1
|
Alboasud M, Jeong H, Lee T. Complete Mitochondrial Genomes and Phylogenetic Analysis of Genus Henricia (Asteroidea: Spinulosida: Echinasteridae). Int J Mol Sci 2024; 25:5575. [PMID: 38891763 PMCID: PMC11171911 DOI: 10.3390/ijms25115575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
The genus Henricia is known to have intraspecific morphological variations, making species identification difficult. Therefore, molecular phylogeny analysis based on genetic characteristics is valuable for species identification. We present complete mitochondrial genomic sequences of Henricia longispina aleutica, H. reniossa, and H. sanguinolenta for the first time in this study. This study will make a significant contribution to our understanding of Henricia species and its relationships within the class Asteroidea. Lengths of mitochondrial genomes of the three species are 16,217, 16,223, and 16,194 bp, respectively, with a circular form. These genomes contained 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a D-loop. The gene order and direction aligned with other asteroid species. Phylogenetic relationship analysis showed that our Henricia species were in a monophyletic clade with other Henricia species and in a large clade with species (Echinaster brasiliensis) from the same family. These findings provide valuable insight into understanding the phylogenetic relationships of species in the genus Henricia.
Collapse
Affiliation(s)
- Maria Alboasud
- Marine Biological Resource Institute, Sahmyook University, Seoul 01795, Republic of Korea;
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea
| | - Hoon Jeong
- Department of Animal Resources Science, Sahmyook University, Seoul 01795, Republic of Korea
| | - Taekjun Lee
- Marine Biological Resource Institute, Sahmyook University, Seoul 01795, Republic of Korea;
- Department of Animal Resources Science, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
2
|
Huang Z, Liu Q, Zeng X, Ni G. High-quality chromosome-level genome assembly of the Northern Pacific sea star Asterias amurensis. DNA Res 2024; 31:dsae007. [PMID: 38416146 PMCID: PMC11090083 DOI: 10.1093/dnares/dsae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024] Open
Abstract
Asterias amurensis, a starfish species that is native to countries such as China and Japan, as well as non-native regions like Australia, has raised serious concerns in terms of its impact on ecology and economy. To gain a better understanding of its population genomics and dynamics, we successfully assembled a high-quality chromosome-level genome of A. amurensis using PacBio and Hi-C sequencing technologies. A total of 87 scaffolds assembly with contig N50 length of 10.85 Mb and scaffold N50 length of 23.34 Mb were obtained, with over 98.80% (0.48 Gb) of them anchored to 22 pseudochromosomes. We predicted 16,673 protein-coding genes, 95.19% of which were functionally annotated. Our phylogenetic analysis revealed that A. amurensis and Asterias rubens formed a clade, and their divergence time was estimated ~ 28 million years ago (Mya). The significantly enriched pathways and Gene Ontology terms related to the amplified gene family were mainly associated with immune response and energy metabolism, suggesting that these factors might have contributed to the adaptability of A. amurensis to its environment. This study provides valuable genomic resources for comprehending the genetics, dynamics, and evolution of A. amurensis, especially when population outbreaks or invasions occur.
Collapse
Affiliation(s)
- Zhichao Huang
- Ministry of Education Key Laboratory of Mariculture, Ocean University of China, Qingdao 266003, China
| | - Qi Liu
- Wuhan Onemore-tech Co., Ltd, Wuhan 430000, China
| | - Xiaoqi Zeng
- Ministry of Education Key Laboratory of Mariculture, Ocean University of China, Qingdao 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Gang Ni
- Ministry of Education Key Laboratory of Mariculture, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
3
|
Mitogenomics provides new insights into the phylogenetic relationships and evolutionary history of deep-sea sea stars (Asteroidea). Sci Rep 2022; 12:4656. [PMID: 35304532 PMCID: PMC8933410 DOI: 10.1038/s41598-022-08644-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
The deep sea (> 200 m) is considered as the largest and most remote biome, which characterized by low temperatures, low oxygen level, scarce food, constant darkness, and high hydrostatic pressure. The sea stars (class Asteroidea) are ecologically important and diverse echinoderms in all of the world’s oceans, occurring from the intertidal to the abyssal zone (to about 6000 m). To date, the phylogeny of the sea stars and the relationships of deep-sea and shallow water groups have not yet been fully resolved. Here, we recovered five mitochondrial genomes of deep-sea asteroids. The A+T content of the mtDNA in deep-sea asteroids were significantly higher than that of the shallow-water groups. The gene orders of the five new mitogenomes were identical to that of other asteroids. The phylogenetic analysis showed that the orders Valvatida, Paxillosida, Forcipulatida are paraphyletic. Velatida was the sister order of all the others and then the cladeValvatida-Spinulosida-Paxillosida-Notomyotida versus Forcipulatida-Brisingida. Deep-sea asteroids were nested in different lineages, instead of a well-supported clade. The tropical Western Pacific was suggested as the original area of asteroids, and the temperate water was initially colonized with asteroids by the migration events from the tropical and cold water. The time-calibrated phylogeny showed that Asteroidea originated during Devonian-Carboniferous boundary and the major lineages of Asteroidea originated during Permian–Triassic boundary. The divergence between the deep-sea and shallow-water asteroids coincided approximately with the Triassic-Jurassic extinction. Total 29 positively selected sites were detected in fifteen mitochondrial genes of five deep-sea lineages, implying a link between deep-sea adaption and mitochondrial molecular biology in asteroids.
Collapse
|
4
|
An Investigation into the Genetic History of Japanese Populations of Three Starfish, Acanthaster planci, Linckia laevigata, and Asterias amurensis, Based on Complete Mitochondrial DNA Sequences. G3-GENES GENOMES GENETICS 2020; 10:2519-2528. [PMID: 32471940 PMCID: PMC7341131 DOI: 10.1534/g3.120.401155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Crown-of-thorns starfish, Acanthaster planci (COTS), are common in coral reefs of Indo-Pacific Ocean. Since they are highly fecund predators of corals, periodic outbreaks of COTS cause substantial loss of healthy coral reefs. Using complete mitochondrial DNA sequences, we here examined how COTS outbreaks in the Ryukyu Archipelago, Japan are reflected by the profile of their population genetics. Population genetics of the blue starfish, Linckia laevigata, which lives in the Ryukyu Archipelago, but not break out and the northern Pacific sea star, Asterias amurensis, which lives in colder seawater around the main Islands of Japan, were also examined as controls. Our results showed that As. amurensis has at least two local populations that diverged approximately 4.7 million years ago (MYA), and no genetic exchanges have occurred between the populations since then. Linckia laevigata shows two major populations in the Ryukyu Archipelago that likely diverged ∼6.8 MYA. The two populations, each comprised of individuals collected from coast of the Okinawa Island and those from the Ishigaki Island, suggest the presence of two cryptic species in the Ryukyu Archipelago. On the other hand, population genetics of COTS showed a profile quite different from those of Asterias and Linckia. At least five lineages of COTS have arisen since their divergence ∼0.7 MYA, and each of the lineages is present at the Okinawa Island, Miyako Island, and Ishigaki Island. These results suggest that COTS have experienced repeated genetic bottlenecks that may be associated with or caused by repeated outbreaks.
Collapse
|
5
|
Ruiz-Ramos DV, Schiebelhut LM, Hoff KJ, Wares JP, Dawson MN. An initial comparative genomic autopsy of wasting disease in sea stars. Mol Ecol 2020; 29:1087-1102. [PMID: 32069379 DOI: 10.1111/mec.15386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
Beginning in 2013, sea stars throughout the Eastern North Pacific were decimated by wasting disease, also known as "asteroid idiopathic wasting syndrome" (AIWS) due to its elusive aetiology. The geographic extent and taxonomic scale of AIWS meant events leading up to the outbreak were heterogeneous, multifaceted, and oftentimes unobserved; progression from morbidity to death was rapid, leaving few tell-tale symptoms. Here, we take a forensic genomic approach to discover candidate genes that may help explain sea star wasting syndrome. We report the first genome and annotation for Pisaster ochraceus, along with differential gene expression (DGE) analyses in four size classes, three tissue types, and in symptomatic and asymptomatic individuals. We integrate nucleotide polymorphisms associated with survivors of the wasting disease outbreak, DGE associated with temperature treatments in P. ochraceus, and DGE associated with wasting in another asteroid Pycnopodia helianthoides. In P. ochraceus, we found DGE across all tissues, among size classes, and between asymptomatic and symptomatic individuals; the strongest wasting-associated DGE signal was in pyloric caecum. We also found previously identified outlier loci co-occur with differentially expressed genes. In cross-species comparisons of symptomatic and asymptomatic individuals, consistent responses distinguish genes associated with invertebrate innate immunity and chemical defence, consistent with context-dependent stress responses, defensive apoptosis, and tissue degradation. Our analyses thus highlight genomic constituents that may link suspected environmental drivers (elevated temperature) with intrinsic differences among individuals (age/size, alleles associated with susceptibility) that elicit organismal responses (e.g., coelomocyte proliferation) and manifest as sea star wasting mass mortality.
Collapse
Affiliation(s)
- Dannise V Ruiz-Ramos
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Lauren M Schiebelhut
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Katharina J Hoff
- Institute for Computer Science and Mathematics, University of Greifswald, Greifswald, Germany.,Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - John P Wares
- Department of Genetics and the Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Michael N Dawson
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
6
|
Mu W, Liu J, Zhang H. Complete mitochondrial genome of Benthodytes marianensis (Holothuroidea: Elasipodida: Psychropotidae): Insight into deep sea adaptation in the sea cucumber. PLoS One 2018; 13:e0208051. [PMID: 30500836 PMCID: PMC6267960 DOI: 10.1371/journal.pone.0208051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/09/2018] [Indexed: 01/01/2023] Open
Abstract
Complete mitochondrial genomes play important roles in studying genome evolution, phylogenetic relationships, and species identification. Sea cucumbers (Holothuroidea) are ecologically important and diverse members, living from the shallow waters to the hadal trench. In this study, we present the mitochondrial genome sequence of the sea cucumber Benthodytes marianensis collected from the Mariana Trench. To our knowledge, this is the first reported mitochondrial genome from the genus Benthodytes. This complete mitochondrial genome is 17567 bp in length and consists of 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes (duplication of two tRNAs: trnL and trnS). Most of these genes are coded on the positive strand except for one protein-coding gene (nad6) and five tRNA genes which are coded on the negative strand. Two putative control regions (CRs) have been found in the B. marianensis mitogenome. We compared the order of genes from the 10 available holothurian mitogenomes and found a novel gene arrangement in B. marianensis. Phylogenetic analysis revealed that B. marianensis clustered with Peniagone sp. YYH-2013, forming the deep-sea Elasipodida clade. Positive selection analysis showed that eleven residues (24 S, 45 S, 185 S, 201 G, 211 F and 313 N in nad2; 108 S, 114 S, 322 C, 400 T and 427 S in nad4) were positively selected sites with high posterior probabilities. We predict that nad2 and nad4 may be the important candidate genes for the further investigation of the adaptation of B. marianensis to the deep-sea environment.
Collapse
Affiliation(s)
- Wendan Mu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- * E-mail:
| |
Collapse
|
7
|
Mu W, Liu J, Zhang H. The first complete mitochondrial genome of the Mariana Trench Freyastera benthophila (Asteroidea: Brisingida: Brisingidae) allows insights into the deep-sea adaptive evolution of Brisingida. Ecol Evol 2018; 8:10673-10686. [PMID: 30519397 PMCID: PMC6262923 DOI: 10.1002/ece3.4427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/27/2018] [Accepted: 07/10/2018] [Indexed: 01/13/2023] Open
Abstract
Starfish (phylum Echinodermata) are ecologically important and diverse members of marine ecosystems in all of the world's oceans, from the shallow water to the hadal zone. The deep sea is recognized as an extremely harsh environment on earth. In this study, we present the mitochondrial genome sequence of Mariana Trench starfish Freyastera benthophila, and this study is the first to explore in detail the mitochondrial genome of a deep-sea member of the order Brisingida. Similar to other starfish, it contained 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes (duplication of two tRNAs: trnL and trnS). Twenty-two of these genes are encoded on the positive strand, while the other 15 are encoded on the negative strand. The gene arrangement was identical to those of sequenced starfish. Phylogenetic analysis showed the deep-sea Brisingida as a sister taxon to the traditional members of the Asteriidae. Positive selection analysis indicated that five residues (8 N and 16 I in atp8, 47 D and 196 V in nad2, 599 N in nad5) were positively selected sites with high posterior probabilities. Compared these features with shallow sea starfish, we predict that variation specifically in atp8, nad2, and nad5 may play an important role in F. benthophila's adaptation to deep-sea environment.
Collapse
Affiliation(s)
- Wendan Mu
- Institute of Deep‐Sea Science and EngineeringChinese Academy of SciencesSanyaChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jun Liu
- Institute of Deep‐Sea Science and EngineeringChinese Academy of SciencesSanyaChina
| | - Haibin Zhang
- Institute of Deep‐Sea Science and EngineeringChinese Academy of SciencesSanyaChina
| |
Collapse
|
8
|
Lee T, Shin S. Complete mitochondrial genome analysis of Distolasterias nipon (Echinodermata, Asteroidea, Forcipulatida). Mitochondrial DNA B Resour 2018; 3:1290-1291. [PMID: 33474496 PMCID: PMC7800799 DOI: 10.1080/23802359.2018.1501313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this study, we determined the complete mitochondrial genome sequences of Distolasterias nipon belonging to the class Asteroidea in the phylum Echinodermata. The complete mitogenome of D. nipon was 16,193 bp in length and consisted of 13 protein-coding genes (PCGs), 22 tRNAs, and 2 rRNAs. The orders of PCGs and rRNAs were identical to those of the eight recorded mitogenomes of asteroids. The phylogenetic tree determined by the maximum likelihood method revealed that D. nipon was clearly grouped with Aphelasterias japonica and Asterias amurensis, which belong to the family Asteriidae.
Collapse
Affiliation(s)
- Taekjun Lee
- Marine Biological Resource Institute, Sahmyook University, Seoul, Korea.,Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University Korea University, Seoul, Korea
| | - Sook Shin
- Marine Biological Resource Institute, Sahmyook University, Seoul, Korea.,Department of Chemistry Life Science, Sahmyook University, Seoul, Korea
| |
Collapse
|
9
|
De novo assembly of a transcriptome from the eggs and early embryos of Astropecten aranciacus. PLoS One 2017; 12:e0184090. [PMID: 28873438 PMCID: PMC5584759 DOI: 10.1371/journal.pone.0184090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/17/2017] [Indexed: 11/19/2022] Open
Abstract
Starfish have been instrumental in many fields of biological and ecological research. Oocytes of Astropecten aranciacus, a common species native to the Mediterranean Sea and the East Atlantic, have long been used as an experimental model to study meiotic maturation, fertilization, intracellular Ca2+ signaling, and cell cycle controls. However, investigation of the underlying molecular mechanisms has often been hampered by the overall lack of DNA or protein sequences for the species. In this study, we have assembled a transcriptome for this species from the oocytes, eggs, zygotes, and early embryos, which are known to have the highest RNA sequence complexity. Annotation of the transcriptome identified over 32,000 transcripts including the ones that encode 13 distinct cyclins and as many cyclin-dependent kinases (CDK), as well as the expected components of intracellular Ca2+ signaling toolkit. Although the mRNAs of cyclin and CDK families did not undergo significant abundance changes through the stages from oocyte to early embryo, as judged by real-time PCR, the transcript encoding Mos, a negative regulator of mitotic cell cycle, was drastically reduced during the period of rapid cleavages. Molecular phylogenetic analysis using the homologous amino acid sequences of cytochrome oxidase subunit I from A. aranciacus and 30 other starfish species indicated that Paxillosida, to which A. aranciacus belongs, is not likely to be the most basal order in Asteroidea. Taken together, the first transcriptome we assembled in this species is expected to enable us to perform comparative studies and to design gene-specific molecular tools with which to tackle long-standing biological questions.
Collapse
|
10
|
Farhana S, Shoichiro I, Yuji N. Molecular identification, micronutrient content, antifungal and hemolytic activity of starfish Asterias amurensis collected from Kobe coast, Japan. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajb2016.15776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Feuda R, Smith AB. Phylogenetic signal dissection identifies the root of starfishes. PLoS One 2015; 10:e0123331. [PMID: 25955729 PMCID: PMC4425436 DOI: 10.1371/journal.pone.0123331] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/20/2015] [Indexed: 11/19/2022] Open
Abstract
Relationships within the class Asteroidea have remained controversial for almost 100 years and, despite many attempts to resolve this problem using molecular data, no consensus has yet emerged. Using two nuclear genes and a taxon sampling covering the major asteroid clades we show that non-phylogenetic signal created by three factors - Long Branch Attraction, compositional heterogeneity and the use of poorly fitting models of evolution – have confounded accurate estimation of phylogenetic relationships. To overcome the effect of this non-phylogenetic signal we analyse the data using non-homogeneous models, site stripping and the creation of subpartitions aimed to reduce or amplify the systematic error, and calculate Bayes Factor support for a selection of previously suggested topological arrangements of asteroid orders. We show that most of the previous alternative hypotheses are not supported in the most reliable data partitions, including the previously suggested placement of either Forcipulatida or Paxillosida as sister group to the other major branches. The best-supported solution places Velatida as the sister group to other asteroids, and the implications of this finding for the morphological evolution of asteroids are presented.
Collapse
Affiliation(s)
- Roberto Feuda
- Division of Biology and Biological Engineering, California Institute of Technology Pasadena, California, United States of America
| | - Andrew B Smith
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
| |
Collapse
|
12
|
Reich A, Dunn C, Akasaka K, Wessel G. Phylogenomic analyses of Echinodermata support the sister groups of Asterozoa and Echinozoa. PLoS One 2015; 10:e0119627. [PMID: 25794146 PMCID: PMC4368666 DOI: 10.1371/journal.pone.0119627] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/12/2015] [Indexed: 12/01/2022] Open
Abstract
Echinoderms (sea urchins, sea stars, brittle stars, sea lilies and sea cucumbers) are a group of diverse organisms, second in number within deuterostome species to only the chordates. Echinoderms serve as excellent model systems for developmental biology due to their diverse developmental mechanisms, tractable laboratory use, and close phylogenetic distance to chordates. In addition, echinoderms are very well represented in the fossil record, including some larval features, making echinoderms a valuable system for studying evolutionary development. The internal relationships of Echinodermata have not been consistently supported across phylogenetic analyses, however, and this has hindered the study of other aspects of their biology. In order to test echinoderm phylogenetic relationships, we sequenced 23 de novo transcriptomes from all five clades of echinoderms. Using multiple phylogenetic methods at a variety of sampling depths we have constructed a well-supported phylogenetic tree of Echinodermata, including support for the sister groups of Asterozoa (sea stars and brittle stars) and Echinozoa (sea urchins and sea cucumbers). These results will help inform developmental and evolutionary studies specifically in echinoderms and deuterostomes in general.
Collapse
Affiliation(s)
- Adrian Reich
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Casey Dunn
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Koji Akasaka
- Misaki Marine Biological Station, University of Tokyo, Miura, Japan
| | - Gary Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
13
|
Gondim AI, Christoffersen ML, Pereira Dias TL. Taxonomic guide and historical review of starfishes in northeastern Brazil (Echinodermata, Asteroidea). Zookeys 2014; 449:1-56. [PMID: 25408612 PMCID: PMC4233396 DOI: 10.3897/zookeys.449.6813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 10/08/2014] [Indexed: 11/12/2022] Open
Abstract
Presently more than 1900 species of sea stars are recognized, of which 77 are recorded for the coast of Brazil. Although the first starfish record in Brazil was published 363 years ago, our knowledge of this fauna remains unsatisfactory from a systematic and ecological point of view, particularly in the north and northeastern regions of the country. This study provides the first annotated list of sea stars from northeastern Brazil. Material described herein is housed at the collections of the Federal University of Paraíba, Federal University of Sergipe, and the Federal University of Bahia, Museum of Zoology of the University of São Paulo and Museu Nacional do Rio de Janeiro. Twenty-one species were identified, belonging to 12 genera, 10 families, and 5 orders. Descriptions of species are provided. Three new occurrences were recorded for northeast Brazil: Astropectenalligator, Luidialudwigiscotti, and Mithrodiaclavigera. Highest diversities of Asteroidea were encountered for the states of Bahia (n = 14 spp), Paraíba (n = 12 spp) and Pernambuco (n = 9 spp). No species were recorded for the states of Maranhão and Sergipe. Sandy substrates and depths below 10 m were the least sampled areas over the continental shelf. Herein we provide a first panorama on the fauna of Asteroidea occurring in the northeast region of Brazil, hopefully to function as a basic reference for biodiversity studies in this poorly studied area.
Collapse
Affiliation(s)
- Anne Isabelley Gondim
- Universidade Federal da Paraíba, Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Departamento de Sistemática e Ecologia, Laboratório de Invertebrados Marinhos Paulo Young, Bairro Cidade Universitária s/n, CEP. 58059-900, João Pessoa, PB, Brasil
| | - Martin Lindsey Christoffersen
- Universidade Federal da Paraíba, Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Departamento de Sistemática e Ecologia, Laboratório de Invertebrados Marinhos Paulo Young, Bairro Cidade Universitária s/n, CEP. 58059-900, João Pessoa, PB, Brasil
| | - Thelma Lúcia Pereira Dias
- Universidade Estadual da Paraíba, CCBS, Departamento de Biologia, Laboratório de Biologia Marinha, Campus I, Rua Baraúnas, 351, Bairro Universitário, CEP 58429-500, Campina Grande, PB, Brasil
| |
Collapse
|
14
|
Mah CL, Blake DB. Global diversity and phylogeny of the Asteroidea (Echinodermata). PLoS One 2012; 7:e35644. [PMID: 22563389 PMCID: PMC3338738 DOI: 10.1371/journal.pone.0035644] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/19/2012] [Indexed: 11/18/2022] Open
Abstract
Members of the Asteroidea (phylum Echinodermata), popularly known as starfish or sea stars, are ecologically important and diverse members of marine ecosystems in all of the world's oceans. We present a comprehensive overview of diversity and phylogeny as they have figured into the evolution of the Asteroidea from Paleozoic to the living fauna. Living post-Paleozoic asteroids, the Neoasteroidea, are morphologically separate from those in the Paleozoic. Early Paleozoic asteroid faunas were diverse and displayed morphology that foreshadowed later living taxa. Preservation presents significant difficulties, but fossil occurrence and current accounts suggests a diverse Paleozoic fauna, which underwent extinction around the Permian-Triassic interval was followed by re-diversification of at least one surviving lineage. Ongoing phylogenetic classification debates include the status of the Paxillosida and the Concentricycloidea. Fossil and molecular evidence has been and continues to be part of the ongoing evolution of asteroid phylogenetic research. The modern lineages of asteroids include the Valvatacea, the Forcipulatacea, the Spinlosida, and the Velatida. We present an overview of diversity in these taxa, as well as brief notes on broader significance, ecology, and functional morphology of each. Although much asteroid taxonomy is stable, many new taxa remain to be discovered with many new species currently awaiting description. The Goniasteridae is currently one of the most diverse families within the Asteroidea. New data from molecular phylogenetics and the advent of global biodiversity databases, such as the World Asteroidea Database (http://www.marinespecies.org/Asteroidea/) present important new springboards for understanding the global biodiversity and evolution of asteroids.
Collapse
Affiliation(s)
- Christopher L Mah
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, United States of America.
| | | |
Collapse
|
15
|
MAH CHRISTOPHER, FOLTZ DAVID. Molecular phylogeny of the Valvatacea (Asteroidea: Echinodermata). Zool J Linn Soc 2011. [DOI: 10.1111/j.1096-3642.2010.00659.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Perseke M, Bernhard D, Fritzsch G, Brümmer F, Stadler PF, Schlegel M. Mitochondrial genome evolution in Ophiuroidea, Echinoidea, and Holothuroidea: Insights in phylogenetic relationships of Echinodermata. Mol Phylogenet Evol 2010; 56:201-11. [DOI: 10.1016/j.ympev.2010.01.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 01/27/2010] [Accepted: 01/30/2010] [Indexed: 10/19/2022]
|
17
|
Shen X, Tian M, Liu Z, Cheng H, Tan J, Meng X, Ren J. Complete mitochondrial genome of the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea): The first representative from the subclass Aspidochirotacea with the echinoderm ground pattern. Gene 2009; 439:79-86. [DOI: 10.1016/j.gene.2009.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/07/2009] [Accepted: 03/13/2009] [Indexed: 11/30/2022]
|
18
|
Scouras A, Smith MJ. The complete mitochondrial genomes of the sea lily Gymnocrinus richeri and the feather star Phanogenia gracilis: Signature nucleotide bias and unique nad4L gene rearrangement within crinoids. Mol Phylogenet Evol 2006; 39:323-34. [PMID: 16359875 DOI: 10.1016/j.ympev.2005.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 10/26/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
Complete DNA sequences have been determined for the mitochondrial genomes of the crinoids Phanogenia gracilis (15892 bp) and Gymnocrinus richeri (15966 bp). The mitochondrial genetic map of the stalkless feather star P. gracilis is identical to that of the comatulid feather star Florometra serratissima (Scouras, A., Smith, M.J., 2001. Mol. Biol. Evol. 18, 61-73). The mitochondrial gene order of the stalked crinoid G. richeri differs from that of F. serratissima and P. gracilis by the transposition of the nad4L protein gene. The G. richeri nad4L mitochondrial map position is unique among metazoa and is likely a derived feature in this stalked crinoid. Nucleotide compositional analyses of protein genes encoded on the major sense strand confirm earlier conclusions regarding a crinoid-distinctive T over C bias. All three crinoids exhibit high T levels in third codon positions, whereas other echinoderm classes favor A or C in the third codon position. The nucleotide bias is reflected in the relative synonymous codon usage patterns of crinoids versus other echinoderms. We suggest that the nucleotide bias of crinoids, in comparison to other echinoderms, indicates that a physical inversion of the origin of replication has occurred in the crinoid lineage. Evolutionary rate tests support the use of the cytochrome b (cob) gene in molecular phylogenetic analyses of echinoderms. A consensus echinoderm tree was generated based on cytochrome b nucleotide alignments that placed the asteroids as a sister group to a clade containing the ophiuroids and the (echinoids+holothuroids) with the crinoids basal to the rest of the echinoderm classes: [Crinoid,(Asteroid,(Ophiuroid,(Echinoid,Holothuroid)))].
Collapse
Affiliation(s)
- Andrea Scouras
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|