1
|
Moretto JA, Berthold DE, Lefler FW, Huang IS, Laughinghouse HD. Floridanema gen. nov. (Aerosakkonemataceae, Aerosakkonematales ord. nov., Cyanobacteria) from benthic tropical and subtropical fresh waters, with the description of four new species. JOURNAL OF PHYCOLOGY 2025; 61:91-107. [PMID: 39676303 DOI: 10.1111/jpy.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024]
Abstract
Cyanobacteria exhibit a vast diversity from polar to tropical environments. Though much work has been done on elucidating their biodiversity, knowledge on the occurrence, diversity and toxicity of benthic cyanobacteria is limited when compared to the planktonic forms. Integrating molecular techniques with ecological and morphological analyses has become essential in untangling cyanobacterial diversity, particularly for benthic taxa such as the cryptic "Lyngbya." Molecular markers such as the 16S rRNA gene and whole genome sequencing have significantly improved the taxonomy of cyanobacteria. Building on these advancements, this study characterizes benthic cyanobacterial isolates from various locations in Florida, USA, and Orange Walk, Belize, resulting in the identification of a novel genus, Floridanema, and four new species (F. aerugineum, F. evergladense, F. flaviceps, and F. fluviatile). This new genus commonly occurs in canals, ponds, lakes and rivers. By integrating ecological, morphological, and genomic analyses, this study provides support for the family Aerosakkonemataceae and the establishment of the order Aerosakkonematales. The LC-MS data revealed that Floridanema strains do not produce microcystins, nodularin-R, or anabaenopeptins.
Collapse
Affiliation(s)
- Jéssica A Moretto
- Fort Lauderdale Research and Education Center, University of Florida - IFAS, Davie, Florida, USA
| | - David E Berthold
- Fort Lauderdale Research and Education Center, University of Florida - IFAS, Davie, Florida, USA
| | - Forrest W Lefler
- Fort Lauderdale Research and Education Center, University of Florida - IFAS, Davie, Florida, USA
| | - I-Shuo Huang
- Office of Food Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - H Dail Laughinghouse
- Fort Lauderdale Research and Education Center, University of Florida - IFAS, Davie, Florida, USA
| |
Collapse
|
2
|
Biessy L, Puddick J, Wood SA, Selwood AI, Carbines M, Smith KF. First Report of Accumulation of Lyngbyatoxin-A in Edible Shellfish in Aotearoa New Zealand from Marine Benthic Cyanobacteria. Toxins (Basel) 2024; 16:522. [PMID: 39728780 PMCID: PMC11728527 DOI: 10.3390/toxins16120522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024] Open
Abstract
This study reports the first documented accumulation of lyngbyatoxin-a (LTA), a cyanotoxin produced by marine benthic cyanobacteria, in edible shellfish in Aotearoa New Zealand. The study investigates two bloom events in 2022 and 2023 on Waiheke Island, where hundreds of tonnes of marine benthic cyanobacterial mats (mBCMs) washed ashore each summer. Genetic analysis identified the cyanobacterium responsible for the blooms as Okeania sp., a genus typically found in tropical marine ecosystems. Analysis by liquid chromatography-tandem mass spectrometry indicated that the cyanobacteria produced a potent dermatoxin, lyngbyatoxin-a (LTA), and that LTA had accumulated in marine snails, rock oysters and cockles collected near the mats. Snails contained the highest levels of LTA (up to 10,500 µg kg-1). The study also demonstrated that the LTA concentration was stable in composted mats for several months. The presence of LTA in edible species and its stability over time raise concerns about the potential health risks to humans consuming LTA-contaminated seafood. This underlines the need for further studies assessing the risks of human exposure to LTA through seafood consumption, particularly as climate change and eutrophication are expected to increase the frequency of mBCM blooms. The study highlights the need to develop public health risk management strategies for mBCMs.
Collapse
Affiliation(s)
- Laura Biessy
- Cawthron Institute, Molecular Algal Ecology, Nelson 7010, New Zealand; (J.P.); (S.A.W.); (A.I.S.); (K.F.S.)
| | - Jonathan Puddick
- Cawthron Institute, Molecular Algal Ecology, Nelson 7010, New Zealand; (J.P.); (S.A.W.); (A.I.S.); (K.F.S.)
| | - Susanna A. Wood
- Cawthron Institute, Molecular Algal Ecology, Nelson 7010, New Zealand; (J.P.); (S.A.W.); (A.I.S.); (K.F.S.)
- Faculty of Environment, Lincoln University, Lincoln 7647, New Zealand
| | - Andrew I. Selwood
- Cawthron Institute, Molecular Algal Ecology, Nelson 7010, New Zealand; (J.P.); (S.A.W.); (A.I.S.); (K.F.S.)
| | - Megan Carbines
- Auckland Council, Environmental Evaluation & Monitoring Unit, Auckland 1010, New Zealand;
| | - Kirsty F. Smith
- Cawthron Institute, Molecular Algal Ecology, Nelson 7010, New Zealand; (J.P.); (S.A.W.); (A.I.S.); (K.F.S.)
| |
Collapse
|
3
|
Gómez-Leyva Y, Torrecillas A, Aboal M. Cyanotoxins in Epipelic and Epiphytic Cyanobacteria from a Hypersaline Coastal Lagoon, an Environmental Hazard in Climate Warming Times and a Potential Source of New Compounds. Mar Drugs 2024; 22:334. [PMID: 39195450 DOI: 10.3390/md22080334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Cyanobacterial biodiversity and potential toxicity in coastal lagoons have barely been studied despite these transitional water systems being very important in conservation and for the preservation of economic resources. Most of these transitional systems have been affected by eutrophication, and climate change will severely affect them by promoting cyanobacteria growth, especially in Mediterranean areas. This study aims to characterize the diversity of epipelic and epiphytic cyanobacteria species in a Mediterranean coastal lagoon and their potential for toxins production (microcystins and saxitoxins). Strains were isolated and genetically identified. Toxins were extracted and quantified by LC/MS-MS. All the taxa belong to the former Oscillatoriales. The presence of Nodosilinea and Toxifilum is reported for the first time for Spanish waters, but Pseudanabaena, Phormidium, Geitlerinema and Synechococcus also formed part of benthic mats. All the strains contained Microcystin-YR (MC-YR), but saxitoxin (STX) was present only in the extracts of Nodosilinea and Pseudanabena. MC-LY, MC-LW and [D-Asp3] MC-LR were detected in the extracts of Synechococcus and MC-LF in Toxifilum, but at concentrations that did not permit quantification. Toxins production by epipelic and epiphytic strains in coastal lagoons may represent a hazard, but also an opportunity to obtain potentially interesting compounds that should be further studied.
Collapse
Affiliation(s)
- Yerai Gómez-Leyva
- Laboratory of Algology, Faculty of Biology, Espinardo Campus, University of Murcia, E-30100 Murcia, Spain
| | - Alejandro Torrecillas
- Service of Proteomics, CAID Building, Espinardo Campus, University of Murcia, E-30100 Murcia, Spain
| | - Marina Aboal
- Laboratory of Algology, Faculty of Biology, Espinardo Campus, University of Murcia, E-30100 Murcia, Spain
| |
Collapse
|
4
|
Wang Y, Berthold DE, Hu J, Lefler FW, Huang IS, Laughinghouse HD. Novel diversity within Roseofilum (Desertifilaceae, Cyanobacteria) from marine benthic mats with description of four new species. JOURNAL OF PHYCOLOGY 2023; 59:1147-1165. [PMID: 37824435 DOI: 10.1111/jpy.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Benthic cyanobacterial mats (BCMs) are natural phenomena in marine environments. Reports of BCMs occurring across coastal marine environments have increased, partly driven by nutrient loading and climate change; thus, there is a need to understand the diversity involved in the proliferations and potential toxicity of the BCMs. Furthermore, marine cyanobacterial mats are observed growing on and affecting the health of corals with one specific cyanobacterial genus, Roseofilum, dominating the microbial mats associated with black band disease (BBD), a destructive polymicrobial disease that affects corals. To explore the diversity of Roseofilum, cyanobacterial mats from various marine habitats were sampled, and individual isolates were identified based on morphology, 16S rRNA gene phylogenies, 16S-23S ITS rRNA region sequence dissimilarities, and phylogenomics. Four novel species of Roseofilum were isolated from benthic marine mats, three from the coasts of Florida, United States (R. capinflatum sp. nov., R. casamattae sp. nov., and R. acuticapitatum sp. nov.) and one from the coast of France (R. halophilum sp. nov.). Our analyses revealed that Roseofilum associated with coral BBD and those not associated with corals but rather from coastal benthic mats are systematically distinct based on both phylogenetic and phylogenomic analyses. Enzyme-linked immunosorbent assay (ELISA) and LC-MS data indicated that microcystin production was found in one of the four species.
Collapse
Affiliation(s)
- Yi Wang
- Fort Lauderdale Research and Education Center, University of Florida - IFAS, Davie, Florida, USA
| | - David E Berthold
- Fort Lauderdale Research and Education Center, University of Florida - IFAS, Davie, Florida, USA
| | - Jing Hu
- Fort Lauderdale Research and Education Center, University of Florida - IFAS, Davie, Florida, USA
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan, People's Republic of China
| | - Forrest W Lefler
- Fort Lauderdale Research and Education Center, University of Florida - IFAS, Davie, Florida, USA
| | - I-Shuo Huang
- Office of Regulatory Science, United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland, USA
| | - H Dail Laughinghouse
- Fort Lauderdale Research and Education Center, University of Florida - IFAS, Davie, Florida, USA
- Department of Botany, National Musuem of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
5
|
Lefler FW, Berthold DE, Laughinghouse HD. Cyanoseq: A database of cyanobacterial 16S rRNA gene sequences with curated taxonomy. JOURNAL OF PHYCOLOGY 2023. [PMID: 37026389 DOI: 10.1111/jpy.13335] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 05/23/2023]
Abstract
Cyanobacteria are photosynthetic bacteria that occupy various habitats across the globe, playing critical roles in many of Earth's biogeochemical cycles both in both aquatic and terrestrial systems. Despite their well-known significance, their taxonomy remains problematic and is the subject of much research. Taxonomic issues of Cyanobacteria have consequently led to inaccurate curation within known reference databases, ultimately leading to problematic taxonomic assignment during diversity studies. Recent advances in sequencing technologies have increased our ability to characterize and understand microbial communities, leading to the generation of thousands of sequences that require taxonomic assignment. We herein propose CyanoSeq (https://zenodo.org/record/7569105), a database of cyanobacterial 16S rRNA gene sequences with curated taxonomy. The taxonomy of CyanoSeq is based on the current state of cyanobacterial taxonomy, with ranks from the domain to genus level. Files are provided for use with common naive Bayes taxonomic classifiers, such as those included in DADA2 or the QIIME2 platform. Additionally, FASTA files are provided for creation of de novo phylogenetic trees with (near) full-length 16S rRNA gene sequences to determine the phylogenetic relationship of cyanobacterial strains and/or ASV/OTUs. The database currently consists of 5410 cyanobacterial 16S rRNA gene sequences along with 123 Chloroplast, Bacterial, and Vampirovibrionia (formally Melainabacteria) sequences.
Collapse
Affiliation(s)
- Forrest W Lefler
- Agronomy Department, Fort Lauderdale Research and Education Center, University of Florida - IFAS, Davie, Florida, USA
| | - David E Berthold
- Agronomy Department, Fort Lauderdale Research and Education Center, University of Florida - IFAS, Davie, Florida, USA
| | - H Dail Laughinghouse
- Agronomy Department, Fort Lauderdale Research and Education Center, University of Florida - IFAS, Davie, Florida, USA
| |
Collapse
|
6
|
Strunecký O, Ivanova AP, Mareš J. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. JOURNAL OF PHYCOLOGY 2023; 59:12-51. [PMID: 36443823 DOI: 10.1111/jpy.13304] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/16/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial taxonomy is facing a period of rapid changes thanks to the ease of 16S rRNA gene sequencing and established workflows for description of new taxa. Since the last comprehensive review of the cyanobacterial system in 2014 until 2021, at least 273 species in 140 genera were newly described. These taxa were mainly placed into previously defined orders and families although several new families were proposed. However, the classification of most taxa still relied on hierarchical relationships inherited from the classical morphological taxonomy. Similarly, the obviously polyphyletic orders such as Synechococcales and Oscillatoriales were left unchanged. In this study, the rising number of genomic sequences of cyanobacteria and well-described reference strains allowed us to reconstruct a robust phylogenomic tree for taxonomic purposes. A less robust but better sampled 16S rRNA gene phylogeny was mapped to the phylogenomic backbone. Based on both these phylogenies, a polyphasic classification throughout the whole phylum of Cyanobacteria was created, with ten new orders and fifteen new families. The proposed system of cyanobacterial orders and families relied on a phylogenomic tree but still employed phenotypic apomorphies where possible to make it useful for professionals in the field. It was, however, confirmed that morphological convergence of phylogenetically distant taxa was a frequent phenomenon in cyanobacteria. Moreover, the limited phylogenetic informativeness of the 16S rRNA gene, resulting in ambiguous phylogenies above the genus level, emphasized the integration of genomic data as a prerequisite for the conclusive taxonomic placement of a vast number of cyanobacterial genera in the future.
Collapse
Affiliation(s)
- Otakar Strunecký
- Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Anna Pavlovna Ivanova
- Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Jan Mareš
- Biology Centre of the CAS, Institute of Hydrobiology, Na Sádkách 702/7, 370 05, České Budějovice, Czech Republic
- Faculty of Science, Department of Botany, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
7
|
Kurisawa N, Iwasaki A, Teranuma K, Dan S, Toyoshima C, Hashimoto M, Suenaga K. Structural Determination, Total Synthesis, and Biological Activity of Iezoside, a Highly Potent Ca 2+-ATPase Inhibitor from the Marine Cyanobacterium Leptochromothrix valpauliae. J Am Chem Soc 2022; 144:11019-11032. [DOI: 10.1021/jacs.2c04459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Naoaki Kurisawa
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kazuya Teranuma
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Chikashi Toyoshima
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masaru Hashimoto
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
8
|
Heil CA, Muni-Morgan AL. Florida’s Harmful Algal Bloom (HAB) Problem: Escalating Risks to Human, Environmental and Economic Health With Climate Change. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.646080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Harmful Algal Blooms (HABs) pose unique risks to the citizens, stakeholders, visitors, environment and economy of the state of Florida. Florida has been historically subjected to reoccurring blooms of the toxic marine dinoflagellate Karenia brevis (C. C. Davis) G. Hansen & Moestrup since at least first contact with explorers in the 1500’s. However, ongoing immigration of more than 100,000 people year–1 into the state, elevated population densities in coastal areas with attendant rapid, often unregulated development, coastal eutrophication, and climate change impacts (e.g., increasing hurricane severity, increases in water temperature, ocean acidification and sea level rise) has likely increased the occurrence of other HABs, both freshwater and marine, within the state as well as the number of people impacted by these blooms. Currently, over 75 freshwater, estuarine, coastal and marine HAB species are routinely monitored by state agencies. While only blooms of K. brevis, the dinoflagellate Pyrodinium bahamense (Böhm) Steidinger, Tester, and Taylor and the diatom Pseudo-nitzschia spp. have resulted in closure of commercial shellfish beds, other HAB species, including freshwater and marine cyanobacteria, pose either imminent or unknown risks to human, environmental and economic health. HAB related human health risks can be classified into those related to consumption of contaminated shellfish and finfish, consumption of or contact with bloom or toxin contaminated water or exposure to aerosolized HAB toxins. While acute human illnesses resulting from consumption of brevetoxin-, saxitoxin-, and domoic acid-contaminated commercial shellfish have been minimized by effective monitoring and regulation, illnesses due to unregulated toxin exposures, e.g., ciguatoxins and cyanotoxins, are not well documented or understood. Aerosolized HAB toxins potentially impact the largest number of people within Florida. While short-term (days to weeks) impacts of aerosolized brevetoxin exposure are well documented (e.g., decreased respiratory function for at-risk subgroups such as asthmatics), little is known of longer term (>1 month) impacts of exposure or the risks posed by aerosolized cyanotoxin [e.g., microcystin, β-N-methylamino-L-alanine (BMAA)] exposure. Environmental risks of K. brevis blooms are the best studied of Florida HABs and include acute exposure impacts such as significant dies-offs of fish, marine mammals, seabirds and turtles, as well as negative impacts on larval and juvenile stages of many biota. When K. brevis blooms are present, brevetoxins can be found throughout the water column and are widespread in both pelagic and benthic biota. The presence of brevetoxins in living tissue of both fish and marine mammals suggests that food web transfer of these toxins is occurring, resulting in toxin transport beyond the spatial and temporal range of the bloom such that impacts of these toxins may occur in areas not regularly subjected to blooms. Climate change impacts, including temperature effects on cell metabolism, shifting ocean circulation patterns and changes in HAB species range and bloom duration, may exacerbate these dynamics. Secondary HAB related environmental impacts are also possible due to hypoxia and anoxia resulting from elevated bloom biomass and/or the decomposition of HAB related mortalities. Economic risks related to HABs in Florida are diverse and impact multiple stakeholder groups. Direct costs related to human health impacts (e.g., increased hospital visits) as well as recreational and commercial fisheries can be significant, especially with wide-spread sustained HABs. Recreational and tourism-based industries which sustain a significant portion of Florida’s economy are especially vulnerable to both direct (e.g., declines in coastal hotel occupancy rates and restaurant and recreational users) and indirect (e.g., negative publicity impacts, associated job losses) impacts from HABs. While risks related to K. brevis blooms are established, Florida also remains susceptible to future HABs due to large scale freshwater management practices, degrading water quality, potential transport of HABs between freshwater and marine systems and the state’s vulnerability to climate change impacts.
Collapse
|