1
|
Li YX, Ip JCH, Chen C, Xu T, Zhang Q, Sun Y, Ma PZ, Qiu JW. Phylogenomics of Bivalvia Using Ultraconserved Elements Reveal New Topologies for Pteriomorphia and Imparidentia. Syst Biol 2025; 74:16-33. [PMID: 39283716 DOI: 10.1093/sysbio/syae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/05/2024] [Accepted: 09/03/2024] [Indexed: 02/11/2025] Open
Abstract
Despite significant advances in phylogenetics over the past decades, the deep relationships within Bivalvia (phylum Mollusca) remain inconclusive. Previous efforts based on morphology or several genes have failed to resolve many key nodes in the phylogeny of Bivalvia. Advances have been made recently using transcriptome data, but the phylogenetic relationships within Bivalvia historically lacked consensus, especially within Pteriomorphia and Imparidentia. Here, we inferred the relationships of key lineages within Bivalvia using matrices generated from specifically designed ultraconserved elements (UCEs) with 16 available genomic resources and 85 newly sequenced specimens from 55 families. Our new probes (Bivalve UCE 2k v.1) for target sequencing captured an average of 849 UCEs with 1085 bp in mean length from in vitro experiments. Our results introduced novel schemes from 6 major clades (Protobranchina, Pteriomorphia, Palaeoheterodonta, Archiheterodonta, Anomalodesmata, and Imparidentia), though some inner nodes were poorly resolved, such as paraphyletic Heterodonta in some topologies potentially due to insufficient taxon sampling. The resolution increased when analyzing specific matrices for Pteriomorphia and Imparidentia. We recovered 3 Pteriomorphia topologies different from previously published trees, with the strongest support for ((Ostreida + (Arcida + Mytilida)) + (Pectinida + (Limida + Pectinida))). Limida were nested within Pectinida, warranting further studies. For Imparidentia, our results strongly supported the new hypothesis of (Galeommatida + (Adapedonta + Cardiida)), while the possible non-monophyly of Lucinida was inferred but poorly supported. Overall, our results provide important insights into the phylogeny of Bivalvia and show that target enrichment sequencing of UCEs can be broadly applied to study both deep and shallow phylogenetic relationships.
Collapse
Affiliation(s)
- Yi-Xuan Li
- Department of Biology, Hong Kong Baptist University, 224 Wateroo Road, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou, Guangdong 511458, China
| | - Jack Chi-Ho Ip
- Science Unit, Lingnan University, 8 Castle Peak Road, Tuen Mun, Hong Kong SAR, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou, Guangdong 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qian Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, 6 Xianxialing Road, Laoshan District, Qingdao 266100, China
| | - Yanan Sun
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, 8 Nanhai Road, Shinan District, Qingdao 266071, China
| | - Pei-Zhen Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, 224 Wateroo Road, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou, Guangdong 511458, China
| |
Collapse
|
2
|
Zhao M, Oswald JA, Allen JM, Owens HL, Hosner PA, Guralnick RP, Braun EL, Kimball RT. A phylogenomic tree of wood-warblers (Aves: Parulidae): Dealing with good, bad, and ugly samples. Mol Phylogenet Evol 2025; 202:108235. [PMID: 39542406 DOI: 10.1016/j.ympev.2024.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/26/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
The New World warblers (Parulidae) are a model group for ecological and evolutionary analyses. However, current phylogenetic relationships across this family are based upon few loci. Here we use ultraconserved elements (UCEs) to estimate a rigorous species-level phylogeny for the family. As is true for many groups, high-quality tissues were unavailable for some taxa. Thus, we explored methods for incorporating sequences derived from historical (toe pad) samples to expand the phylogenetic datasets. We recovered an average of 4,186 UCE loci and mitochondrial bycatch data (supplemented with published mitochondrial data) from 96% of all currently recognized species. We found that the UCE phylogeny built with alignments with less than 70% of gaps and ambiguities recovered the most robust phylogenetic relationships for this family, representing 101 species. Using this phylogeny as a topological backbone and adding ten fair quality "bad" samples effectively generated an overall well supported phylogeny, representing 108 species (∼90% of all species). Based on this tree, we then added in seven poor quality "ugly" samples and six of those were placed within their expected genera. We also explored the phylogenetic positions of the likely extinct Leucopeza semperi and the endangered Catharopeza bishopi where limited data was obtained. Overall, taxonomic placements in our UCE trees largely correspond to previously published studies with the recovery of all currently recognized genera as monophyletic except for Basileuterus which was rendered paraphyletic by B. lachrymosus. Our study provides insights in understanding the phylogenetic relationships of a model Passeriformes family and outlines effective practices for managing sparse genomic data sourced from historical museum specimens. Variable topological arrangements across datasets and analyses reflect the evolutionary complexity of this group and provide future topics for in-depth studies.
Collapse
Affiliation(s)
- Min Zhao
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Jessica A Oswald
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; U.S. Fish and Wildlife Service, National Fish and Wildlife Forensic Laboratory, Ashland, OR 97520, USA
| | - Julie M Allen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Hannah L Owens
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Center for Global Mountain Biodiversity, Section for Biodiversity, Globe Institute, University of Copenhagen, København Ø, Denmark
| | - Peter A Hosner
- Center for Global Mountain Biodiversity, Section for Biodiversity, Globe Institute, University of Copenhagen, København Ø, Denmark; Natural History Museum Denmark, University of Copenhagen, København Ø, Denmark
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
3
|
Zhang J, Li Z, Lai J, Zhang Z, Zhang F. A novel probe set for the phylogenomics and evolution of RTA spiders. Cladistics 2023; 39:116-128. [PMID: 36719825 DOI: 10.1111/cla.12523] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 02/01/2023] Open
Abstract
Spiders are important models for evolutionary studies of web building, sexual selection and adaptive radiation. The recent development of probes for UCE (ultra-conserved element)-based phylogenomic studies has shed light on the phylogeny and evolution of spiders. However, the two available UCE probe sets for spider phylogenomics (Spider and Arachnida probe sets) have relatively low capture efficiency within spiders, and are not optimized for the retrolateral tibial apophysis (RTA) clade, a hyperdiverse lineage that is key to understanding the evolution and diversification of spiders. In this study, we sequenced 15 genomes of species in the RTA clade, and using eight reference genomes, we developed a new UCE probe set (41 845 probes targeting 3802 loci, labelled as the RTA probe set). The performance of the RTA probes in resolving the phylogeny of the RTA clade was compared with the Spider and Arachnida probes through an in-silico test on 19 genomes. We also tested the new probe set empirically on 28 spider species of major spider lineages. The results showed that the RTA probes recovered twice and four times as many loci as the other two probe sets, and the phylogeny from the RTA UCEs provided higher support for certain relationships. This newly developed UCE probe set shows higher capture efficiency empirically and is particularly advantageous for phylogenomic and evolutionary studies of RTA clade and jumping spiders.
Collapse
Affiliation(s)
- Junxia Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhaoyi Li
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jiaxing Lai
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhisheng Zhang
- School of Life Sciences, Southwest University, Chongqing, 400700, China
| | - Feng Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| |
Collapse
|
4
|
Wang N, Braun EL, Liang B, Cracraft J, Smith SA. Categorical edge-based analyses of phylogenomic data reveal conflicting signals for difficult relationships in the avian tree. Mol Phylogenet Evol 2022; 174:107550. [PMID: 35691570 DOI: 10.1016/j.ympev.2022.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
Phylogenetic analyses fail to yield a satisfactory resolution of some relationships in the tree of life even with genome-scale datasets, so the failure is unlikely to reflect limitations in the amount of data. Gene tree conflicts are particularly notable in studies focused on these contentious nodes, and taxon sampling, different analytical methods, and/or data type effects can further confound analyses. Although many efforts have been made to incorporate biological conflicts, few studies have curated individual genes for their efficiency in phylogenomic studies. Here, we conduct an edge-based analysis of Neoavian evolution, examining the phylogenetic efficacy of two recent phylogenomic bird datasets and three datatypes (ultraconserved elements [UCEs], introns, and coding regions). We assess the potential causes for biases in signal-resolution for three difficult nodes: the earliest divergence of Neoaves, the position of the enigmatic Hoatzin (Opisthocomus hoazin), and the position of owls (Strigiformes). We observed extensive conflict among genes for all data types and datasets even after meticulous curation. Edge-based analyses (EBA) increased congruence and provided information about the impact of data type, GC content variation (GCCV), and outlier genes on each of nodes we examined. First, outlier gene signals appeared to drive different patterns of support for the relationships among the earliest diverging Neoaves. Second, the placement of Hoatzin was highly variable, although our EBA did reveal a previously unappreciated data type effect with an impact on its position. It also revealed that the resolution with the most support here was Hoatzin + shorebirds. Finally, GCCV, rather than data type (i.e., coding vs non-coding) per se, was correlated with a signal that supports monophyly of owls + Accipitriformes (hawks, eagles, and vultures). Eliminating high GCCV loci increased the signal for owls + mousebirds. Categorical EBA was able to reveal the nature of each edge and provide a way to highlight especially problematic branches that warrant a further examination. The current study increases our understanding about the contentious parts of the avian tree, which show even greater conflicts than appreciated previously.
Collapse
Affiliation(s)
- Ning Wang
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Department of Ecology & Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109-1048, USA; Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA.
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32607, USA
| | - Bin Liang
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Department of Ecology & Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109-1048, USA
| | - Joel Cracraft
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109-1048, USA
| |
Collapse
|
5
|
Chen D, Hosner PA, Dittmann DL, O'Neill JP, Birks SM, Braun EL, Kimball RT. Divergence time estimation of Galliformes based on the best gene shopping scheme of ultraconserved elements. BMC Ecol Evol 2021; 21:209. [PMID: 34809586 PMCID: PMC8609756 DOI: 10.1186/s12862-021-01935-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Divergence time estimation is fundamental to understanding many aspects of the evolution of organisms, such as character evolution, diversification, and biogeography. With the development of sequence technology, improved analytical methods, and knowledge of fossils for calibration, it is possible to obtain robust molecular dating results. However, while phylogenomic datasets show great promise in phylogenetic estimation, the best ways to leverage the large amounts of data for divergence time estimation has not been well explored. A potential solution is to focus on a subset of data for divergence time estimation, which can significantly reduce the computational burdens and avoid problems with data heterogeneity that may bias results. RESULTS In this study, we obtained thousands of ultraconserved elements (UCEs) from 130 extant galliform taxa, including representatives of all genera, to determine the divergence times throughout galliform history. We tested the effects of different "gene shopping" schemes on divergence time estimation using a carefully, and previously validated, set of fossils. Our results found commonly used clock-like schemes may not be suitable for UCE dating (or other data types) where some loci have little information. We suggest use of partitioning (e.g., PartitionFinder) and selection of tree-like partitions may be good strategies to select a subset of data for divergence time estimation from UCEs. Our galliform time tree is largely consistent with other molecular clock studies of mitochondrial and nuclear loci. With our increased taxon sampling, a well-resolved topology, carefully vetted fossil calibrations, and suitable molecular dating methods, we obtained a high quality galliform time tree. CONCLUSIONS We provide a robust galliform backbone time tree that can be combined with more fossil records to further facilitate our understanding of the evolution of Galliformes and can be used as a resource for comparative and biogeographic studies in this group.
Collapse
Affiliation(s)
- De Chen
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Peter A Hosner
- Department of Biology, University of Florida, Gainesville, FL, USA
- Natural History Museum of Denmark and Center for Global Mountain Biodiversity, University of Copenhagen, Copenhagen, Denmark
| | - Donna L Dittmann
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - John P O'Neill
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Sharon M Birks
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
6
|
White ND, Batz ZA, Braun EL, Braun MJ, Carleton KL, Kimball RT, Swaroop A. A novel exome probe set captures phototransduction genes across birds (Aves) enabling efficient analysis of vision evolution. Mol Ecol Resour 2021; 22:587-601. [PMID: 34652059 DOI: 10.1111/1755-0998.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022]
Abstract
The diversity of avian visual phenotypes provides a framework for studying mechanisms of trait diversification generally, and the evolution of vertebrate vision, specifically. Previous research has focused on opsins, but to fully understand visual adaptation, we must study the complete phototransduction cascade (PTC). Here, we developed a probe set that captures exonic regions of 46 genes representing the PTC and other light responses. For a subset of species, we directly compared gene capture between our probe set and low-coverage whole genome sequencing (WGS), and we discuss considerations for choosing between these methods. Finally, we developed a unique strategy to avoid chimeric assembly by using "decoy" reference sequences. We successfully captured an average of 64% of our targeted exome in 46 species across 14 orders using the probe set and had similar recovery using the WGS data. Compared to WGS or transcriptomes, our probe set: (1) reduces sequencing requirements by efficiently capturing vision genes, (2) employs a simpler bioinformatic pipeline by limiting required assembly and negating annotation, and (3) eliminates the need for fresh tissues, enabling researchers to leverage existing museum collections. We then utilized our vision exome data to identify positively selected genes in two evolutionary scenarios-evolution of night vision in nocturnal birds and evolution of high-speed vision specific to manakins (Pipridae). We found parallel positive selection of SLC24A1 in both scenarios, implicating the alteration of rod response kinetics, which could improve color discrimination in dim light conditions and/or facilitate higher temporal resolution.
Collapse
Affiliation(s)
- Noor D White
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA
| | - Zachary A Batz
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Michael J Braun
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA.,Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Karen L Carleton
- Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA.,Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Anand Swaroop
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Houston DD, Satler JD, Stack TK, Carroll HM, Bevan AM, Moya AL, Alexander KD. A phylogenomic perspective on the evolutionary history of the stonefly genus Suwallia (Plecoptera: Chloroperlidae) revealed by ultraconserved genomic elements. Mol Phylogenet Evol 2021; 166:107320. [PMID: 34626810 DOI: 10.1016/j.ympev.2021.107320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022]
Abstract
Evolutionary biologists have long sought to disentangle phylogenetic relationships among taxa spanning the tree of life, an increasingly important task as anthropogenic influences accelerate population declines and species extinctions, particularly in insects. Phylogenetic analyses are commonly used to identify unique evolutionary lineages, to clarify taxonomic designations of the focal taxa, and to inform conservation decisions. Advances in DNA sequencing techniques have increasingly facilitated the ability of researchers to apply genomic methods to phylogenetic analyses, even for non-model organisms. Stoneflies are non-model insects that are important bioindicators of the quality of freshwater habitats and landscape disturbance as they spend the immature stages of their life cycles in fresh water, and the adult stages in terrestrial environments. Phylogenetic relationships within the stonefly genus Suwallia (Insecta: Plecoptera: Chloroperlidae) are poorly understood, and have never been assessed using molecular data. We used DNA sequence data from genome-wide ultraconserved element loci to generate the first molecular phylogeny for the group and assess its monophyly. We found that Palearctic and Nearctic Suwallia do not form reciprocally monophyletic clades, and that a biogeographic history including dispersal, vicariance, and founder event speciation via jump dispersal best explains the geographic distribution of this group. Our results also strongly suggest that Neaviperla forcipata (Neave, 1929) is nested within Suwallia, and the concept of the genus Suwallia should be revised to include it. Thus, we formally propose a new taxonomic combination wherein Neaviperla forcipata (Neave, 1929) is reclassified as Suwallia forcipata (Neave, 1929). Moreover, some Suwallia species (e.g., S. amoenacolens, S. kerzhneri, S. marginata, S. pallidula, and S. starki) exhibit pronounced cryptic diversity that is worthy of further investigation. These findings provide a first glimpse into the evolutionary history of Suwallia, improve our understanding of stonefly diversity in the tribe Suwallini, and highlight areas where additional research is needed.
Collapse
Affiliation(s)
- Derek D Houston
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Jordan D Satler
- Department of Ecology Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Taylor K Stack
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Hannah M Carroll
- Department of Ecology Evolution and Organismal Biology, Iowa State University, Ames, IA, USA; Department of Earth Planetary and Space Sciences, University of California-Los Angeles, CA, USA.
| | - Alissa M Bevan
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Autumn L Moya
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Kevin D Alexander
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| |
Collapse
|
8
|
Forthman M, Braun EL, Kimball RT. Gene tree quality affects empirical coalescent branch length estimation. ZOOL SCR 2021. [DOI: 10.1111/zsc.12512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Michael Forthman
- Department of Entomology & Nematology University of Florida Gainesville FL USA
- California State Collection of Arthropods Plant Pest Diagnostics Branch California Department of Food & Agriculture Sacramento CA USA
| | - Edward L. Braun
- Department of Biology University of Florida Gainesville FL USA
| | | |
Collapse
|
9
|
Knyshov A, Gordon ERL, Weirauch C. New alignment-based sequence extraction software (ALiBaSeq) and its utility for deep level phylogenetics. PeerJ 2021; 9:e11019. [PMID: 33850647 PMCID: PMC8019319 DOI: 10.7717/peerj.11019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/06/2021] [Indexed: 01/03/2023] Open
Abstract
Despite many bioinformatic solutions for analyzing sequencing data, few options exist for targeted sequence retrieval from whole genomic sequencing (WGS) data with the ultimate goal of generating a phylogeny. Available tools especially struggle at deep phylogenetic levels and necessitate amino-acid space searches, which may increase rates of false positive results. Many tools are also difficult to install and may lack adequate user resources. Here, we describe a program that uses freely available similarity search tools to find homologs in assembled WGS data with unparalleled freedom to modify parameters. We evaluate its performance compared to other commonly used bioinformatics tools on two divergent insect species (>200 My) for which annotated genomes exist, and on one large set each of highly conserved and more variable loci. Our software is capable of retrieving orthologs from well-curated or unannotated, low or high depth shotgun, and target capture assemblies as well or better than other software as assessed by recovering the most genes with maximal coverage and with a low rate of false positives throughout all datasets. When assessing this combination of criteria, ALiBaSeq is frequently the best evaluated tool for gathering the most comprehensive and accurate phylogenetic alignments on all types of data tested. The software (implemented in Python), tutorials, and manual are freely available at https://github.com/AlexKnyshov/alibaseq.
Collapse
Affiliation(s)
- Alexander Knyshov
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Eric R L Gordon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Christiane Weirauch
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
10
|
Chen D, Liu Y, Davison G, Yong DL, Gao S, Hu J, Li SH, Zhang Z. Disentangling the evolutionary history and biogeography of hill partridges (Phasianidae, Arborophila) from low coverage shotgun sequences. Mol Phylogenet Evol 2020; 151:106895. [PMID: 32562823 DOI: 10.1016/j.ympev.2020.106895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/06/2020] [Accepted: 06/12/2020] [Indexed: 11/18/2022]
Abstract
The advent of the phylogenomic era has significantly improved our understanding of the evolutionary history and biogeography of Southeast Asia's diverse avian fauna. However, the taxonomy and phylogenetic relationships of many Southeast Asian birds remain poorly resolved, especially for those with large geographic ranges, which might have experienced both ancient and recent geological and environmental changes. In this study, we examined the evolutionary history and biogeography of the hill partridges (Galliformes: Phasianidae: Arborophila spp.), currently the second most speciose galliform genus, and thought to have colonized Southeast Asia from Africa. We present a well-resolved phylogeny of 14 Arborophila species inferred from ultra-conserved elements, exons, and mitochondrial genomes from both fresh and museum samples, which representing almost complete coverage of the genus. Our fossil-calibrated divergence time estimates and biogeographic modeling showed the ancestor of Arborophila arrived in Indochina during the early Miocene, but the initial divergence within Arborophila did not occur until ~10 Ma when global cooling intensified. Subsequent dispersal and diversification within Arborophila were driven by several tectonic and climatic events. In particular, we found evidence of rapid radiation in Indochinese Arborophila during the Pliocene global cooling and extensive dispersal and speciation of Sundaic Arborophila during the Pleistocene sea-level fluctuations. Taken together, these results suggest that the evolutionary history and biogeography of Arborophila were influenced by complex interactions among historical, geological and climatic events in Southeast Asia.
Collapse
Affiliation(s)
- De Chen
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Geoffrey Davison
- National Biodiversity Centre, National Parks Board, 1 Cluny Road, 259569, Singapore
| | - Ding Li Yong
- BirdLife International (Asia), 354 Tanglin Road, #01-16/17, Tanglin International Centre, Singapore 247672, Singapore; Fenner School of Environment and Society, The Australian National University, Linnaeus Way, Canberra, ACT 2601, Australia
| | - Shenghan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junhua Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Shou-Hsien Li
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan, China
| | - Zhengwang Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
11
|
Zhou C, Tu H, Yu H, Zheng S, Dai B, Price M, Wu Y, Yang N, Yue B, Meng Y. The Draft Genome of the Endangered Sichuan Partridge ( Arborophila rufipectus) with Evolutionary Implications. Genes (Basel) 2019; 10:E677. [PMID: 31491910 PMCID: PMC6770966 DOI: 10.3390/genes10090677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022] Open
Abstract
The Sichuan partridge (Arborophila rufipectus, Phasianidae, Galliformes) is distributed in south-west China, and classified as endangered grade. To examine the evolution and genomic features of Sichuan partridge, we de novo assembled the Sichuan partridge reference genome. The final draft assembly consisted of approximately 1.09 Gb, and had a scaffold N50 of 4.57 Mb. About 1.94 million heterozygous single-nucleotide polymorphisms (SNPs) were detected, 17,519 protein-coding genes were predicted, and 9.29% of the genome was identified as repetitive elements. A total of 56 olfactory receptor (OR) genes were found in Sichuan partridge, and conserved motifs were detected. Comparisons between the Sichuan partridge genome and chicken genome revealed a conserved genome structure, and phylogenetic analysis demonstrated that Arborophila possessed a basal phylogenetic position within Phasianidae. Gene Ontology (GO) enrichment analysis of positively selected genes (PSGs) in Sichuan partridge showed over-represented GO functions related to environmental adaptation, such as energy metabolism and behavior. Pairwise sequentially Markovian coalescent analysis revealed the recent demographic trajectory for the Sichuan partridge. Our data and findings provide valuable genomic resources not only for studying the evolutionary adaptation, but also for facilitating the long-term conservation and genetic diversity for this endangered species.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China.
| | - Hongmei Tu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China.
| | - Haoran Yu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China.
| | - Shuai Zheng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China.
| | - Bo Dai
- College of Life Sciences, Leshan Normal University, Leshan 614004, China.
| | - Megan Price
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China.
| | - Yongjie Wu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China.
| | - Nan Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610064, China.
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China.
| | - Yang Meng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
12
|
Billerman SM, Walsh J. Historical DNA as a tool to address key questions in avian biology and evolution: A review of methods, challenges, applications, and future directions. Mol Ecol Resour 2019; 19:1115-1130. [PMID: 31336408 DOI: 10.1111/1755-0998.13066] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 11/30/2022]
Abstract
Museum specimens play a crucial role in addressing key questions in systematics, evolution, ecology, and conservation. With the advent of high-throughput sequencing technologies, specimens that have long been the foundation of important biological discoveries can inform new perspectives as sources of genomic data. Despite the many possibilities associated with analyzing DNA from historical specimens, several challenges persist. Using avian systems as a model, we review DNA extraction protocols, sequencing technologies, and capture methods that are helping researchers overcome some of these difficulties. We highlight empirical examples in which researchers have used these technologies to address fundamental questions related to avian conservation and evolution. Increasing accessibility to new sequencing technologies will provide researchers with tools to tap into the wealth of information contained within our valuable natural history collections.
Collapse
Affiliation(s)
- Shawn M Billerman
- Fuller Evolutionary Biology Program, Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Jennifer Walsh
- Fuller Evolutionary Biology Program, Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Abstract
It has long been appreciated that analyses of genomic data (e.g., whole genome sequencing or sequence capture) have the potential to reveal the tree of life, but it remains challenging to move from sequence data to a clear understanding of evolutionary history, in part due to the computational challenges of phylogenetic estimation using genome-scale data. Supertree methods solve that challenge because they facilitate a divide-and-conquer approach for large-scale phylogeny inference by integrating smaller subtrees in a computationally efficient manner. Here, we combined information from sequence capture and whole-genome phylogenies using supertree methods. However, the available phylogenomic trees had limited overlap so we used taxon-rich (but not phylogenomic) megaphylogenies to weave them together. This allowed us to construct a phylogenomic supertree, with support values, that included 707 bird species (~7% of avian species diversity). We estimated branch lengths using mitochondrial sequence data and we used these branch lengths to estimate divergence times. Our time-calibrated supertree supports radiation of all three major avian clades (Palaeognathae, Galloanseres, and Neoaves) near the Cretaceous-Paleogene (K-Pg) boundary. The approach we used will permit the continued addition of taxa to this supertree as new phylogenomic data are published, and it could be applied to other taxa as well.
Collapse
|