1
|
Taylor PJ, Kearney TC, Clark VR, Howard A, Mdluli MV, Markotter W, Geldenhuys M, Richards LR, Rakotoarivelo AR, Watson J, Balona J, Monadjem A. Southern Africa's Great Escarpment as an amphitheater of climate-driven diversification and a buffer against future climate change in bats. GLOBAL CHANGE BIOLOGY 2024; 30:e17344. [PMID: 38837566 DOI: 10.1111/gcb.17344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024]
Abstract
Hosting 1460 plant and 126 vertebrate endemic species, the Great Escarpment (hereafter, Escarpment) forms a semi-circular "amphitheater" of mountains girdling southern Africa from arid west to temperate east. Since arid and temperate biota are usually studied separately, earlier studies overlooked the biogeographical importance of the Escarpment as a whole. Bats disperse more widely than other mammalian taxa, with related species and intraspecific lineages occupying both arid and temperate highlands of the Escarpment, providing an excellent model to address this knowledge gap. We investigated patterns of speciation and micro-endemism from modeled past, present, and future distributions in six clades of southern African bats from three families (Rhinolophidae, Cistugidae, and Vespertilionidae) having different crown ages (Pleistocene to Miocene) and biome affiliations (temperate to arid). We estimated mtDNA relaxed clock dates of key divergence events across the six clades in relation both to biogeographical features and patterns of phenotypic variation in crania, bacula and echolocation calls. In horseshoe bats (Rhinolophidae), both the western and eastern "arms" of the Escarpment have facilitated dispersals from the Afrotropics into southern Africa. Pleistocene and pre-Pleistocene "species pumps" and temperate refugia explained observed patterns of speciation, intraspecific divergence and, in two cases, mtDNA introgression. The Maloti-Drakensberg is a center of micro-endemism for bats, housing three newly described or undescribed species. Vicariance across biogeographic barriers gave rise to 29 micro-endemic species and intraspecific lineages whose distributions were congruent with those identified in other phytogeographic and zoogeographic studies. Although Köppen-Geiger climate models predict a widespread replacement of current temperate ecosystems in southern Africa by tropical or arid ecosystems by 2070-2100, future climate Maxent models for 13 bat species (all but one of those analyzed above) showed minimal range changes in temperate species from the eastern Escarpment by 2070, possibly due to the buffering effect of mountains to climate change.
Collapse
Affiliation(s)
- Peter J Taylor
- Afromontane Research Unit & Department of Zoology & Entomology, University of the Free State Qwaqwa Campus, Phuthaditjhaba, South Africa
| | - Teresa C Kearney
- Ditsong National Museum of Natural History, Pretoria, South Africa
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Vincent Ralph Clark
- Afromontane Research Unit & Department of Geography, University of the Free State: Qwaqwa Campus, Phuthaditjhaba, South Africa
| | - Alexandra Howard
- Afromontane Research Unit & Department of Zoology & Entomology, University of the Free State Qwaqwa Campus, Phuthaditjhaba, South Africa
| | - Monday V Mdluli
- Afromontane Research Unit & Department of Zoology & Entomology, University of the Free State Qwaqwa Campus, Phuthaditjhaba, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | - Andrinajoro R Rakotoarivelo
- Afromontane Research Unit & Department of Zoology & Entomology, University of the Free State Qwaqwa Campus, Phuthaditjhaba, South Africa
| | - Johan Watson
- Department of Economic Development, Tourism and Environmental Affairs, Biodiversity Research, Bloemfontein, South Africa
| | - Julio Balona
- Gauteng and Northern Regions Bat Interest Group, Johannesburg, South Africa
| | - Ara Monadjem
- Department of Biological Sciences, University of Eswatini, Kwaluseni, Eswatini
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
2
|
Mitchell DR, Sherratt E, Weisbecker V. Facing the facts: adaptive trade-offs along body size ranges determine mammalian craniofacial scaling. Biol Rev Camb Philos Soc 2024; 99:496-524. [PMID: 38029779 DOI: 10.1111/brv.13032] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
The mammalian cranium (skull without lower jaw) is representative of mammalian diversity and is thus of particular interest to mammalian biologists across disciplines. One widely retrieved pattern accompanying mammalian cranial diversification is referred to as 'craniofacial evolutionary allometry' (CREA). This posits that adults of larger species, in a group of closely related mammals, tend to have relatively longer faces and smaller braincases. However, no process has been officially suggested to explain this pattern, there are many apparent exceptions, and its predictions potentially conflict with well-established biomechanical principles. Understanding the mechanisms behind CREA and causes for deviations from the pattern therefore has tremendous potential to explain allometry and diversification of the mammalian cranium. Here, we propose an amended framework to characterise the CREA pattern more clearly, in that 'longer faces' can arise through several kinds of evolutionary change, including elongation of the rostrum, retraction of the jaw muscles, or a more narrow or shallow skull, which all result in a generalised gracilisation of the facial skeleton with increased size. We define a standardised workflow to test for the presence of the pattern, using allometric shape predictions derived from geometric morphometrics analysis, and apply this to 22 mammalian families including marsupials, rabbits, rodents, bats, carnivores, antelopes, and whales. Our results show that increasing facial gracility with size is common, but not necessarily as ubiquitous as previously suggested. To address the mechanistic basis for this variation, we then review cranial adaptations for harder biting. These dictate that a more gracile cranium in larger species must represent a structural sacrifice in the ability to produce or withstand harder bites, relative to size. This leads us to propose that facial gracilisation in larger species is often a product of bite force allometry and phylogenetic niche conservatism, where more closely related species tend to exhibit more similar feeding ecology and biting behaviours and, therefore, absolute (size-independent) bite force requirements. Since larger species can produce the same absolute bite forces as smaller species with less effort, we propose that relaxed bite force demands can permit facial gracility in response to bone optimisation and alternative selection pressures. Thus, mammalian facial scaling represents an adaptive by-product of the shifting importance of selective pressures occurring with increased size. A reverse pattern of facial 'shortening' can accordingly also be found, and is retrieved in several cases here, where larger species incorporate novel feeding behaviours involving greater bite forces. We discuss multiple exceptions to a bite force-mediated influence on facial proportions across mammals which lead us to argue that ecomorphological specialisation of the cranium is likely to be the primary driver of facial scaling patterns, with some developmental constraints as possible secondary factors. A potential for larger species to have a wider range of cranial functions when less constrained by bite force demands might also explain why selection for larger sizes seems to be prevalent in some mammalian clades. The interplay between adaptation and constraint across size ranges thus presents an interesting consideration for a mechanistically grounded investigation of mammalian cranial allometry.
Collapse
Affiliation(s)
- D Rex Mitchell
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, 2522, Australia
| | - Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- South Australian Museum, Adelaide, South Australia, 5000, Australia
| | - Vera Weisbecker
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
3
|
Daniels SR, Peer N, Myburgh AM, Barnes A, Klaus S. Let's get high: Cladogenesis in freshwater crabs (Decapoda: Potamonautidae: Potamonautes) supports the mountain gradient speciation hypothesis in the Cape Fold and Drakensberg Mountains, South Africa. Ecol Evol 2024; 14:e10960. [PMID: 38450318 PMCID: PMC10915499 DOI: 10.1002/ece3.10960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 03/08/2024] Open
Abstract
During the present study, the evolutionary relationship within a clade of mountain clade of freshwater crabs (Potamonautes) was examined using mtDNA sequence data for species from the Cape Fold Mountain (CFM) and Great Escarpment (Drakensberg Mountain range). We undertook phylogenetic analyses, divergence time estimation, and an ancestral area reconstruction to explore the period of cladogenesis and understand the biogeographic history in this high-altitude clade. Furthermore, we applied four species delimitation methods using ASAP, bPTP, bGMYC, and STACEY on the latter clade. Bayesian phylogenetic analyses retrieved a monophyletic freshwater crab clade comprised of two major sister clades, one comprised of the Cape Fold (clade A) and two comprised of Drakensberg Mountains (clade B) species. Divergence time estimation indicated that the two clades underwent Mio/Pliocene cladogenesis. Within the CFM clade (A), P. amathole (Amathola Mountains) was sister to P. parvispina (Cederberg and Kouebokkeveld Mountains) and the latter species were sister to P. parvicorpus (Cape Peninsula, Jonkershoek, and Helderberg Mountains) sister to P. tuerkayi (Overberg Mountains) and P. brincki (Hottentots Holland Mountains). Within the Drakensberg Mountain clade (B), we observed in situ diversification. Specimens from the southcentral Drakensberg Mountains (Dargle Forest, Injasuti, Karkloof, and Impendle) represent a new undescribed lineage Potamonautes sp. nov. 1. The second clade from the northern Drakensberg, representing P. clarus, was sister to a central Drakensberg Mountain clade that comprised P. depressus that was in turn sister to P. baziya from the Eastern Cape Province. The application of species delimitation methods generally overestimated the number of species. The biogeographic analyses indicated that the Eastern Cape Province is the most likely ancestral range area. Ecological niche modelling of representative species in clades A (Cape Fold Mountains) and B (Drakensberg Mountains) demonstrated that temperature and rainfall were the major abiotic drivers that differentiated the two clades. Our data favours the mountain gradient speciation hypothesis.
Collapse
Affiliation(s)
- Savel R. Daniels
- Department of Botany and ZoologyUniversity of StellenboschStellenboschSouth Africa
| | - Nasreen Peer
- Department of Botany and ZoologyUniversity of StellenboschStellenboschSouth Africa
| | | | - Aaron Barnes
- Department of Botany and ZoologyUniversity of StellenboschStellenboschSouth Africa
| | - Sebastian Klaus
- Department of Ecology and EvolutionJ. W. Goethe‐University, BiologicumFrankfurt am MainGermany
- ERM GmbHNeu‐IsenburgGermany
| |
Collapse
|
4
|
Bowman J, Enard D, Lynch VJ. Phylogenomics reveals an almost perfect polytomy among the almost ungulates ( Paenungulata). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570590. [PMID: 38106080 PMCID: PMC10723481 DOI: 10.1101/2023.12.07.570590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Phylogenetic studies have resolved most relationships among Eutherian Orders. However, the branching order of elephants (Proboscidea), hyraxes (Hyracoidea), and sea cows (Sirenia) (i.e., the Paenungulata) has remained uncertain since at least 1758, when Linnaeus grouped elephants and manatees into a single Order (Bruta) to the exclusion of hyraxes. Subsequent morphological, molecular, and large-scale phylogenomic datasets have reached conflicting conclusions on the branching order within Paenungulates. We use a phylogenomic dataset of alignments from 13,388 protein-coding genes across 261 Eutherian mammals to infer phylogenetic relationships within Paenungulates. We find that gene trees almost equally support the three alternative resolutions of Paenungulate relationships and that despite strong support for a Proboscidea+Hyracoidea split in the multispecies coalescent (MSC) tree, there is significant evidence for gene tree uncertainty, incomplete lineage sorting, and introgression among Proboscidea, Hyracoidea, and Sirenia. Indeed, only 8-10% of genes have statistically significant phylogenetic signal to reject the hypothesis of a Paenungulate polytomy. These data indicate little support for any resolution for the branching order Proboscidea, Hyracoidea, and Sirenia within Paenungulata and suggest that Paenungulata may be as close to a real, or at least unresolvable, polytomy as possible.
Collapse
Affiliation(s)
- Jacob Bowman
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology. University of Arizona, Tucson, AZ, USA
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| |
Collapse
|
5
|
Lutz TM, Kimna C, Casini A, Lieleg O. Bio-based and bio-inspired adhesives from animals and plants for biomedical applications. Mater Today Bio 2022; 13:100203. [PMID: 35079700 PMCID: PMC8777159 DOI: 10.1016/j.mtbio.2022.100203] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 01/01/2023] Open
Abstract
With the "many-headed" slime mold Physarum polycelphalum having been voted the unicellular organism of the year 2021 by the German Society of Protozoology, we are reminded that a large part of nature's huge variety of life forms is easily overlooked - both by the general public and researchers alike. Indeed, whereas several animals such as mussels or spiders have already inspired many scientists to create novel materials with glue-like properties, there is much more to discover in the flora and fauna. Here, we provide an overview of naturally occurring slimy substances with adhesive properties and categorize them in terms of the main chemical motifs that convey their stickiness, i.e., carbohydrate-, protein-, and glycoprotein-based biological glues. Furthermore, we highlight selected recent developments in the area of material design and functionalization that aim at making use of such biological compounds for novel applications in medicine - either by conjugating adhesive motifs found in nature to biological or synthetic macromolecules or by synthetically creating (multi-)functional materials, which combine adhesive properties with additional, problem-specific (and sometimes tunable) features.
Collapse
Affiliation(s)
- Theresa M. Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| |
Collapse
|
6
|
Pfisterer BR, Ashley AL, Donnell RL, Dunlap JR, Newkirk KM. Pulmonary silicosis in 2 rock hyraxes, and literature review. J Vet Diagn Invest 2021; 34:98-101. [PMID: 34781790 DOI: 10.1177/10406387211057524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two rock hyraxes (Procavia capensis), from the Chattanooga Zoo, were submitted separately for autopsy at the University of Tennessee Veterinary Medical Center. The first was a 4-y-old intact female that died without premonitory signs and the second was a 10-y-old intact male that was euthanized because of severe renal disease. Microscopically, the lungs of both hyraxes had multifocal-to-coalescing, <1-mm diameter aggregates of epithelioid macrophages separated by streams of fibrous tissue. Macrophages contained intracytoplasmic, clear, acicular, birefringent crystals. Transmission electron microscopy and energy-dispersive x-ray spectroscopy findings on the lung samples were consistent with silica crystal deposition. The hyraxes had been housed together on commercially sourced play sand composed of 99-99.5% quartz, a crystalline silica polymorph. The microscopic findings, transmission electron microscopy, and energy-dispersive x-ray spectroscopy of the intrahistiocytic crystals, in addition to the history of exposure to crystalline silica, were consistent with pulmonary silicosis. Pulmonary silicosis has not been reported previously in rock hyraxes, to our knowledge.
Collapse
Affiliation(s)
- Bianca R Pfisterer
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | | | - Robert L Donnell
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - John R Dunlap
- Joint Institute for Advanced Materials, Department of Biology, University of Tennessee, Knoxville, TN, USA
| | - Kim M Newkirk
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
7
|
Taft JM, Maritz B, Tolley KA. Stable climate corridors promote gene flow in the Cape sand snake species complex (Psammophiidae). ZOOL SCR 2021. [DOI: 10.1111/zsc.12514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jody M. Taft
- Department of Biodiversity and Conservation Biology University of the Western Cape Private Bag X17 Bellville South Africa
- Kirstenbosch Research Center South African National Biodiversity Institute Cape Town South Africa
| | - Bryan Maritz
- Department of Biodiversity and Conservation Biology University of the Western Cape Private Bag X17 Bellville South Africa
| | - Krystal A. Tolley
- Kirstenbosch Research Center South African National Biodiversity Institute Cape Town South Africa
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
| |
Collapse
|
8
|
Thurtell L, Rajaratnam R, Thomas P, Ballard G, Bayne P, Vernes K. Predictively modelling the distribution of the threatened brush-tailed rock-wallaby (. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr20141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract Context Species Distribution Models (SDM) can be used to investigate and understand relationships between species occurrence and environmental variables, so as to predict potential distribution. These predictions can facilitate conservation actions and management decisions. Oxley Wild Rivers National Park (OWRNP) is regarded as an important stronghold for the threatened brush-tailed rock-wallaby (Petrogale penicillata), on the basis of the presence of the largest known metapopulation of the species. Adequate knowledge of the species’ ecology and distribution in OWRNP is a key objective in the national recovery plan for the species occurring in the Park. Aims To model distribution using key GIS-derived environmental factors for the brush-tailed rock-wallaby in OWRNP and to ground-truth its presence through field surveys in areas of high habitat suitability. Methods We used Maxent to model the distribution of the brush-tailed rock-wallaby within OWRNP on the basis of 282 occurrence records collected from an online database, elicitation of informal records from experts, helicopter surveys and historic records. Environmental variables used in the analysis were aspect, distance to water, elevation, geology type, slope and vegetation type. Key results Vegetation type (37.9%) was the highest contributing predictor of suitable habitat, whereas aspect (4.8%) contributed the least. The model produced an area under the curve (AUC) of the receiver operating characteristic (ROC) of 0.780. The model was able to discriminate between suitable and non-suitable habitat for brush-tailed rock-wallabies. Areas identified in our model as being highly suitable yielded eight new occurrence records during subsequent ground-truthing field surveys. Conclusions Brush-tailed rock-wallaby distribution in OWRNP is primarily associated with vegetation type, followed by distance to water, elevation, geology, slope and aspect. Field surveys indicated that the model was able to identify areas of high habitat suitability. Implications This model represents the first predicted distribution of brush-tailed rock-wallaby in OWRNP. By identifying areas of high habitat suitability, it can be used to survey and monitor the species in OWRNP, and, thus, contribute to its management and conservation within the Park.
Collapse
|
9
|
Daniel GM, Sole CL, Scholtz CH, Davis ALV. Historical diversification and biogeography of the endemic southern African dung beetle genus, Epirinus (Scarabaeidae: Scarabaeinae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
The role of the geological uplift and climatic changes during the late Cenozoic on the species diversification of southern African dung beetles is not fully understood. Therefore, we use a divergence-time-estimated phylogeny, macroevolutionary analyses and ecological niche modelling under different climatic scenarios to investigate diversification of the endemic southern African genus, Epirinus. We predict the ancestral range and vegetation type occupied by Epirinus and how late Cenozoic climatic fluctuations and resulting vegetation changes affected speciation and extinction of Epirinus species. Our results suggest that the genus originated in forest with radiation into three geographical centres: (a) north-east escarpment forest and highland grassland; (b) south-east forest; and (c) south-west lowlands to north-east uplands in open vegetation. Reduced speciation rates in the mid-Miocene and increased extinction rates during the drier and cooler Plio-Pleistocene coincide with the replacement of forest by grassland or savanna in southern Africa. The drier climate in southern Africa may have driven extensive contraction of shaded vegetation, forcing an adaptation of forest inhabitants to upland grassland environments, or driving Epirinus species to extinction. Our study supports hypothesis of climatically driven diversification of Epirinus whereas ecological niche modelling across different geological periods suggest that the south-east and, to a lesser extent, the west coast of South Africa as stable areas.
Collapse
Affiliation(s)
- Gimo M Daniel
- Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
- Department of Terrestrial Invertebrates, The National Museum, Bloemfontein, South Africa
| | - Catherine L Sole
- Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
| | - Clarke H Scholtz
- Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
| | - Adrian L V Davis
- Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
10
|
From micro- to macroevolution: insights from a Neotropical bromeliad with high population genetic structure adapted to rock outcrops. Heredity (Edinb) 2020; 125:353-370. [PMID: 32681156 DOI: 10.1038/s41437-020-0342-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Geographic isolation and reduced population sizes can lead to local extinction, low efficacy of selection and decreased speciation. However, population differentiation is an essential step of biological diversification. In allopatric speciation, geographically isolated populations differentiate and persist until the evolution of reproductive isolation and ecological divergence completes the speciation process. Pitcairnia flammea allows us to study the evolutionary consequences of habitat fragmentation on naturally disjoint rock-outcrop species from the Brazilian Atlantic Rainforest (BAF). Our main results showed low-to-moderate genetic diversity within populations, and deep population structuring caused by limited gene flow, low connectivity, genetic drift and inbreeding of long-term isolation and persistence of rock-outcrop populations throughout Quaternary climatic oscillations. Bayesian phylogenetic and model-based clustering analyses found no clear northern and southern phylogeographic structure commonly reported for many BAF organisms. Although we found two main lineages diverging by ~2 Mya during the early Pleistocene, species' delimitation analysis assigned most of the populations as independent evolving entities, suggesting an important role of disjoint rock outcrops in promoting high endemism in this rich biome. Lastly, we detected limited gene flow in sympatric populations although some hybridization and introgression were observed, suggesting a continuous speciation process in this species complex. Our data not only inform us about the extensive differentiation and limited gene flow found among Pitcairnia flammea species complex, but they also contain information about the mechanisms that shape the genetic architecture of small and fragmented populations of isolated rock outcrop of recently radiated plants.
Collapse
|
11
|
Visser J, Robinson T, Jansen van Vuuren B. Spatial genetic structure in the rock hyrax (Procavia capensis) across the Namaqualand and western Fynbos areas of South Africa — a mitochondrial and microsatellite perspective. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interplay between biotic and abiotic environments is increasingly recognized as a major determinant of spatial genetic patterns. Among spatial genetic studies, saxicolous or rock-dwelling species remain underrepresented in spite of their strict dependence on landscape structure. Here we investigated patterns and processes operating at different spatial (fine and regional scales) and time scales (using mitochondrial and microsatellite markers) in the rock hyrax (Procavia capensis (Pallas, 1766)). Our focus was on the western seaboard of South Africa and included two recognized biodiversity hotspots (Cape Floristic Region and Succulent Karoo). At fine spatial scale, significant genetic structure was present between four rocky outcrops in an isolated population, likely driven by the social system of this species. At a broader spatial scale, ecological dependence on rocky habitat and population-level processes, in conjunction with landscape structure, appeared to be the main drivers of genetic diversity and structure. Large areas devoid of suitable rocky habitat (e.g., the Knersvlakte, Sandveld, and Cape Flats, South Africa) represent barriers to gene flow in the species, although genetic clusters closely follow climatic, geological, and phytogeographic regions, possibly indicating ecological specialization or adaptation as contributing factors enforcing isolation. Taken together, our study highlights the need to consider both intrinsic and extrinsic factors when investigating spatial genetic structures within species.
Collapse
Affiliation(s)
- J.H. Visser
- Department of Botany and Zoology, University of Stellenbosch, Private Bag XI, Matieland 7602, South Africa
| | - T.J. Robinson
- Department of Botany and Zoology, University of Stellenbosch, Private Bag XI, Matieland 7602, South Africa
| | - B. Jansen van Vuuren
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park 2000, South Africa
| |
Collapse
|
12
|
Pahad G, Montgelard C, Jansen van Vuuren B. Phylogeography and niche modelling: reciprocal enlightenment. MAMMALIA 2019. [DOI: 10.1515/mammalia-2018-0191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Phylogeography examines the spatial genetic structure of species. Environmental niche modelling (or ecological niche modelling; ENM) examines the environmental limits of a species’ ecological niche. These two fields have great potential to be used together. ENM can shed light on how phylogeographical patterns develop and help identify possible drivers of spatial structure that need to be further investigated. Specifically, ENM can be used to test for niche differentiation among clades, identify factors limiting individual clades and identify barriers and contact zones. It can also be used to test hypotheses regarding the effects of historical and future climate change on spatial genetic patterns by projecting niches using palaeoclimate or future climate data. Conversely, phylogeographical information can populate ENM with within-species genetic diversity. Where adaptive variation exists among clades within a species, modelling their niches separately can improve predictions of historical distribution patterns and future responses to climate change. Awareness of patterns of genetic diversity in niche modelling can also alert conservationists to the potential loss of genetically diverse areas in a species’ range. Here, we provide a simplistic overview of both fields, and focus on their potential for integration, encouraging researchers on both sides to take advantage of the opportunities available.
Collapse
Affiliation(s)
- Govan Pahad
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology , University of Johannesburg , PO Box 524 , Auckland Park, Johannesburg 2000 , South Africa
| | - Claudine Montgelard
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology , University of Johannesburg , PO Box 524 , Auckland Park, Johannesburg 2000 , South Africa
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier , EPHE, Biogéographie et Ecologie des Vertébrés , 1919 route de Mende , 34293 Montpellier , France
| | - Bettine Jansen van Vuuren
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology , University of Johannesburg , PO Box 524 , Auckland Park, Johannesburg 2000 , South Africa
| |
Collapse
|