1
|
Ströckens F, Schwalvenberg M, El Basbasse Y, Amunts K, Güntürkün O, Ocklenburg S. Limb preferences in non-human vertebrates: A new decade. Laterality 2025:1-46. [PMID: 40393935 DOI: 10.1080/1357650x.2025.2499049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/23/2025] [Indexed: 05/22/2025]
Abstract
Over a decade ago, we demonstrated that population-level asymmetries in limb preferences are not uniquely human but occur in various species of non-human animals (Ströckens, F., Güntürkün, O., & Ocklenburg, S. (2013). Limb preferences in non-human vertebrates. Laterality, 18(5), 536-575). While back then, vertebrate limb preference data were too scarce to reconstruct the evolutionary basis of human handedness or apply phylogenetic comparative methods, many voids were filled in the meantime. It is therefore high time to update the last analysis on limb preferences in all non-extinct vertebrate orders in the present article. We show that the robustness of empirical evidence for limb preference in non-human vertebrates increased in the last decade due to (1) more studies, (2) larger sample sizes, and (3) an increased number of meta-analyses integrating findings from various species (e.g., cats, dogs, rats, mice). Similar to the previous publication, we used cladographic comparisons to systematically assess limb preferences in non-extinct vertebrate orders. The identified studies analyzed 172 different species. Overall, 39.53% of species showed evidence for population-level asymmetries, 32.56% showed individual-level asymmetries, and 27.91% showed no asymmetry. These findings not only further support the notion that asymmetries are a widespread feature of vertebrate motor organization, but they also identify crucial gaps that should be filled by future investigations.
Collapse
Affiliation(s)
- Felix Ströckens
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Maike Schwalvenberg
- Biopsychology, Institute for Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Yasmin El Basbasse
- Biopsychology, Institute for Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Katrin Amunts
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Onur Güntürkün
- Biopsychology, Institute for Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Biopsychology, Institute for Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
- Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Báez AM, Nicoli L. Re-examination of the oldest known frog from South America: New data prompt new evolutionary interpretations. Anat Rec (Hoboken) 2025. [PMID: 40091807 DOI: 10.1002/ar.25654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
Available paleontological evidence, although scarce, points to the early diversification of salientian lissamphibians in the Triassic and Early Jurassic. This study provides new key anatomical information on the earliest mostly articulated frog currently known, thereby improving our understanding of the early evolution of this lissamphibian lineage. Herein, available specimens of the Early Jurassic Vieraella herbstii from Patagonia, which consist of dorsal and ventral imprints of the incomplete, partially articulated skeleton of a single individual, are thoroughly redescribed. Although we comment on its known features, we focus on those that had been misinterpreted or overlooked previously. Among other features, we address the relative proportions of the skull regions and limbs, the morphology of the vomers, the peculiar articulation of the palatine flanges of premaxilla and maxilla that suggests the presence of well-developed cristae subnasales, and the presence of prepollex. The most surprising, significant findings are the presence of stapes, indicating the possibility of a complete tympanic middle ear, and of a short, tapering urostyle and postsacral vertebral elements. Based on available information, we present partial reconstructions of the pectoral girdle and the skeleton of Vieraella in the dorsal aspect. Discussion of the evolutionary significance of these features and perusal of the phylogenetic and functional analyses that included Vieraella in the taxon sampling highlight the necessity of thorough revision of the scorings and measurements, incorporating information presented herein. This reassessment will be relevant not only to clarify its relationships but also to provide sound insights into the early diversification of frogs.
Collapse
Affiliation(s)
- Ana M Báez
- CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
| | - Laura Nicoli
- CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- División Herpetología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
| |
Collapse
|
3
|
Page-McCaw PS, Pokidysheva EN, Darris CE, Chetyrkin S, Fidler AL, Gallup J, Murawala P, Hudson JK, Boudko S, Hudson BG. Collagen IV of basement membranes: I. Origin and diversification of COL4 genes enabling animal evolution and adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.18.563013. [PMID: 37905027 PMCID: PMC10614949 DOI: 10.1101/2023.10.18.563013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Collagen IV is a major component of basement membranes, a specialized form of extracellular matrix that enabled the assembly of multicellular epithelial tissues. In mammals, collagen IV assembles from a family of six α-chains (α1 to α6), forming three supramolecular scaffolds: Col-IVα121, Col-IVα345 and Col-IVα121-α556. The α-chains are encoded by six genes (COL4A1-6) that occur in pairs in a head-to-head arrangement. In Alport syndrome, variants in COL4A3, 4 or 5 genes, encoding Col-IVα345 scaffold in glomerular basement membrane (GBM), the kidney ultrafilter, cause progressive renal failure in millions of people worldwide. How variants cause dysfunction remains obscure. Here, we gained insights into Col-IVα345 function by determining its evolutionary lineage, as revealed from phylogenetic analyses and tissue expression of COL4 gene-pairs. We found that the COL4A⟨1|2⟩ gene-pair emerged in basal Ctenophores and Cnidaria phyla and is highly conserved across metazoans. The COL4A⟨1|2⟩ duplicated and arose as the progenitor to the COL4A⟨3|4⟩ gene-pair in cyclostomes, coinciding with emergence of kidney GBM, and expressed and conserved in jawed-vertebrates, except for amphibians, and a second duplication as the progenitor to the COL4A⟨5|6⟩ gene-pair and conserved in jawed-vertebrates. These findings revealed that Col-IVα121 is the progenitor scaffold, expressed ubiquitously in metazoan basement membranes, and which evolved into vertebrate Col-IVα345 and expressed in GBM. The Col-IVα345 scaffold, in comparison, has an increased number of cysteine residues, varying in number with osmolarity of the environment. Cysteines mediate disulfide crosslinks between protomers, an adaptation enabling a compact GBM that withstands the high hydrostatic pressure associated with glomerular ultrafiltration.
Collapse
|
4
|
Pazzaglia A, Bicanski A, Ferrario A, Arreguit J, Ryczko D, Ijspeert A. Balancing central control and sensory feedback produces adaptable and robust locomotor patterns in a spiking, neuromechanical model of the salamander spinal cord. PLoS Comput Biol 2025; 21:e1012101. [PMID: 39836708 PMCID: PMC11771899 DOI: 10.1371/journal.pcbi.1012101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 01/27/2025] [Accepted: 12/26/2024] [Indexed: 01/23/2025] Open
Abstract
This study introduces a novel neuromechanical model employing a detailed spiking neural network to explore the role of axial proprioceptive sensory feedback, namely stretch feedback, in salamander locomotion. Unlike previous studies that often oversimplified the dynamics of the locomotor networks, our model includes detailed simulations of the classes of neurons that are considered responsible for generating movement patterns. The locomotor circuits, modeled as a spiking neural network of adaptive leaky integrate-and-fire neurons, are coupled to a three-dimensional mechanical model of a salamander with realistic physical parameters and simulated muscles. In open-loop simulations (i.e., without sensory feedback), the model replicates locomotor patterns observed in-vitro and in-vivo for swimming and trotting gaits. Additionally, a modular descending reticulospinal drive to the central pattern generation network allows to accurately control the activation, frequency and phase relationship of the different sections of the limb and axial circuits. In closed-loop swimming simulations (i.e. including axial stretch feedback), systematic evaluations reveal that intermediate values of feedback strength increase the tail beat frequency and reduce the intersegmental phase lag, contributing to a more coordinated, faster and energy-efficient locomotion. Interestingly, the result is conserved across different feedback topologies (ascending or descending, excitatory or inhibitory), suggesting that it may be an inherent property of axial proprioception. Moreover, intermediate feedback strengths expand the stability region of the network, enhancing its tolerance to a wider range of descending drives, internal parameters' modifications and noise levels. Conversely, high values of feedback strength lead to a loss of controllability of the network and a degradation of its locomotor performance. Overall, this study highlights the beneficial role of proprioception in generating, modulating and stabilizing locomotion patterns, provided that it does not excessively override centrally-generated locomotor rhythms. This work also underscores the critical role of detailed, biologically-realistic neural networks to improve our understanding of vertebrate locomotion.
Collapse
Affiliation(s)
- Alessandro Pazzaglia
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Andrej Bicanski
- Neural Computation Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andrea Ferrario
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan Arreguit
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Dimitri Ryczko
- Ryczko Laboratory, Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Canada
| | - Auke Ijspeert
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Benítez-Prián M, Lorente-Martínez H, Agorreta A, Gower DJ, Wilkinson M, Roelants K, San Mauro D. Diversity and Molecular Evolution of Antimicrobial Peptides in Caecilian Amphibians. Toxins (Basel) 2024; 16:150. [PMID: 38535816 PMCID: PMC10975883 DOI: 10.3390/toxins16030150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2025] Open
Abstract
Antimicrobial peptides (AMPs) are key molecules in the innate immune defence of vertebrates with rapid action, broad antimicrobial spectrum, and ability to evade pathogen resistance mechanisms. To date, amphibians are the major group of vertebrates from which most AMPs have been characterised, but most studies have focused on the bioactive skin secretions of anurans (frogs and toads). In this study, we have analysed the complete genomes and/or transcriptomes of eight species of caecilian amphibians (order Gymnophiona) and characterised the diversity, molecular evolution, and antimicrobial potential of the AMP repertoire of this order of amphibians. We have identified 477 candidate AMPs within the studied caecilian genome and transcriptome datasets. These candidates are grouped into 29 AMP families, with four corresponding to peptides primarily exhibiting antimicrobial activity and 25 potentially serving as AMPs in a secondary function, either in their entirety or after cleavage. In silico prediction methods were used to identify 62 of those AMPs as peptides with promising antimicrobial activity potential. Signatures of directional selection were detected for five candidate AMPs, which may indicate adaptation to the different selective pressures imposed by evolutionary arms races with specific pathogens. These findings provide encouraging support for the expectation that caecilians, being one of the least-studied groups of vertebrates, and with ~300 million years of separate evolution, are an underexplored resource of great pharmaceutical potential that could help to contest antibiotic resistance and contribute to biomedical advance.
Collapse
Affiliation(s)
- Mario Benítez-Prián
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-P.); (H.L.-M.)
| | - Héctor Lorente-Martínez
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-P.); (H.L.-M.)
| | - Ainhoa Agorreta
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-P.); (H.L.-M.)
| | | | - Mark Wilkinson
- Herpetology Lab, Natural History Museum, London SW7 5BD, UK;
| | - Kim Roelants
- bDIV, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium;
| | - Diego San Mauro
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-P.); (H.L.-M.)
| |
Collapse
|
6
|
Abstract
Salamanders are an important group of living amphibians and model organisms for understanding locomotion, development, regeneration, feeding, and toxicity in tetrapods. However, their origin and early radiation remain poorly understood, with early fossil stem-salamanders so far represented by larval or incompletely known taxa. This poor record also limits understanding of the origin of Lissamphibia (i.e., frogs, salamanders, and caecilians). We report fossils from the Middle Jurassic of Scotland representing almost the entire skeleton of the enigmatic stem-salamander Marmorerpeton. We use computed tomography to visualize high-resolution three-dimensional anatomy, describing morphologies that were poorly characterized in early salamanders, including the braincase, scapulocoracoid, and lower jaw. We use these data in the context of a phylogenetic analysis intended to resolve the relationships of early and stem-salamanders, including representation of important outgroups alongside data from high-resolution imaging of extant species. Marmorerpeton is united with Karaurus, Kokartus, and others from the Middle Jurassic-Lower Cretaceous of Asia, providing evidence for an early radiation of robustly built neotenous stem-salamanders. These taxa display morphological specializations similar to the extant cryptobranchid "giant" salamanders. Our analysis also demonstrates stem-group affinities for a larger sample of Jurassic species than previously recognized, highlighting an unappreciated diversity of stem-salamanders and cautioning against the use of single species (e.g., Karaurus) as exemplars for stem-salamander anatomy. These phylogenetic findings, combined with knowledge of the near-complete skeletal anatomy of Mamorerpeton, advance our understanding of evolutionary changes on the salamander stem-lineage and provide important data on early salamanders and the origins of Batrachia and Lissamphibia.
Collapse
|
7
|
Jared C, Luiz Mailho‐Fontana P, Maria Antoniazzi M. Differences between poison and venom: An attempt at an integrative biological approach. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Carlos Jared
- Laboratory of Structural Biology Instituto Butantan São Paulo Brazil
| | | | | |
Collapse
|
8
|
Zhang J, Miao G, Hu S, Sun Q, Ding H, Ji Z, Guo P, Yan S, Wang C, Kan X, Nie L. Quantification and evolution of mitochondrial genome rearrangement in Amphibians. BMC Ecol Evol 2021; 21:19. [PMID: 33563214 PMCID: PMC7871395 DOI: 10.1186/s12862-021-01755-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 01/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rearrangement is an important topic in the research of amphibian mitochondrial genomes ("mitogenomes" hereafter), whose causes and mechanisms remain enigmatic. Globally examining mitogenome rearrangements and uncovering their characteristics can contribute to a better understanding of mitogenome evolution. RESULTS Here we systematically investigated mitogenome arrangements of 232 amphibians including four newly sequenced Dicroglossidae mitogenomes. The results showed that our new sequenced mitogenomes all possessed a trnM tandem duplication, which was not exclusive to Dicroglossidae. By merging the same arrangements, the mitogenomes of ~ 80% species belonged to the four major patterns, the major two of which were typical vertebrate arrangement and typical neobatrachian arrangement. Using qMGR for calculating rearrangement frequency (RF) (%), we found that the control region (CR) (RF = 45.04) and trnL2 (RF = 38.79) were the two most frequently rearranged components. Forty-seven point eight percentage of amphibians possessed rearranged mitogenomes including all neobatrachians and their distribution was significantly clustered in the phylogenetic trees (p < 0.001). In addition, we argued that the typical neobatrachian arrangement may have appeared in the Late Jurassic according to possible occurrence time estimation. CONCLUSION It was the first global census of amphibian mitogenome arrangements from the perspective of quantity statistics, which helped us to systematically understand the type, distribution, frequency and phylogenetic characteristics of these rearrangements.
Collapse
Affiliation(s)
- Jifeng Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China.
- College of Life Science, Anhui Normal University, Wuhu, Anhui, 241000, People's Republic of China.
- Anhui Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, 232001, People's Republic of China.
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Health and Safety, Ministry of Education, Huainan, 232001, People's Republic of China.
- Anhui Shanhe Pharmaceutical Excipients Co., Ltd., Huainan, 232001, People's Republic of China.
| | - Guopen Miao
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Shunjie Hu
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Qi Sun
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Hengwu Ding
- College of Life Science, Anhui Normal University, Wuhu, Anhui, 241000, People's Republic of China
| | - Zhicheng Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Pen Guo
- Life Science and Food Engineering College, Yibin University, Yibin, Sichuan, 644000, People's Republic of China
| | - Shoubao Yan
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Chengrun Wang
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Xianzhao Kan
- College of Life Science, Anhui Normal University, Wuhu, Anhui, 241000, People's Republic of China.
| | - Liuwang Nie
- College of Life Science, Anhui Normal University, Wuhu, Anhui, 241000, People's Republic of China.
| |
Collapse
|
9
|
Woodley SK, Staub NL. Pheromonal communication in urodelan amphibians. Cell Tissue Res 2021; 383:327-345. [PMID: 33427952 DOI: 10.1007/s00441-020-03408-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/15/2020] [Indexed: 01/24/2023]
Abstract
Pheromonal communication is an ancient and pervasive sensory modality in urodelan amphibians. One family of salamander pheromones (the sodefrin precursor-like factor (SPF) family) originated 300 million years ago, at the origin of amphibians. Although salamanders are often thought of as relatively simple animals especially when compared to mammals, the pheromonal systems are varied and complex with nuanced effects on behavior. Here, we review the function and evolution of pheromonal signals involved in male-female reproductive interactions. After describing common themes of salamander pheromonal communication, we describe what is known about the rich diversity of pheromonal communication in each salamander family. Several pheromones have been described, ranging from simple, invariant molecules to complex, variable blends of pheromones. While some pheromones elicit overt behavioral responses, others have more nuanced effects. Pheromonal signals have diversified within salamander lineages and have experienced rapid evolution. Once receptors have been matched to pheromonal ligands, rapid advance can be made to better understand the olfactory detection and processing of salamander pheromones. In particular, a large number of salamander species deliver pheromones across the skin of females, perhaps reflecting a novel mode of pheromonal communication. At the end of our review, we list some of the many intriguing unanswered questions. We hope that this review will inspire a new generation of scientists to pursue work in this rewarding field.
Collapse
Affiliation(s)
- Sarah K Woodley
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| | - Nancy L Staub
- Biology Department, Gonzaga University, Spokane, WA, 99203, USA
| |
Collapse
|
10
|
Desnitskiy AG. Surface contraction waves or cell proliferation waves in the presumptive neurectoderm during amphibian gastrulation: Mexican axolotl versus African clawed frog. Biosystems 2020; 198:104286. [PMID: 33181236 DOI: 10.1016/j.biosystems.2020.104286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/21/2020] [Accepted: 11/03/2020] [Indexed: 11/19/2022]
Abstract
This essay represents a critical analysis of the literary data on various types of waves occurring in the amphibian embryos during gastrulation. A surface contraction wave travels through the presumptive neurectoderm during Mexican axolotl gastrulation. This wave coincides temporally and spatially with involution of the inducing chordomesoderm and with the prospective neural plate. By contrast, there is no similar surface contraction wave during African clawed frog gastrulation. However, the clawed frog displays the waves of DNA synthesis and mitosis in the presumptive neurectoderm during gastrulation, whereas no such waves were discovered in axolotl gastrulae. These sets of experimental data are in accordance with the contemporary concept of considerable ontogenetic diversity of the class Amphibia.
Collapse
Affiliation(s)
- Alexey G Desnitskiy
- Department of Embryology, Saint-Petersburg State University, Universitetskaya nab 7/9, 199034, St. Petersburg, Russia.
| |
Collapse
|
11
|
Blotto BL, Pereyra MO, Grant T, Faivovich J. Hand and Foot Musculature of Anura: Structure, Homology, Terminology, and Synapomorphies for Major Clades. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2020. [DOI: 10.1206/0003-0090.443.1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Boris L. Blotto
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina
| | - Martín O. Pereyra
- División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina; Laboratorio de Genética Evolutiva “Claudio J. Bidau,” Instituto de Biología Subtropical–CONICET, Facultad de Ciencias Exactas Químic
| | - Taran Grant
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; Coleção de Anfíbios, Museu de Zoologia, Universidade de São Paulo, São Paulo, Brazil; Research Associate, Herpetology, Division of Vertebrate Zoology, A
| | - Julián Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos
| |
Collapse
|
12
|
Santos RO, Laurin M, Zaher H. A review of the fossil record of caecilians (Lissamphibia: Gymnophionomorpha) with comments on its use to calibrate molecular timetrees. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Gymnophiona, popularly known as caecilians, the most poorly known major taxon of extant amphibians, are elongate and limbless tetrapods, with compact ossified skulls and reduced eyes, mainly adapted to fossorial life as adults. Caecilians are poorly represented in the fossil record, but despite the scarcity of fossil specimens described (only four named taxa, in addition to indeterminate fragmentary material), their fossils play a key role in our knowledge of the origin and evolution of Lissamphibia, as well as contribute directly to a better understanding of the phylogeny, taxonomy and biogeography of extant gymnophionan taxa. These records are scattered throughout geological time (from the Jurassic to the sub-Recent) and space (North and South America and Africa). Here, we revisit the caecilian fossil record, providing a brief description of all known extinct taxa described so far, along with general remarks about their impact on systematics, time range, and geographical distribution of the clade, as well as prospects for future research. Possible calibration constraints based on the caecilian fossil record are provided.
Collapse
Affiliation(s)
| | - Michel Laurin
- Centre de Recherches sur la Paléobiologie et les Paléoenvironnements (CR2P), Centre national de la Recherche scientifique (CNRS)/Muséum national d’Histoire naturelle (MNHN)/Sorbonne Université, Paris, France
| | - Hussam Zaher
- Museu de Zoologia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Pardo JD, Lennie K, Anderson JS. Can We Reliably Calibrate Deep Nodes in the Tetrapod Tree? Case Studies in Deep Tetrapod Divergences. Front Genet 2020; 11:506749. [PMID: 33193596 PMCID: PMC7596322 DOI: 10.3389/fgene.2020.506749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Recent efforts have led to the development of extremely sophisticated methods for incorporating tree-wide data and accommodating uncertainty when estimating the temporal patterns of phylogenetic trees, but assignment of prior constraints on node age remains the most important factor. This depends largely on understanding substantive disagreements between specialists (paleontologists, geologists, and comparative anatomists), which are often opaque to phylogeneticists and molecular biologists who rely on these data as downstream users. This often leads to misunderstandings of how the uncertainty associated with node age minima arises, leading to inappropriate treatments of that uncertainty by phylogeneticists. In order to promote dialogue on this subject, we here review factors (phylogeny, preservational megabiases, spatial and temporal patterns in the tetrapod fossil record) that complicate assignment of prior node age constraints for deep divergences in the tetrapod tree, focusing on the origin of crown-group Amniota, crown-group Amphibia, and crown-group Tetrapoda. We find that node priors for amphibians and tetrapods show high phylogenetic lability and different phylogenetic treatments identifying disparate taxa as the earliest representatives of these crown groups. This corresponds partially to the well-known problem of lissamphibian origins but increasingly reflects deeper instabilities in early tetrapod phylogeny. Conversely, differences in phylogenetic treatment do not affect our ability to recognize the earliest crown-group amniotes but do affect how diverse we understand the earliest amniote faunas to be. Preservational megabiases and spatiotemporal heterogeneity of the early tetrapod fossil record present unrecognized challenges in reliably estimating the ages of tetrapod nodes; the tetrapod record throughout the relevant interval is spatially restricted and disrupted by several major intervals of minimal sampling coincident with the emergence of all three crown groups. Going forward, researchers attempting to calibrate the ages for these nodes, and other similar deep nodes in the metazoan fossil record, should consciously consider major phylogenetic uncertainty, preservational megabias, and spatiotemporal heterogeneity, preferably examining the impact of working hypotheses from multiple research groups. We emphasize a need for major tetrapod collection effort outside of classic European and North American sections, particularly from the southern hemisphere, and suggest that such sampling may dramatically change our timelines of tetrapod evolution.
Collapse
Affiliation(s)
- Jason D. Pardo
- Department of Comparative and Experimental Biology, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Kendra Lennie
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jason S. Anderson
- Department of Comparative and Experimental Biology, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Rozenblit F, Gollisch T. What the salamander eye has been telling the vision scientist's brain. Semin Cell Dev Biol 2020; 106:61-71. [PMID: 32359891 PMCID: PMC7493835 DOI: 10.1016/j.semcdb.2020.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022]
Abstract
Salamanders have been habitual residents of research laboratories for more than a century, and their history in science is tightly interwoven with vision research. Nevertheless, many vision scientists - even those working with salamanders - may be unaware of how much our knowledge about vision, and particularly the retina, has been shaped by studying salamanders. In this review, we take a tour through the salamander history in vision science, highlighting the main contributions of salamanders to our understanding of the vertebrate retina. We further point out specificities of the salamander visual system and discuss the perspectives of this animal system for future vision research.
Collapse
Affiliation(s)
- Fernando Rozenblit
- Department of Ophthalmology, University Medical Center Göttingen, 37073, Göttingen, Germany; Bernstein Center for Computational Neuroscience Göttingen, 37077, Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, 37073, Göttingen, Germany; Bernstein Center for Computational Neuroscience Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
15
|
Mailho-Fontana PL, Antoniazzi MM, Alexandre C, Pimenta DC, Sciani JM, Brodie ED, Jared C. Morphological Evidence for an Oral Venom System in Caecilian Amphibians. iScience 2020; 23:101234. [PMID: 32621800 PMCID: PMC7385905 DOI: 10.1016/j.isci.2020.101234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/03/2022] Open
Abstract
Amphibians are known for their skin rich in glands containing toxins employed in passive chemical defense against predators, different from, for example, snakes that have active chemical defense, injecting their venom into the prey. Caecilians (Amphibia, Gymnophiona) are snake-shaped animals with fossorial habits, considered one of the least known vertebrate groups. We show here that amphibian caecilians, including species from the basal groups, besides having cutaneous poisonous glands as other amphibians do, possess specific glands at the base of the teeth that produce enzymes commonly found in venoms. Our analysis of the origin of these glands shows that they originate from the same tissue that gives rise to teeth, similar to the venom glands in reptiles. We speculate that caecilians might have independently developed mechanisms of production and injection of toxins early in their evolutionary history. Amphibian caecilians have tooth-related glands in both upper and lower jaws The glands have the same origin of reptile venom glands The secretion contains proteins with enzymatic activities commonly found in venoms Caecilians might have developed the ability to inject oral toxins early in evolution
Collapse
Affiliation(s)
| | | | - Cesar Alexandre
- Structural Biology Lab, Butantan Institute, São Paulo, Brazil
| | | | | | | | - Carlos Jared
- Structural Biology Lab, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
16
|
Trudeau VL, Somoza GM. Multimodal hypothalamo-hypophysial communication in the vertebrates. Gen Comp Endocrinol 2020; 293:113475. [PMID: 32240708 DOI: 10.1016/j.ygcen.2020.113475] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022]
Abstract
The vertebrate pituitary is arguably one of the most complex endocrine glands from the evolutionary, anatomical and functional perspectives. The pituitary plays a master role in endocrine physiology for the control of growth, metabolism, reproduction, water balance, and the stress response, among many other key processes. The synthesis and secretion of pituitary hormones are under the control of neurohormones produced by the hypothalamus. Under this conceptual framework, the communication between the hypophysiotropic brain and the pituitary gland is at the foundation of our understanding of endocrinology. The anatomy of the connections between the hypothalamus and the pituitary gland has been described in different vertebrate classes, revealing diverse modes of communication together with varying degrees of complexity. In this context, the evolution and variation in the neuronal, neurohemal, endocrine and paracrine modes will be reviewed in light of recent discoveries, and a re-evaluation of earlier observations. There appears to be three main hypothalamo-pituitary communication systems: 1. Diffusion, best exemplified by the agnathans; 2. Direct innervation of the adenohypophysis, which is most developed in teleost fish, and 3. The median eminence/portal blood vessel system, most conspicuously developed in tetrapods, showing also considerable variation between classes. Upon this basic classification, there exists various combinations possible, giving rise to taxon and species-specific, multimodal control over major physiological processes. Intrapituitary paracrine regulation and communication between folliculostellate cells and endocrine cells are additional processes of major importance. Thus, a more complex evolutionary picture of hypothalamo-hypophysial communication is emerging. There is currently little direct evidence to suggest which neuroendocrine genes may control the evolution of one communication system versus another. However, studies at the developmental and intergenerational timescales implicate several genes in the angiogenesis and axonal guidance pathways that may be important.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires B7130IWA, Argentina.
| |
Collapse
|
17
|
Lertzman-Lepofsky G, Mooers AØ, Greenberg DA. Ecological constraints associated with genome size across salamander lineages. Proc Biol Sci 2019; 286:20191780. [PMID: 31530144 DOI: 10.1098/rspb.2019.1780] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Salamanders have some of the largest, and most variable, genome sizes among the vertebrates. Larger genomes have been associated with larger cell sizes, lower metabolic rates, and longer embryonic and larval durations in many different taxonomic groups. These life-history traits are often important for dictating fitness under different environmental conditions, suggesting that a species' genome size may have the potential to constrain its ecological distribution. We test how genome size varies with the ephemerality of larval habitat across the salamanders, predicting that species with larger genomes will be constrained to more permanent habitats that permit slower development, while species with smaller genomes will be more broadly distributed across the gradient of habitat ephemerality. We found that salamanders with larger genomes are almost exclusively associated with permanent aquatic habitats. In addition, the evolutionary transition rate between permanent and ephemeral larval habitats is much higher in salamander lineages with smaller genome sizes. These patterns suggest that genome size may act as an evolutionary constraint on the ecological habitats of salamanders, restricting those species with large genomes and slower development to habitats with permanent sources of water.
Collapse
Affiliation(s)
- Gavia Lertzman-Lepofsky
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Arne Ø Mooers
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Dan A Greenberg
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
18
|
Siu-Ting K, Torres-Sánchez M, San Mauro D, Wilcockson D, Wilkinson M, Pisani D, O'Connell MJ, Creevey CJ. Inadvertent Paralog Inclusion Drives Artifactual Topologies and Timetree Estimates in Phylogenomics. Mol Biol Evol 2019; 36:1344-1356. [PMID: 30903171 PMCID: PMC6526904 DOI: 10.1093/molbev/msz067] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Increasingly, large phylogenomic data sets include transcriptomic data from nonmodel organisms. This not only has allowed controversial and unexplored evolutionary relationships in the tree of life to be addressed but also increases the risk of inadvertent inclusion of paralogs in the analysis. Although this may be expected to result in decreased phylogenetic support, it is not clear if it could also drive highly supported artifactual relationships. Many groups, including the hyperdiverse Lissamphibia, are especially susceptible to these issues due to ancient gene duplication events and small numbers of sequenced genomes and because transcriptomes are increasingly applied to resolve historically conflicting taxonomic hypotheses. We tested the potential impact of paralog inclusion on the topologies and timetree estimates of the Lissamphibia using published and de novo sequencing data including 18 amphibian species, from which 2,656 single-copy gene families were identified. A novel paralog filtering approach resulted in four differently curated data sets, which were used for phylogenetic reconstructions using Bayesian inference, maximum likelihood, and quartet-based supertrees. We found that paralogs drive strongly supported conflicting hypotheses within the Lissamphibia (Batrachia and Procera) and older divergence time estimates even within groups where no variation in topology was observed. All investigated methods, except Bayesian inference with the CAT-GTR model, were found to be sensitive to paralogs, but with filtering convergence to the same answer (Batrachia) was observed. This is the first large-scale study to address the impact of orthology selection using transcriptomic data and emphasizes the importance of quality over quantity particularly for understanding relationships of poorly sampled taxa.
Collapse
Affiliation(s)
- Karen Siu-Ting
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom.,School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland.,Dpto. de Herpetología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, Madrid, Spain.,Department of Neuroscience, Spinal Cord and Brain Injury Research Center and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY
| | - Diego San Mauro
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, Madrid, Spain
| | - David Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Mark Wilkinson
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Davide Pisani
- Life Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Mary J O'Connell
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,School of Life Sciences, University of Nottingham, University Park, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
19
|
Torres-Sánchez M, Creevey CJ, Kornobis E, Gower DJ, Wilkinson M, San Mauro D. Multi-tissue transcriptomes of caecilian amphibians highlight incomplete knowledge of vertebrate gene families. DNA Res 2019; 26:13-20. [PMID: 30351380 PMCID: PMC6379020 DOI: 10.1093/dnares/dsy034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 09/13/2018] [Indexed: 12/29/2022] Open
Abstract
RNA sequencing (RNA-seq) has become one of the most powerful tools to unravel the genomic basis of biological adaptation and diversity. Although challenging, RNA-seq is particularly promising for research on non-model, secretive species that cannot be observed in nature easily and therefore remain comparatively understudied. Among such animals, the caecilians (order Gymnophiona) likely constitute the least known group of vertebrates, despite being an old and remarkably distinct lineage of amphibians. Here, we characterize multi-tissue transcriptomes for five species of caecilians that represent a broad level of diversity across the order. We identified vertebrate homologous elements of caecilian functional genes of varying tissue specificity that reveal a great number of unclassified gene families, especially for the skin. We annotated several protein domains for those unknown candidate gene families to investigate their function. We also conducted supertree analyses of a phylogenomic dataset of 1,955 candidate orthologous genes among five caecilian species and other major lineages of vertebrates, with the inferred tree being in agreement with current views of vertebrate evolution and systematics. Our study provides insights into the evolution of vertebrate protein-coding genes, and a basis for future research on the molecular elements underlying the particular biology and adaptations of caecilian amphibians.
Collapse
Affiliation(s)
- María Torres-Sánchez
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Christopher J Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Etienne Kornobis
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, Paris, France
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Mark Wilkinson
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Diego San Mauro
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
20
|
Reconstructing evolution at the community level: A case study on Mediterranean amphibians. Mol Phylogenet Evol 2019; 134:211-225. [PMID: 30797941 DOI: 10.1016/j.ympev.2019.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 11/22/2022]
Abstract
Reconstructing reliable timescales for species evolution is an important and indispensable goal of modern biogeography. However, many factors influence the estimation of divergence times, and uncertainty in the inferred time trees remains a major issue that is often insufficiently acknowledged. We here focus on a fundamental problem of time tree analysis: the combination of slow-evolving (nuclear DNA) and fast-evolving (mitochondrial DNA) markers in a single time tree. Both markers differ in their suitability to infer divergences at different time scales (the 'genome-timescale-dilemma'). However, strategies to infer shallow and deep divergences in a single time tree have rarely been compared empirically. Using Mediterranean amphibians as model system that is exceptional in its geographic and taxonomic completeness of available genetic information, we analyze 202 lineages of western Palearctic amphibians across the entire Mediterranean region. We compiled data of four nuclear and five mitochondrial genes and used twelve fossil calibration points widely acknowledged for amphibian evolution. We reconstruct time trees for an extensive lineage-level data set and compare the performances of the different trees: the first tree is based on primary fossil calibration and mitochondrial DNA, while the second tree is based on a combination of primary fossil and on secondary calibrations taken from a nuclear tree using mitochondrial DNA (two-step protocol). Focusing on a set of nodes that are most likely explained by vicariance, we statistically compare the reconstructed alternative time trees by applying a biogeographical plausibility test. Our two-step protocol outperformed the alternative approach in terms of spatial and temporal plausibility. It allows us to infer scenarios for Mediterranean amphibian evolution in eight geographic provinces. We identified several tectonic and climatic events explaining the majority of Mediterranean amphibian divergences, with Plio-Pleistocene climatic fluctuations being the dominant driver for intrageneric evolution. However, often more than one event could be invoked for a specific split. We give recommendations for the use of secondary calibrations in future molecular clock analyses at the community level.
Collapse
|
21
|
The Amphibian Diacylglycerol O-acyltransferase 2 (DGAT2): a 'paleo-protein' with Conserved Function but Unique Folding. Protein J 2019; 38:83-94. [PMID: 30697667 DOI: 10.1007/s10930-019-09814-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Amphibians are, currently, considered the first vertebrates that had performed the aquatic to terrestrial transition during evolution; therefore, water balance and dehydration control were prerequisites for such environment conquering. Among anurans, Phyllomedusa is a well-studied genus, due to its peptide-rich skin secretion. Here, we have analyzed the skin secretion of Phyllomedusa distincta targeting the proteins present in the skin secretion. The major soluble protein was chromatographically isolated and utilized to immunize rabbits. Through proteomics approaches, we were able to identify such protein as being the diacylglycerol O-acyltransferase 2 (DGAT2), a crucial enzyme involved in lipid synthesis and in the skin water balance. Immunohistochemistry assays revealed the protein tissular distribution for different animal species, belonging to different branches of the phylogenetic tree. Specifically, there was positivity to the anti-DGAT2 on Amphibians' skin, and no antibody recognition on fish and mammals' skins. The DGAT2 multiple sequence alignment reveals some degree of conservation throughout the genera; however, there is a different cysteine pattern among them. Molecular modeling analyses corroborate that the different cysteine pattern leads to distinct 3D structures, explaining the different antibody recognition. Moreover, the protein phylogenetic analyses place the Xenopus DGAT2 (the available amphibian representative) next to the Coelacanthus enzyme, which have led the authors to term this a 'paleo-protein'. DGAT2 would be, therefore, an ancient protein, crucial to the terrestrial environment conquest, with a unique folding-as indicated by the molecular models and immunohistochemistry analyses-a consequence of the different cysteine pattern but with conserved biological function.
Collapse
|
22
|
Musculoskeletal development of the Central African caecilian Idiocranium russeli (Amphibia: Gymnophiona: Indotyphlidae) and its bearing on the re-evolution of larvae in caecilian amphibians. ZOOMORPHOLOGY 2018. [DOI: 10.1007/s00435-018-0420-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Sanchez E, Küpfer E, Goedbloed DJ, Nolte AW, Lüddecke T, Schulz S, Vences M, Steinfartz S. Morphological and transcriptomic analyses reveal three discrete primary stages of postembryonic development in the common fire salamander,Salamandra salamandra. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:96-108. [DOI: 10.1002/jez.b.22792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/14/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Eugenia Sanchez
- Zoological Institute; Technische Universität Braunschweig; Braunschweig Germany
| | - Eliane Küpfer
- Zoological Institute; Technische Universität Braunschweig; Braunschweig Germany
| | - Daniel J. Goedbloed
- Zoological Institute; Technische Universität Braunschweig; Braunschweig Germany
| | - Arne W. Nolte
- Department of Evolutionary Genetics; Max Planck Institute for Evolutionary Biology; Plön Germany
- Ecological Genomics; Institute for Biology and Environmental Sciences; Carl von Ossietzky Universität Oldenburg; Oldenburg Germany
| | - Tim Lüddecke
- Zoological Institute; Technische Universität Braunschweig; Braunschweig Germany
| | - Stefan Schulz
- Institute of Organic Chemistry; Technische Universität Braunschweig; Braunschweig Germany
| | - Miguel Vences
- Zoological Institute; Technische Universität Braunschweig; Braunschweig Germany
| | | |
Collapse
|
24
|
Gutierre RC, Jared C, Antoniazzi MM, Coppi AA, Egami MI. Melanomacrophage functions in the liver of the caecilian Siphonops annulatus. J Anat 2018; 232:497-508. [PMID: 29205335 PMCID: PMC5807933 DOI: 10.1111/joa.12757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2017] [Indexed: 12/21/2022] Open
Abstract
Melanomacrophages are phagocytes that synthesize melanin. They are found in the liver and spleen of ectothermic vertebrates, and in the kidney of fish. In agnathan and elasmobranch fish, melanomacrophages are seen as isolated cells, and forming clusters in all the other vertebrates. The natural phagocytic activity of melanomacrophages is poorly characterized, as most of the research works have focused on induced phagocytic activity only. Furthermore, little is known about amphibian melanomacrophages, mainly about those in caecilians - wormlike amphibians in the order of Gymnophiona, which is the least known group of terrestrial vertebrates. The present research work aimed at the structure and function of hepatic melanomacrophages of Siphonops annulatus, a species largely found in South America. We identified the role of these cells in the control of circulating basophils (pro-melanogenic cells), in the turnover of liver collagen stroma and in the hemocatheresis, interrelated physiological mechanisms.
Collapse
Affiliation(s)
- Robson Campos Gutierre
- Department of Morphology and GeneticsFederal University of São Paulo – Escola Paulista de MedicinaSão PauloBrazil
- Department of Neurology and NeurosurgeryFederal University of São Paulo – Escola Paulista de MedicinaSão PauloBrazil
| | - Carlos Jared
- Cell Biology LaboratoryInstituto ButantanSão PauloBrazil
| | | | - Antonio Augusto Coppi
- Faculty of Health and Medical SciencesSchool of Veterinary MedicineUniversity of SurreyGuildfordSurreyUK
| | - Mizue Imoto Egami
- Department of Morphology and GeneticsFederal University of São Paulo – Escola Paulista de MedicinaSão PauloBrazil
| |
Collapse
|
25
|
Stem caecilian from the Triassic of Colorado sheds light on the origins of Lissamphibia. Proc Natl Acad Sci U S A 2017. [PMID: 28630337 DOI: 10.1073/pnas.1706752114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The origin of the limbless caecilians remains a lasting question in vertebrate evolution. Molecular phylogenies and morphology support that caecilians are the sister taxon of batrachians (frogs and salamanders), from which they diverged no later than the early Permian. Although recent efforts have discovered new, early members of the batrachian lineage, the record of pre-Cretaceous caecilians is limited to a single species, Eocaecilia micropodia The position of Eocaecilia within tetrapod phylogeny is controversial, as it already acquired the specialized morphology that characterizes modern caecilians by the Jurassic. Here, we report on a small amphibian from the Upper Triassic of Colorado, United States, with a mélange of caecilian synapomorphies and general lissamphibian plesiomorphies. We evaluated its relationships by designing an inclusive phylogenetic analysis that broadly incorporates definitive members of the modern lissamphibian orders and a diversity of extinct temnospondyl amphibians, including stereospondyls. Our results place the taxon confidently within lissamphibians but demonstrate that the diversity of Permian and Triassic stereospondyls also falls within this group. This hypothesis of caecilian origins closes a substantial morphologic and temporal gap and explains the appeal of morphology-based polyphyly hypotheses for the origins of Lissamphibia while reconciling molecular support for the group's monophyly. Stem caecilian morphology reveals a previously unrecognized stepwise acquisition of typical caecilian cranial apomorphies during the Triassic. A major implication is that many Paleozoic total group lissamphibians (i.e., higher temnospondyls, including the stereospondyl subclade) fall within crown Lissamphibia, which must have originated before 315 million years ago.
Collapse
|
26
|
Bletz MC, Perl RGB, Vences M. Skin microbiota differs drastically between co-occurring frogs and newts. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170107. [PMID: 28484639 PMCID: PMC5414276 DOI: 10.1098/rsos.170107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/07/2017] [Indexed: 05/10/2023]
Abstract
Diverse microbial assemblages inhabit amphibian skin and are known to differ among species; however, few studies have analysed these differences in systems that minimize confounding factors, such as season, location or host ecology. We used high-throughput amplicon sequencing to compare cutaneous microbiotas among two ranid frogs (Rana dalmatina, R. temporaria) and four salamandrid newts (Ichthyosaura alpestris, Lissotriton helveticus, L. vulgaris, Triturus cristatus) breeding simultaneously in two ponds near Braunschweig, Germany. We found that bacterial communities differed strongly and consistently between these two distinct amphibian clades. While frogs and newts had similar cutaneous bacterial richness, their bacterial composition strongly differed. Average Jaccard distances between frogs and newts were over 0.5, while between species within these groups distances were only 0.387 and 0.407 for frogs and newts, respectively. At the operational taxonomic unit (OTU) level, 31 taxa exhibited significantly different relative abundances between frogs and newts. This finding suggests that chemical or physical characteristics of these amphibians' mucosal environments provide highly selective conditions for bacterial colonizers. Multi-omics analyses of hosts and their microbiota as well as directed efforts to understand chemical differences in the mucosal environments (e.g. pH), and the specificities of host-produced compounds against potential colonizers will help to better understand this intriguing pattern.
Collapse
|
27
|
Mohlhenrich ER, Mueller RL. Genetic drift and mutational hazard in the evolution of salamander genomic gigantism. Evolution 2016; 70:2865-2878. [DOI: 10.1111/evo.13084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 12/25/2022]
|
28
|
McCartney-Melstad E, Mount GG, Shaffer HB. Exon capture optimization in amphibians with large genomes. Mol Ecol Resour 2016; 16:1084-94. [DOI: 10.1111/1755-0998.12538] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 04/13/2016] [Accepted: 05/06/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Evan McCartney-Melstad
- Department of Ecology and Evolutionary Biology; La Kretz Center for California Conservation Science; Institute of the Environment and Sustainability; University of California; Los Angeles CA 90095 USA
| | - Genevieve G. Mount
- Department of Ecology and Evolutionary Biology; La Kretz Center for California Conservation Science; Institute of the Environment and Sustainability; University of California; Los Angeles CA 90095 USA
- Museum of Natural Science; Louisiana State University; Baton Rouge LA 70803 USA
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA 70803 USA
| | - H. Bradley Shaffer
- Department of Ecology and Evolutionary Biology; La Kretz Center for California Conservation Science; Institute of the Environment and Sustainability; University of California; Los Angeles CA 90095 USA
| |
Collapse
|
29
|
Hartigan A, Wilkinson M, Gower DJ, Streicher JW, Holzer AS, Okamura B. Myxozoan infections of caecilians demonstrate broad host specificity and indicate a link with human activity. Int J Parasitol 2016; 46:375-81. [DOI: 10.1016/j.ijpara.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 11/24/2022]
|
30
|
Martinez-De Luna RI, Ku RY, Aruck AM, Santiago F, Viczian AS, San Mauro D, Zuber ME. Müller glia reactivity follows retinal injury despite the absence of the glial fibrillary acidic protein gene in Xenopus. Dev Biol 2016; 426:219-235. [PMID: 26996101 DOI: 10.1016/j.ydbio.2016.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 01/02/2023]
Abstract
Intermediate filament proteins are structural components of the cellular cytoskeleton with cell-type specific expression and function. Glial fibrillary acidic protein (GFAP) is a type III intermediate filament protein and is up-regulated in glia of the nervous system in response to injury and during neurodegenerative diseases. In the retina, GFAP levels are dramatically increased in Müller glia and are thought to play a role in the extensive structural changes resulting in Müller cell hypertrophy and glial scar formation. In spite of similar changes to the morphology of Xenopus Müller cells following injury, we found that Xenopus lack a gfap gene. Other type III intermediate filament proteins were, however, significantly induced following rod photoreceptor ablation and retinal ganglion cell axotomy. The recently available X. tropicalis and X. laevis genomes indicate a small deletion most likely resulted in the loss of the gfap gene during anuran evolution. Lastly, a survey of representative species from all three extant amphibian orders including the Anura (frogs, toads), Caudata (salamanders, newts), and Gymnophiona (caecilians) suggests that deletion of the gfap locus occurred in the ancestor of all Anura after its divergence from the Caudata ancestor around 290 million years ago. Our results demonstrate that extensive changes in Müller cell morphology following retinal injury do not require GFAP in Xenopus, and other type III intermediate filament proteins may be involved in the gliotic response.
Collapse
Affiliation(s)
- Reyna I Martinez-De Luna
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Ray Y Ku
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Alexandria M Aruck
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Francesca Santiago
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Andrea S Viczian
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Diego San Mauro
- Department of Zoology & Physical Anthropology, Faculty of Biological Sciences, Complutense University, Madrid 28040, Spain
| | - Michael E Zuber
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA.
| |
Collapse
|
31
|
Van Bocxlaer I, Treer D, Maex M, Vandebergh W, Janssenswillen S, Stegen G, Kok P, Willaert B, Matthijs S, Martens E, Mortier A, de Greve H, Proost P, Bossuyt F. Side-by-side secretion of Late Palaeozoic diverged courtship pheromones in an aquatic salamander. Proc Biol Sci 2015; 282:20142960. [PMID: 25694622 PMCID: PMC4345460 DOI: 10.1098/rspb.2014.2960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Males of the advanced salamanders (Salamandroidea) attain internal fertilization without a copulatory organ by depositing a spermatophore on the substrate in the environment, which females subsequently take up with their cloaca. The aquatically reproducing modern Eurasian newts (Salamandridae) have taken this to extremes, because most species do not display close physical contact during courtship, but instead largely rely on females following the male track at spermatophore deposition. Although pheromones have been widely assumed to represent an important aspect of male courtship, molecules able to induce the female following behaviour that is the prelude for successful insemination have not yet been identified. Here, we show that uncleaved sodefrin precursor-like factor (SPF) protein pheromones are sufficient to elicit such behaviour in female palmate newts (Lissotriton helveticus). Combined transcriptomic and proteomic evidence shows that males simultaneously tail-fan multiple ca 20 kDa glycosylated SPF proteins during courtship. Notably, molecular dating estimates show that the diversification of these proteins already started in the late Palaeozoic, about 300 million years ago. Our study thus not only extends the use of uncleaved SPF proteins outside terrestrially reproducing plethodontid salamanders, but also reveals one of the oldest vertebrate pheromone systems.
Collapse
Affiliation(s)
- Ines Van Bocxlaer
- Amphibian Evolution Laboratory, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Dag Treer
- Amphibian Evolution Laboratory, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Margo Maex
- Amphibian Evolution Laboratory, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Wim Vandebergh
- Amphibian Evolution Laboratory, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Sunita Janssenswillen
- Amphibian Evolution Laboratory, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Gwij Stegen
- Amphibian Evolution Laboratory, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Philippe Kok
- Amphibian Evolution Laboratory, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Bert Willaert
- Amphibian Evolution Laboratory, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Severine Matthijs
- Amphibian Evolution Laboratory, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven (K.U. Leuven), Minderbroedersstraat 10-Box 1030, 3000 Leuven, Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven (K.U. Leuven), Minderbroedersstraat 10-Box 1030, 3000 Leuven, Belgium
| | - Henri de Greve
- Structural and Molecular Microbiology, Structural Biology Research Centre, VIB, Pleinlaan 2, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven (K.U. Leuven), Minderbroedersstraat 10-Box 1030, 3000 Leuven, Belgium
| | - Franky Bossuyt
- Amphibian Evolution Laboratory, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
32
|
Héritier L, Badets M, Du Preez LH, Aisien MS, Lixian F, Combes C, Verneau O. Evolutionary processes involved in the diversification of chelonian and mammal polystomatid parasites (Platyhelminthes, Monogenea, Polystomatidae) revealed by palaeoecology of their hosts. Mol Phylogenet Evol 2015; 92:1-10. [DOI: 10.1016/j.ympev.2015.05.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 11/16/2022]
|
33
|
Zhang X, Wang H, Cui J, Jiang P, Fu GM, Zhong K, Zhang ZF, Wang ZQ. Characterisation of the relationship between Spirometra erinaceieuropaei and Diphyllobothrium species using complete cytb and cox1 genes. INFECTION GENETICS AND EVOLUTION 2015. [DOI: 10.1016/j.meegid.2015.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Wu R, Liu Q, Meng S, Zhang P, Liang D. Hox cluster characterization of Banna caecilian (Ichthyophis bannanicus) provides hints for slow evolution of its genome. BMC Genomics 2015; 16:468. [PMID: 26084764 PMCID: PMC4470032 DOI: 10.1186/s12864-015-1684-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Caecilians, with a discrete lifestyle, are the least explored group of amphibians. Though with distinct traits, many aspects of their biology are poorly investigated. Obtaining the caecilian genomic sequences will offer new perspectives and aid the fundamental studies in caecilian biology. The caecilian genomic sequences are also important and practical in the comparative genomics of amphibians. Currently, however, only sparse genomic sequences of caecilians are available. Hox genes, an old family of transcription factors playing central roles in the establishment of metazoan body plan. Understanding their structure and genomic organization may provide insights into the animal's genome, which is valuable for animals without a sequenced genome. RESULTS We sequenced and characterized the Hox clusters of Banna caecilian (Ichthyophis bannanicus) with a strategy combining long range PCR and genome walking. We obtained the majority of the four caecilian Hox clusters and identified 39 Hox genes, 5 microRNA genes and 1 pseudogene (ψHoxD12). There remained seven intergenic gaps we were unable to fill. From the obtained sequences, the caecilian Hox clusters contained less repetitive sequences and more conserved noncoding elements (CNEs) than the frog counterparts. We found that caecilian and coelacanth shared many more CNEs than frog and coelacanth did. Relative rate of sequence evolution showed that caecilian Hox genes evolved significantly more slowly than the other tetrapod species used in this study and were comparable to the slowly evolving coelacanth Hox genes. Phylogenetic tree of the four Hox clusters also revealed shorter branch length especially for the caecilian HoxA, HoxB and HoxD clusters. These features of the caecilian Hox clusters suggested a slowly evolving genome, which was supported by further analysis of a large orthologous protein dataset. CONCLUSIONS Our analyses greatly extended the knowledge about the caecilian Hox clusters from previous PCR surveys. From the obtained Hox sequences and the orthologous protein dataset, the caecilian Hox loci and its genome appear evolving comparatively slowly. As the basal lineage of amphibians and land vertebrate, this characteristic of the caecilian genome is valuable in the study concerning the genome biology and evolution of amphibians and early tetrapods.
Collapse
Affiliation(s)
- Riga Wu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Qingfeng Liu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Shaoquan Meng
- College of Life Science and Technology, Yulin Normal University, Yulin, 537000, People's Republic of China.
| | - Peng Zhang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Dan Liang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
35
|
Shoots J, Fraccalvieri D, Franks DG, Denison MS, Hahn ME, Bonati L, Powell WH. An Aryl Hydrocarbon Receptor from the Salamander Ambystoma mexicanum Exhibits Low Sensitivity to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6993-7001. [PMID: 25941739 PMCID: PMC4454367 DOI: 10.1021/acs.est.5b01299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Structural features of the aryl hydrocarbon receptor (AHR) can underlie species- and population-specific differences in its affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These differences often explain variations in TCDD toxicity. Frogs are relatively insensitive to dioxin, and Xenopus AHRs bind TCDD with low affinity. Weak TCDD binding results from the combination of three residues in the ligand-binding domain: A354 and A370, and N325. Here we sought to determine whether this mechanism of weak TCDD binding is shared by other amphibian AHRs. We isolated an AHR cDNA from the Mexican axolotl (Ambystoma mexicanum). The encoded polypeptide contains identical residues at positions that confer low TCDD affinity to X. laevis AHRs (A364, A380, and N335), and homology modeling predicts they protrude into the binding cavity. Axolotl AHR bound one-tenth the TCDD of mouse AHR in velocity sedimentation analysis, and in transactivation assays, the EC50 for TCDD was 23 nM, similar to X. laevis AHR1β (27 nM) and greater than AHR containing the mouse ligand-binding domain (0.08 nM). Sequence, modeled structure, and function indicate that axolotl AHR binds TCDD weakly, predicting that A. mexicanum lacks sensitivity toTCDD toxicity. We hypothesize that this characteristic of axolotl and Xenopus AHRs arose in a common ancestor of the Caudata and Anura.
Collapse
Affiliation(s)
- Jenny Shoots
- Biology Department, Kenyon College, Gambier, OH 43022 USA
| | - Domenico Fraccalvieri
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Diana G. Franks
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, CA 95616 USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Wade H. Powell
- Biology Department, Kenyon College, Gambier, OH 43022 USA
| |
Collapse
|
36
|
Joerger AC, Wilcken R, Andreeva A. Tracing the evolution of the p53 tetramerization domain. Structure 2015; 22:1301-1310. [PMID: 25185827 PMCID: PMC4155161 DOI: 10.1016/j.str.2014.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 10/25/2022]
Abstract
The tetrameric transcription factors p53, p63, and p73 evolved from a common ancestor and play key roles in tumor suppression and development. Surprisingly, p63 and p73 require a second helix in their tetramerization domain for the formation of stable tetramers that is absent in human p53, raising questions about the evolutionary processes leading to diversification. Here we determined the crystal structure of the zebrafish p53 tetramerization domain, which contains a second helix, reminiscent of p63 and p73, combined with p53-like features. Through comprehensive phylogenetic analyses, we systematically traced the evolution of vertebrate p53 family oligomerization domains back to the beginning of multicellular life. We provide evidence that their last common ancestor also had an extended p63/p73-like domain and pinpoint evolutionary events that shaped this domain during vertebrate radiation. Domain compaction and transformation of a structured into a flexible, intrinsically disordered region may have contributed to the expansion of the human p53 interactome.
Collapse
Affiliation(s)
- Andreas C Joerger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Rainer Wilcken
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
37
|
Abstract
The lack of fossil tetrapod bearing deposits in the earliest Carboniferous (‘Romer’s Gap’) has provoked some recent discussions regarding the proximal cause, with three explanations being offered: environmental, taphonomic, and collection failure. One of the few, and earliest, windows into this time is the locality of Blue Beach exposed in the Tournaisian deposits at Horton Bluff lying along the Avon River near Hantsport, Nova Scotia, Canada. This locality has long been known but, because the fossils were deposited in high energy settings they are almost always disarticulated, so the fauna has not been described in detail. Recent intensive collection has revealed a diverse assemblage of material, including for the first time associated elements, which permits an evaluation of the faunal constituents at the locality. Although not diagnosable to a fine taxonomic level, sufficient apomorphies are present to identify representatives from numerous clades known from more complete specimens elsewhere. The evidence suggests a diverse fauna was present, including whatcheeriids and embolomeres. A single humerus previously had been attributed to a colosteid, but there is some uncertainty with this identification. Additional elements suggest the presence of taxa otherwise only known from the late Devonian. Depositional biases at the locality favor tetrapod fossils from larger individuals, but indirect evidence from trackways and tantalizing isolated bones evidences the presence of small taxa that remain to be discovered. The fossils from Blue Beach demonstrate that when windows into the fauna of ‘Romer’s Gap’ are found a rich diversity of tetrapods will be shown to be present, contra arguments that suggested this hiatus in the fossil record was due to extrinsic factors such as atmospheric oxygen levels. They also show that the early tetrapod fauna is not easily divisible into Devonian and Carboniferous faunas, suggesting that some tetrapods passed through the end Devonian extinction event unaffected.
Collapse
|
38
|
Browne R, Kaurova S, Uteshev V, Shishova N, McGinnity D, Figiel C, Mansour N, Agnew D, Wu M, Gakhova E, Dzyuba B, Cosson J. Sperm motility of externally fertilizing fish and amphibians. Theriogenology 2015; 83:1-13. [DOI: 10.1016/j.theriogenology.2014.09.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 12/15/2022]
|
39
|
Aridification drove repeated episodes of diversification between Australian biomes: Evidence from a multi-locus phylogeny of Australian toadlets (Uperoleia: Myobatrachidae). Mol Phylogenet Evol 2014; 79:106-17. [DOI: 10.1016/j.ympev.2014.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023]
|
40
|
Maia-Carvalho B, Gonçalves H, Ferrand N, Martínez-Solano I. Multilocus assessment of phylogenetic relationships in Alytes (Anura, Alytidae). Mol Phylogenet Evol 2014; 79:270-8. [DOI: 10.1016/j.ympev.2014.05.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
|
41
|
Abstract
SummaryThe order Caudata includes about 660 species and displays a variety of important developmental traits such as cleavage pattern and egg size. However, the cleavage process of tailed amphibians has never been analyzed within a phylogenetic framework. We use published data on the embryos of 36 species concerning the character of the third cleavage furrow (latitudinal, longitudinal or variable) and the magnitude of synchronous cleavage period (up to 3–4 synchronous cell divisions in the animal hemisphere or a considerably longer series of synchronous divisions followed by midblastula transition). Several species from basal caudate families Cryptobranchidae (Andrias davidianus and Cryptobranchus alleganiensis) and Hynobiidae (Onychodactylus japonicus) as well as several representatives from derived families Plethodontidae (Desmognathus fuscus and Ensatina eschscholtzii) and Proteidae (Necturus maculosus) are characterized by longitudinal furrows of the third cleavage and the loss of synchrony as early as the 8-cell stage. By contrast, many representatives of derived families Ambystomatidae and Salamandridae have latitudinal furrows of the third cleavage and extensive period of synchronous divisions. Our analysis of these ontogenetic characters mapped onto a phylogenetic tree shows that the cleavage pattern of large, yolky eggs with short series of synchronous divisions is an ancestral trait for the tailed amphibians, while the data on the orientation of third cleavage furrows seem to be ambiguous with respect to phylogeny. Nevertheless, the midblastula transition, which is characteristic of the model species Ambystoma mexicanum (Caudata) and Xenopus laevis (Anura), might have evolved convergently in these two amphibian orders.
Collapse
|
42
|
|
43
|
Pyron RA. Biogeographic Analysis Reveals Ancient Continental Vicariance and Recent Oceanic Dispersal in Amphibians. Syst Biol 2014; 63:779-97. [DOI: 10.1093/sysbio/syu042] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- R. Alexander Pyron
- Department of Biological Sciences, The George Washington University, 2023 G Street NW, Washington, DC 20052, USA
| |
Collapse
|
44
|
Pinelli C, Rastogi RK, Scandurra A, Jadhao AG, Aria M, D'Aniello B. A comparative cluster analysis of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry in the brains of amphibians. J Comp Neurol 2014; 522:2980-3003. [PMID: 24549578 DOI: 10.1002/cne.23561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/08/2014] [Accepted: 02/11/2014] [Indexed: 11/09/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) is a key enzyme in the synthesis of the gaseous neurotransmitter nitric oxide. We compare the distribution of NADPH-d in the brain of four species of hylid frogs. NADPH-d-positive fibers are present throughout much of the brain, whereas stained cell groups are distributed in well-defined regions. Whereas most brain areas consistently show positive neurons in all species, in some areas species-specific differences occur. We analyzed our data and those available for other amphibian species to build a matrix on NADPH-d brain distribution for a multivariate analysis. Brain dissimilarities were quantified by using the Jaccard index in a hierarchical clustering procedure. The whole brain dendrogram was compared with that of its main subdivisions by applying the Fowlkes-Mallows index for dendrogram similarity, followed by bootstrap replications and a permutation test. Despite the differences in the distribution map of the NADPH-d system among species, cluster analysis of data from the whole brain and hindbrain faithfully reflected the evolutionary history (framework) of amphibians. Dendrograms from the secondary prosencephalon, diencephalon, mesencephalon, and isthmus showed some deviation from the main scheme. Thus, the present analysis supports the major evolutionary stability of the hindbrain. We provide evidence that the NADPH-d system in main brain subdivisions should be cautiously approached for comparative purposes because specific adaptations of a single species could occur and may affect the NADPH-d distribution pattern in a brain subdivision. The minor differences in staining pattern of particular subdivisions apparently do not affect the general patterns of staining across species.
Collapse
Affiliation(s)
- Claudia Pinelli
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100, Caserta, Italy
| | | | | | | | | | | |
Collapse
|
45
|
San Mauro D, Gower DJ, Müller H, Loader SP, Zardoya R, Nussbaum RA, Wilkinson M. Life-history evolution and mitogenomic phylogeny of caecilian amphibians. Mol Phylogenet Evol 2014; 73:177-89. [PMID: 24480323 DOI: 10.1016/j.ympev.2014.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 11/27/2022]
Abstract
We analyze mitochondrial genomes to reconstruct a robust phylogenetic framework for caecilian amphibians and use this to investigate life-history evolution within the group. Our study comprises 45 caecilian mitochondrial genomes (19 of them newly reported), representing all families and 27 of 32 currently recognized genera, including some for which molecular data had never been reported. Support for all relationships in the inferred phylogenetic tree is high to maximal, and topology tests reject all investigated alternatives, indicating an exceptionally robust molecular phylogenetic framework of caecilian evolution consistent with current morphology-based supraspecific classification. We used the mitogenomic phylogenetic framework to infer ancestral character states and to assess correlation among three life-history traits (free-living larvae, viviparity, specialized pre-adult or vernal teeth), each of which occurs only in some caecilian species. Our results provide evidence that an ancestor of the Seychelles caecilians abandoned direct development and re-evolved a free-living larval stage. This study yields insights into the concurrent evolution of direct development and of vernal teeth in an ancestor of Teresomata that likely gave rise to skin-feeding (maternal dermatophagy) behavior and subsequently enabled evolution of viviparity, with skin feeding possibly a homologous precursor of oviduct feeding in viviparous caecilians.
Collapse
Affiliation(s)
- Diego San Mauro
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Hendrik Müller
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Erbertstrasse 1, 07743 Jena, Germany
| | - Simon P Loader
- University of Basel, Biogeography Research Group, Department of Environmental Sciences, Basel 4056, Switzerland
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales - CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Ronald A Nussbaum
- Museum of Zoology, University of Michigan, 1109 Geddes Ave., Ann Arbor, MI 48109-1079, United States
| | - Mark Wilkinson
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| |
Collapse
|
46
|
Worthy TH, Tennyson AJD, Scofield RP, Hand SJ. Early Miocene fossil frogs (Anura: Leiopelmatidae) from New Zealand. J R Soc N Z 2013. [DOI: 10.1080/03036758.2013.825300] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Jones MEH, Anderson CL, Hipsley CA, Müller J, Evans SE, Schoch RR. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol Biol 2013; 13:208. [PMID: 24063680 PMCID: PMC4016551 DOI: 10.1186/1471-2148-13-208] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole. RESULTS Here we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238-240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238-249.5), and crown-group Squamata originated around 193 Mya (176-213). CONCLUSION A Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vellberg fossil locality is expected to become an important resource for providing a more balanced picture of the Triassic and for bridging gaps in the fossil record of several other major vertebrate groups.
Collapse
Affiliation(s)
- Marc EH Jones
- Research Department of Cell and Developmental Biology, Anatomy Building, UCL, University College London, Gower Street, London WCIE 6BT, UK
- School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Cajsa Lisa Anderson
- University of Gothenburg, Department of Plant and Environmental Sciences, Gothenburg, Sweden
| | - Christy A Hipsley
- Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Müller
- Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Susan E Evans
- Research Department of Cell and Developmental Biology, Anatomy Building, UCL, University College London, Gower Street, London WCIE 6BT, UK
| | - Rainer R Schoch
- Staatliches Museum für Naturkunde, Rosenstein 1, D-70191, Stuttgart, Germany
| |
Collapse
|
48
|
Jones MEH, Anderson CL, Hipsley CA, Müller J, Evans SE, Schoch RR. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol Biol 2013. [PMID: 24063680 DOI: 10.1186/1471-2148-23-208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole. RESULTS Here we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238-240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238-249.5), and crown-group Squamata originated around 193 Mya (176-213). CONCLUSION A Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vellberg fossil locality is expected to become an important resource for providing a more balanced picture of the Triassic and for bridging gaps in the fossil record of several other major vertebrate groups.
Collapse
Affiliation(s)
- Marc E H Jones
- Research Department of Cell and Developmental Biology, Anatomy Building, UCL, University College London, Gower Street, London WCIE 6BT, UK.
| | | | | | | | | | | |
Collapse
|
49
|
Kurabayashi A, Sumida M. Afrobatrachian mitochondrial genomes: genome reorganization, gene rearrangement mechanisms, and evolutionary trends of duplicated and rearranged genes. BMC Genomics 2013; 14:633. [PMID: 24053406 PMCID: PMC3852066 DOI: 10.1186/1471-2164-14-633] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial genomic (mitogenomic) reorganizations are rarely found in closely-related animals, yet drastic reorganizations have been found in the Ranoides frogs. The phylogenetic relationships of the three major ranoid taxa (Natatanura, Microhylidae, and Afrobatrachia) have been problematic, and mitogenomic information for afrobatrachians has not been available. Several molecular models for mitochondrial (mt) gene rearrangements have been proposed, but observational evidence has been insufficient to evaluate them. Furthermore, evolutionary trends in rearranged mt genes have not been well understood. To gain molecular and phylogenetic insights into these issues, we analyzed the mt genomes of four afrobatrachian species (Breviceps adspersus, Hemisus marmoratus, Hyperolius marmoratus, and Trichobatrachus robustus) and performed molecular phylogenetic analyses. Furthermore we searched for two evolutionary patterns expected in the rearranged mt genes of ranoids. RESULTS Extensively reorganized mt genomes having many duplicated and rearranged genes were found in three of the four afrobatrachians analyzed. In fact, Breviceps has the largest known mt genome among vertebrates. Although the kinds of duplicated and rearranged genes differed among these species, a remarkable gene rearrangement pattern of non-tandemly copied genes situated within tandemly-copied regions was commonly found. Furthermore, the existence of concerted evolution was observed between non-neighboring copies of triplicated 12S and 16S ribosomal RNA regions. CONCLUSIONS Phylogenetic analyses based on mitogenomic data support a close relationship between Afrobatrachia and Microhylidae, with their estimated divergence 100 million years ago consistent with present-day endemism of afrobatrachians on the African continent. The afrobatrachian mt data supported the first tandem and second non-tandem duplication model for mt gene rearrangements and the recombination-based model for concerted evolution of duplicated mt regions. We also showed that specific nucleotide substitution and compositional patterns expected in duplicated and rearranged mt genes did not occur, suggesting no disadvantage in employing these genes for phylogenetic inference.
Collapse
Affiliation(s)
- Atsushi Kurabayashi
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 739-8526 Hiroshima, Japan
| | - Masayuki Sumida
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 739-8526 Hiroshima, Japan
| |
Collapse
|
50
|
Shen XX, Liang D, Feng YJ, Chen MY, Zhang P. A versatile and highly efficient toolkit including 102 nuclear markers for vertebrate phylogenomics, tested by resolving the higher level relationships of the caudata. Mol Biol Evol 2013; 30:2235-48. [PMID: 23827877 DOI: 10.1093/molbev/mst122] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Resolving difficult nodes for any part of the vertebrate tree of life often requires analyzing a large number of loci. Developing molecular markers that are workable for the groups of interest is often a bottleneck in phylogenetic research. Here, on the basis of a nested polymerase chain reaction (PCR) strategy, we present a universal toolkit including 102 nuclear protein-coding locus (NPCL) markers for vertebrate phylogenomics. The 102 NPCL markers have a broad range of evolutionary rates, which makes them useful for a wide range of time depths. The new NPCL toolkit has three important advantages compared with all previously developed NPCL sets: 1) the kit is universally applicable across vertebrates, with a PCR success rate of 94.6% in 16 widely divergent tested vertebrate species; 2) more than 90% of PCR reactions produce strong and single bands of the expected sizes that can be directly sequenced; and 3) all cleanup PCR reactions can be sequenced with only two specific universal primers. To test its actual phylogenetic utility, 30 NPCLs from this toolkit were used to address the higher level relationships of living salamanders. Of the 639 target PCR reactions performed on 19 salamanders and several outgroup species, 632 (98.9%) were successful, and 602 (94.1%) were directly sequenced. Concatenation and species-tree analyses on this 30-locus data set produced a fully resolved phylogeny and showed that Cryptobranchoidea (Cryptobranchidae + Hynobiidae) branches first within the salamander tree, followed by Sirenidae. Our experimental tests and our demonstration for a particular case show that our NPCL toolkit is a highly reliable, fast, and cost-effective approach for vertebrate phylogenomic studies and thus has the potential to accelerate the completion of many parts of the vertebrate tree of life.
Collapse
Affiliation(s)
- Xing Xing Shen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|