change. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology, Chinese Academy of Sciences Beijing China
- Department of Integrative Biology University of California Berkeley CA USA
| | | | - Teng Li
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
| | - John R. Speakman
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen UK
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| | - Zengguang Jin
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Hongliang Lu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution Hangzhou Normal University Hangzhou People's Republic of China
| | - Laigao Luo
- Department of Biology & food engineering Chuzhou University Chuzhou People's Republic of China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology, Chinese Academy of Sciences Beijing China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| |
Collapse
|
9
|
Wilkinson AL, Menelaou K, Rakoczy J, Tan XS, Watson ED. Disruption of Folate Metabolism Causes Poor Alignment and Spacing of Mouse Conceptuses for Multiple Generations. Front Cell Dev Biol 2021; 9:723978. [PMID: 34957089 PMCID: PMC8703036 DOI: 10.3389/fcell.2021.723978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Abnormal uptake or metabolism of folate increases risk of human pregnancy complications, though the mechanism is unclear. Here, we explore how defective folate metabolism influences early development by analysing mice with the hypomorphic Mtrrgt mutation. MTRR is necessary for methyl group utilisation from folate metabolism, and the Mtrrgt allele disrupts this process. We show that the spectrum of phenotypes previously observed in Mtrrgt/gt conceptuses at embryonic day (E) 10.5 is apparent from E8.5 including developmental delay, congenital malformations, and placental phenotypes. Notably, we report misalignment of some Mtrrgt conceptuses within their implantation sites from E6.5. The degree of misorientation occurs across a continuum, with the most severe form visible upon gross dissection. Additionally, some Mtrrgt/gt conceptuses display twinning. Therefore, we implicate folate metabolism in blastocyst orientation and spacing at implantation. Skewed growth likely influences embryo development since developmental delay and heart malformations (but not defects in neural tube closure or trophoblast differentiation) associate with severe misalignment of Mtrrgt/gt conceptuses. Typically, the uterus is thought to guide conceptus orientation. To investigate a uterine effect of the Mtrrgt allele, we manipulate the maternal Mtrr genotype. Misaligned conceptuses were observed in litters of Mtrr+/+, Mtrr+/gt, and Mtrrgt/gt mothers. While progesterone and/or BMP2 signalling might be disrupted, normal decidual morphology, patterning, and blood perfusion are evident at E6.5 regardless of conceptus orientation. These observations argue against a post-implantation uterine defect as a cause of conceptus misalignment. Since litters of Mtrr+/+ mothers display conceptus misalignment, a grandparental effect is explored. Multigenerational phenotype inheritance is characteristic of the Mtrrgt model, though the mechanism remains unclear. Genetic pedigree analysis reveals that severe conceptus skewing associates with the Mtrr genotype of either maternal grandparent. Moreover, the presence of conceptus skewing after embryo transfer into a control uterus indicates that misalignment is independent of the peri- and/or post-implantation uterus and instead is likely attributed to an embryonic mechanism that is epigenetically inherited. Overall, our data indicates that abnormal folate metabolism influences conceptus orientation over multiple generations with implications for subsequent development. This study casts light on the complex role of folate metabolism during development beyond a direct maternal effect.
Collapse
Affiliation(s)
- Amy L Wilkinson
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katerina Menelaou
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Joanna Rakoczy
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Xiu S Tan
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Erica D Watson
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
O'Brien KA, McNally BD, Sowton AP, Murgia A, Armitage J, Thomas LW, Krause FN, Maddalena LA, Francis I, Kavanagh S, Williams DP, Ashcroft M, Griffin JL, Lyon JJ, Murray AJ. Enhanced hepatic respiratory capacity and altered lipid metabolism support metabolic homeostasis during short-term hypoxic stress. BMC Biol 2021; 19:265. [PMID: 34911556 PMCID: PMC8675474 DOI: 10.1186/s12915-021-01192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Tissue hypoxia is a key feature of several endemic hepatic diseases, including alcoholic and non-alcoholic fatty liver disease, and organ failure. Hypoxia imposes a severe metabolic challenge on the liver, potentially disrupting its capacity to carry out essential functions including fuel storage and the integration of lipid metabolism at the whole-body level. Mitochondrial respiratory function is understood to be critical in mediating the hepatic hypoxic response, yet the time-dependent nature of this response and the role of the respiratory chain in this remain unclear. RESULTS Here, we report that hepatic respiratory capacity is enhanced following short-term exposure to hypoxia (2 days, 10% O2) and is associated with increased abundance of the respiratory chain supercomplex III2+IV and increased cardiolipin levels. Suppression of this enhanced respiratory capacity, achieved via mild inhibition of mitochondrial complex III, disrupted metabolic homeostasis. Hypoxic exposure for 2 days led to accumulation of plasma and hepatic long chain acyl-carnitines. This was observed alongside depletion of hepatic triacylglycerol species with total chain lengths of 39-53 carbons, containing palmitic, palmitoleic, stearic, and oleic acids, which are associated with de novo lipogenesis. The changes to hepatic respiratory capacity and lipid metabolism following 2 days hypoxic exposure were transient, becoming resolved after 14 days in line with systemic acclimation to hypoxia and elevated circulating haemoglobin concentrations. CONCLUSIONS The liver maintains metabolic homeostasis in response to shorter term hypoxic exposure through transient enhancement of respiratory chain capacity and alterations to lipid metabolism. These findings may have implications in understanding and treating hepatic pathologies associated with hypoxia.
Collapse
Affiliation(s)
- Katie A O'Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| | - Ben D McNally
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Sanger Building Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Alice P Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Antonio Murgia
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Sanger Building Tennis Court Road, Cambridge, CB2 1GA, UK
| | - James Armitage
- Global Investigative Safety, GlaxoSmithKline R&D, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Luke W Thomas
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Fynn N Krause
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Sanger Building Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Lucas A Maddalena
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Ian Francis
- Ultrastructure and Cellular Bioimaging, GlaxoSmithKline R&D, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Stefan Kavanagh
- Oncology Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, CB2 OAA, Cambridge, UK
| | - Dominic P Williams
- Functional and Mechanistic Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, CB2 OAA, Cambridge, UK
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Sanger Building Tennis Court Road, Cambridge, CB2 1GA, UK
- Section of Biomolecular Medicine, Department of Digestion, Metabolism and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jonathan J Lyon
- Global Investigative Safety, GlaxoSmithKline R&D, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|