1
|
Spikes M, Rodríguez-Silva R, Bennett KA, Bräger S, Josaphat J, Torres-Pineda P, Ernst A, Havenstein K, Schlupp I, Tiedemann R. A phylogeny of the genus Limia (Teleostei: Poeciliidae) suggests a single-lake radiation nested in a Caribbean-wide allopatric speciation scenario. BMC Res Notes 2021; 14:425. [PMID: 34823576 PMCID: PMC8613956 DOI: 10.1186/s13104-021-05843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The Caribbean is an important global biodiversity hotspot. Adaptive radiations there lead to many speciation events within a limited period and hence are particularly prominent biodiversity generators. A prime example are freshwater fish of the genus Limia, endemic to the Greater Antilles. Within Hispaniola, nine species have been described from a single isolated site, Lake Miragoâne, pointing towards extraordinary sympatric speciation. This study examines the evolutionary history of the Limia species in Lake Miragoâne, relative to their congeners throughout the Caribbean. RESULTS For 12 Limia species, we obtained almost complete sequences of the mitochondrial cytochrome b gene, a well-established marker for lower-level taxonomic relationships. We included sequences of six further Limia species from GenBank (total N = 18 species). Our phylogenies are in concordance with other published phylogenies of Limia. There is strong support that the species found in Lake Miragoâne in Haiti are monophyletic, confirming a recent local radiation. Within Lake Miragoâne, speciation is likely extremely recent, leading to incomplete lineage sorting in the mtDNA. Future studies using multiple unlinked genetic markers are needed to disentangle the relationships within the Lake Miragoâne clade.
Collapse
Affiliation(s)
- Montrai Spikes
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany.,Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Rodet Rodríguez-Silva
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Kerri-Ann Bennett
- Department of Life Sciences, The University of the West Indies (Mona Campus), Kingston, Jamaica
| | - Stefan Bräger
- German Oceanographic Museum (DMM), Katharinenberg 14-20, 18439, Stralsund, Germany
| | - James Josaphat
- Caribaea Intitiative and Université Des Antilles, Guadeloupe, Kingston, Jamaica
| | - Patricia Torres-Pineda
- Museo Nacional de Historia Natural Prof. "Eugenio de Jesús Marcano", Avenida Cesar Nicolás Penson, 10204, Santo Domingo, República Dominicana
| | - Anja Ernst
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany
| | - Katja Havenstein
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany
| | - Ingo Schlupp
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany.,Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany.
| |
Collapse
|
2
|
Rodriguez‐Silva R, Schlupp I. Biogeography of the West Indies: A complex scenario for species radiations in terrestrial and aquatic habitats. Ecol Evol 2021; 11:2416-2430. [PMID: 33767811 PMCID: PMC7981229 DOI: 10.1002/ece3.7236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/02/2022] Open
Abstract
Studies of the biogeography of the West Indies are numerous but not all taxonomic groups have received the same attention. Many of the contributions to this field have historically focused on terrestrial vertebrates from a perspective closely linked to the classical theory of island biogeography. However, some recent works have questioned whether some of the assumptions of this theory are too simplistic. In this review, we compiled information about the West Indies biogeography based on an extensive and rigorous literature search. While we offer some background of the main hypotheses that explain the origin of the Caribbean biota, our main purpose here is to highlight divergent diversification patterns observed in terrestrial versus aquatic groups of the West Indian biota and also to shed light on the unbalanced number of studies covering the biogeography of these groups of organisms. We use an objective method to compile existing information in the field and produce a rigorous literature review. Our results show that most of the relevant literature in the field is related to the study of terrestrial organisms (mainly vertebrates) and only a small portion covers aquatic groups. Specifically, livebearing fishes show interesting deviations from the species-area relationship predicted by classical island biogeography theory. We found that species richness on the Greater Antilles is positively correlated with island size but also with the presence of elevations showing that not only island area but also mountainous relief may be an important factor determining the number of freshwater species in the Greater Antilles. Our findings shed light on mechanisms that may differently drive speciation in aquatic versus terrestrial environments suggesting that ecological opportunity could outweigh the importance of island size in speciation. Investigations into freshwater fishes of the West Indies offer a promising avenue for understanding origins and subsequent diversification of the Caribbean biota.
Collapse
Affiliation(s)
| | - Ingo Schlupp
- Department of BiologyUniversity of OklahomaNormanOKUSA
| |
Collapse
|
3
|
Genetic structure of Rhinoceros Rock Iguanas, Cyclura cornuta, in the Dominican Republic, with insights into the impact of captive facilities and the taxonomic status of Cyclura on Mona Island. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01290-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Sawyer YE, MacDonald SO, Lessa EP, Cook JA. Living on the edge: Exploring the role of coastal refugia in the Alexander Archipelago of Alaska. Ecol Evol 2019; 9:1777-1797. [PMID: 30847072 PMCID: PMC6392352 DOI: 10.1002/ece3.4861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
Although islands are of long-standing interest to biologists, only a handful of studies have investigated the role of climatic history in shaping evolutionary diversification in high-latitude archipelagos. In this study of the Alexander Archipelago (AA) of Southeast Alaska, we address the impact of glacial cycles on geographic genetic structure for three mammals co-distributed along the North Pacific Coast. We examined variation in mitochondrial and nuclear loci for long-tailed voles (Microtus longicaudus), northwestern deermice (Peromyscus keeni), and dusky shrews (Sorex monticola), and then tested hypotheses derived from Species Distribution Models, reconstructions of paleoshorelines, and island area and isolation. In all three species, we identified paleoendemic clades that likely originated in coastal refugia, a finding consistent with other paleoendemic lineages identified in the region such as ermine. Although there is spatial concordance at the regional level for endemism, finer scale spatial and temporal patterns are less clearly defined. Demographic expansion across the region for these distinctive clades is also evident and highlights the dynamic history of Late Quaternary contraction and expansion that characterizes high-latitude species.
Collapse
Affiliation(s)
- Yadéeh E. Sawyer
- Department of Biology and Museum of Southwestern BiologyUniversity of New MexicoAlbuquerqueNew Mexico
| | - Stephen O. MacDonald
- Department of Biology and Museum of Southwestern BiologyUniversity of New MexicoAlbuquerqueNew Mexico
| | - Enrique P. Lessa
- Departamento de Ecología y Evolución, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
| | - Joseph A. Cook
- Department of Biology and Museum of Southwestern BiologyUniversity of New MexicoAlbuquerqueNew Mexico
| |
Collapse
|
5
|
Phylogeography of freshwater planorbid snails reveals diversification patterns in Eurasian continental islands. BMC Evol Biol 2018; 18:164. [PMID: 30400816 PMCID: PMC6219199 DOI: 10.1186/s12862-018-1273-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/08/2018] [Indexed: 01/19/2023] Open
Abstract
Background Islands have traditionally been the centre of evolutionary biological research, but the dynamics of immigration and differentiation at continental islands have not been well studied. Therefore, we focused on the Japanese archipelago, the continental islands located at the eastern end of the Eurasian continent. While the Japanese archipelago is characterised by high biodiversity and rich freshwater habitats, the origin and formation mechanisms of its freshwater organisms are not clear. In order to clarify the history of the planorbid gastropod fauna, we conducted phylogenetic analysis, divergence time estimation, ancestral state reconstruction, and lineage diversity estimations. Results Our analyses revealed the formation process of the planorbid fauna in the Japanese archipelago. Most lineages in the Japanese archipelago have closely related lineages on the continent, and the divergence within the Japanese lineages presumably occurred after the late Pliocene. In addition, each lineage is characterised by different phylogeographical patterns, suggesting that immigration routes from the continent to the Japanese archipelago differ among lineages. Furthermore, a regional lineage diversity plot showed that the present diversity in the Japanese archipelago potentially reflects the differentiation of lineages within the islands after the development of the Japanese archipelago. Conclusions Although additional taxon sampling and genetic analysis focused on each lineage are needed, our results suggest that immigration from multiple routes just prior to the development of the Japanese archipelago and subsequent diversification within the islands are major causes of the present-day diversity of the Japanese planorbid fauna. Electronic supplementary material The online version of this article (10.1186/s12862-018-1273-3) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Oliveira EF, Gehara M, São-Pedro VA, Chen X, Myers EA, Burbrink FT, Mesquita DO, Garda AA, Colli GR, Rodrigues MT, Arias FJ, Zaher H, Santos RML, Costa GC. Speciation with gene flow in whiptail lizards from a Neotropical xeric biome. Mol Ecol 2015; 24:5957-75. [PMID: 26502084 DOI: 10.1111/mec.13433] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/15/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022]
Abstract
Two main hypotheses have been proposed to explain the diversification of the Caatinga biota. The riverine barrier hypothesis (RBH) claims that the São Francisco River (SFR) is a major biogeographic barrier to gene flow. The Pleistocene climatic fluctuation hypothesis (PCH) states that gene flow, geographic genetic structure and demographic signatures on endemic Caatinga taxa were influenced by Quaternary climate fluctuation cycles. Herein, we analyse genetic diversity and structure, phylogeographic history, and diversification of a widespread Caatinga lizard (Cnemidophorus ocellifer) based on large geographical sampling for multiple loci to test the predictions derived from the RBH and PCH. We inferred two well-delimited lineages (Northeast and Southwest) that have diverged along the Cerrado-Caatinga border during the Mid-Late Miocene (6-14 Ma) despite the presence of gene flow. We reject both major hypotheses proposed to explain diversification in the Caatinga. Surprisingly, our results revealed a striking complex diversification pattern where the Northeast lineage originated as a founder effect from a few individuals located along the edge of the Southwest lineage that eventually expanded throughout the Caatinga. The Southwest lineage is more diverse, older and associated with the Cerrado-Caatinga boundaries. Finally, we suggest that C. ocellifer from the Caatinga is composed of two distinct species. Our data support speciation in the presence of gene flow and highlight the role of environmental gradients in the diversification process.
Collapse
Affiliation(s)
- Eliana F Oliveira
- Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Norte, Natal, RN, 59072-970, Brazil
| | - Marcelo Gehara
- Pós-Graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Natal, RN, 59072-970, Brazil
| | - Vinícius A São-Pedro
- Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Norte, Natal, RN, 59072-970, Brazil
| | - Xin Chen
- Department of Biology, 6S-143, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA.,Department of Biology, The Graduate School, City University of New York, New York, NY, 10016, USA
| | - Edward A Myers
- Department of Biology, 6S-143, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA.,Department of Biology, The Graduate School, City University of New York, New York, NY, 10016, USA
| | - Frank T Burbrink
- Department of Biology, 6S-143, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA.,Department of Biology, The Graduate School, City University of New York, New York, NY, 10016, USA.,Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024-5192, USA
| | - Daniel O Mesquita
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, PB, 58000-00, Brazil
| | - Adrian A Garda
- Departamento de Botânica e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, 59072-970, Brazil
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Miguel T Rodrigues
- Departamento de Zoologia, Universidade de São Paulo, São Paulo, SP, 05422-970, Brazil
| | - Federico J Arias
- Departamento de Zoologia, Universidade de São Paulo, São Paulo, SP, 05422-970, Brazil
| | - Hussam Zaher
- Museu de Zoologia, Universidade de São Paulo, São Paulo, SP, 04263-000, Brazil
| | - Rodrigo M L Santos
- Departamento de Zoologia, Universidade de São Paulo, São Paulo, SP, 05422-970, Brazil
| | - Gabriel C Costa
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, RN, 59072-970, Brazil
| |
Collapse
|
7
|
Geneva AJ, Hilton J, Noll S, Glor RE. Multilocus phylogenetic analyses of Hispaniolan and Bahamian trunk anoles (distichus species group). Mol Phylogenet Evol 2015; 87:105-17. [PMID: 25772800 DOI: 10.1016/j.ympev.2015.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/14/2015] [Accepted: 02/16/2015] [Indexed: 01/31/2023]
Abstract
The distichus species group includes six species and 21 subspecies of trunk ecomorph anoles distributed across Hispaniola and its satellite islands as well as the northern Bahamas. Although this group has long served as a model system for studies of reproductive character displacement, adaptation, behavior and speciation, it has never been the subject of a comprehensive phylogenetic analysis. Our goal here is to generate a multilocus phylogenetic dataset (one mitochondrial and seven nuclear loci) and to use this dataset to infer phylogenetic relationships among the majority of the taxa assigned to the distichus species group. We use these phylogenetic trees to address three topics about the group's evolution. First, we consider longstanding taxonomic controversies about the status of several species and subspecies assigned to the distichus species group. Second, we investigate the biogeographic history of the group and specifically test the hypotheses that historical division of Hispaniola into two paleo-islands contributed to the group's diversification and that Bahamian and Hispaniolan satellite island populations are derived from colonists from the main Hispaniolan landmass. Finally, third, we use comparative phylogenetic analyses to test the hypothesis that divergence between pale yellow and darkly pigmented orange or red dewlap coloration has occurred repeatedly across the distichus species group.
Collapse
Affiliation(s)
- Anthony J Geneva
- Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| | - Jared Hilton
- Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| | - Sabina Noll
- Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| | - Richard E Glor
- Herpetology Division, Biodiversity Institute, University of Kansas, Lawrence, KS 66045, United States; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, United States.
| |
Collapse
|
8
|
Cabaña I, Gardenal CN, Chiaraviglio M, Rivera PC. Natural Hybridization in Lizards of the GenusTupinambis(Teiidae) in the Southernmost Contact Zone of their Distribution Range. ANN ZOOL FENN 2014. [DOI: 10.5735/086.051.0306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Grechko VV. The problems of molecular phylogenetics with the example of squamate reptiles: Mitochondrial DNA markers. Mol Biol 2013. [DOI: 10.1134/s0026893313010056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Hansford J, Nuñez-Miño JM, Young RP, Brace S, Brocca JL, Turvey ST. Taxonomy-testing and the ‘Goldilocks Hypothesis’: morphometric analysis of species diversity in living and extinct Hispaniolan hutias. SYST BIODIVERS 2012. [DOI: 10.1080/14772000.2012.748697] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- James Hansford
- a Department of Biology , University of York, Wentworth Way , York YO10 5DD , UK
- b Institute of Zoology, Zoological Society of London, Regent's Park , London , NW1 4RY , UK
| | - José M. Nuñez-Miño
- c Durrell Wildlife Conservation Trust, Les Augrès Manor, Trinity , Jersey JE3 5BP, Channel Islands
| | - Richard P. Young
- c Durrell Wildlife Conservation Trust, Les Augrès Manor, Trinity , Jersey JE3 5BP, Channel Islands
- d Department of Biology and Biochemistry , University of Bath , Bath BA2 7AY, UK
| | - Selina Brace
- e School of Biological Sciences , Royal Holloway University of London, Egham TW20 0EX , UK
| | - Jorge L. Brocca
- f Sociedad Ornitológica de la Hispaniola , Parque Zoologico Nacional, Avenida de la Vega Real, Arroyo Hondo , Santo Domingo , Dominican Republic
| | - Samuel T. Turvey
- b Institute of Zoology, Zoological Society of London, Regent's Park , London , NW1 4RY , UK
| |
Collapse
|
11
|
References. Mol Ecol 2012. [DOI: 10.1002/9780470979365.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
A multilocus perspective on the speciation history of a North American aridland toad (Anaxyrus punctatus). Mol Phylogenet Evol 2012; 64:393-400. [DOI: 10.1016/j.ympev.2012.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/19/2012] [Accepted: 04/21/2012] [Indexed: 11/21/2022]
|
13
|
Brace S, Barnes I, Powell A, Pearson R, Woolaver LG, Thomas MG, Turvey ST. Population history of the Hispaniolan hutia Plagiodontia aedium (Rodentia: Capromyidae): testing the model of ancient differentiation on a geotectonically complex Caribbean island. Mol Ecol 2012; 21:2239-53. [PMID: 22404699 DOI: 10.1111/j.1365-294x.2012.05514.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hispaniola is a geotectonically complex island consisting of two palaeo-islands that docked c. 10 Ma, with a further geological boundary subdividing the southern palaeo-island into eastern and western regions. All three regions have been isolated by marine barriers during the late Cenozoic and possess biogeographically distinct terrestrial biotas. However, there is currently little evidence to indicate whether Hispaniolan mammals show distributional patterns reflecting this geotectonic history, as the island's endemic land mammal fauna is now almost entirely extinct. We obtained samples of Hispaniolan hutia (Plagiodontia aedium), one of the two surviving Hispaniolan land mammal species, through fieldwork and historical museum collections from seven localities distributed across all three of the island's biogeographic regions. Phylogenetic analysis using mitochondrial DNA (cytochrome b) reveals a pattern of historical allopatric lineage divergence in this species, with the spatial distribution of three distinct hutia lineages biogeographically consistent with the island's geotectonic history. Coalescent modelling, approximate Bayesian computation and approximate Bayes factor analyses support our phylogenetic inferences, indicating near-complete genetic isolation of these biogeographically separate populations and differing estimates of their effective population sizes. Spatial congruence of hutia lineage divergence is not however matched by temporal congruence with divergences in other Hispaniolan taxa or major events in Hispaniola's geotectonic history; divergence between northern and southern hutia lineages dates to c. 0.6 Ma, significantly later than the unification of the palaeo-islands. The three allopatric Plagiodontia populations should all be treated as distinct management units for conservation, with particular attention required for the northern population (low haplotype diversity) and the south-western population (high haplotype diversity but highly threatened).
Collapse
Affiliation(s)
- Selina Brace
- School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
If island biogeography has a sweet spot, it's where islands generate their own species diversity rather than merely taking on mainland immigrants. In birds and other highly dispersive taxa, however, this 'zone of radiation', may be vanishingly small. Darwin's finches and Hawaiian Honeycreepers are among only a handful of examples of island radiation in birds (Price 2008), suggesting that winged powers of dispersal make sufficient isolation from mainland colonists unlikely, while also hindering speciation within and among isolated islands. Nevertheless, two studies in this issue of Molecular Ecology join a string of other recent analyses suggesting that island radiation in birds remains under-appreciated (see also Moyle et al. 2009; Kisel & Barraclough 2010; Rosindell & Phillimore 2011). Melo et al. (2011) use a phylogenetic analysis of white-eyes on islands in the Gulf of Guinea to identify two previously overlooked island radiations, and reveal replicated adaptive divergence on islands where species occur in pairs. Sly et al. (2011), meanwhile, consider possible explanations for speciation and geographic differentiation within a large island, and find the same type of oceanic barriers that are critical to bird speciation across archipelagos may also contribute to divergence that appears to have occurred within a single island.
Collapse
Affiliation(s)
- Richard E Glor
- Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627, USA.
| |
Collapse
|
15
|
NG JULIENNE, GLOR RICHARDE. Genetic differentiation among populations of a Hispaniolan trunk anole that exhibit geographical variation in dewlap colour. Mol Ecol 2011; 20:4302-17. [DOI: 10.1111/j.1365-294x.2011.05267.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Lohse K, Sharanowski B, Blaxter M, Nicholls JA, Stone GN. Developing EPIC markers for chalcidoid Hymenoptera from EST and genomic data. Mol Ecol Resour 2011; 11:521-9. [PMID: 21481210 DOI: 10.1111/j.1755-0998.2010.02956.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Increasing numbers of phylogeographic studies make comparative inferences about the histories of co-distributed species. Although the aims of such studies are best achieved by jointly analysing sequences from multiple loci in a model-based framework, such data currently exist for few nonmodel systems. We used existing genomic data and expressed sequence tags (ESTs) for Hymenoptera and other insects to design intron-crossing primers for 40 loci, mainly ribosomal proteins, for chalcidoid parasitoids. Amplification success was scored on a range of taxa associated with two natural communities; oak galls and figs. Taxa were chosen at increasing distance from Nasonia, which was used for primer design, (i) within Pteromalids, (ii) within Chalcidoidea (Eupelmidae, Eulophidae, Eurytomidae, Ormyridae, Torymidae) and (iii) for a selection of distantly related gall and fig wasps (Cynipidae, Agaonidae). To assess the utility of these loci for phylogeographic and population genetic studies, we compared genetic diversity between Western Palaearctic refugia for two species. Our results show that it is feasible to design a large number of exon-primed-intron-crossing (EPIC) loci that may be informative about phylogeographic history within species but amplify across a large taxonomic range.
Collapse
Affiliation(s)
- Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | | | | | | | | |
Collapse
|
17
|
Sly ND, Townsend AK, Rimmer CC, Townsend JM, Latta SC, Lovette IJ. Ancient islands and modern invasions: disparate phylogeographic histories among Hispaniola's endemic birds. Mol Ecol 2011; 20:5012-24. [PMID: 21449896 DOI: 10.1111/j.1365-294x.2011.05073.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With its large size, complex topography and high number of avian endemics, Hispaniola appears to be a likely candidate for the in situ speciation of its avifauna, despite the worldwide rarity of avian speciation within single islands. We used multilocus comparative phylogeography techniques to examine the pattern and history of divergence in 11 endemic birds representing potential within-island speciation events. Haplotype and allele networks from mitochondrial ND2 and nuclear intron loci reveal a consistent pattern: phylogeographic divergence within or between closely related species is correlated with the likely distribution of ancient sea barriers that once divided Hispaniola into several smaller paleo-islands. Coalescent and mitochondrial clock dating of divergences indicate species-specific response to different geological events over the wide span of the island's history. We found no evidence that ecological or topographical complexity generated diversity, either by creating open niches or by restricting long-term gene flow. Thus, no true within-island speciation appears to have occurred among the species sampled on Hispaniola. Divergence events predating the merging of Hispaniola's paleo-island blocks cannot be considered in situ divergence, and postmerging divergence in response to episodic island segmentation by marine flooding probably represents in situ vicariance or interarchipelago speciation by dispersal. Our work highlights the necessity of considering island geologic history while investigating the speciation-area relationship in birds and other taxa.
Collapse
Affiliation(s)
- Nicholas D Sly
- Fuller Evolutionary Biology Program, Cornell Laboratory of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA.
| | | | | | | | | | | |
Collapse
|
18
|
CAMARGO ARLEY, SINERVO BARRY, SITES JACKW. Lizards as model organisms for linking phylogeographic and speciation studies. Mol Ecol 2010; 19:3250-70. [DOI: 10.1111/j.1365-294x.2010.04722.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Garrick RC, Sunnucks P, Dyer RJ. Nuclear gene phylogeography using PHASE: dealing with unresolved genotypes, lost alleles, and systematic bias in parameter estimation. BMC Evol Biol 2010; 10:118. [PMID: 20429950 PMCID: PMC2880299 DOI: 10.1186/1471-2148-10-118] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/30/2010] [Indexed: 01/25/2023] Open
Abstract
Background A widely-used approach for screening nuclear DNA markers is to obtain sequence data and use bioinformatic algorithms to estimate which two alleles are present in heterozygous individuals. It is common practice to omit unresolved genotypes from downstream analyses, but the implications of this have not been investigated. We evaluated the haplotype reconstruction method implemented by PHASE in the context of phylogeographic applications. Empirical sequence datasets from five non-coding nuclear loci with gametic phase ascribed by molecular approaches were coupled with simulated datasets to investigate three key issues: (1) haplotype reconstruction error rates and the nature of inference errors, (2) dataset features and genotypic configurations that drive haplotype reconstruction uncertainty, and (3) impacts of omitting unresolved genotypes on levels of observed phylogenetic diversity and the accuracy of downstream phylogeographic analyses. Results We found that PHASE usually had very low false-positives (i.e., a low rate of confidently inferring haplotype pairs that were incorrect). The majority of genotypes that could not be resolved with high confidence included an allele occurring only once in a dataset, and genotypic configurations involving two low-frequency alleles were disproportionately represented in the pool of unresolved genotypes. The standard practice of omitting unresolved genotypes from downstream analyses can lead to considerable reductions in overall phylogenetic diversity that is skewed towards the loss of alleles with larger-than-average pairwise sequence divergences, and in turn, this causes systematic bias in estimates of important population genetic parameters. Conclusions A combination of experimental and computational approaches for resolving phase of segregating sites in phylogeographic applications is essential. We outline practical approaches to mitigating potential impacts of computational haplotype reconstruction on phylogeographic inferences. With targeted application of laboratory procedures that enable unambiguous phase determination via physical isolation of alleles from diploid PCR products, relatively little investment of time and effort is needed to overcome the observed biases.
Collapse
Affiliation(s)
- Ryan C Garrick
- Department of Biology, Virginia Commonwealth University, Richmond, 23284, USA.
| | | | | |
Collapse
|
20
|
Inference of population history by coupling exploratory and model-driven phylogeographic analyses. Int J Mol Sci 2010; 11:1190-227. [PMID: 20480016 PMCID: PMC2871112 DOI: 10.3390/ijms11041190] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 11/16/2022] Open
Abstract
Understanding the nature, timing and geographic context of historical events and population processes that shaped the spatial distribution of genetic diversity is critical for addressing questions relating to speciation, selection, and applied conservation management. Cladistic analysis of gene trees has been central to phylogeography, but when coupled with approaches that make use of different components of the information carried by DNA sequences and their frequencies, the strength and resolution of these inferences can be improved. However, assessing concordance of inferences drawn using different analytical methods or genetic datasets, and integrating their outcomes, can be challenging. Here we overview the strengths and limitations of different types of genetic data, analysis methods, and approaches to historical inference. We then turn our attention to the potentially synergistic interactions among widely-used and emerging phylogeographic analyses, and discuss some of the ways that spatial and temporal concordance among inferences can be assessed. We close this review with a brief summary and outlook on future research directions.
Collapse
|
21
|
Strasburg JL, Rieseberg LH. How robust are "isolation with migration" analyses to violations of the im model? A simulation study. Mol Biol Evol 2009; 27:297-310. [PMID: 19793831 DOI: 10.1093/molbev/msp233] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methods developed over the past decade have made it possible to estimate molecular demographic parameters such as effective population size, divergence time, and gene flow with unprecedented accuracy and precision. However, they make simplifying assumptions about certain aspects of the species' histories and the nature of the genetic data, and it is not clear how robust they are to violations of these assumptions. Here, we use simulated data sets to examine the effects of a number of violations of the "Isolation with Migration" (IM) model, including intralocus recombination, population structure, gene flow from an unsampled species, linkage among loci, and divergent selection, on demographic parameter estimates made using the program IMA. We also examine the effect of having data that fit a nucleotide substitution model other than the two relatively simple models available in IMA. We find that IMA estimates are generally quite robust to small to moderate violations of the IM model assumptions, comparable with what is often encountered in real-world scenarios. In particular, population structure within species, a condition encountered to some degree in virtually all species, has little effect on parameter estimates even for fairly high levels of structure. Likewise, most parameter estimates are robust to significant levels of recombination when data sets are pared down to apparently nonrecombining blocks, although substantial bias is introduced to several estimates when the entire data set with recombination is included. In contrast, a poor fit to the nucleotide substitution model can result in an increased error rate, in some cases due to a predictable bias and in other cases due to an increase in variance in parameter estimates among data sets simulated under the same conditions.
Collapse
|
22
|
|
23
|
Abstract
It has been claimed that hundreds of researchers use nested clade phylogeographic analysis (NCPA) based on what the method promises rather than requiring objective validation of the method. The supposed failure of NCPA is based upon the argument that validating it by using positive controls ignored type I error, and that computer simulations have shown a high type I error. The first argument is factually incorrect: the previously published validation analysis fully accounted for both type I and type II errors. The simulations that indicate a 75% type I error rate have serious flaws and only evaluate outdated versions of NCPA. These outdated type I error rates fall precipitously when the 2003 version of single-locus NCPA is used or when the 2002 multilocus version of NCPA is used. It is shown that the tree-wise type I errors in single-locus NCPA can be corrected to the desired nominal level by a simple statistical procedure, and that multilocus NCPA reconstructs a simulated scenario used to discredit NCPA with 100% accuracy. Hence, NCPA is a not a failed method at all, but rather has been validated both by actual data and by simulated data in a manner that satisfies the published criteria given by its critics. The critics have come to different conclusions because they have focused on the pre-2002 versions of NCPA and have failed to take into account the extensive developments in NCPA since 2002. Hence, researchers can choose to use NCPA based upon objective critical validation that shows that NCPA delivers what it promises.
Collapse
Affiliation(s)
- Alan R Templeton
- Department of Biology, Campus Box 1137, Washington University, St. Louis, Missouri 63130, USA.
| |
Collapse
|
24
|
|
25
|
Templeton AR. Statistical hypothesis testing in intraspecific phylogeography: nested clade phylogeographical analysis vs. approximate Bayesian computation. Mol Ecol 2009; 18:319-31. [PMID: 19192182 PMCID: PMC2696056 DOI: 10.1111/j.1365-294x.2008.04026.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nested clade phylogeographical analysis (NCPA) and approximate Bayesian computation (ABC) have been used to test phylogeographical hypotheses. Multilocus NCPA tests null hypotheses, whereas ABC discriminates among a finite set of alternatives. The interpretive criteria of NCPA are explicit and allow complex models to be built from simple components. The interpretive criteria of ABC are ad hoc and require the specification of a complete phylogeographical model. The conclusions from ABC are often influenced by implicit assumptions arising from the many parameters needed to specify a complex model. These complex models confound many assumptions so that biological interpretations are difficult. Sampling error is accounted for in NCPA, but ABC ignores important sources of sampling error that creates pseudo-statistical power. NCPA generates the full sampling distribution of its statistics, but ABC only yields local probabilities, which in turn make it impossible to distinguish between a good fitting model, a non-informative model, and an over-determined model. Both NCPA and ABC use approximations, but convergences of the approximations used in NCPA are well defined whereas those in ABC are not. NCPA can analyse a large number of locations, but ABC cannot. Finally, the dimensionality of tested hypothesis is known in NCPA, but not for ABC. As a consequence, the 'probabilities' generated by ABC are not true probabilities and are statistically non-interpretable. Accordingly, ABC should not be used for hypothesis testing, but simulation approaches are valuable when used in conjunction with NCPA or other methods that do not rely on highly parameterized models.
Collapse
Affiliation(s)
- Alan R Templeton
- Department of Biology, Washington University, St. Louis, MO 63130-4899, USA.
| |
Collapse
|