1
|
Quattrini AM, Morrissey D, McCartin LJ. A new soft coral species from the Gulf of Mexico (Octocorallia: Scleralcyonacea: Parasphaerascleridae). Zootaxa 2025; 5601:545-557. [PMID: 40173685 DOI: 10.11646/zootaxa.5601.3.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Indexed: 04/04/2025]
Abstract
A new species of soft coral, Parasphaerasclera mcfaddenae (Octocorallia: Scleralcyonacea: Parasphaerascleridae), is described from mesophotic hardbottom habitats of the Gulf of Mexico, western North Atlantic Ocean. Previously, this family was only known from the tropical Indo-Pacific and South Africa; therefore, we extend the distribution of the family Parasphaerascleridae into the North Atlantic Ocean. This diminutive species differs from other parasphaerasclerids by a capitate growth form, non-retractile polyps, and presence of tuberculated spindles. Notably, this species was also detected in environmental (e)DNA samples from locations where it was not physically collected, highlighting the importance of both eDNA for biodiversity surveys as well as specimen collections for building comprehensive reference databases for eDNA analyses.
Collapse
Affiliation(s)
- Andrea M Quattrini
- Department of Invertebrate Zoology; National Museum of Natural History; Smithsonian Institution; Washington DC; USA..
| | - Declan Morrissey
- Department of Invertebrate Zoology; National Museum of Natural History; Smithsonian Institution; Washington DC; USA..
| | - Luke J McCartin
- Department of Biological Sciences; Lehigh University; Bethlehem PA; USA..
| |
Collapse
|
2
|
Bruning P, Archaumbault P, Garrido I, de Lecea AM, Morley SA, Brante A, Ortiz P, Cárdenas L. Phylogeography of Cold Water Soft Coral Alcyonium spp. (Anthozoa, Octocorallia: Alcyonacea) Between South America and the West Antarctic Peninsula. Ecol Evol 2024; 14:e70522. [PMID: 39629174 PMCID: PMC11612023 DOI: 10.1002/ece3.70522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024] Open
Abstract
The Antarctic marine environment has a unique geologic and climatic history that has contributed to the evolution of high species diversity. Given the current trend of environmental warming, understanding the history of Antarctic species is crucial for predicting the impact of climate change on ecosystem function. Soft corals are a group of striking presence in the benthic marine assemblages in the Southern Ocean, which is recognized as a biodiversity hotspot. DNA sequences (Cox1, mtMutS, and 28S rDNA) were utilized for molecular phylogenetic reconstructions, species delimitations, and divergence estimations to investigate the spatial patterns of genetic diversity in Alcyonium species in the southern South American-Antarctic region. Significant genetic divergence was observed between regions, with a clear genetic break between South America and the West Antarctic Peninsula and the identification of four putative species. Divergence time estimates indicated that Alcyonium's diversification began about 41.1 million years ago (Ma), coinciding with the opening of the Drake Passage and the formation of the Antarctic Circumpolar Current (ACC, ~42 Ma). This indicates that Alcyonium has persisted in situ for an extensive period, enduring a wide range of environmental conditions.
Collapse
Affiliation(s)
- Paulina Bruning
- Takuvik, Quebec Ocean, Department of BiologyUniversité LavalQuébecQuebecCanada
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL)Punta ArenasChile
| | | | - Ignacio Garrido
- Takuvik, Quebec Ocean, Department of BiologyUniversité LavalQuébecQuebecCanada
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL)Punta ArenasChile
- Laboratorio Costero de Recursos Acuáticos de Calfuco (ICML), Facultad de CienciasUniversidad Austral de ChileValdiviaChile
| | - Ander M. de Lecea
- South Atlantic Environmental Research InstituteStanleyFalkland Islands
- Department of Environmental SciencesCollege of Agriculture and Environmental SciencesUniversity of South AfricaPretoriaGautengSouth Africa
| | - Simon A. Morley
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
| | - Antonio Brante
- Departamento de Ecología, Facultad de CienciasUniversidad Católica de la Santísima ConcepciónConcepciónChile
| | - Paula Ortiz
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP)CoyhaiqueChile
| | - Leyla Cárdenas
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL)Punta ArenasChile
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
| |
Collapse
|
3
|
Li J, Xu K, Li Y. The complete mitochondrial genome of the bubble-gum coral Paragorgia papillata (Octocorallia: Coralliidae) from the seamount in the tropical Western Pacific. Mitochondrial DNA B Resour 2024; 9:1243-1247. [PMID: 39301045 PMCID: PMC11411558 DOI: 10.1080/23802359.2024.2405531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
The complete mitochondrial genome of Paragorgia papillata Li et al. 2021, a deep-sea gorgonian inhabiting at 858 m in Caroline Ridge, was obtained in this study. The length of the mitochondrial genome is 19,018 bp with 14 protein coding genes, one transfer RNA (tRNA-Met) and two ribosomal RNA genes contained in this circular molecule. Phylogenetic analysis indicated that P. papillata and P. coralloides Bayer, 1993 were two closely related species, and a total of 26 mutational sites (four nonsynonymous mutations included) can be detected between their mitochondrial genomes. This exhibits a case that mitochondrial genomes can be applied to differentiate closely related species in gorgonians. The phylogenetic tree constructed with mitochondrial genomes showed that the families in Octocorallia are reciprocally monophyletic, provided that the family names were revised according to the systematic revision of Octocorallia guided by phylogenomics. However, the relationships of the families within each order were different between the previous phylogenomic work and ours. Integrating mitochondrial genomes from a wider array of Octocorallia families is essential for a more accurate comparison of phylogenies derived from nuclear and mitochondrial sequences in future study.
Collapse
Affiliation(s)
- Junyuan Li
- College of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou, China
- Laboratory of Marine Organism Taxonomy and Phylogeny, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yang Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
4
|
Morrissey D, Gordon JD, Saso E, Bilewitch JP, Taylor ML, Hayes V, McFadden CS, Quattrini AM, Allcock AL. Bamboozled! Resolving deep evolutionary nodes within the phylogeny of bamboo corals (Octocorallia: Scleralcyonacea: Keratoisididae). Mol Phylogenet Evol 2023; 188:107910. [PMID: 37640170 DOI: 10.1016/j.ympev.2023.107910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Keratoisididae is a globally distributed, and exclusively deep-sea, family of octocorals that contains species and genera that are polyphyletic. An alphanumeric system, based on a three-gene-region phylogeny, is widely used to describe the biodiversity within this family. That phylogeny identified 12 major groups although it did not have enough signal to explore the relationships among groups. Using increased phylogenomic resolution generated from Ultraconserved Elements and exons (i.e. conserved elements), we aim to resolve deeper nodes within the family and investigate the relationships among those predefined groups. In total, 109 libraries of conserved elements were generated from individuals representing both the genetic and morphological diversity of our keratoisidids. In addition, the conserved element data of 12 individuals from previous studies were included. Our taxon sampling included 11 of the 12 keratoisidid groups. We present two phylogenies, constructed from a 75% (231 loci) and 50% (1729 loci) taxon occupancy matrix respectively, using both Maximum Likelihood and Multiple Species Coalescence methods. These trees were congruent at deep nodes. As expected, S1 keratoisidids were recovered as a well-supported sister clade to the rest of the bamboo corals. S1 corals do not share the same mitochondrial gene arrangement found in other members of Keratoisididae. All other bamboo corals were recovered within two major clades. Clade I comprises individuals assigned to alphanumeric groups B1, C1, D1&D2, F1, H1, I4, and J3 while Clade II contains representatives from A1, I1, and M1. By combining genomics with already published morphological data, we provide evidence that group H1 is not monophyletic, and that the division between other groups - D1 and D2, and A1 and M1 - needs to be reconsidered. Overall, there is a lack of robust morphological markers within Keratoisididae, but subtle characters such as sclerite microstructure and ornamentation seem to be shared within groups and warrant further investigation as taxonomically diagnostic characters.
Collapse
Affiliation(s)
- Declan Morrissey
- Ryan Institute & School of Natural Sciences, University of Galway, University Road, Galway, Ireland.
| | - Jessica D Gordon
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Emma Saso
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Jaret P Bilewitch
- National Institute of Water & Atmospheric Research Ltd (NIWA), 301 Evans Bay Parade, Wellington 6021, New Zealand
| | - Michelle L Taylor
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Vonda Hayes
- Department of Fisheries and Oceans, St. John's, Newfoundland and Labrador, Canada
| | - Catherine S McFadden
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711, USA
| | - Andrea M Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - A Louise Allcock
- Ryan Institute & School of Natural Sciences, University of Galway, University Road, Galway, Ireland
| |
Collapse
|
5
|
Quattrini AM, Snyder KE, Purow-Ruderman R, Seiblitz IGL, Hoang J, Floerke N, Ramos NI, Wirshing HH, Rodriguez E, McFadden CS. Mito-nuclear discordance within Anthozoa, with notes on unique properties of their mitochondrial genomes. Sci Rep 2023; 13:7443. [PMID: 37156831 PMCID: PMC10167242 DOI: 10.1038/s41598-023-34059-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Whole mitochondrial genomes are often used in phylogenetic reconstruction. However, discordant patterns in species relationships between mitochondrial and nuclear phylogenies are commonly observed. Within Anthozoa (Phylum Cnidaria), mitochondrial (mt)-nuclear discordance has not yet been examined using a large and comparable dataset. Here, we used data obtained from target-capture enrichment sequencing to assemble and annotate mt genomes and reconstruct phylogenies for comparisons to phylogenies inferred from hundreds of nuclear loci obtained from the same samples. The datasets comprised 108 hexacorals and 94 octocorals representing all orders and > 50% of extant families. Results indicated rampant discordance between datasets at every taxonomic level. This discordance is not attributable to substitution saturation, but rather likely caused by introgressive hybridization and unique properties of mt genomes, including slow rates of evolution driven by strong purifying selection and substitution rate variation. Strong purifying selection across the mt genomes caution their use in analyses that rely on assumptions of neutrality. Furthermore, unique properties of the mt genomes were noted, including genome rearrangements and the presence of nad5 introns. Specifically, we note the presence of the homing endonuclease in ceriantharians. This large dataset of mitochondrial genomes further demonstrates the utility of off-target reads generated from target-capture data for mt genome assembly and adds to the growing knowledge of anthozoan evolution.
Collapse
Affiliation(s)
- Andrea M Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA.
| | - Karen E Snyder
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | | | - Isabela G L Seiblitz
- Centre for Marine Biology, University of São Paulo, São Sebastião, 11612-109, Brazil
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Johnson Hoang
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Natasha Floerke
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Nina I Ramos
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA
| | - Herman H Wirshing
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA
| | - Estefanía Rodriguez
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | | |
Collapse
|
6
|
Hogan RI, Hopkins K, Wheeler AJ, Yesson C, Allcock AL. Evolution of mitochondrial and nuclear genomes in Pennatulacea. Mol Phylogenet Evol 2023; 178:107630. [PMID: 36182053 DOI: 10.1016/j.ympev.2022.107630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
We examine the phylogeny of sea pens using sequences of whole mitochondrial genomes and the nuclear ribosomal cluster generated through low coverage Illumina sequencing. Taxon sampling includes 30 species in 19 genera representing 13 families. Ancestral state reconstruction shows that most sea pen mitochondrial genomes have the ancestral gene order, and that Pennatulacea with diverse gene orders are found in a single clade. The monophyly of Pennatulidae and Protoptilidae are rejected by both the mitochondrial and nuclear dataset, while the mitochondrial dataset further rejects monophyly of Virgulariidae, and the nuclear dataset rejects monophyly of Kophobelemnidae. We show discordance between nuclear ribosomal gene cluster phylogenies and whole mitochondrial genome phylogenies and highlight key Pennatulacea taxa that could be included in cnidarian genome-wide studies to better resolve the sea pen tree of life. We further illustrate how well frequently sequenced markers capture the overall diversity of the mitochondrial genome and the nuclear ribosomal genes in sea pens.
Collapse
Affiliation(s)
- Raissa I Hogan
- School of Natural Sciencecs & Ryan Institute, University of Galway, University Road, Galway, Ireland
| | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London, Regent's Park, London, UK
| | - Andrew J Wheeler
- School of Biological, Earth & Environmental Science, Irish Centre for Research in Applied Geosciences, University College Cork, Ireland
| | - Chris Yesson
- Institute of Zoology, Zoological Society of London, Regent's Park, London, UK
| | - A Louise Allcock
- School of Natural Sciencecs & Ryan Institute, University of Galway, University Road, Galway, Ireland.
| |
Collapse
|
7
|
Cordeiro RT, Carpinelli ÁN, Francini-Filho RB, Neves BDM, Pérez CD, de Oliveira U, Sumida P, Maranhão H, Monteiro LH, Carneiro P, Kitahara MV. Neospongodes atlantica, a potential case of an early biological introduction in the Southwestern Atlantic. PeerJ 2022; 10:e14347. [PMID: 36540794 PMCID: PMC9760029 DOI: 10.7717/peerj.14347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/16/2022] [Indexed: 12/23/2022] Open
Abstract
Soft corals (Anthozoa: Octocorallia) are discreet components in the Southwestern Atlantic reef communities. In Brazil, the native octocoral shallow-reef fauna is mostly represented by gorgonians. Consequently, except for the nephtheid Neospongodes atlantica, most of the known soft corals from this region are considered non-indigenous. Hitherto, the monotypic genus Neospongodes, which was proposed in the early 1900s, has been considered to be endemic to the Northeastern Brazilian coast. Herein, based on in situ records, we show that N. atlantica is a substrate generalist that has been probably expanding its distribution by dominating extensive shallow and mesophotic sandy and reef bottoms, generally outcompeting other reef benthic organisms, including Brazilian endemic species. Based on previously unidentified museum specimens, new records, and a broad literature review, we provide the most comprehensive modelling of the potential distribution of this species in the Southwestern Atlantic. Based on molecular inference supported by in-depth morphological analysis, the probable non-indigenous and, therefore, ancient introduction of N. atlantica in Brazilian waters is discussed. Finally, these results support that Neospongodes and the Indo-Pacific Stereonephthya are synonyms, which led us to propose the latter as taxonomically invalid.
Collapse
Affiliation(s)
- Ralf T.S. Cordeiro
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil,Department of Zoology (Invertebrate Zoology), National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Ágatha Nascimento Carpinelli
- Programa de Pós-graduação em Biodiversidade e Ecologia Marinha e Costeira, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | | | | | - Carlos D. Pérez
- Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil
| | - Umberto de Oliveira
- Programa de Pós-Graduação em Ecologia, Teoria, Aplicações e Valores, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Paulo Sumida
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil
| | - Henrique Maranhão
- Programa de Pós-Graduação em Oceanografia, Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Leonardo H.U. Monteiro
- IVIG, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,Grupo Sandmine & Inframar, Fortaleza, Ceará, Brazil
| | - Pedro Carneiro
- Universidade Federal do Delta do Paranaíba, Parnaíba, Piauí, Brazil
| | - Marcelo V. Kitahara
- Department of Zoology (Invertebrate Zoology), National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America,Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| |
Collapse
|
8
|
New Records of the Cryptogenic Soft Coral Genus Stragulum (Tubiporidae) from the Eastern Caribbean and the Persian Gulf. DIVERSITY 2022. [DOI: 10.3390/d14110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The monotypic soft coral genus Stragulum van Ofwegen and Haddad, 2011 (Octocorallia: Malacalcyonacea: Tubiporidae) was originally described from Brazil, southwest Atlantic Ocean. Here, we report the first records of the genus from the eastern Caribbean and the Persian Gulf in the northwest Indian Ocean. We compare the morphological features of specimens, together with molecular data from three commonly used barcoding markers (COI, mtMutS, 28S rDNA) and 308 ultraconserved elements (UCE) and exon loci sequenced using a target-enrichment approach. The molecular and morphological data together suggest that specimens from all three localities are the same species, i.e., Stragulum bicolor van Ofwegen and Haddad, 2011. It is still not possible to establish the native range of the species or determine whether it may be an introduced species due to the limited number of specimens included in this study. However, the lack of historical records, its fouling abilities on artificial substrates, and a growing number of observations support the invasive nature of the species in Brazilian and Caribbean waters and therefore suggest that it may have been introduced into the Atlantic from elsewhere. Interestingly, the species has not shown any invasive behaviour in the Persian Gulf, where it has been found only on natural, rocky substrates. The aim of the present report is to create awareness of this taxon with the hope that this will lead to new records from other localities and help to establish its native range.
Collapse
|
9
|
Kushida Y, Imahara Y, Wee HB, Fernandez-Silva I, Fromont J, Gomez O, Wilson N, Kimura T, Tsuchida S, Fujiwara Y, Higashiji T, Nakano H, Kohtsuka H, Iguchi A, Reimer JD. Exploring the trends of adaptation and evolution of sclerites with regards to habitat depth in sea pens. PeerJ 2022; 10:e13929. [PMID: 36164604 PMCID: PMC9508890 DOI: 10.7717/peerj.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/31/2022] [Indexed: 01/19/2023] Open
Abstract
Octocorals possess sclerites, small elements comprised of calcium carbonate (CaCO3) that are important diagnostic characters in octocoral taxonomy. Among octocorals, sea pens comprise a unique order (Pennatulacea) that live in a wide range of depths. Habitat depth is considered to be important in the diversification of octocoral species, but a lack of information on sea pens has limited studies on their adaptation and evolution across depth. Here, we aimed to reveal trends of adaptation and evolution of sclerite shapes in sea pens with regards to habitat depth via phylogenetic analyses and ancestral reconstruction analyses. Colony form of sea pens is suggested to have undergone convergent evolution and the loss of axis has occurred independently across the evolution of sea pens. Divergences of sea pen taxa and of sclerite forms are suggested to depend on habitat depths. In addition, their sclerite forms may be related to evolutionary history of the sclerite and the surrounding chemical environment as well as water temperature. Three-flanged sclerites may possess the tolerance towards the environment of the deep sea, while plate sclerites are suggested to be adapted towards shallower waters, and have evolved independently multiple times. The common ancestor form of sea pens was predicted to be deep-sea and similar to family Pseudumbellulidae in form, possessing sclerites intermediate in form to those of alcyonaceans and modern sea pens such as spindles, rods with spines, and three-flanged sclerites with serrated edges sclerites, as well as having an axis and bilateral traits.
Collapse
Affiliation(s)
- Yuka Kushida
- Faculty of Geo-Environmental Science, Rissho University, Kumagaya, Saitama, Japan,Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan,International Center for Island Studies Amami Station, Kagoshima University, Amami, Kagoshima, Japan,Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Yukimitsu Imahara
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan,Kuroshio Biological Research Foundation, Otsuchi, Kochi, Japan,Octocoral Research Laboratory, Wakayama, Wakayama, Japan
| | - Hin Boo Wee
- Institut Perubahan Iklim, Universiti Kebangsaan Malaysia, Selangor Darul Ehsan, Malaysia
| | - Iria Fernandez-Silva
- Department of Biochemistry, Genetics and Immunology, Campus Universitario, University of Vigo, Vigo, Spain
| | - Jane Fromont
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, Australia
| | - Oliver Gomez
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, Australia
| | - Nerida Wilson
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, Australia,School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Taeko Kimura
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Shinji Tsuchida
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yoshihiro Fujiwara
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Takuo Higashiji
- Okinawa Churaumi Aquarium, Okinawa Churashima Foundation, Motobu, Okinawa, Japan
| | - Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Hisanori Kohtsuka
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan,Research Laboratory on Environmentally-Conscious Developments and Technologies [E-Code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan,Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
10
|
Revealing the Coral Species Diversity in Xiamen Bay: Spatial Distribution of Genus Astrogorgia (Cnidaria, Alcyonacea, Plexauridae) and Newly Recorded Species. WATER 2022. [DOI: 10.3390/w14152417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coral reefs provide a habitat for many marine organisms and support the safety, coastal protection, well-being, and food and economic security of hundreds of millions of people. The focus on coral species diversity cannot be overemphasized. One of them, Astrogorgia, contains many marine natural active substances, and has important scientific research value and application prospects. Most of the current research on the active substances of the genus Astrogorgia is based on unidentified species, and in-depth taxonomic studies are urgently needed. A total of 1185 samples were collected from 2014 to 2021 in the waters of Xiamen Bay. Herein, the morphological identification, electronic microscopy, and gene fragment sequencing methods were used for the taxonomic study. There are three species of Astrogorgia identified, including Astrogorgia lafoa, A. arborea, and A. dumbea. Among them, A. lafoa and A. arborea are newly recorded species in the waters of China. A. lafoa is distributed in Qingyu Island, A. arborea is distributed in Wuyu Island, and A. dumbea is widely distributed in Baiha Reef, Qingyu Island, Wuyu Island, and Xiaobai Island. In this paper, the geographical distribution and the habits of 18 species of Astrogorgia are summarized, and the evolution of family and genus classification of Astrogorgia is discussed. The results enrich the geographical distribution information and coral species diversity records of Astrogorgia in China.
Collapse
|
11
|
Kelutur FJ, Saptarini NM, Mustarichie R, Kurnia D. Molecular Docking of the Terpenes in Gorgonian Corals to COX-2 and
iNOS Enzymes as Anti-Inflammatory. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666211227162950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Because the inflammatory pathway is triggered by the enzymes cyclooxygenase-
2 (COX-2) and inducible nitric oxide synthase (iNOS), inhibitors, such as nonsteroidal anti-inflammatory
drugs (NSAIDs), are needed, although these have side effects. Therefore, the discovery and development
of natural medicine as a lead compound are needed. The gorgonian corals have been reported to contain
cyclic diterpenes with anti-inflammatory activities. The specific anti-inflammatory inhibitor potential has
not been reported regarding these secondary metabolites, whether in COX-2 or iNOS. Thus, the in silico
method is the right alternative.
Objective:
This study aimed to determine the potency of fifteen terpenes of the various gorgonian corals
to COX-2 and iNOS enzymes as an anti-inflammatory.
Methods:
Molecular docking was performed using ChemDraw Ultra 12.0, Chem3D Pro 12.0, Biovia
Discovery Studio 2016 Client®, Autodock Tools 4.2, prediction pharmacokinetics (Pre-ADMET), and
oral administration (Lipinski rule of five).
Results:
Potential terpenes based on ΔG (kcal/mol) and Ki (nM) to COX-2 were gyrosanol B (-10,32;
27,15), gyrosanol A (-10,20; 33,57), echinolabdane A (-9,81; 64,76). Only nine terpenes were specific to
COX-2 active sites, while for iNOS were palmonine F (-7.76; 2070), briarenol C (-7.55; 2910), and all
test compounds binding to the iNOS active sites. Pre-ADMET prediction obtained that HIA was very
excellent (70–100%), Caco-2 had moderate permeability (4–70 nm sec-1), and PPB had strong binding (>
90%). Eight terpenes qualified for the Lipinski rule of five.
Conclusion:
iNOS was a specific target for terpenes based on the free energy of binding (ΔG).
Collapse
Affiliation(s)
- Faruk Jayanto Kelutur
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran,
West Java, Indonesia
| | - Nyi Mekar Saptarini
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran,
West Java, Indonesia
| | - Resmi Mustarichie
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran,
West Java, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran,
West Java, Indonesia
| |
Collapse
|
12
|
CARPINELLI ÁGATHANASCIMENTO, CORDEIRO RALFTARCISOSILVA, CASTRO CLOVISBARREIRA, KITAHARA MARCELOVISENTINI. Thesea pyrrha sp. nov., a new shallow-water octocoral (Cnidaria, Anthozoa) from southwestern Atlantic, and implications on the systematics of the genus. Zootaxa 2022; 5116:89-106. [DOI: 10.11646/zootaxa.5116.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/04/2022]
Abstract
The family Plexauridae Gray, 1859 is characterized by grouping octocorals that have thick branches and coenenchyme. However, due to their relatively simple body plan, the establishment of homologous and, therefore, systematically informative morphological characters is a challenge for the systematics of Octocorallia. During the last decade, molecular studies suggested that Plexauridae is polyphyletic, with representatives grouping with Acanthogorgiidae Gray, 1859 and also Gorgoniidae Lamouroux, 1812. Represented by 22 extant species, mostly of which occur in the Atlantic Ocean, the plexaurid genus Thesea Duchassaing & Michelotti, 1860 has also been purported to be polyphyletic, with a Pacific lineage related to the former “Paramuriceidae” and an Atlantic lineage more closely related to Gorgoniidae. Thus, aiming to further improve our understanding of the evolutionary position of the Southwestern Atlantic Thesea, sequencing of the extended Octocorallia barcode reinforces the need for a re-evaluation of the position of the genus within plexaurids. Molecular and macro and micromorphological analyzes indicate the occurrence of an undescribed species distributed from Rio de Janeiro to Santa Catarina, here named Thesea pyrrha sp. nov. Results presented herein also suggest that T. pyrrha is close related to Adelogorgia and Psammogorgia, both genera exclusive to the Pacific Ocean.
Collapse
|
13
|
López-González PJ, Drewery J. When distant relatives look too alike: a new family, two new genera and a new species of deep-sea. INVERTEBR SYST 2022. [DOI: 10.1071/is21040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Among octocorals, colonies of the deep-sea pennatulacean genus Umbellula Gray, 1870 are some of the most instantly recognisable forms. Historically however, species identification in this genus has been usually based on few morphological characters with very little knowledge of associated intraspecific variability. This fact, combined with the very limited access to these deep-sea organisms, has resulted in numerous uncertainties about the true characters that should be used in species determination and recognition of synonyms and questionable species. Recent phylogenetic analyses based on mitochondrial and nuclear DNA markers has shown to be an excellent complementary source of information to morphological examination, being able to detect incongruent taxonomic assignments in classifications based only on morphological characters. Molecular analyses can reveal the presence of paraphyletic or polyphyletic groupings of taxa that may then be the subject of further research integrating morphological and molecular techniques. This paper addresses the existence of a set of specimens initially assigned to the genus Umbellula Gray, 1870 but that have been shown to be distantly related to the type species Umbellula encrinus (Linnaeus, 1758) based on molecular phylogenetic hypotheses. Phylogenetic analyses based on four genetic markers, three mitochondrial (mtMutS, ND2, Cox1) and one nuclear (28S), validate the definition of a new family (Pseudumbellulidae fam. nov.) and two new genera (Pseudumbellula gen. nov. and Solumbellula gen. nov). These analyses also justify the segregation of some of the morphological characters previously included in the diagnosis of the genus Umbellula and the monotypic family Umbellulidae Kölliker, 1880. Moreover, a new species, Pseudumbellula scotiae sp. nov. is described and illustrated with material from the North Eastern Atlantic and compared with congeners. Additionally, the well-known but atypical species Umbellula monocephalus Pasternak, 1964 is transferred and described here as Solumbellula monocephalus (Pasternak, 1964), comb. nov., based on both molecular data and morphology.
Collapse
|
14
|
Koido T, Imahara Y, Fukami H. Xeniakonohana sp. nov. (Cnidaria, Octocorallia, Alcyonacea), a new soft coral species in the family Xeniidae from Miyazaki, Japan. Zookeys 2022; 1085:29-49. [PMID: 35210904 PMCID: PMC8831390 DOI: 10.3897/zookeys.1085.77924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/18/2022] [Indexed: 11/12/2022] Open
Abstract
A new soft coral species, Xeniakonohana sp. nov. (Alcyonacea, Xeniidae), is described from Miyazaki in the warm-temperate region of Japan. This new species has conspicuous and unique spindle sclerites in addition to the simple ellipsoid platelet-shaped sclerites typically found in the genus Xenia. These unique spindles are a specific key morphological characteristic for this new species and for differentiating this species among congeneric species.
Collapse
Affiliation(s)
- Tatsuki Koido
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1–1 Gakuen-kibanadai-nishi, Miyazaki, Miyazaki 889–2192, JapanUniversity of MiyazakiMiyazakiJapan
- Kuroshio Biological Research Foundation, 560 Nishidomari, Otsuki, Kochi 788–0333, JapanKuroshio Biological Research FoundationOtsukiJapan
| | - Yukimitsu Imahara
- Kuroshio Biological Research Foundation, 560 Nishidomari, Otsuki, Kochi 788–0333, JapanKuroshio Biological Research FoundationOtsukiJapan
- Octocoral Research Laboratory, 300–11 Kire, Wakayama, 640–0351, JapanOctocoral Research LaboratoryKireJapan
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, 1-1-3 Higashi, Tsukuba, Ibaraki 305–8567, JapanGeological Survey of Japan, National Institute of Advanced Industrial Science and TechnologyTsukubaJapan
| | - Hironobu Fukami
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1–1 Gakuen-kibanadai-nishi, Miyazaki, Miyazaki 889–2192, JapanMiyazaki UniversityMiyazakiJapan
| |
Collapse
|
15
|
Lendvay B, Cartier LE, Costantini F, Iwasaki N, Everett MV, Krzemnicki MS, Kratzer A, Morf NV. Coral-ID: A forensically validated genetic test to identify precious coral material and its application to objects seized from illegal traffic. Forensic Sci Int Genet 2022; 58:102663. [DOI: 10.1016/j.fsigen.2022.102663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/01/2022]
|
16
|
Mesophotic Gorgonian Corals Evolved Multiple Times and Faster Than Deep and Shallow Lineages. DIVERSITY 2021. [DOI: 10.3390/d13120650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mesophotic Coral Ecosystems (MCEs) develop on a unique environment, where abrupt environmental changes take place. Using a time-calibrated molecular phylogeny (mtDNA: mtMutS), we examined the lineage membership of mesophotic gorgonian corals (Octocorallia: Cnidaria) in comparison to shallow and deep-sea lineages of the wider Caribbean-Gulf of Mexico and the Tropical Eastern Pacific. Our results show mesophotic gorgonians originating multiple times from old deep-sea octocoral lineages, whereas shallow-water species comprise younger lineages. The mesophotic gorgonian fauna in the studied areas is related to their zooxanthellate shallow-water counterparts in only two clades (Gorgoniidae and Plexauridae), where the bathymetrical gradient could serve as a driver of diversification. Interestingly, mesophotic clades have diversified faster than either shallow or deep clades. One of this groups with fast diversification is the family Ellisellidae, a major component of the mesophotic gorgonian coral assemblage worldwide.
Collapse
|
17
|
Early development and coloniality in Oligophylloides from the Devonian of Morocco-Are Heterocorallia Palaeozoic octocorals? PLoS One 2021; 16:e0257523. [PMID: 34587221 PMCID: PMC8480748 DOI: 10.1371/journal.pone.0257523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022] Open
Abstract
Heterocorals represent an enigmatic group of Palaeozoic corals, known from relatively short time intervals in the Devonian and Carboniferous periods. The major differences between Heterocorallia and other Palaeozoic corals are the lack of an external theca (epitheca), lack of calices and the presence of dichotomously dividing septa-like structures. Heterocoral skeleton was presumably externally covered by the soft tissue and each branch of their skeleton has, until now, been regarded as a corallite-a skeleton of a single polyp. We investigated upper Famennian Oligophylloides from Morocco, focussing on branching processes, wall structure, previously poorly known initial growth stages and the growing tip, described here for the first time. We demonstrate that Oligophylloides shows a unique colony development not known in any group of anthozoans possessing a septate-like architecture and suggest that the previously postulated homology between true septa in hexa- and rugose corals on one hand, and Oligophylloides on the other, must be rejected. Based on the skeleton structure and branching patterns, we postulate, contrary to former ideas, that the stem and branches of heterocorals represent the skeleton of a multi-polyp colonial coral, similar to many extant octocorals. We found numerous potential homologies with octocoral skeletons (notably the Keratoisidinae within the Isididae) and, as a result, we propose the inclusion of the order Heterocorallia within the subclass Octocorallia. This suggestion requires, however, further research on the other taxa of heterocorals. We also propose some changes to the morphological terminology for the Heterocorallia.
Collapse
|
18
|
Strohecker J, Golladay J, Paramo M, Paramo M, El Rahmany W, Blackstone NW. Reactive Oxygen Species and the Stress Response in Octocorals. Physiol Biochem Zool 2021; 94:394-410. [PMID: 34542375 DOI: 10.1086/716857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractReactive oxygen species (ROS) may damage cellular components but may also contribute to signaling that mitigates damage. In this context, the role of ROS in the stress response that leads to coral bleaching was investigated in three series of experiments with octocorals Sarcothelia sp. and Sympodium sp. Using video and fluorescent microscopy, the first experiments examined ROS and symbiont migration. Colonies mildly stressed with increased temperature and light showed increases in both ROS and numbers of migrating symbionts compared with stress-free controls. Symbionts migrating in the gastrovascular lumen may escape programmed cell death and provide a reservoir of healthy symbionts once conditions return to normal. In the second series of experiments, colonies were mildly stressed with elevated temperature and light. During stress, treated colonies were incubated in seawater enriched with two concentrations of bicarbonate (1 and 3 mmol/L), while controls were incubated in normal seawater. Bicarbonate enrichment provides additional carbon for photosynthesis and at some concentrations diminished the ROS emissions of stressed colonies of Sympodium sp. and Sarcothelia sp. In all experiments, the latter species tended to exhibit more ROS. Sympodium sp. contains Cladocopium sp. symbionts, which are less tolerant of stress, while Sarcothelia sp. contains the more resistant Durusdinium sp. Indeed, in direct comparisons, Sarcothelia sp. experienced higher levels of ROS under stress-free conditions and thus is conditioned to endure the stress associated with bleaching. Generally, ROS levels provide important insight into the cnidarian stress response and should be measured more often in studies of this response.
Collapse
|
19
|
Mitochondrial Genomic Landscape: A Portrait of the Mitochondrial Genome 40 Years after the First Complete Sequence. Life (Basel) 2021; 11:life11070663. [PMID: 34357035 PMCID: PMC8303319 DOI: 10.3390/life11070663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022] Open
Abstract
Notwithstanding the initial claims of general conservation, mitochondrial genomes are a largely heterogeneous set of organellar chromosomes which displays a bewildering diversity in terms of structure, architecture, gene content, and functionality. The mitochondrial genome is typically described as a single chromosome, yet many examples of multipartite genomes have been found (for example, among sponges and diplonemeans); the mitochondrial genome is typically depicted as circular, yet many linear genomes are known (for example, among jellyfish, alveolates, and apicomplexans); the chromosome is normally said to be “small”, yet there is a huge variation between the smallest and the largest known genomes (found, for example, in ctenophores and vascular plants, respectively); even the gene content is highly unconserved, ranging from the 13 oxidative phosphorylation-related enzymatic subunits encoded by animal mitochondria to the wider set of mitochondrial genes found in jakobids. In the present paper, we compile and describe a large database of 27,873 mitochondrial genomes currently available in GenBank, encompassing the whole eukaryotic domain. We discuss the major features of mitochondrial molecular diversity, with special reference to nucleotide composition and compositional biases; moreover, the database is made publicly available for future analyses on the MoZoo Lab GitHub page.
Collapse
|
20
|
Conci N, Lehmann M, Vargas S, Wörheide G. Comparative Proteomics of Octocoral and Scleractinian Skeletomes and the Evolution of Coral Calcification. Genome Biol Evol 2021; 12:1623-1635. [PMID: 32761183 PMCID: PMC7533068 DOI: 10.1093/gbe/evaa162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2020] [Indexed: 12/23/2022] Open
Abstract
Corals are the ecosystem engineers of coral reefs, one of the most biodiverse marine ecosystems. The ability of corals to form reefs depends on the precipitation of calcium carbonate (CaCO3) under biological control. However, several mechanisms underlying coral biomineralization remain elusive, for example, whether corals employ different molecular machineries to deposit different CaCO3 polymorphs (i.e., aragonite or calcite). Here, we used tandem mass spectrometry (MS/MS) to compare the proteins occluded in the skeleton of three octocoral and one scleractinian species: Tubipora musica and Sinularia cf. cruciata (calcite sclerites), the blue coral Heliopora coerulea (aragonitic skeleton), and the scleractinian aragonitic Montipora digitata. Reciprocal Blast analysis revealed extremely low overlap between aragonitic and calcitic species, while a core set of proteins is shared between octocorals producing calcite sclerites. However, the carbonic anhydrase CruCA4 is present in the skeletons of both polymorphs. Phylogenetic analysis highlighted several possible instances of protein co-option in octocorals. These include acidic proteins and scleritin, which appear to have been secondarily recruited for calcification and likely derive from proteins playing different functions. Similarities between octocorals and scleractinians included presence of a galaxin-related protein, carbonic anhydrases, and one hephaestin-like protein. Although the first two appear to have been independently recruited, the third appear to share a common origin. This work represents the first attempt to identify and compare proteins associated with coral skeleton polymorph diversity, providing several new research targets and enabling both future functional and evolutionary studies aimed at elucidating the origin and evolution of coral biomineralization.
Collapse
Affiliation(s)
- Nicola Conci
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Martin Lehmann
- Department of Biology I-Botany, Biozentrum der LMU München, Planegg-Martinsried, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany.,SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany.,GeoBio-Center LMU, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
21
|
Liu Y, Palaniveloo K, Alias SA, Sathiya Seelan JS. Species Diversity and Secondary Metabolites of Sarcophyton-Associated Marine Fungi. Molecules 2021; 26:3227. [PMID: 34072177 PMCID: PMC8197832 DOI: 10.3390/molecules26113227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022] Open
Abstract
Soft corals are widely distributed across the globe, especially in the Indo-Pacific region, with Sarcophyton being one of the most abundant genera. To date, there have been 50 species of identified Sarcophyton. These soft corals host a diverse range of marine fungi, which produce chemically diverse, bioactive secondary metabolites as part of their symbiotic nature with the soft coral hosts. The most prolific groups of compounds are terpenoids and indole alkaloids. Annually, there are more bio-active compounds being isolated and characterised. Thus, the importance of the metabolite compilation is very much important for future reference. This paper compiles the diversity of Sarcophyton species and metabolites produced by their associated marine fungi, as well as the bioactivity of these identified compounds. A total of 88 metabolites of structural diversity are highlighted, indicating the huge potential these symbiotic relationships hold for future research.
Collapse
Affiliation(s)
- Yuanwei Liu
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, University of Malaya, Kuala Lumpur 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia; (Y.L.); (S.A.A.)
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, University of Malaya, Kuala Lumpur 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia; (Y.L.); (S.A.A.)
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, University of Malaya, Kuala Lumpur 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia; (Y.L.); (S.A.A.)
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
22
|
Genetic Divergence and Polyphyly in the Octocoral Genus Swiftia [Cnidaria: Octocorallia], Including a Species Impacted by the DWH Oil Spill. DIVERSITY 2021. [DOI: 10.3390/d13040172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mesophotic coral ecosystems (MCEs) are recognized around the world as diverse and ecologically important habitats. In the northern Gulf of Mexico (GoMx), MCEs are rocky reefs with abundant black corals and octocorals, including the species Swiftia exserta. Surveys following the Deepwater Horizon (DWH) oil spill in 2010 revealed significant injury to these and other species, the restoration of which requires an in-depth understanding of the biology, ecology, and genetic diversity of each species. To support a larger population connectivity study of impacted octocorals in the GoMx, this study combined sequences of mtMutS and nuclear 28S rDNA to confirm the identity of Swiftia sea fans in the GoMx, compare these markers for different polyp colors in the GoMx and Atlantic, and examine the phylogeny of the genus. Two mtMutS haplotypes were identified, one seemingly endemic to the northern GoMx. Compared to other North Atlantic Swiftia, S. exserta, the type of the genus was found to be extremely divergent and distinct from the two other Swiftia at both loci, with strong evidence of polyphyly in the genus. This information refines our understanding of the geographical distribution of injured coral and highlights how little is known about MCEs. Substantial taxonomic revisions may be needed for several taxa injured by the DWH oil spill.
Collapse
|
23
|
Korzhavina OA, Reimer JD, Ehrlich H, Ivanenko VN. Global diversity and distribution of Lamippidae copepods symbiotic on Octocorallia. Symbiosis 2021. [DOI: 10.1007/s13199-021-00750-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Conci N, Vargas S, Wörheide G. The Biology and Evolution of Calcite and Aragonite Mineralization in Octocorallia. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.623774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Octocorallia (class Anthozoa, phylum Cnidaria) is a group of calcifying corals displaying a wide diversity of mineral skeletons. This includes skeletal structures composed of different calcium carbonate polymorphs (aragonite and calcite). This represents a unique feature among anthozoans, as scleractinian corals (subclass Hexacorallia), main reef builders and focus of biomineralization research, are all characterized by an aragonite exoskeleton. From an evolutionary perspective, the presence of aragonitic skeletons in Octocorallia is puzzling as it is observed in very few species and has apparently originated during a Calcite sea (i.e., time interval characterized by calcite-inducing seawater conditions). Despite this, octocorals have been systematically overlooked in biomineralization studies. Here we review what is known about octocoral biomineralization, focusing on the evolutionary and biological processes that underlie calcite and aragonite formation. Although differences in research focus between octocorals and scleractinians are often mentioned, we highlight how strong variability also exists between different octocoral groups. Different main aspects of octocoral biomineralization have been in fact studied in a small set of species, including the (calcitic) gorgonian Leptogorgia virgulata and/or the precious coral Corallium rubrum. These include descriptions of calcifying cells (scleroblasts), calcium transport and chemistry of the calcification fluids. With the exception of few histological observations, no information on these features is available for aragonitic octocorals. Availability of sequencing data is also heterogeneous between groups, with no transcriptome or genome available, for instance, for the clade Calcaxonia. Although calcite represents by far the most common polymorph deposited by octocorals, we argue that studying aragonite-forming could provide insight on octocoral, and more generally anthozoan, biomineralization. First and foremost it would allow to compare calcification processes between octocoral groups, highlighting homologies and differences. Secondly, similarities (exoskeleton) between Heliopora and scleractinian skeletons, would provide further insight on which biomineralization features are driven by skeleton characteristics (shared by scleractinians and aragonitic octocorals) and those driven by taxonomy (shared by octocorals regardless of skeleton polymorph). Including the diversity of anthozoan mineralization strategies into biomineralization studies remains thus essential to comprehensively study how skeletons form and evolved within this ecologically important group of marine animals.
Collapse
|
25
|
McFadden CS, Quattrini AM, Brugler MR, Cowman PF, Dueñas LF, Kitahara MV, Paz-García DA, Reimer JD, Rodríguez E. Phylogenomics, Origin, and Diversification of Anthozoans (Phylum Cnidaria). Syst Biol 2021; 70:635-647. [PMID: 33507310 DOI: 10.1093/sysbio/syaa103] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/19/2023] Open
Abstract
Anthozoan cnidarians (corals and sea anemones) include some of the world's most important foundation species, capable of building massive reef complexes that support entire ecosystems. Although previous molecular phylogenetic analyses have revealed widespread homoplasy of the morphological characters traditionally used to define orders and families of anthozoans, analyses using mitochondrial genes or rDNA have failed to resolve many key nodes in the phylogeny. With a fully resolved, time-calibrated phylogeny for 234 species constructed from hundreds of ultraconserved elements and exon loci, we explore the evolutionary origins of the major clades of Anthozoa and some of their salient morphological features. The phylogeny supports reciprocally monophyletic Hexacorallia and Octocorallia, with Ceriantharia as the earliest diverging hexacorals; two reciprocally monophyletic clades of Octocorallia; and monophyly of all hexacoral orders with the exception of the enigmatic sea anemone Relicanthus daphneae. Divergence dating analyses place Anthozoa in the Cryogenian to Tonian periods (648-894 Ma), older than has been suggested by previous studies. Ancestral state reconstructions indicate that the ancestral anthozoan was a solitary polyp that had bilateral symmetry and lacked a skeleton. Colonial growth forms and the ability to precipitate calcium carbonate evolved in the Ediacaran (578 Ma) and Cambrian (503 Ma) respectively; these hallmarks of reef-building species have subsequently arisen multiple times independently in different orders. Anthozoans formed associations with photosymbionts by the Devonian (383 Ma), and photosymbioses have been gained and lost repeatedly in all orders. Together, these results have profound implications for the interpretation of the Precambrian environment and the early evolution of metazoans.[Bilateral symmetry; coloniality; coral; early metazoans; exon capture; Hexacorallia; Octocorallia photosymbiosis; sea anemone; ultraconserved elements.].
Collapse
Affiliation(s)
- Catherine S McFadden
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711 USA
| | - Andrea M Quattrini
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711 USA.,Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Mercer R Brugler
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA.,Biological Sciences Department, NYC College of Technology, City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA.,Department of Natural Sciences, University of South Carolina Beaufort, 801 Carteret Street, Beaufort, SC 29902, USA
| | - Peter F Cowman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD 4810, Australia
| | - Luisa F Dueñas
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Carrera 30 No.45-03 Edificio 421, Bogotá, D.C., Colombia
| | - Marcelo V Kitahara
- Department of Marine Science, Federal University of São Paulo, Santos, SP 11070-100 Brazil.,Centre for Marine Biology, University of São Paulo, São Sebastião, SP 11612-109 Brazil
| | - David A Paz-García
- CONACyT-Centro de Investigaciones Biológicas del Noroeste (CIBNOR). Laboratorio de Necton y Ecología de Arrecifes. Calle IPN 195, Col. Playa Palo de Santa Rita Sur, 23096 La Paz, B.C.S., México
| | - James D Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Department of Marine Science, Chemistry, and Biology, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Estefanía Rodríguez
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| |
Collapse
|
26
|
Cairns SD, Cordeiro RTS, Xu Y, Zhan Z, Alderslade P. A new family and two new genera of calcaxonian octocoral, including a redescription of Pleurogorgia militaris (Cnidaria:Octocorallia:Chrysogorgiidae) and its placement in a new genus. INVERTEBR SYST 2021. [DOI: 10.1071/is20066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Golden corals (chrysogorgiids sensu lato) are conspicuous components in deep-sea gorgonian assemblages. Although common, their taxonomy still conflicts with evolutionary histories, mostly due to low character availability and poor taxonomic knowledge. This is the case for the genus Pleurogorgia, which has been frequently reported in ROV surveys, dominating hard-bottoms throughout the Indo-Pacific. Herein, molecular phylogenetic reconstructions based on mitochondrial and nuclear datasets, and examination of new and old type material led us to suggest new systematic arrangements for some of the genera. We create a new genus, Ramuligorgia, to accommodate Pleurogorgia militaris, redescribing it as Ramuligorgia militaris comb. nov. within the family Chrysogorgiidae sensu stricto. Additionally, we describe Aurogorgia tasmaniensis gen. nov. et sp. nov., including it and the type species, Pleurogorgia plana, within Pleurogorgiidae fam. nov.
Collapse
|
27
|
Cordeiro RTS, McFadden CS, Sanchez JA, Pérez CD. Revision of the genus Plexaurella Kölliker, 1865 (Anthozoa: Octocorallia) and resurrection of Plexaurellidae Verrill, 1912 new rank. INVERTEBR SYST 2021. [DOI: 10.1071/is21003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The current knowledge on the diversity of the genus Plexaurella is based on a series of dated revisions, often with no examination of types. Although being common octocorals in western Atlantic reefs, there is no consensus on an exact number of valid species. Furthermore, phylogenetic reconstructions do not support the current classification of Plexaurella within the family Plexauridae. Thus, this study reviews the genus based on examination of available types and assesses monophyly using mitochondrial (COI+igr, mtMutS) and nuclear (28S) markers, mostly from available molecular data. Until now, up to six species were considered valid. Our results show that the group is composed of at least seven previously described species: P. dichotoma, P. nutans, P. grisea, P. teres, P. grandiflora, P. regia and P. obesa; and one new species: Plexaurella rastrera sp. nov. An illustrated key to the valid species and a list of all available names are provided and the current classification of the genus is discussed. Based on congruent phylogenetic reconstructions and genetic distances, we propose the elevation of the former plexaurid subfamily Plexaurellinae to family level. Finally, based on examination of types, we propose the synonymy between Pseudoplexaura crucis and Plexaurella tenuis under Pseudoplexaura tenuis new comb.
Collapse
|
28
|
The Genome Sequence of the Octocoral Paramuricea clavata - A Key Resource To Study the Impact of Climate Change in the Mediterranean. G3-GENES GENOMES GENETICS 2020; 10:2941-2952. [PMID: 32660973 PMCID: PMC7467007 DOI: 10.1534/g3.120.401371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The octocoral, Paramuricea clavata, is a habitat-forming anthozoan with a key ecological role in rocky benthic and biodiversity-rich communities in the Mediterranean and Eastern Atlantic. Shallow populations of P. clavata in the North-Western Mediterranean are severely affected by warming-induced mass mortality events (MMEs). These MMEs have differentially impacted individuals and populations of P. clavata (i.e., varied levels of tissue necrosis and mortality rates) over thousands of kilometers of coastal areas. The eco-evolutionary processes, including genetic factors, contributing to these differential responses remain to be characterized. Here, we sequenced a P. clavata individual with short and long read technologies, producing 169.98 Gb of Illumina paired-end and 3.55 Gb of Oxford Nanopore Technologies (ONT) reads. We obtained a de novo genome assembly accounting for 607 Mb in 64,145 scaffolds. The contig and scaffold N50s are 19.15 Kb and 23.92 Kb, respectively. Despite of the low contiguity of the assembly, its gene completeness is relatively high, including 75.8% complete and 9.4% fragmented genes out of the 978 metazoan genes contained in the metazoa_odb9 database. A total of 62,652 protein-coding genes have been annotated. This assembly is one of the few octocoral genomes currently available. This is undoubtedly a valuable resource for characterizing the genetic bases of the differential responses to thermal stress and for the identification of thermo-resistant individuals and populations. Overall, having the genome of P. clavata will facilitate studies of various aspects of its evolutionary ecology and elaboration of effective conservation plans such as active restoration to overcome the threats of global change.
Collapse
|
29
|
Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time. Nat Ecol Evol 2020; 4:1531-1538. [DOI: 10.1038/s41559-020-01291-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/23/2020] [Indexed: 01/25/2023]
|
30
|
Data, time and money: evaluating the best compromise for inferring molecular phylogenies of non-model animal taxa. Mol Phylogenet Evol 2020; 142:106660. [DOI: 10.1016/j.ympev.2019.106660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
|
31
|
Bogantes VE, Whelan NV, Webster K, Mahon AR, Halanych KM. Unrecognized diversity of a scale worm,Polyeunoa laevis(Annelida: Polynoidae), that feeds on soft coral. ZOOL SCR 2019. [DOI: 10.1111/zsc.12400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Viktoria E. Bogantes
- Department of Biological Sciences Molette Biology Laboratory for Environmental and Climate Change Studies Auburn University Auburn AL USA
| | - Nathan V. Whelan
- Southeast Conservation Genetics Lab Warm Springs Fish Technology Center United States Fish and Wildlife Service Auburn AL USA
- School of Fisheries, Aquaculture, and Aquatic Sciences Auburn University Auburn AL USA
| | - Katelynn Webster
- Department of Biological Sciences Molette Biology Laboratory for Environmental and Climate Change Studies Auburn University Auburn AL USA
| | - Andrew R. Mahon
- Department of Biology Central Michigan University Mount Pleasant MI USA
| | - Kenneth M. Halanych
- Department of Biological Sciences Molette Biology Laboratory for Environmental and Climate Change Studies Auburn University Auburn AL USA
| |
Collapse
|
32
|
Pérez CD, Cordeiro RTS. Ideogorgia laurae, an uncommon new octocoral species (Alcyonacea: Keroeididae) from a newly established Marine Protected Area at Burdwood Bank, Argentina. Polar Biol 2019. [DOI: 10.1007/s00300-019-02604-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Figueroa DF, Hicks D, Figueroa NJ. The complete mitochondrial genome of Tanacetipathes thamnea Warner, 1981 (Antipatharia: Myriopathidae). MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:4109-4110. [PMID: 33366341 PMCID: PMC7707681 DOI: 10.1080/23802359.2019.1692701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specimens of the black coral Tanacetipathes thamnea were collected from the Northwestern Gulf of Mexico. The complete mitochondrial genome of one of these specimens was obtained from genomic DNA by next-generation sequencing technology on the Illumina HiSeq 2500. Only three species of black corals have a completely sequenced mitochondrial genome. These were used to reconstruct the phylogeny for the order Antipatharia. The mitochondrial genome of T. thamnea is 17,712 base pairs and contains 13 protein-coding genes, 2 ribosomal RNAs, and 2 transfer RNAs in the following order: 16s RNA, COX3, COX1 (with intron), ND4L, COX2, ND4, ND6, ATP8, ATP6, and ND5 (with intron and copies of ND1 and ND3), tRNA-Trp, ND2, 12s RNA, CYTB, tRNA-Met. The gene arrangement is the same as that for Myriopathes japonica with a nearly identical sequence (99.35% identical). These results show that the mitochondrial genome within the family Myriopathidae is highly conserved.
Collapse
Affiliation(s)
- Diego Francisco Figueroa
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, One West University Boulevard, Brownsville, TX, USA
| | - David Hicks
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, One West University Boulevard, Brownsville, TX, USA
| | - Nicole Jewel Figueroa
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, One West University Boulevard, Brownsville, TX, USA
| |
Collapse
|
34
|
Conci N, Wörheide G, Vargas S. New Non-Bilaterian Transcriptomes Provide Novel Insights into the Evolution of Coral Skeletomes. Genome Biol Evol 2019; 11:3068-3081. [PMID: 31518412 PMCID: PMC6824150 DOI: 10.1093/gbe/evz199] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/27/2022] Open
Abstract
A general trend observed in animal skeletomes-the proteins occluded in animal skeletons-is the copresence of taxonomically widespread and lineage-specific proteins that actively regulate the biomineralization process. Among cnidarians, the skeletomes of scleractinian corals have been shown to follow this trend. However, distributions and phylogenetic analyses of biomineralization-related genes are often based on only a few species, with other anthozoan calcifiers such as octocorals (soft corals), not being fully considered. We de novo assembled the transcriptomes of four soft-coral species characterized by different calcification strategies (aragonite skeleton vs. calcitic sclerites) and data-mined published nonbilaterian transcriptome resources to construct a taxonomically comprehensive sequence database to map the distribution of scleractinian and octocoral skeletome components. Cnidaria shared no skeletome proteins with Placozoa or Ctenophora, but did share some skeletome proteins with Porifera, such as galaxin-related proteins. Within Scleractinia and Octocorallia, we expanded the distribution for several taxonomically restricted genes such as secreted acidic proteins, scleritin, and carbonic anhydrases, and propose an early, single biomineralization-recruitment event for galaxin sensu stricto. Additionally, we show that the enrichment of acidic residues within skeletogenic proteins did not occur at the Corallimorpharia-Scleractinia transition, but appears to be associated with protein secretion into the organic matrix. Finally, the distribution of octocoral calcification-related proteins appears independent of skeleton mineralogy (i.e., aragonite/calcite) with no differences in the proportion of shared skeletogenic proteins between scleractinians and aragonitic or calcitic octocorals. This points to skeletome homogeneity within but not between groups of calcifying cnidarians, although some proteins such as galaxins and SCRiP-3a could represent instances of commonality.
Collapse
Affiliation(s)
- Nicola Conci
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center LMU, Ludwig-Maximilians-Universität München, Munich, Germany
- SNSB—Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
35
|
Almegbel MNA, Rowe EA, Alnaser FN, Yeager M, Blackstone NW. Metabolic Activation and Scaling in Two Species of Colonial Cnidarians. THE BIOLOGICAL BULLETIN 2019; 237:63-72. [PMID: 31441699 DOI: 10.1086/703791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metabolic activation can have a profound impact, for instance, by more than compensating for the lower resting metabolic rates of large organisms compared to smaller ones. In some animals, activity can easily be judged by the rate of muscle-driven movement. In sessile organisms, however, judging activity is less straightforward, although feeding often results in metabolic activation. Two colonial cnidarians were examined in this context, using entirely lab-grown material to remove any artifactual effects of experimental manipulations. Hydractinia symbiolongicarpus is a carnivorous hydroid that uses active muscular contractions to drive its gastrovascular fluid. Sympodium sp., on the other hand, is an octocoral that hosts photosynthetic Symbiodinium and uses cilia to propel its gastrovascular fluid. Measures of oxygen uptake indicated that feeding activated metabolism in H. symbiolongicarpus. While light treatment had no effect on subsequent dark metabolism in Sympodium sp., stress activated metabolism to an extent comparable to H. symbiolongicarpus. In both taxa, different individual size measures or synthetic size measures derived from principal component analysis produced different scaling relationships between metabolism and size. On balance, the data suggest that scaling was negatively allometric in Sympodium sp. and nearly isometric in H. symbiolongicarpus; yet metabolic activation was comparable in the two species. Regardless of the size measure used, active and resting colonies of H. symbiolongicarpus exhibited similar scaling relationships. Colonial animals may lack the large difference between resting and active metabolic rates found in highly active animals, and this may be related to how their metabolism scales with size.
Collapse
|
36
|
Hogan RI, Hopkins K, Wheeler AJ, Allcock AL, Yesson C. Novel diversity in mitochondrial genomes of deep-sea Pennatulacea (Cnidaria: Anthozoa: Octocorallia). Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:764-777. [PMID: 31317811 DOI: 10.1080/24701394.2019.1634699] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We present the first documented complete mitogenomes of deep-sea Pennatulacea, representing nine genera and eight families. These include one species each of the deep-sea genera Funiculina, Halipteris, Protoptilum and Distichoptilum, four species each of Umbellula and Pennatula, three species of Kophobelemnon and two species of Anthoptilum, as well as one species of the epi- and mesobenthic genus Virgularia. Seventeen circular genomes ranged from 18,513 bp (Halipteris cf. finmarchica) to 19,171 bp (Distichoptilum gracile) and contained all genes standard to octocoral mitochondrial genomes (14 protein-coding genes, two ribosomal RNA genes and one transfer RNA). We found at least three different gene orders in Pennatulacea: the ancestral gene order, the gene order found in bamboo corals (Family Isididae), and a novel gene order. The mitogenome of one species of Umbellula has a bipartite genome (∼13 kbp and ∼5 kbp), with good evidence that both parts are circular.
Collapse
Affiliation(s)
- Raissa I Hogan
- Department of Zoology, Ryan Institute, National University of Ireland , Galway , Ireland
| | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London, Regent's Park , London , UK
| | - Andrew J Wheeler
- School of Biological, Earth and Environmental Sciences/iCRAG/ERI, University College Cork , Cork , Ireland
| | - A Louise Allcock
- Department of Zoology, Ryan Institute, National University of Ireland , Galway , Ireland
| | - Chris Yesson
- Institute of Zoology, Zoological Society of London, Regent's Park , London , UK
| |
Collapse
|
37
|
Koido T, Imahara Y, Fukami H. High species diversity of the soft coral family Xeniidae (Octocorallia, Alcyonacea) in the temperate region of Japan revealed by morphological and molecular analyses. Zookeys 2019; 862:1-22. [PMID: 31341383 PMCID: PMC6635379 DOI: 10.3897/zookeys.862.31979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/27/2019] [Indexed: 11/12/2022] Open
Abstract
The soft coral family Xeniidae, commonly found in tropical and subtropical regions, consists of 20 genera and 162 species. To date, few studies on this family have been conducted in Japan, especially at higher latitudes. Although molecular phylogenetic analyses have recently been used to distinguish soft coral species, it is difficult to identify species and genera in this family due to the limited taxonomic indices and high morphological variation. In this study, we found a large Xeniidae community off the coast of Oshima Island (31°31.35'N, 131°24.27'E) at Miyazaki, Kyushu Island, located in the temperate region of Japan. The species composition and molecular phylogenetic relationships were investigated to uncover the species diversity of Xeniidae in this community. A total of 182 xeniid specimens were collected and identified to the species level, after which the samples were molecularly analyzed using a mitochondrial marker (ND2) and a nuclear marker (ITS) to infer the phylogenetic relationships. A total of 14 xeniid species were identified, including five undescribed species from five genera (Anthelia, Heteroxenia, Sympodium, Xenia, and Yamazatum). Miyazaki was identified as having the highest xeniid species diversity in Japan. The molecular phylogenetic trees inferred from each marker recovered very similar topologies: four genera (Anthelia, Heteroxenia, Sympodium, and Yamazatum) were monophyletic, whereas one (Xenia) was polyphyletic. Thus, except for Xenia, the morphological characteristics used for traditional taxonomy well reflected the phylogeny of the Xeniidae at the genus level. On the other hand, our results show that further taxonomic revisions of Xenia are needed.
Collapse
Affiliation(s)
- Tatsuki Koido
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan.,Biological Institute on Kuroshio, Kuroshio Biological Research Foundation, 560 Nishidomari, Otsuki, Kochi 788-0333, Japan
| | - Yukimitsu Imahara
- Wakayama Laboratory, Biological Institute on Kuroshio, 300-11 Kire, Wakayama, 640-0351, Japan
| | - Hironobu Fukami
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan
| |
Collapse
|
38
|
Horvath EA. A review of gorgonian coral species (Cnidaria, Octocorallia, Alcyonacea) held in the Santa Barbara Museum of Natural History research collection: focus on species from Scleraxonia, Holaxonia, and Calcaxonia - Part I: Introduction, species of Scleraxonia and Holaxonia (Family Acanthogorgiidae). Zookeys 2019; 860:1-66. [PMID: 31327927 PMCID: PMC6624213 DOI: 10.3897/zookeys.860.19961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/25/2019] [Indexed: 11/12/2022] Open
Abstract
Gorgonian specimens collected from the California Bight (northeastern Pacific Ocean) and adjacent areas held in the collection of the Santa Barbara Museum of Natural History (SBMNH) were reviewed and evaluated for species identification; much of this material is of historic significance as a large percentage of the specimens were collected by the Allan Hancock Foundation (AHF) 'Velero' Expeditions of 1931-1941 and 1948-1985. Examination and reorganization of this collection began early in 2002; initially, it was estimated that at most, twelve to fifteen species of gorgonian could be found within the Bight. Following collection evaluation, it was determined that at a minimum, approximately twenty three genera, encompassing some forty-plus species, of gorgonian coral have been found living within the California Bight region, often extending some distance into adjacent geographical areas both north and south. All species from the California Bight in the collection are discussed to some degree (in three separate parts, this being Part I), with digital images of both colony form and sclerite composition provided for most. Collection specimens from the suborders and families covered in Part I are not extensive, but several genera are featured that have not been previously reported for the California Bight region. Additionally, a potential new species (genus Sibogagorgia Stiasny, 1937) from the Paragorgiidae is described in Part I. Overall, the collection displays an emphasis on species belonging to the Holaxonia, particularly the plexaurids. A brief discussion of a California Bight grouping, referred to as the "red whips," is presented in Part II; this grouping encompasses several species with very similar colony appearance across a number of genera. A new species (a whip or thread-like form) in the genus Eugorgia Verrill, 1868, belonging to the Gorgoniidae, is described in Part II. The genus Swiftia Duchassaing & Michelotti, 1864 is one of the most challenging taxon groups represented; those species in the genus Swiftia collected within the California Bight are discussed fully, based on SBMNH (and other) specimens in Part III. Scanning electron microscopy images for species of Swiftia from the California coast have rarely, if ever, been published and are included, with a discussion of the geographic range of the genus in the eastern Pacific, from the southern boundary of the California Bight to the Bering Sea, Alaska. Finally, specimens of the genus Thesea Duchassaing & Michelotti, 1860, displaying a whip or thread-like body form, are discussed at a preliminary level in Part III; they also presented challenges to a clear understanding of their taxonomy. While Part I focuses on species of Scleraxonia and those of the Holaxonia in the Acanthogorgiidae family held in the SBMNH collection, all three parts taken together represent the first comprehensive work that reviews the research collection of SBMNH, which focuses on species of gorgonian coral known to inhabit the California Bight.
Collapse
Affiliation(s)
- Elizabeth Anne Horvath
- Westmont College, 955 La Paz Road, Santa Barbara, California 93108 USAWestmont CollegeSanta BarbaraUnited States of America
- Invertebrate Laboratory, Santa Barbara Museum of Natural History, 2559 Puesta del Sol Road, Santa Barbara, California 93105, USASanta Barbara Museum of Natural HistorySanta BarbaraUnited States of America
| |
Collapse
|
39
|
Rivera-García L, Rivera-Vicéns RE, Veglia AJ, Schizas NV. De novo transcriptome assembly of the digitate morphotype of Briareum asbestinum (Octocorallia: Alcyonacea) from the southwest shelf of Puerto Rico. Mar Genomics 2019; 47:100676. [PMID: 31005610 DOI: 10.1016/j.margen.2019.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 11/19/2022]
Abstract
Octocorals have now become the most visually dominant metazoan benthic taxa of most Caribbean reefs, following the precipitous decline of scleractinian corals. Yet taxonomic issues because of their extensive phenotypic plasticity are still abound. Briareum asbestinum one of the iconic octocorals of the shallow Caribbean coral reefs exhibits a biform morphology, the digitate and the encrusting one. The taxonomic status of each form has not been clarified, yet. Until recently, there were few genetic resources for non-model metazoans, however, affordable high-throughput DNA sequencing has removed this hindrance. We present the first transcriptome of the digitate form of Briareum asbestinum from southwest Puerto Rico. We used paired-end sequencing (Illumina NextSeq 500), with a total yield of 159,754,702 raw reads. De novo assembly was performed utilizing a multi-assembler approach generating 371,554 biologically true, non-redundant transcripts. Open reading frame analysis identified 102,839 putative ORFs of which 78,607 were with annotations. BUSCO analysis indicated a total of 96.4% complete orthologous genes from the metazoan dataset. The assembly presented here serves as an important new genomic reference for the Briareum genus that will facilitate future population and phylogenetic studies aiming to better understand the molecular basis of phenotypic plasticity exhibited throughout the genus.
Collapse
Affiliation(s)
- Liajay Rivera-García
- Department of Marine Sciences, University of Puerto Rico at Mayagüez, PO Box 9000, Mayagüez, PR 00681, USA
| | - Ramón E Rivera-Vicéns
- Department of Marine Sciences, University of Puerto Rico at Mayagüez, PO Box 9000, Mayagüez, PR 00681, USA; Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alex J Veglia
- Department of Marine Sciences, University of Puerto Rico at Mayagüez, PO Box 9000, Mayagüez, PR 00681, USA
| | - Nikolaos V Schizas
- Department of Marine Sciences, University of Puerto Rico at Mayagüez, PO Box 9000, Mayagüez, PR 00681, USA.
| |
Collapse
|
40
|
Jiang JB, Quattrini AM, Francis WR, Ryan JF, Rodríguez E, McFadden CS. A hybrid de novo assembly of the sea pansy (Renilla muelleri) genome. Gigascience 2019; 8:giz026. [PMID: 30942866 PMCID: PMC6446218 DOI: 10.1093/gigascience/giz026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/15/2019] [Accepted: 02/28/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND More than 3,000 species of octocorals (Cnidaria, Anthozoa) inhabit an expansive range of environments, from shallow tropical seas to the deep-ocean floor. They are important foundation species that create coral "forests," which provide unique niches and 3-dimensional living space for other organisms. The octocoral genus Renilla inhabits sandy, continental shelves in the subtropical and tropical Atlantic and eastern Pacific Oceans. Renilla is especially interesting because it produces secondary metabolites for defense, exhibits bioluminescence, and produces a luciferase that is widely used in dual-reporter assays in molecular biology. Although several anthozoan genomes are currently available, the majority of these are hexacorals. Here, we present a de novo assembly of an azooxanthellate shallow-water octocoral, Renilla muelleri. FINDINGS We generated a hybrid de novo assembly using MaSuRCA v.3.2.6. The final assembly included 4,825 scaffolds and a haploid genome size of 172 megabases (Mb). A BUSCO assessment found 88% of metazoan orthologs present in the genome. An Augustus ab initio gene prediction found 23,660 genes, of which 66% (15,635) had detectable similarity to annotated genes from the starlet sea anemone, Nematostella vectensis, or to the Uniprot database. Although the R. muelleri genome may be smaller (172 Mb minimum size) than other publicly available coral genomes (256-448 Mb), the R. muelleri genome is similar to other coral genomes in terms of the number of complete metazoan BUSCOs and predicted gene models. CONCLUSIONS The R. muelleri hybrid genome provides a novel resource for researchers to investigate the evolution of genes and gene families within Octocorallia and more widely across Anthozoa. It will be a key resource for future comparative genomics with other corals and for understanding the genomic basis of coral diversity.
Collapse
Affiliation(s)
- Justin B Jiang
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711, USA
| | - Andrea M Quattrini
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711, USA
| | - Warren R Francis
- Department of Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, FL 32080, USA
| | - Estefanía Rodríguez
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA
| | - Catherine S McFadden
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711, USA
| |
Collapse
|
41
|
Bryce M, Wilson NG. A new genus with two new capitate species of dimorphic soft corals (Octocorallia : Alcyoniidae) from north-western Australia. INVERTEBR SYST 2019. [DOI: 10.1071/is17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Soft coral diversity in tropical northern Australia remains relatively understudied compared with other parts of the world. As a result of ongoing biodiversity surveys, we describe here a new genus of Octocorallia, Anastromvos, gen. nov., and two new species, A. aldersladei, sp. nov. and A. catherinae, sp. nov., collected from waters off the Pilbara, Kimberley and Darwin. To test the validity of the new genus, we used traditional morphological approaches combined with a molecular phylogeny using three mitochondrial genes (COI, mtMutS, ND2) and nuclear 28S. The markers did not amplify for the colony of A. catherinae, sp. nov., which was described on the basis of morphology only. The new genus, belonging to the family Alcyoniidae, is dimorphic, possessing autozooids and siphonozooids, and is characterised by its unique capitate growth form, stone-like colony consistency, heavy autozooid polyp armature and the possession of clubs, tuberculated spindles and/or oval-shaped sclerites and crosses. The molecular phylogeny shows the new genus as the sister group to Sarcophyton+Lobophytum, and forms a unique clade among other alcyoniid clades. The Sarcophyton–Lobophytum group of taxa can be ecologically dominant in shallow-water coral reef communities but there is still much taxonomic refinement needed for these and related genera.
http://zoobank.org/urn:lsid:zoobank.org:pub:71E96A7A-A24D-4485-AF3B-834CEF959578
Collapse
|
42
|
Kushida Y, Reimer JD. Molecular phylogeny and diversity of sea pens (Cnidaria: Octocorallia: Pennatulacea) with a focus on shallow water species of the northwestern Pacific Ocean. Mol Phylogenet Evol 2018; 131:233-244. [PMID: 30471843 DOI: 10.1016/j.ympev.2018.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 10/27/2022]
Abstract
The order Pennatulacea, commonly known as sea pens, are colony-forming benthos belonging within subclass Octocorallia (Anthozoa, Cnidaria). Sea pens are found worldwide from shallow to deep waters, and they are important components in sandy and muddy environments. Thus far, there has been only one molecular study focusing on the phylogenetic relationships within the order Pennatulacea, which mainly treated deep-sea species, and thus information on shallow water species is still lacking. On a regional scale, the diversity of sea pens in the northwestern Pacific, including Japan and Palau, has not been well investigated. In this research, we aimed to: (1) more accurately resolve the phylogenetic relationships of sea pens with the inclusion of shallow water species, and (2) obtain a better understanding of the diversity of sea pens in Japan and Palau. Specimens were collected by SCUBA and dredging from the Ryukyu Islands in southern Japan, and from mainland Japan and Palau, and identified to at least the genus level by their morphological traits. Construction of phylogenetic trees with concatenated sequences including the mitochondrial mutS-like protein DNA mismatch repair gene mtMutS and the NADH dehydrogenase subunit 2 ND2 region were performed. The p-distances of mtMutS were calculated for estimation of species number following McFadden et al. (2011). Molecular data for 12 families and 20 genera of sea pens were used in this study. This most comprehensive study including shallow water taxa provided us with more knowledge of phylogenetic relationships. The resulting phylogenetic trees showed a topology distinguished by four large clades (clades 1-4). Families Veretillidae and Echinoptilidae are shown as not the earliest-diverging taxa. Virgulariidae and Scleroptilidae are shown as polyphyletic groups, and our results reconfirm that families Pennatulidae, Kophobelemnidae and Umbellulidae are not monophyletic groups. Overall, we collected and examined an estimated 18 species from the Ryukyu Islands, 16 species from mainland Japan, and five species from Palau. Some of these specimens represented new records from Ryukyu Islands and Palau. Previous records of these sea pens did not exist likely due to a lack of diversity research in sandy and muddy areas. These results demonstrate that many sea pens discoveries likely remain in shallow waters of the Pacific.
Collapse
Affiliation(s)
- Yuka Kushida
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
43
|
Kise H, Maeda T, Reimer JD. A phylogeny and the evolution of epizoism within the family Hydrozoanthidae with description of a new genus and two new species. Mol Phylogenet Evol 2018; 130:304-314. [PMID: 30316946 DOI: 10.1016/j.ympev.2018.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/23/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
The Family Hydrozoanthidae are macrocnemic zoantharians, however their phylogenetic position is closer to brachycnemic zoantharians than to other macrocnemic zoantharians. Previous studies have indicated the presence of undescribed Hydrozoanthidae species from various locations in the Indo-Pacific Ocean. In this study, two new Hydrozoanthidae species, Aenigmanthus segoi gen. n., sp. n. and Hydrozoanthus sils sp. n., are described from Japanese and Palauan waters based on combined morphological and molecular phylogenetic analyses utilizing multiple genetic markers. Additionally, Hydrozoanthidae consists of species with an obligate epizoic relationship with hydroids (Hydrozoanthus) and of species with facultative epizoic relationships (Aenigmanthus gen. n. and Terrazoanthus). Results of ancestral state reconstruction analyses indicate that Hydrozoanthus gained obligate epizoic relationships in their evolutionary history perhaps due to structural differences of host invertebrates.
Collapse
Affiliation(s)
- Hiroki Kise
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Takahiro Maeda
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
44
|
Lau YW, Stokvis FR, van Ofwegen LP, Reimer JD. Stolonifera from shallow waters in the north-western Pacific: a description of a new genus and two new species within the Arulidae (Anthozoa, Octocorallia). Zookeys 2018; 790:1-19. [PMID: 30364726 PMCID: PMC6198026 DOI: 10.3897/zookeys.790.28875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/10/2018] [Indexed: 11/12/2022] Open
Abstract
A new genus and two new species of stoloniferous octocorals (Alcyonacea) within the family Arulidae are described based on specimens collected from Okinawa (Japan), Palau and Dongsha Atoll (Taiwan). Hana gen. n. is erected within Arulidae. Hanahanagasa sp. n. is characterised by large spindle-like table-radiates and Hanahanataba sp. n. is characterised by having ornamented rods. The distinction of these new taxa is also supported by molecular phylogenetic analyses. The support values resulting from maximum likelihood and Bayesian inference analyses for the genus Hana and new species H.hanagasa and H.hanataba are 82/1.0, 97/1.0 and 61/0.98, respectively. Hanahanagasa sp. n. and Hanahanataba sp. n. are the first arulid records for Okinawa, Palau, and Dongsha Atoll, and represent species of the second genus within the family Arulidae.
Collapse
Affiliation(s)
- Yee Wah Lau
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0123, Japan
| | | | | | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0123, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0123, Japan
| |
Collapse
|
45
|
Lang SA, Shain DH. Atypical Evolution of the F 1F o Adenosine Triphosphate Synthase Regulatory ATP6 subunit in Glacier Ice Worms (Annelida: Clitellata: Mesenchytraeus). Evol Bioinform Online 2018; 14:1176934318788076. [PMID: 30022808 PMCID: PMC6047255 DOI: 10.1177/1176934318788076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/18/2018] [Indexed: 11/28/2022] Open
Abstract
The glacier ice worm, Mesenchytraeus solifugus, is among a few animals that reside permanently in glacier ice. Their adaptation to cold temperature has been linked to relatively high intracellular adenosine triphosphate (ATP) levels, which compensate for reductions in molecular motion at low physiological temperatures. Here, we show that ATP6-the critical regulatory subunit of the F1Fo-ATP synthase and primary target of mitochondrial disease-acquired an unprecedented histidine-rich, 18-amino acid carboxy-terminal extension, which counters the strong evolutionary trend of mitochondrial genome compaction. Furthermore, sequence analysis suggests that this insertion is not of metazoan origin, but rather is a product of horizontal gene transfer from a microbial dietary source, and may act as a proton shuttle to accelerate the rate of ATP synthesis.
Collapse
Affiliation(s)
- Shirley A Lang
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA
| | - Daniel H Shain
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, USA
| |
Collapse
|
46
|
Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Aliabadian M, Laetitia H, Shadmehri Toosi A, Yap CK. First report of bioaccumulation and bioconcentration of aliphatic hydrocarbons (AHs) and persistent organic pollutants (PAHs, PCBs and PCNs) and their effects on alcyonacea and scleractinian corals and their endosymbiotic algae from the Persian Gulf, Iran: Inter and intra-species differences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:141-157. [PMID: 29426136 DOI: 10.1016/j.scitotenv.2018.01.185] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
The coral reefs of the Persian Gulf are the most diverse systems of life in the marine environment of the Middle East. Unfortunately, they are highly threatened by local and global stressors, particularly oil pollutants. This is the first quantitative and qualitative study aimed at assessing the concentration and sources of n-alkanes and POPs (PAHs, PCBs and PCNs) in coral tissues, symbiotic algae (zooxanthellae), reef sediments and seawaters in coral reefs of Lark and Kharg in the Persian Gulf, Iran. This work was conducted on eight species of six genera and three families of hard corals and one family of soft coral. A significant variation in the concentration of ∑30n-alkanes and POPs (∑40PAHs, ∑22PCBs and 20PCNs) was found in the decreasing order: zooxanthellae > coral tissue > skeleton > reef sediment > seawater. The bioaccumulation of these compounds was 2-times higher in ahermatypic than in hermatypic corals, among which significant variations were observed in both sites. In Kharg, Porites lutea had the highest mean concentration of ∑30n-alkanes and ∑40PAHs in soft tissue, whereas the lowest values were in Platygyra daedalea. A contrasting trend was documented for ∑22PCBs and 20PCNs, with the highest level reported in soft tissue of P. daedalea and the lowest in P. lutea at Kharg. Compositional pattern of AHs and PAHs demonstrated the predominance of LMW-PAHs and n-alkanes. In skeleton and reef sediments, tetra, penta and tri-CBs were the most abundant PCBs congeners followed by di-CB > hexa-CB > hepta-CB > octa-CB,whiletri-CB > di-CB > tetra-CB > penta-CB > hexa-CB > hepta-CB > octa-CB was observed for soft tissue, zooxanthellae and seawater. The results of RAD test indicated significantly negative correlation between total concentration of these compounds with zooxanthellae density, the chlorophyll-a and C2 in corals at both reefs. This is the first report on levels, health assessment and source apportionments of POPs in zooxanthellae and a first step in the implementation of specific coral reef management measures.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Mansour Aliabadian
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad (FUM), Iran
| | - Hédouin Laetitia
- USR3278 EPHE CNRS UPVD-CRIOBE, BP1013, 98729 Papetoai, Moorea, French Polynesia; Laboratoire d'Excellence, BP1013, 98729 Papetoai, Moorea, French Polynesia
| | - Amirhossein Shadmehri Toosi
- Department of Civil and environmental engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
47
|
Guzman C, Shinzato C, Lu TM, Conaco C. Transcriptome analysis of the reef-building octocoral, Heliopora coerulea. Sci Rep 2018; 8:8397. [PMID: 29849113 PMCID: PMC5976621 DOI: 10.1038/s41598-018-26718-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 05/09/2018] [Indexed: 01/15/2023] Open
Abstract
The blue coral, Heliopora coerulea, is a reef-building octocoral that prefers shallow water and exhibits optimal growth at a temperature close to that which causes bleaching in scleractinian corals. To better understand the molecular mechanisms underlying its biology and ecology, we generated a reference transcriptome for H. coerulea using next-generation sequencing. Metatranscriptome assembly yielded 90,817 sequences of which 71% (64,610) could be annotated by comparison to public databases. The assembly included transcript sequences from both the coral host and its symbionts, which are related to the thermotolerant C3-Gulf ITS2 type Symbiodinium. Analysis of the blue coral transcriptome revealed enrichment of genes involved in stress response, including heat-shock proteins and antioxidants, as well as genes participating in signal transduction and stimulus response. Furthermore, the blue coral possesses homologs of biomineralization genes found in other corals and may use a biomineralization strategy similar to that of scleractinians to build its massive aragonite skeleton. These findings thus offer insights into the ecology of H. coerulea and suggest gene networks that may govern its interactions with its environment.
Collapse
Affiliation(s)
- Christine Guzman
- Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City, 1101, Philippines.,Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Chuya Shinzato
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, 277-8564, Japan
| | - Tsai-Ming Lu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Cecilia Conaco
- Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City, 1101, Philippines.
| |
Collapse
|
48
|
Benayahu Y, van Ofwegen LP, McFadden CS. Evaluating the genus Cespitularia MilneEdwards & Haime, 1850 with descriptions of new genera of the family Xeniidae (Octocorallia, Alcyonacea). Zookeys 2018:63-101. [PMID: 29755257 PMCID: PMC5943446 DOI: 10.3897/zookeys.754.23368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/22/2018] [Indexed: 11/12/2022] Open
Abstract
Several species of the family Xeniidae, previously assigned to the genus Cespitularia Milne Edwards & Haime, 1850 are revised. Based on the problematical identity and status of the type of this genus, it became apparent that the literature has introduced misperceptions concerning its diagnosis. A consequent examination of the type colonies of Cespitularia coerulea May, 1898 has led to the establishment of the new genus Conglomeratuscleragen. n. and similarly to the assignment of Cespitularia simplex Thomson & Dean, 1931 to the new genus, Caementabundagen. n. Both new genera are described and depicted and both feature unique sclerite morphology, further highlighting the importance of sclerite microstructure for generic position among Xeniidae. Freshly collected material was subjected to molecular phylogenetic analysis, whose results substantiated the taxonomic assignment of the new genera, as well as the synonymies of several others.
Collapse
Affiliation(s)
- Yehuda Benayahu
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Leen P van Ofwegen
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
49
|
Cairns SD, Wirshing HH. A phylogenetic analysis of the Primnoidae (Anthozoa: Octocorallia: Calcaxonia) with analyses of character evolution and a key to the genera and subgenera. BMC Evol Biol 2018; 18:66. [PMID: 29716521 PMCID: PMC5930830 DOI: 10.1186/s12862-018-1182-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/16/2018] [Indexed: 11/21/2022] Open
Abstract
Background Previous phylogenetic analyses of primnoid octocorals utilizing morphological or molecular data have each recovered evolutionary relationships among genera that are largely incongruent with each other, with some exceptions. In an effort to reconcile molecular-based phylogenies with morphological characters, phylogenetic reconstructions were performed with 33 of 43 primnoid genera using four loci (mtMutS, COI, 28S and 18S), and ancestral state reconstructions were performed using 9 taxonomically relevant characters. In addition, an updated illustrated key to the current 48 genus-level (43 genera, 5 subgenera) primnoids is presented. Results Ancestral state reconstruction recovered the ancestral colony shape of primnoids as dichotomous planar. Convergence was detected among all 9 characters, and reversals to the character state of the common ancestor occurred in 4 characters. However, some characters were found to be informative. For example, the weak ascus scale of Metafannyella is not likely homologous to the ascus scales of Onogorgia and Fannyella, and the monophyly of two subgenera within Thouarella, which contain polyps in either whorls or an isolated arrangement, was supported. Phylogenetic analyses were generally consistent with previous studies, and resulted in the synonymy of one genus and a subgenus, the elevation of two subgenera, and the transfer of two species back to an original genus. For example, body wall ornamentation of Fanellia was re-evaluated, indicating a synonymy with Callogorgia; the utility of polyp arrangement for the subgenus Plumarella (Dicholaphis) was not supported, and is synonymized with the nominate subgenus Plumarella (Plumarella); the subgenera Plumarella (Faxiella) and Plumarella (Verticillata) are raised to generic status; and the two Plumarella species (P. diadema and P. undulata) are transferred back to Thouarella based on the homology of their marginal scales. Conclusions Altogether, and similar to other octocorallian groups, these results indicate that many of the morphological characters examined among primnoids, particularly colony morphology, are labile and exhibit complex evolutionary histories. However, some morphological characters such as coordination of polyps, presence of the ascus body wall scale, number of rows of body wall scales, and number of marginal scales help identify many clades, and are suitable for robust systematic assessments among primnoids. Electronic supplementary material The online version of this article (10.1186/s12862-018-1182-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen D Cairns
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Smithsonian Institution, PO Box 37012, MRC 163, Washington, DC, 20013-7012, USA.
| | - Herman H Wirshing
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Smithsonian Institution, PO Box 37012, MRC 163, Washington, DC, 20013-7012, USA
| |
Collapse
|
50
|
van de Water JAJM, Allemand D, Ferrier-Pagès C. Host-microbe interactions in octocoral holobionts - recent advances and perspectives. MICROBIOME 2018; 6:64. [PMID: 29609655 PMCID: PMC5880021 DOI: 10.1186/s40168-018-0431-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/01/2018] [Indexed: 05/05/2023]
Abstract
Octocorals are one of the most ubiquitous benthic organisms in marine ecosystems from the shallow tropics to the Antarctic deep sea, providing habitat for numerous organisms as well as ecosystem services for humans. In contrast to the holobionts of reef-building scleractinian corals, the holobionts of octocorals have received relatively little attention, despite the devastating effects of disease outbreaks on many populations. Recent advances have shown that octocorals possess remarkably stable bacterial communities on geographical and temporal scales as well as under environmental stress. This may be the result of their high capacity to regulate their microbiome through the production of antimicrobial and quorum-sensing interfering compounds. Despite decades of research relating to octocoral-microbe interactions, a synthesis of this expanding field has not been conducted to date. We therefore provide an urgently needed review on our current knowledge about octocoral holobionts. Specifically, we briefly introduce the ecological role of octocorals and the concept of holobiont before providing detailed overviews of (I) the symbiosis between octocorals and the algal symbiont Symbiodinium; (II) the main fungal, viral, and bacterial taxa associated with octocorals; (III) the dominance of the microbial assemblages by a few microbial species, the stability of these associations, and their evolutionary history with the host organism; (IV) octocoral diseases; (V) how octocorals use their immune system to fight pathogens; (VI) microbiome regulation by the octocoral and its associated microbes; and (VII) the discovery of natural products with microbiome regulatory activities. Finally, we present our perspectives on how the field of octocoral research should move forward, and the recognition that these organisms may be suitable model organisms to study coral-microbe symbioses.
Collapse
Affiliation(s)
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Monaco
| | | |
Collapse
|