1
|
Kirsch R, Okamura Y, García-Lozano M, Weiss B, Keller J, Vogel H, Fukumori K, Fukatsu T, Konstantinov AS, Montagna M, Moseyko AG, Riley EG, Slipinski A, Vencl FV, Windsor DM, Salem H, Kaltenpoth M, Pauchet Y. Symbiosis and horizontal gene transfer promote herbivory in the megadiverse leaf beetles. Curr Biol 2025; 35:640-654.e7. [PMID: 39826554 DOI: 10.1016/j.cub.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/01/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Beetles that feed on the nutritionally depauperate and recalcitrant tissues provided by the leaves, stems, and roots of living plants comprise one-quarter of herbivorous insect species. Among the key adaptations for herbivory are plant cell wall-degrading enzymes (PCWDEs) that break down the fastidious polymers in the cell wall and grant access to the nutritious cell content. While largely absent from the non-herbivorous ancestors of beetles, such PCWDEs were occasionally acquired via horizontal gene transfer (HGT) or by the uptake of digestive symbionts. However, the macroevolutionary dynamics of PCWDEs and their impact on evolutionary transitions in herbivorous insects remained poorly understood. Through genomic and transcriptomic analyses of 74 leaf beetle species and 50 symbionts, we show that multiple independent events of microbe-to-beetle HGT and specialized symbioses drove convergent evolutionary innovations in approximately 21,000 and 13,500 leaf beetle species, respectively. Enzymatic assays indicate that these events significantly expanded the beetles' digestive repertoires and thereby contributed to their adaptation and diversification. Our results exemplify how recurring HGT and symbiont acquisition catalyzed digestive and nutritional adaptations to herbivory and thereby contributed to the evolutionary success of a megadiverse insect taxon.
Collapse
Affiliation(s)
- Roy Kirsch
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Yu Okamura
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Marleny García-Lozano
- Mutualisms Research Group, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Benjamin Weiss
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Jean Keller
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Kayoko Fukumori
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Alexander S Konstantinov
- Systematic Entomology Laboratory, USDA, ARS, c/o Smithsonian Institution, National Museum of Natural History, 10th Street & Constitution Avenue, Washington, DC 20560, USA
| | - Matteo Montagna
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (Naples), Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università 100, 80055 Portici (Naples), Italy
| | - Alexey G Moseyko
- Zoological Institute, Russian Academy of Sciences, Universitetskaya embankment 1, 199034 St. Petersburg, Russia
| | - Edward G Riley
- Department of Entomology, Texas A&M University, 400 Bizzell Street, College Station, TX 77843, USA
| | - Adam Slipinski
- Australian National Insect Collection, CSIRO, Black Mountain Laboratories, Clunies Ross Street, GPO Box 1700, Canberra, ACT, Australia
| | - Fredric V Vencl
- Ecology and Evolution, Stony Brook University, Stony Brook, NY 11790, USA; Entomology, National Museum of Natural History, Smithsonian Institution, 10th Street & Constitution Avenue, Washington, DC 20560, USA
| | - Donald M Windsor
- Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper Ancon, Panama City, Republic of Panama
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Yannick Pauchet
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| |
Collapse
|
2
|
Geiser E. Revision of the Palaearctic species of the genus Plateumaris C. G. Thomson, 1859 (Coleoptera, Chrysomelidae, Donaciinae). Zookeys 2023; 1177:167-233. [PMID: 37692324 PMCID: PMC10483391 DOI: 10.3897/zookeys.1177.103214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/26/2023] [Indexed: 09/12/2023] Open
Abstract
Ten of the 27 species of Plateumaris Thomson (Chrysomelidae: Donaciinae) occur in the Palaearctic. Due to the intraspecific variation and the large distributions of some species, descriptions exist for at least 80 taxa plus five nomina nuda. The status of each valid species is clarified and the remaining 70 names are allocated as synonyms. New synonymies are P.tenuicornis Balthasar, considered a synonym of P.consimilis (Schrank), P.sulcifrons Weise as a synonym of P.rustica (Kunze), and P.caucasica Zaitzev as a synonym of P.sericea (Linnaeus). Two controversial synonyms are confirmed: P.discolor (Panzer) and P.sericeasibirica (Solsky) are both synonyms of P.sericea. Finally, P.obsoleta Jacobson is a synonym but at present it is not possible to decide whether it belongs to P.shirahatai Kimoto or to P.sericea. Forty-one new country records are added, compared with the Catalogue of Palaearctic Coleoptera published in 2010; 28 records are based on recently published records and 13 are first records for a specific country.
Collapse
Affiliation(s)
- Elisabeth Geiser
- Natural History Museum, Burgring 7, 1010 Vienna, AustriaNatural History MuseumViennaAustria
| |
Collapse
|
3
|
Abstract
Beetles are hosts to a remarkable diversity of bacterial symbionts. In this article, we review the role of these partnerships in promoting beetle fitness following a surge of recent studies characterizing symbiont localization and function across the Coleoptera. Symbiont contributions range from the supplementation of essential nutrients and digestive or detoxifying enzymes to the production of bioactive compounds providing defense against natural enemies. Insights on this functional diversity highlight how symbiosis can expand the host's ecological niche, but also constrain its evolutionary potential by promoting specialization. As bacterial localization can differ within and between beetle clades, we discuss how it corresponds to the microbe's beneficial role and outline the molecular and behavioral mechanisms underlying symbiont translocation and transmission by its holometabolous host. In reviewing this literature, we emphasize how the study of symbiosis can inform our understanding of the phenotypic innovations behind the evolutionary success of beetles.
Collapse
Affiliation(s)
- Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany;
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany;
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz 55128, Germany
| |
Collapse
|
4
|
Reis F, Kirsch R, Pauchet Y, Bauer E, Bilz LC, Fukumori K, Fukatsu T, Kölsch G, Kaltenpoth M. Bacterial symbionts support larval sap feeding and adult folivory in (semi-)aquatic reed beetles. Nat Commun 2020; 11:2964. [PMID: 32528063 PMCID: PMC7289800 DOI: 10.1038/s41467-020-16687-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/18/2020] [Indexed: 11/25/2022] Open
Abstract
Symbiotic microbes can enable their host to access untapped nutritional resources but may also constrain niche space by promoting specialization. Here, we reconstruct functional changes in the evolutionary history of the symbiosis between a group of (semi-)aquatic herbivorous insects and mutualistic bacteria. Sequencing the symbiont genomes across 26 species of reed beetles (Chrysomelidae, Donaciinae) spanning four genera indicates that the genome-eroded mutualists provide life stage-specific benefits to larvae and adults, respectively. In the plant sap-feeding larvae, the symbionts are inferred to synthesize most of the essential amino acids as well as the B vitamin riboflavin. The adult reed beetles’ folivory is likely supported by symbiont-encoded pectinases that complement the host-encoded set of cellulases, as revealed by transcriptome sequencing. However, mapping the occurrence of the symbionts’ pectinase genes and the hosts’ food plant preferences onto the beetles’ phylogeny reveals multiple independent losses of pectinase genes in lineages that switched to feeding on pectin-poor plants, presumably constraining their hosts’ subsequent adaptive potential. Symbiotic microbes in insects can enable their hosts to access untapped nutritional resources. Here, the authors show that symbiotic bacteria in reed beetles can provide essential amino acids to sap-feeding larvae and help leaf-feeding adults to degrade pectin, respectively.
Collapse
Affiliation(s)
- Frank Reis
- Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.,Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Eugen Bauer
- Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Lisa Carolin Bilz
- Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Kayoko Fukumori
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| | - Gregor Kölsch
- Molekulare Evolutionsbiologie, Institut für Zoologie, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.,Maasen 6, 24107, Kiel, Germany
| | - Martin Kaltenpoth
- Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.
| |
Collapse
|
5
|
Geiser E. To be or not to be a synonym – revision of the Donacia clavareaui-fukiensis complex (Coleoptera, Chrysomelidae, Donaciinae). Zookeys 2019; 856:27-50. [PMID: 31258367 PMCID: PMC6591214 DOI: 10.3897/zookeys.856.32388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/12/2019] [Indexed: 11/30/2022] Open
Abstract
The East Palaearctic species Donaciaclavareaui Jacobson, 1906 and Donaciafukiensis Goecke, 1944 have been confused for decades. Finally, D.fukiensis was synonymized with D.clavareaui by Askevold (1990) but he could not examine the type series of D.fukiensis because it was stored in an inaccessible collection. Cong and Yu (1997) re-established D.fukiensis as a distinct species, also without direct access to the type series. The synonymization by Askevold (1990) was applied in the identification key of Palaearctic Chrysomelidae (Warchalowski 2010) and the Catalogue of Palaearctic Chrysomelidae (Silfverberg 2010). Because the type series of D.fukiensis is now accessible, it has been possible to proof that D.fukiensis is a distinct species, and a lectotype has been established from the series of seven syntypes. Donaciakweilina Chen, 1966 and D.mediohirsuta Chen, 1966, which were split from the mixture of D.clavareaui and D.fukiensis, are now also synonymized with D.clavareaui, because their characters are the same or within the variation range of the characters of D.clavareaui. Furthermore, a distribution map is provided with the reliable records known to date.
Collapse
|
6
|
Song N, Yin X, Zhao X, Chen J, Yin J. Reconstruction of mitogenomes by NGS and phylogenetic implications for leaf beetles. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:1041-1050. [DOI: 10.1080/24701394.2017.1404044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xinming Yin
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Xinyang Agriculture and Forestry University, Xinyang, China
| | - Xincheng Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Junhua Chen
- Xinyang Agriculture and Forestry University, Xinyang, China
| | - Jian Yin
- Xinyang Agriculture and Forestry University, Xinyang, China
| |
Collapse
|
7
|
|
8
|
Bromham L, Hua X, Cardillo M. Detecting Macroevolutionary Self-Destruction from Phylogenies. Syst Biol 2015; 65:109-27. [PMID: 26454872 DOI: 10.1093/sysbio/syv062] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 08/18/2015] [Indexed: 12/14/2022] Open
Abstract
Phylogenetic analyses have lent support to the concept of lineage selection: that biological lineages can have heritable traits that influence their capacity to persist and diversify, and thereby affect their representation in biodiversity. While many discussions have focused on "positive" lineage selection, where stably heritable properties of lineages enhance their diversification rate, there are also intriguing examples that seem to represent "negative" lineage selection, where traits reduce the likelihood that a lineage will persist or speciate. In this article, we test whether a particular pattern of negative lineage selection is detectable from the distributions of the trait on a phylogeny. "Self-destructive" traits are those that arise often but then disappear again because they confer either a raised extinction rate or they are prone to a high rate of trait loss. For such a trait, the reconstructed origins will tend to be dispersed across the tips of the phylogeny, rather than defining large clades of related lineages that all share the trait. We examine the utility of four possible measures of "tippiness" as potential indicators of macroevolutionary self-destruction, applying them to phylogenies on which trait evolution has been simulated under different combinations of parameters for speciation, extinction, trait gain, and trait loss. We use an efficient simulation approach that starts with the required number of tips with and without the trait and uses a model to work "backwards" to construct different possible trees that result in that set of tips. We then apply these methods to a number of case studies: salt tolerance in grasses, color polymorphism in birds of prey, and selfing in nightshades. We find that the relative age of species, measured from tip length, can indicate a reduced speciation rate but does not identify traits that increase the extinction rate or the trait loss rate. We show that it is possible to detect cases of macroevolutionary self-destruction by considering the number of tips with the trait that arise from each inferred origin, and the degree to which the trait is scattered across the phylogeny. These metrics, and the methods we present, may be useful for testing macroevolutionary hypotheses from phylogenetic patterns.
Collapse
Affiliation(s)
- Lindell Bromham
- Centre for Macroevolution and Macroecology, Division of Ecology, Evolution and Genetics, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Xia Hua
- Centre for Macroevolution and Macroecology, Division of Ecology, Evolution and Genetics, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Marcel Cardillo
- Centre for Macroevolution and Macroecology, Division of Ecology, Evolution and Genetics, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
9
|
Gould K, Wilson P. Lack of evolution in a leaf beetle that lives on two contrasting host plants. Ecol Evol 2015; 5:3905-13. [PMID: 26445651 PMCID: PMC4588663 DOI: 10.1002/ece3.1658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 11/30/2022] Open
Abstract
The interactions between plant-eating insects and their hosts have shaped both the insects and the plants, driving evolution of plant defenses and insect specialization. The leaf beetle Trirhabda eriodictyonis (Chrysomelidae) lives on two shrubs with differing defenses: Eriodictyon crassifolium has hairy leaves, whereas E. trichocalyx has resinous leaves. We tested whether these beetles have differentiated onto the two host plants, and if not, whether the beetles prefer the better host plant and prefer mates who are from that host plant. In feeding tests, adult beetles strongly preferred eating E. trichocalyx regardless of which host they came from. In addition, females laid more eggs if they ate E. trichocalyx than E. crassifolium. So, E. trichocalyx is generally the better host. However, beetle mate preference was not in line with food choice. Males did not prefer to mate with females from E. trichocalyx. Females from E. crassifolium did prefer males from E. trichocalyx over males from E. crassifolium, but did not lay more eggs as a result of these matings. We conclude that the beetle populations we studied have not differentiated based on their host plants and may not have even adapted to the better host. Although to humans these host plant defenses differ dramatically, signs that they have caused evolution in the beetles are lacking. The case of T. eriodictyonis stands counter to many other studies that have seen the differentiation of ecotypes and/or adaptive coordination of an herbivore's life cycle based on host plant differences.
Collapse
Affiliation(s)
- Katherine Gould
- Department of BiologyCalifornia State UniversityNorthridgeCalifornia91330‐8303
| | - Paul Wilson
- Department of BiologyCalifornia State UniversityNorthridgeCalifornia91330‐8303
| |
Collapse
|
10
|
Is ecological speciation a major trend in aphids? Insights from a molecular phylogeny of the conifer-feeding genus Cinara. Front Zool 2013; 10:56. [PMID: 24044736 PMCID: PMC3848992 DOI: 10.1186/1742-9994-10-56] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022] Open
Abstract
Introduction In the past decade ecological speciation has been recognized as having an important role in the diversification of plant-feeding insects. Aphids are host-specialised phytophagous insects that mate on their host plants and, as such, they are prone to experience reproductive isolation linked with host plant association that could ultimately lead to species formation. The generality of such a scenario remains to be tested through macroevolutionary studies. To explore the prevalence of host-driven speciation in the diversification of the aphid genus Cinara and to investigate alternative modes of speciation, we reconstructed a phylogeny of this genus based on mitochondrial, nuclear and Buchnera aphidicola DNA sequence fragments and applied a DNA-based method of species delimitation. Using a recent software (PhyloType), we explored evolutionary transitions in host-plant genera, feeding sites and geographic distributions in the diversification of Cinara and investigated how transitions in these characters have accompanied speciation events. Results The diversification of Cinara has been constrained by host fidelity to conifer genera sometimes followed by sequential colonization onto different host species and by feeding-site specialisation. Nevertheless, our analyses suggest that, at the most, only half of the speciation events were accompanied by ecological niche shifts. The contribution of geographical isolation in the speciation process is clearly apparent in the occurrence of species from two continents in the same clades in relatively terminal positions in our phylogeny. Furthermore, in agreement with predictions from scenarios in which geographic isolation accounts for speciation events, geographic overlap between species increased significantly with time elapsed since their separation. Conclusions The history of Cinara offers a different perspective on the mode of speciation of aphids than that provided by classic models such as the pea aphid. In this genus of aphids, the role of climate and landscape history has probably been as important as host-plant specialisation in having shaped present-day diversity.
Collapse
|
11
|
Kölsch G, Synefiaridou D. Shared Ancestry of Symbionts? Sagrinae and Donaciinae (Coleoptera, Chrysomelidae) Harbor Similar Bacteria. INSECTS 2012; 3:473-91. [PMID: 26466539 PMCID: PMC4553606 DOI: 10.3390/insects3020473] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 04/11/2012] [Accepted: 04/17/2012] [Indexed: 12/03/2022]
Abstract
When symbioses between insects and bacteria are discussed, the origin of a given association is regularly of interest. We examined the evolution of the symbiosis between reed beetles (Coleoptera, Chrysomelidae, Donaciinae) and intracellular symbionts belonging to the Enterobacteriaceae. We analyzed the partial sequence of the 16S rRNA to assess the phylogenetic relationships with bacteria we found in other beetle groups (Cerambycidae, Anobiidae, other Chrysomelidae). We discuss the ecology of each association in the context of the phylogenetic analysis. The bacteria in Sagra femorata (Chrysomelidae, Sagrinae) are very closely related to those in the Donaciinae and are located in similar mycetomes. The Sagrinae build a cocoon for pupation like the Donaciinae, in which the bacteria produce the material required for the cocoon. These aspects support the close relationship between Sagrinae and Donaciinae derived in earlier studies and make a common ancestry of the symbioses likely. Using PCR primers specific for fungi, we found Candida sp. in the mycetomes of a cerambycid beetle along with the bacteria.
Collapse
Affiliation(s)
- Gregor Kölsch
- Zoological Institute, Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Dimitra Synefiaridou
- Zoological Institute, Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| |
Collapse
|
12
|
Molecular barcoding for central-eastern European Crioceris leaf-beetles (Coleoptera: Chrysomelidae). Open Life Sci 2012. [DOI: 10.2478/s11535-011-0099-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractAmong Crioceris leaf-beetles, the two most widespread species (Crioceris asparagi and C. duodecimpunctata) are serious invasive plant pests, while another two (C. quatuordecimpunctata and C. quinquepunctata) are rare species restricted to steppe-like habitats in Eurasia. The aim of the research was to check the genetic distinctiveness of these four species and develop barcodes for their molecular identification using the mitochondrial Cytochrome Oxidase I (COI) gene and two nuclear markers: Elongation Factor 1-α (EF1-α) and Internal Transcribed Spacer 1 (ITS1). The identification of each species was possible and reliable with the use of COI and ITS1 markers. EF1-α was omitted in analyses due to its high level of heterozygosity (presence of multiple PCR products). C. duodecimpunctata and C. quatuordecimpunctata were shown to be sister taxa, but the similar genetic distances between all of the species indicate that these species originated almost simultaneously from a common ancestor. Identification of two separate clades in populations of C. quatuordecimpunctata suggested that the clades are isolated and can be considered as separate conservation units.
Collapse
|
13
|
Kleinschmidt B, Kölsch G. Adopting Bacteria in Order to Adapt to Water-How Reed Beetles Colonized the Wetlands (Coleoptera, Chrysomelidae, Donaciinae). INSECTS 2011; 2:540-54. [PMID: 26467833 PMCID: PMC4553447 DOI: 10.3390/insects2040540] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/16/2011] [Accepted: 11/25/2011] [Indexed: 11/16/2022]
Abstract
The present paper reviews the biology of reed beetles (Donaciinae), presents experimental data on the role of specific symbiotic bacteria, and describes a molecular method for the detection of those bacteria. Reed beetles are herbivores living on wetland plants, each species being mono- or oligo-phagous. They lay their eggs on the host plant and the larvae live underwater in the sediment attached to its roots. The larvae pupate there in a water-tight cocoon, which they build using a secretion that is produced by symbiotic bacteria. The bacteria are located in four blind sacs at the foregut of the larvae; in (female) adults they colonize two out of the six Malpighian tubules. Tetracycline treatment of larvae reduced their pupation rate, although the bacteria could not be fully eliminated. When the small amount of bacterial mass attached to eggs was experimentally removed before hatching, symbiont free larvae resulted, showing the external transmission of the bacteria to the offspring. Specific primers were designed to detect the bacteria, and to confirm their absence in manipulated larvae. The pupation underwater enabled the reed beetles to permanently colonize the wetlands and to diversify in this habitat underexploited by herbivorous insects (adaptive radiation).
Collapse
Affiliation(s)
- Birgit Kleinschmidt
- Zoological Institute, Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Gregor Kölsch
- Zoological Institute, Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| |
Collapse
|
14
|
Türkgülü İ, Ekiz AN, Gök A, Şen B. The first representative of the fully aquatic leaf beetle genus Macroplea Samouelle, 1819 (Coleoptera, Chrysomelidae) in Turkey: Macroplea mutica (Fabricius, 1792), with notes on its biology, habitat, host plant and distribution. ZOOSYST EVOL 2011. [DOI: 10.1002/zoos.201100007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Dillman CB, Bergstrom DE, Noltie DB, Holtsford TP, Mayden RL. Regressive progression, progressive regression or neither? Phylogeny and evolution of the Percopsiformes (Teleostei, Paracanthopterygii). ZOOL SCR 2010. [DOI: 10.1111/j.1463-6409.2010.00454.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Turner H, Lieshout N, Van Ginkel WE, Menken SBJ. Molecular phylogeny of the small ermine moth genus Yponomeuta (Lepidoptera, Yponomeutidae) in the palaearctic. PLoS One 2010; 5:e9933. [PMID: 20360968 PMCID: PMC2847947 DOI: 10.1371/journal.pone.0009933] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/05/2010] [Indexed: 11/19/2022] Open
Abstract
Background The small ermine moth genus Yponomeuta (Lepidoptera, Yponomeutidae) contains 76 species that are specialist feeders on hosts from Celastraceae, Rosaceae, Salicaceae, and several other plant families. The genus is a model for studies in the evolution of phytophagous insects and their host-plant associations. Here, we reconstruct the phylogeny to provide a solid framework for these studies, and to obtain insight into the history of host-plant use and the biogeography of the genus. Methodology/Principal Findings DNA sequences from an internal transcribed spacer region (ITS-1) and from the 16S rDNA (16S) and cytochrome oxidase (COII) mitochondrial genes were collected from 20–23 (depending on gene) species and two outgroup taxa to reconstruct the phylogeny of the Palaearctic members of this genus. Sequences were analysed using three different phylogenetic methods (parsimony, likelihood, and Bayesian inference). Conclusions/Significance Roughly the same patterns are retrieved irrespective of the method used, and they are similar among the three genes. Monophyly is well supported for a clade consisting of the Japanese (but not the Dutch) population of Yponomeuta sedellus and Y. yanagawanus, a Y. kanaiellus–polystictus clade, and a Rosaceae-feeding, western Palaearctic clade (Y. cagnagellus–irrorellus clade). Within these clades, relationships are less well supported, and the patterns between the different gene trees are not so similar. The position of the remaining taxa is also variable among the gene trees and rather weakly supported. The phylogenetic information was used to elucidate patterns of biogeography and resource use. In the Palaearctic, the genus most likely originated in the Far East, feeding on Celastraceae, dispersing to the West concomitant with a shift to Rosaceae and further to Salicaceae. The association of Y. cagnagellus with Euonymus europaeus (Celastraceae), however, is a reversal. The only oligophagous species, Y. padellus, belongs to the derived western Palaearctic clade, evidence that specialisation is reversible.
Collapse
Affiliation(s)
- Hubert Turner
- Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
17
|
Can the tight co-speciation between reed beetles (Col., Chrysomelidae, Donaciinae) and their bacterial endosymbionts, which provide cocoon material, clarify the deeper phylogeny of the hosts? Mol Phylogenet Evol 2010; 54:810-21. [DOI: 10.1016/j.ympev.2009.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 10/29/2009] [Accepted: 10/31/2009] [Indexed: 11/23/2022]
|
18
|
Schwartz RS, Mueller RL. Branch length estimation and divergence dating: estimates of error in Bayesian and maximum likelihood frameworks. BMC Evol Biol 2010; 10:5. [PMID: 20064267 PMCID: PMC2827399 DOI: 10.1186/1471-2148-10-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 01/11/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Estimates of divergence dates between species improve our understanding of processes ranging from nucleotide substitution to speciation. Such estimates are frequently based on molecular genetic differences between species; therefore, they rely on accurate estimates of the number of such differences (i.e. substitutions per site, measured as branch length on phylogenies). We used simulations to determine the effects of dataset size, branch length heterogeneity, branch depth, and analytical framework on branch length estimation across a range of branch lengths. We then reanalyzed an empirical dataset for plethodontid salamanders to determine how inaccurate branch length estimation can affect estimates of divergence dates. RESULTS The accuracy of branch length estimation varied with branch length, dataset size (both number of taxa and sites), branch length heterogeneity, branch depth, dataset complexity, and analytical framework. For simple phylogenies analyzed in a Bayesian framework, branches were increasingly underestimated as branch length increased; in a maximum likelihood framework, longer branch lengths were somewhat overestimated. Longer datasets improved estimates in both frameworks; however, when the number of taxa was increased, estimation accuracy for deeper branches was less than for tip branches. Increasing the complexity of the dataset produced more misestimated branches in a Bayesian framework; however, in an ML framework, more branches were estimated more accurately. Using ML branch length estimates to re-estimate plethodontid salamander divergence dates generally resulted in an increase in the estimated age of older nodes and a decrease in the estimated age of younger nodes. CONCLUSIONS Branch lengths are misestimated in both statistical frameworks for simulations of simple datasets. However, for complex datasets, length estimates are quite accurate in ML (even for short datasets), whereas few branches are estimated accurately in a Bayesian framework. Our reanalysis of empirical data demonstrates the magnitude of effects of Bayesian branch length misestimation on divergence date estimates. Because the length of branches for empirical datasets can be estimated most reliably in an ML framework when branches are <1 substitution/site and datasets are > or =1 kb, we suggest that divergence date estimates using datasets, branch lengths, and/or analytical techniques that fall outside of these parameters should be interpreted with caution.
Collapse
Affiliation(s)
- Rachel S Schwartz
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA.
| | | |
Collapse
|
19
|
Kölsch G, Matz-Grund C, Pedersen BV. Ultrastructural and molecular characterization of endosymbionts of the reed beetle genusMacroplea(Chrysomelidae, Donaciinae), and proposal of “CandidatusMacropleicola appendiculatae” and “CandidatusMacropleicola muticae”. Can J Microbiol 2009; 55:1250-60. [DOI: 10.1139/w09-085] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular bacterial symbionts are known from various insect groups, particularly from those feeding on unbalanced diets, where the bacteria provide essential nutrients to the host. In the case of reed beetles (Coleoptera: Chrysomelidae, Donaciinae), however, the endosymbionts appear to be associated with specialized “glands” that secrete a material used for the beetles’ unusual water-tight cocoon. These glands were discovered over a century ago, but the bacteria they contain have yet to be characterized and placed in a phylogenetic context. Here, we describe the ultrastructure of two endosymbiotic species (“ Candidatus Macropleicola appendiculatae” and “ Candidatus Macropleicola muticae”) that reside in cells of the Malpighian tubules of the reed beetle species Macroplea appendiculata and Macroplea mutica , respectively. Fluorescent in situ hybridization using oligonucleotides targeting the 16S rRNA gene specific to Macroplea symbionts verified the localization of the symbionts in these organs. Phylogenetic analysis of 16S rRNA placed “Candidatus Macropleicola” in a clade of typically endosymbiotic Enterobacteriaceae (γ-proteobacteria). Finally, we discuss the evidence available for the hypothesis that the beetle larvae use a secretion produced by the bacteria for the formation of an underwater cocoon.
Collapse
Affiliation(s)
- Gregor Kölsch
- Zoological Institute, Department of Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
- Zoological Institute, Animal Ecology, University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
- University of Copenhagen, Department of Biology, Universitetsparken 15, DK 2100 Copenhagen Ø, Denmark
| | - Corinna Matz-Grund
- Zoological Institute, Department of Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
- Zoological Institute, Animal Ecology, University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
- University of Copenhagen, Department of Biology, Universitetsparken 15, DK 2100 Copenhagen Ø, Denmark
| | - Bo V. Pedersen
- Zoological Institute, Department of Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
- Zoological Institute, Animal Ecology, University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
- University of Copenhagen, Department of Biology, Universitetsparken 15, DK 2100 Copenhagen Ø, Denmark
| |
Collapse
|