1
|
Zhang Z, Wang M, Yang Z, Comes HP, Zhong X, Folk RA, Song Y, York DA, Cameron KM, Li P. Incomplete lineage sorting and introgression among genera and species of Liliaceae tribe Tulipeae: insights from phylogenomics. BMC Biol 2025; 23:113. [PMID: 40296048 PMCID: PMC12039212 DOI: 10.1186/s12915-025-02204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Phylogenetic research in Tulipa (Liliaceae), a genus of significant economic and horticultural value, has relied on limited nuclear (mostly nuclear ribosomal internal transcribed spacer, nrITS) and plastid DNA sequences, resulting in low-resolution phylogenetic trees and uncertain intrageneric classifications. The genus, noted for its large genome, presents discordant relationships among Amana, Erythronium, and Tulipa, likely due to incomplete lineage sorting (ILS) and/or reticulate evolution. Thus, phylogenomic approaches are needed to clarify these relationships and the conflicting signals within the tribe Tulipeae. RESULTS We newly sequenced 50 transcriptomes of 46 species of tribe Tulipeae (including multiple accessions of all four genera) and one outgroup species of the sister tribe Lilieae (Notholirion campanulatum), and downloaded 15 previously published transcriptomes of tribe Tulipeae to supplement the sampling. One plastid dataset (74 plastid protein-coding genes, PCGs) and one nuclear dataset (2594 nuclear orthologous genes, OGs) were constructed, with the latter used for species tree inference based on maximum likelihood (ML) and multi-species coalescent (MSC) methods. To investigate causes of gene tree discordance, "site con/discordance factors" (sCF and sDF1/sDF2) were calculated first, after which phylogenetic nodes displaying high or imbalanced sDF1/2 were selected for phylogenetic network analyses and polytomy tests to determine whether ILS or reticulate evolution best explain incongruence. Key relationships not resolved by this technique, especially those among Amana, Erythronium, and Tulipa, were further investigated by applying D-statistics and QuIBL. CONCLUSIONS We failed to reconstruct a reliable and unambiguous evolutionary history among Amana, Erythronium, and Tulipa due to especially pervasive ILS and reticulate evolution, likely caused either by obscured minority phylogenetic signal or differing signals among genomic compartments. However, within Tulipa we confirmed the monophyly of most subgenera, with the exception of two species in the small subgenus Orithyia, of which Tulipa heterophylla was recovered as sister to the remainder of the genus, whereas T. sinkiangensis clustered within subgenus Tulipa. In contrast, most traditional sections of Tulipa were found to be non-monophyletic.
Collapse
Affiliation(s)
- Zhihui Zhang
- Systematic & Evolutionary Botany and Biodiversity Group, State Key Laboratory for Vegetation Structure, Function and Construction, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meizhen Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Zhaoping Yang
- College of Life Sciences and Technologies, Tarim University, Alar, 843300, China
| | - Hans Peter Comes
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, Austria
| | - Xin Zhong
- Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Yigang Song
- Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Dana A York
- California Academy of Sciences, San Francisco, CA, USA
| | - Kenneth M Cameron
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA.
| | - Pan Li
- Systematic & Evolutionary Botany and Biodiversity Group, State Key Laboratory for Vegetation Structure, Function and Construction, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Kim JK, Lee YJ. Genome-wide SNP discovery and phylogeography of sandlances (Ammodytes japonicus and Ammodytes heian) in the Northwest pacific by MIG-Seq with evolutionary implications. Sci Rep 2025; 15:5998. [PMID: 39966559 PMCID: PMC11836053 DOI: 10.1038/s41598-025-90274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
This study examined whether the East Sea sandlance is Ammodytes heian at the genomic level. A total of 48 sandlances were analyzed from five regions, “Baengnyeongdo (BA in the Yellow Sea), Tongyeong (TO in the Korea Strait), Gijang (GI in the East Sea), Jumunjin (JU in the East Sea) in Korea, and Wakkanai in Japan (JP in the Okhotsk Sea)”. Regional single nucleotide polymorphism (SNP) filtering resulted in a total of 10,545 SNPs, based on which the FST was calculated as follows: 0.501 between JP and TO, 0.446 between JP and BA, 0.003 between GI and JU, and 0.014 between GI and JP. Structure analysis based on 10,545 SNPs had optimal delta K values when K was 3. Two genotypes were dominant: one occurred at BA and TO and the other at GI, JU, and JP; the remaining one occurred in all regions. The PCA scatterplot based on 10,545 SNPs revealed two clear clusters, the Ammodytes japonicus group from BA and TO, and the Ammodytes heian group from GI, JU, and JP, which roughly corresponded to the phylogenetic analysis based on 55,026 SNPs. Our results indicate that the genetic traits based on SNPs are similar to the mt results, but somewhat inconsistent with the ms results, suggesting that the East Sea (GI and JU) sandlance is Ammodytes heian as hybrids are rare. Their complex relationships can be attributed to the accumulation of neutral polymorphism across the species or biases in spatiotemporal gene flow between lineages during glacial-interglacial cycles.
Collapse
Affiliation(s)
- Jin-Koo Kim
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Yu-Jin Lee
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
3
|
Cai J, Lu C, Cui Y, Wang Z, Zhang Q. OHDLF: A Method for Selecting Orthologous Genes for Phylogenetic Construction and Its Application in the Genus Camellia. Genes (Basel) 2024; 15:1404. [PMID: 39596605 PMCID: PMC11593501 DOI: 10.3390/genes15111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Accurate phylogenetic tree construction for species without reference genomes often relies on de novo transcriptome assembly to identify single-copy orthologous genes. However, challenges such as whole-genome duplication (WGD), heterozygosity, gene duplication, and loss can hinder the selection of these genes, leading to limited data for constructing reliable species trees. To address these issues, we developed a new analytical pipeline, OHDLF (Orthologous Haploid Duplication and Loss Filter), which filters orthologous genes from transcript data and adapts parameter settings based on genomic characteristics for further phylogenetic tree construction. In this study, we applied OHDLF to the genus Camellia and evaluated its effectiveness in constructing phylogenetic trees. The results highlighted the pipeline's ability to handle challenges like high heterozygosity and recent gene duplications by selectively retaining genes with a missing rate and merging duplicates with high similarity. This approach ensured the preservation of informative sites and produced a highly supported consensus tree for Camellia. Additionally, we evaluate the accuracy of the OHDLF phylogenetic trees for different species, demonstrating that the OHDLF pipeline provides a flexible and effective method for selecting orthologous genes and constructing accurate phylogenetic trees, adapting to the genomic characteristics of various plant groups.
Collapse
Affiliation(s)
- Junhao Cai
- Center of Genomics and Bioinformatics, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.C.); (Z.W.)
| | - Cui Lu
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China;
| | - Yuwei Cui
- Center of Genomics and Bioinformatics, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.C.); (Z.W.)
| | - Zhentao Wang
- Center of Genomics and Bioinformatics, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.C.); (Z.W.)
| | - Qunjie Zhang
- Center of Genomics and Bioinformatics, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.C.); (Z.W.)
| |
Collapse
|
4
|
Wang LX, Wang YH, Chen C, Liu JX, Li T, Li JW, Liu PZ, Xu DB, Shu S, Xiong AS. Advances in research on the main nutritional quality of daylily, an important flower vegetable of Liliaceae. PeerJ 2024; 12:e17802. [PMID: 39131608 PMCID: PMC11316465 DOI: 10.7717/peerj.17802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Daylily (Hemerocallis citrina) is a perennial herb of the genus Hemerocallis of Liliaceae. It is also an economically important crop and is widely cultivated. Daylily has nutritional, medicinal and ornamental values. The research literature shows that daylily is a high-quality food raw material rich in soluble sugars, ascorbic acid, flavonoids, dietary fiber, carotenoids, mineral elements, polyphenols and other nutrients, which are effective in clearing heat and diuresis, resolving bruises and stopping bleeding, strengthening the stomach and brain, and reducing serum cholesterol levels. This article reviews the main nutrients of daylily and summarizes the drying process of daylily. In addition, due to the existence of active ingredients, daylily also has a variety of biological activities that are beneficial to human health. This article also highlights the nutritional quality of daylily, the research progress of dried vegetable rehydration technology and dried daylily. In the end, the undeveloped molecular mechanism and functional research status of daylily worldwide are introduced in order to provide reference for the nutritional quality research and dried processing industry of daylily.
Collapse
Affiliation(s)
- Li-Xiang Wang
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Facility Horticulture Research Institute of Suqian, Suqian, Jiangsu, China
| | - Ya-Hui Wang
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Chen Chen
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Facility Horticulture Research Institute of Suqian, Suqian, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Jie-Xia Liu
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Tong Li
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Jing-Wen Li
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Pei-Zhuo Liu
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - De-Bao Xu
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Sheng Shu
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Facility Horticulture Research Institute of Suqian, Suqian, Jiangsu, China
| | - Ai-Sheng Xiong
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Facility Horticulture Research Institute of Suqian, Suqian, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Wu J, Gao Y, Wang J, Guo A, Qin N, Xing G, Li S. Comparative analysis of chloroplast genome and evolutionary history of Hemerocallis. Front Genet 2024; 15:1433548. [PMID: 39130749 PMCID: PMC11310003 DOI: 10.3389/fgene.2024.1433548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 08/13/2024] Open
Abstract
Members of the genus Hemerocallis have significant value as ornamental, edible, and medicinal plants, particularly in China, where they have been utilized for thousands of years as both a vegetable and Traditional Chinese Medicine. Hemerocallis species exhibit strict control over flowering time, with individuals flowering either diurnally or nocturnally. However, our understanding of the evolutionary history of this genus, especially concerning important horticultural traits, remains limited. In this study, sequencing and assembly efforts were conducted on 73 samples within the Hemerocallis genus. All accessions were classified into two distinct groups based on their diurnal (daylilies) or nocturnal (nightlilies) flowering habits. Comparative analysis of the chloroplast genomes from these two groups identified fifteen variant hotspot regions, including fourteen SNPs and one deletion, which hold promise for the development of molecular markers for interspecific identification. Phylogenetic trees, generated through both maximum-likelihood and Bayesian inference methods using 76 shared protein-coding sequences, revealed that diurnal flowering evolved prior to nocturnal flowering. The divergence between the two groups is estimated to have occurred approximately 0.82 MYA (95% CI: 0.35-1.45 MYA). The ancestral state of Hemerocallis is hypothesized to have featured diurnal flowering with orange yellow petals. This study marks the first reconstruction of the evolutionary history and ancestral state of the genus Hemerocallis. The findings contribute significantly to our understanding of the adaptation and speciation history within the genus.
Collapse
Affiliation(s)
- Jiang Wu
- College of Horticulture, Shanxi Agriculture University, Taiyuan, China
| | - Yang Gao
- College of Horticulture, Shanxi Agriculture University, Taiyuan, China
| | - Jinyao Wang
- College of Horticulture, Shanxi Agriculture University, Taiyuan, China
| | - Aihua Guo
- Department of Life Science, Lyuliang University, Lüliang, China
| | - Nannan Qin
- College of Horticulture, Shanxi Agriculture University, Taiyuan, China
| | - Guoming Xing
- College of Horticulture, Shanxi Agriculture University, Taiyuan, China
- Datong Daylily Industrial Development Research Institute, Datong, China
| | - Sen Li
- College of Horticulture, Shanxi Agriculture University, Taiyuan, China
- Datong Daylily Industrial Development Research Institute, Datong, China
| |
Collapse
|
6
|
Nishimura K, Kokaji H, Motoki K, Yamazaki A, Nagasaka K, Mori T, Takisawa R, Yasui Y, Kawai T, Ushijima K, Yamasaki M, Saito H, Nakano R, Nakazaki T. Degenerate oligonucleotide primer MIG-seq: an effective PCR-based method for high-throughput genotyping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2296-2317. [PMID: 38459738 DOI: 10.1111/tpj.16708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/14/2024] [Accepted: 02/14/2024] [Indexed: 03/10/2024]
Abstract
Next-generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR-based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG-seq primer set (MIG-seq being a PCR method enabling library construction with low-quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG-seq (dpMIG-seq), enabled a streamlined protocol for constructing dpMIG-seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG-seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG-seq protocol for advancing genetic analyses across diverse plant species.
Collapse
Affiliation(s)
- Kazusa Nishimura
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama City, 700-8530, Okayama, Japan
| | - Hiroyuki Kokaji
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Ko Motoki
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama City, 700-8530, Okayama, Japan
| | - Akira Yamazaki
- Faculty of Agriculture, Kindai University, 3327-204, Nakamachi, Nara City, Nara, 631-8505, Japan
| | - Kyoka Nagasaka
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Takashi Mori
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Rihito Takisawa
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu City, Shiga, 520-2194, Japan
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Takashi Kawai
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama City, 700-8530, Okayama, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama City, 700-8530, Okayama, Japan
| | - Masanori Yamasaki
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2 no-cho, Nishi-ku, Niigata City, Niigata, 950-2181, Japan
| | - Hiroki Saito
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, 1091-1 Maezato-Kawarabaru, Ishigaki, Okinawa, 907-0002, Japan
| | - Ryohei Nakano
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Tetsuya Nakazaki
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| |
Collapse
|
7
|
Jia M, Wang J, Cao D, Jiang C, Li W, Tembrock LR, Xing G, Li S, Wu Z. The pan-plastome of Hemerocallis citrina reveals new insights into the genetic diversity and cultivation history of an economically important food plant. BMC PLANT BIOLOGY 2024; 24:44. [PMID: 38200455 PMCID: PMC10782787 DOI: 10.1186/s12870-023-04668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Hemerocallis citrina Baroni (Huang hua cai in Chinese) is a perennial herbaceous plant grown for its flower buds that are eaten fresh or dried and is known as the vegetarian three treasures. The nuclear genome of H. citrina has been reported, but the intraspecific variation of the plastome (plastid genome) has not yet been studied. Therefore, the panplastome of this species collected from diverse locations is reported here for the first time. RESULTS In this study, 65 H. citrina samples were resequenced, de novo assembled, and aligned with the published plastome of H. citrina to resolve the H. citrina panplastome. The sizes of the 65 newly assembled complete plastomes of H. citrina ranged from 156,048 bp to 156,263 bp, and the total GC content ranged from 37.31 to 37.34%. The structure of the complete plastomes showed a typical tetrameric structure, including a large single copy (LSC), a small single copy (SSC), and a pair of inverted repeat regions (IRA and IRB). Many nucleotide variants were identified between plastomes, among which the variants in the intergenic spacer region were the most abundant, with the highest number of variants concentrated in the LSC region. Based on the phylogenetic tree constructed using the ML method, population structure analysis, and principal component analysis (PCA), the panplastome data were subdivided into five genetic clusters. The C5 genetic cluster was mostly represented by samples from Qidong, Hunan Province, while samples from Shanxi and Shaanxi Provinces were classified into the C4 genetic cluster. The greatest genetic diversity was found in the C1 genetic cluster, and the greatest genetic distance between any two clusters was found between the C4 and C5 clusters. CONCLUSION The resolution of the panplastome and the analysis of the population structure of H. citrina plastomes provide important data for future breeding projects and germplasm preservation.
Collapse
Affiliation(s)
- Minlong Jia
- College of Horticulture, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6000-6999, Australia
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Dongmei Cao
- College of Horticulture, Shanxi Agricultural University, Taiyuan, 030031, China.
| | - Congrong Jiang
- College of Horticulture, Shanxi Agricultural University, Taiyuan, 030031, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80525, USA
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Sen Li
- College of Horticulture, Shanxi Agricultural University, Taiyuan, 030031, China.
| | - Zhiqiang Wu
- College of Horticulture, Shanxi Agricultural University, Taiyuan, 030031, China.
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| |
Collapse
|
8
|
Gutiérrez-Ortega JS, Pérez-Farrera MA, Matsuo A, Sato MP, Suyama Y, Calonje M, Vovides AP, Kajita T, Watano Y. The phylogenetic reconstruction of the Neotropical cycad genus Ceratozamia (Zamiaceae) reveals disparate patterns of niche evolution. Mol Phylogenet Evol 2024; 190:107960. [PMID: 37918683 DOI: 10.1016/j.ympev.2023.107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The cycad genus Ceratozamia comprises 40 species from Mexico, Guatemala, Belize, and Honduras, where cycads occur throughout climatically varied montane habitats. Ceratozamia has the potential to reveal the history and processes of species diversification across diverse Neotropical habitats in this region. However, the species relationships within Ceratozamia and the ecological trends during its evolution remain unclear. Here, we aimed to clarify the phylogenetic relationships, the timing of clade and species divergences, and the niche evolution throughout the phylogenetic history of Ceratozamia. Genome-wide DNA sequences were obtained with MIG-seq, and multiple data-filtering steps were used to optimize the dataset used to construct an ultrametric species tree. Divergence times among branches and ancestral niches were estimated. The niche variation among species was evaluated, summarized into two principal components, and their ancestral states were reconstructed to test whether niche shifts among branches can be explained by random processes, under a Brownian Motion model. Ceratozamia comprises three main clades, and most species relationships within the clades were resolved. Ceratozamia has diversified since the Oligocene, with major branching events occurring during the Miocene. This timing is consistent with fossil evidence, the timing estimated for other Neotropical plant groups, and the major geological events that shaped the topographic and climatic variation in Mexico. Patterns of niche evolution in the genus do not accord with the Brownian Motion model. Rather, non-random evolution with shifts towards more seasonal environments at high latitudes, or shifts towards humid or dry environments at low latitudes explain the diversification of Ceratozamia. We present a comprehensive phylogenetic reconstruction for Ceratozamia and identify for the first time the environmental factors involved in clade and species diversification within the genus. This study alleviates the controversies regarding the species relationships in the genus and provides the first evidence that latitude-associated environmental factors may influence processes of niche evolution in cycads.
Collapse
Affiliation(s)
| | - Miguel Angel Pérez-Farrera
- Herbario Eizi Matuda, Laboratorio de Ecología Evolutiva, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico.
| | - Ayumi Matsuo
- Kawatabi Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| | - Mitsuhiko P Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yoshihisa Suyama
- Kawatabi Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| | | | - Andrew P Vovides
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C., 91070 Xalapa, Mexico
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Uehara, Yaeyama, Okinawa 907-1541, Japan
| | - Yasuyuki Watano
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
9
|
Kagawa O, Hirota SK, Saito T, Uchida S, Watanabe H, Miyazoe R, Yamaguchi T, Matsuno T, Araki K, Wakasugi H, Suzuki S, Kobayashi G, Miyazaki H, Suyama Y, Hanyuda T, Chiba S. Host-Shift Speciation Proceeded with Gene Flow in Algae Covering Shells. Am Nat 2023; 202:721-732. [PMID: 37963116 DOI: 10.1086/726221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
AbstractHost shifts represent the advancement of a novel niche and often lead to speciation in symbionts. However, its mechanisms are not well understood. Here, we focused on the alga Pseudocladophora conchopheria growing on the shells of intertidal snails. Previous surveys have shown that the alga has host specificity-only attaching to the shell of Lunella correensis-but we discovered that the alga attaches to the shells of multiple sympatric snails. A genome-wide single-nucleotide polymorphism analysis (MIG-seq) was performed to determine whether host-associated speciation occurred in the algae. As a result, there was no gene flow or limited gene flow among the algae from different hosts, and some algae were genetically differentiated among hosts. In addition, the demographic estimate revealed that speciation with gene flow occurred between the algae from different hosts. Therefore, these results support the idea that host-shift speciation gradually proceeded with gene flow in the algae, providing insight into the early evolution of host shifts.
Collapse
|
10
|
Sato MP, Matsuo A, Otsuka K, Takano KT, Maki M, Okano K, Suyama Y, Ito‐Inaba Y. Potential contribution of floral thermogenesis to cold adaptation, distribution pattern, and population structure of thermogenic and non/slightly thermogenic Symplocarpus species. Ecol Evol 2023; 13:e10319. [PMID: 37456070 PMCID: PMC10349278 DOI: 10.1002/ece3.10319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
The genus Symplocarpus in basal Araceae includes both thermogenic and non/slightly thermogenic species that prefer cold environments. If floral thermogenesis of Symplocarpus contributes to cold adaptation, it would be expected that thermogenic species have a larger habitat than non/slightly thermogenic species during an ice age, leading to increased genetic diversity in the current population. To address this question, potential distribution in past environment predicted by ecological niche modeling (ENM), genetic diversity, and population structure of chloroplast and genome-wide single nucleotide polymorphisms were compared between thermogenic Symplocarpus renifolius and non/slightly thermogenic Symplocarpus nipponicus. ENM revealed that the distribution of S. nipponicus decreased, whereas that of S. renifolius expanded in the Last Glacial Maximum. Phylogeographic analyses have shown that the population structures of the two species were genetically segmented and that the genetic diversity of S. renifolius was higher than that of S. nipponicus. The phylogenetic relationship between chloroplast and nuclear DNA is topologically different in the two species, which may be due to the asymmetric gene flow ubiquitously observed in plants. The results of this study imply that floral thermogenesis of Symplocarpus contributes to expanding the distribution during an ice age, resulting in increased genetic diversity due to cold adaptation.
Collapse
Affiliation(s)
| | - Ayumi Matsuo
- Kawatabi Field Science Center, Graduate School of Agricultural ScienceTohoku UniversityOsakiJapan
| | - Koichi Otsuka
- Tomono‐Kai Society of Nagano Environmental Conservation Research InstituteNaganoJapan
| | - Kohei Takenaka Takano
- Natural Environment DivisionNagano Environmental Conservation Research InstituteNaganoJapan
| | - Masayuki Maki
- Botanical GardensTohoku UniversitySendaiJapan
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Kunihiro Okano
- Department of Biological EnvironmentAkita Prefectural UniversityAkitaJapan
| | - Yoshihisa Suyama
- Kawatabi Field Science Center, Graduate School of Agricultural ScienceTohoku UniversityOsakiJapan
| | - Yasuko Ito‐Inaba
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
- Department of Agricultural and Environmental Sciences, Faculty of AgricultureUniversity of MiyazakiMiyazakiJapan
| |
Collapse
|
11
|
Zhang W, Wang H, Zhang T, Fang X, Liu M, Xiao H. Geographic-genomic and geographic-phenotypic differentiation of the Aquilegia viridiflora complex. HORTICULTURE RESEARCH 2023; 10:uhad041. [PMID: 37159802 PMCID: PMC10163360 DOI: 10.1093/hr/uhad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/05/2023] [Indexed: 05/11/2023]
Abstract
How species diverge into different lineages is a central issue in evolutionary biology. Despite the increasing evidence indicating that such divergences do not need geographic isolation, the correlation between lineage divergence and the adaptive ecological divergence of phenotype corresponding to distribution is still unknown. In addition, gene flow has been widely detected during and through such diverging processes. We used one widely distributed Aquilegia viridiflora complex as a model system to examine genomic differentiation and corresponding phenotypic variations along geographic gradients. Our phenotypic analyses of 20 populations from northwest to northeast China identified two phenotypic groups along the geographic cline. All examined traits are distinct from each other, although a few intermediate individuals occur in their contacting regions. We further sequenced the genomes of representative individuals of each population. However, four distinct genetic lineages were detected based on nuclear genomes. In particular, we recovered numerous genetic hybrids in the contact regions of four lineages. Gene flow is widespread and continuous between four lineages but much higher between contacting lineages than geographically isolated lineages. Gene flow and natural selection might result in inconsistency between heredity and phenotype. Moreover, many genes with fast lineage-specific mutations were identified to be involved in local adaptation. Our results suggest that both geographic isolation and local selection exerted by the environment and pollinators may together create geographic distributions of phenotypic variations as well as the underlying genomic divergences in numerous lineages.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China
| | | | - Tengjiao Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiaoxue Fang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Meiying Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China
| | | |
Collapse
|
12
|
Zan T, He YT, Zhang M, Yonezawa T, Ma H, Zhao QM, Kuo WY, Zhang WJ, Huang CH. Phylogenomic analyses of Camellia support reticulate evolution among major clades. Mol Phylogenet Evol 2023; 182:107744. [PMID: 36842731 DOI: 10.1016/j.ympev.2023.107744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Camellia (Theaceae) is a morphologically highly diverse genus of flowering plants and includes many famous species with high economic value, and the phylogeny of this genus is not fully resolved. We used 95 transcriptomes from 87 Camellia species and identified 1481 low-copy genes to conduct a detailed analysis of the phylogeny of this genus according to various data-screening criteria. The results show that, very different from the two existing classification systems of Camellia, 87 species are grouped into 8 main clades and two independent species, and that all 8 clades except Clade 8 were strongly supported by almost all the coalescent or concatenated trees using different gene subsets. However, the relationships among these clades were weakly supported and different from analyses using different gene subsets; furthermore, they do not agree with the phylogeny from chloroplast genomes of Camellia. Additional analyses support reticulate evolution (probably resulting from introgression or hybridization) among some major Camellia lineages, providing explanation for extensive gene tree conflicts. Furthermore, we inferred that together with the formation of East Asian subtropical evergreen broad-leaved forests, Camellia underwent a radiative divergence of major clades at 23 ∼ 19 Ma in the late Miocene then had a subsequent species burst at 10 ∼ 5 Ma. Principal component and cluster analyses provides new insights into morphological changes underlying the evolution of Camellia and a reference to further clarify subgenus and sections of this genus. The comprehensive study here including a nuclear phylogeny and other analyses reveal the rapid evolutionary history of Camellia.
Collapse
Affiliation(s)
- Ting Zan
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Yi-Tao He
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Takahiro Yonezawa
- Faculty of Agriculture, Tokyo University of Agriculture, Funako 1737, Atsugi, Kanagawa 14 243-0034, Japan.
| | - Hong Ma
- Department of Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Qiang-Min Zhao
- Guangzhou Zongke Horticulture Development Co., Ltd., Guangzhou 511300, China.
| | - Wen-Yu Kuo
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Wen-Ju Zhang
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Chien-Hsun Huang
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
13
|
Misiukevičius E, Frercks B, Šikšnianienė JB, Kącki Z, Gębala M, Akulytė P, Trilikauskaitė E, Stanys V. Assessing the Genetic Diversity of Daylily Germplasm Using SSR Markers: Implications for Daylily Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091752. [PMID: 37176810 PMCID: PMC10181390 DOI: 10.3390/plants12091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
This work aims to characterize the genetic diversity of species, early hybrids, and cultivars using microsatellite simple sequence repeat (SSR) markers, as well as analyze and identify the origin of Hemerocallis spp. early hybrids. For this research, samples were collected from different types of daylily species, early hybrids (known or hypothetically first-generation hybrids from Hemerocallis species), foreign, and Lithuanian varieties. An initial screening of SSR primers developed for Hemerocallis citrina was performed, and their suitability for testing other daylily species and hybrids was evaluated. The genetic diversity was assessed with the selected eight-primer set, and molecular SSR profiles were created. Primer SAU00097 is the most informative according to heterozygosity (0.95) and polymorphism information content (PIC) (0.17). The highest heterozygosity was observed in Lithuanian cultivars (0.713), the lowest in species (0.583). Genetic relationships between species show that only fulvous daylilies are separated into a different cluster. The highest variation among genotypes was observed in the species group (18%), while modern cultivars had the slightest variation among genotypes (1%). The putative origin of early hybrids was analyzed using a likelihood heatmap of all genotypes. Results show what species might be used in breeding for early hybrids. Several modern diploid and tetraploid daylily cultivars have triploid species as ancestors.
Collapse
Affiliation(s)
- Edvinas Misiukevičius
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Department of Orchard Plant Genetics and Biotechnology, Kaunas District, LT-54333 Babtai, Lithuania
| | - Birutė Frercks
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Department of Orchard Plant Genetics and Biotechnology, Kaunas District, LT-54333 Babtai, Lithuania
| | - Jūratė Bronė Šikšnianienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Department of Orchard Plant Genetics and Biotechnology, Kaunas District, LT-54333 Babtai, Lithuania
| | - Zygmunt Kącki
- Arboretum Wojsławice Botanical Garden, Faculty of Biological Sciences, University of Wroclaw, 58-230 Niemcza, Poland
| | - Małgorzata Gębala
- Arboretum Wojsławice Botanical Garden, Faculty of Biological Sciences, University of Wroclaw, 58-230 Niemcza, Poland
| | - Paulina Akulytė
- Institute of Biology Systems and Genetic Research, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Emilija Trilikauskaitė
- Institute of Biology Systems and Genetic Research, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Vidmantas Stanys
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Department of Orchard Plant Genetics and Biotechnology, Kaunas District, LT-54333 Babtai, Lithuania
| |
Collapse
|
14
|
Wang M, Zhu X, Peng G, Liu M, Zhang S, Chen M, Liao S, Wei X, Xu P, Tan X, Li F, Li Z, Deng L, Luo Z, Zhu L, Zhao S, Jiang D, Li J, Liu Z, Xie X, Wang S, Wu A, Zhuang C, Zhou H. Methylesterification of cell-wall pectin controls the diurnal flower-opening times in rice. MOLECULAR PLANT 2022; 15:956-972. [PMID: 35418344 DOI: 10.1016/j.molp.2022.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Flowers are the core reproductive organ of plants, and flowering is essential for cross-pollination. Diurnal flower-opening time is thus a key trait influencing reproductive isolation, hybrid breeding, and thermostability in plants. However, the molecular mechanisms controlling this trait remain unknown. Here, we report that rice Diurnal Flower Opening Time 1 (DFOT1) modulates pectin methylesterase (PME) activity to regulate pectin methylesterification levels of the lodicule cell walls, which affect lodicule swelling to control diurnal flower-opening time. DFOT1 is specifically expressed in the lodicules, and its expression gradually increases with the approach to flowering but decreases with flowering. Importantly, a knockout of DFOT1 showed earlier diurnal flower opening. We demonstrate that DFOT1 interacts directly with multiple PMEs to promote their activity. Knockout of PME40 also resulted in early diurnal flower opening, whereas overexpression of PME42 delayed diurnal flower opening. Lower PME activity was observed to be associated with higher levels of pectin methylesterification and the softening of cell walls in lodicules, which contribute to the absorption of water by lodicules and cause them to swell, thus promoting early diurnal flower opening. Higher PME activity had the opposite effect. Collectively, our work uncovers a molecular mechanism underlying the regulation of diurnal flower-opening time in rice, which would help reduce the costs of hybrid breeding and improve the heat tolerance of flowering plants by avoiding higher temperatures at anthesis.
Collapse
Affiliation(s)
- Mumei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaopei Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guoqing Peng
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Minglong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shuqing Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Minghao Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shitang Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoying Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Peng Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiyu Tan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fangping Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhichuan Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Li Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ziliang Luo
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | - Liya Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Dagang Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlan Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xianrong Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaokui Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hai Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Sennikov A, Lazkov G. The first checklist of alien vascular plants of Kyrgyzstan, with new records and critical evaluation of earlier data. Contribution 2. Biodivers Data J 2022; 10:e80804. [PMID: 35437395 PMCID: PMC8971126 DOI: 10.3897/bdj.10.e80804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/09/2022] [Indexed: 11/27/2022] Open
Abstract
Background We continue the inventory of alien vascular plants of Kyrgyzstan, with emphasis on the time and pathways of introduction of the species and their current status in the territory. Each taxon is discussed in the context of plant invasions in Central Asia. This work is a further development of the preliminary checklist of alien plants of Kyrgyzstan, which was compiled for the Global Register of Introduced and Invasive Species in 2018. New information This contribution includes all alien species of Kyrgyzstan belonging to Solanaceae and Asphodelaceae and one species of Asteraceae. Physalisphiladelphicus (syn. P.ixocarpa) is reported for the first time from Central Asia, as new to Kazakhstan, Kyrgyzstan and Uzbekistan, thus marking a recent invasion with a variety of imported grain and seed material. The old records of P.ixocarpa from Uzbekistan are based on misidentified specimens of P.angulata. Physalisangulata is an old cotton immigrant in Central Asia, whose invasion started in the 1920s; it is excluded from the alien flora of Kyrgyzstan as registered in error on the basis of cultivated plants. Alkekengiofficinarum is an archaeophyte of the Neolithic period in Central Asia, formerly used for food, now strongly declining and largely casual in Kyrgyzstan. The only historical record of Physalisviscosa from Uzbekistan was based on a technical error and belongs to A.officinarum. Daturastramonium and Hyoscyamusniger were introduced as medicinal plants during the period of the Arabic invasion of Central Asia, by the 11th century. Daturainnoxia is a newly recorded casual alien, recently escaped from ornamental cultivation. Nicandraphysalodes is a casual alien, which was cultivated by Russian colonists in the early 20th century for culinary use and is currently used in ornamental cultivation. Hemerocallisfulva was a remnant of historical cultivation in the former Khanate of Buxoro, and its formerly established colonies are presumably extinct in the wild. Bidensfrondosa was seemingly introduced with contaminated forage and seed of American origin during the late Soviet period and started to spread in the period of independence; its invasion in the former USSR is analysed.
Collapse
Affiliation(s)
- Alexander Sennikov
- Komarov Botanical Institute, Saint-Petersburg, Russia Komarov Botanical Institute Saint-Petersburg Russia.,University of Helsinki, Helsinki, Finland University of Helsinki Helsinki Finland
| | - Georgy Lazkov
- Institute of Biology, Bishkek, Kyrgyzstan Institute of Biology Bishkek Kyrgyzstan
| |
Collapse
|
16
|
Qi H, Sun X, Yan W, Ye H, Chen J, Yu J, Jun D, Wang C, Xia T, Chen X, Li D, Zheng D. Genetic relationships and low diversity among the tea-oil Camellia species in Sect . Oleifera, a bulk woody oil crop in China. FRONTIERS IN PLANT SCIENCE 2020; 13:996731. [PMID: 36247558 PMCID: PMC9563498 DOI: 10.3389/fpls.2022.996731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Tea-oil Camellia is one of the four woody oil crops in the world and has high ecological, economic and medicinal values. However, there are great differences in the classification and merging of tea-oil Camellia Sect. Oleifera species, which brings difficulties to the innovative utilization and production of tea-oil Camellia resources. Here, ISSR, SRAP and chloroplast sequence markers were analyzed in 18 populations of tea-oil Camellia Sect. Oleifera species to explore their phylogenetic relationships and genetic diversity. The results showed that their genetic diversity were low, with mean H and π values of 0.16 and 0.00140, respectively. There was high among-population genetic differentiation, with ISSR and SRAP markers showing an Fst of 0.38 and a high Nm of 1.77 and cpDNA markers showing an Fst of 0.65 and a low Nm of 0.27. The C. gauchowensis, C. vietnamensis and Hainan Island populations formed a single group, showing the closest relationships, and supported being the same species for them with the unifying name C. drupifera and classifying the resources on Hainan Island as C. drupifera. The tea-oil Camellia resources of Hainan Island should be classified as a special ecological type or variety of C. drupifera. However, cpDNA marker-based STRUCTURE analysis showed that the genetic components of the C. osmantha population formed an independent, homozygous cluster; hence, C. osmantha should be a new species in Sect. Oleifera. The C. oleifera var. monosperma and C. oleifera populations clustered into two distinct clades, and the C. oleifera var. monosperma populations formed an independent cluster, accounting for more than 99.00% of its genetic composition; however, the C. oleifera populations contained multiple different cluster components, indicating that C. oleifera var. monosperma significantly differs from C. oleifera and should be considered the independent species C. meiocarpa. Haplotype analysis revealed no rapid expansion in the tested populations, and the haplotypes of C. oleifera, C. meiocarpa and C. osmantha evolved from those of C. drupifera. Our results support the phylogenetic classification of Camellia subgenera, which is highly significant for breeding and production in tea-oil Camellia.
Collapse
Affiliation(s)
- Huasha Qi
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xiuxiu Sun
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Wuping Yan
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Hang Ye
- Guangxi Key Laboratory of Special Non-Wood Forest Cultivation and Utilization, Improved Variety and Cultivation Engineering Research Center of Oil-Tea Camellia in Guangxi, Guangxi Forestry Research Institute, Nanning, China
| | - Jiali Chen
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Jing Yu
- College of Horticulture, Hainan University, Haikou, China
| | - Dai Jun
- Qionghai Tropical Crop Service Center, Qionghai, China
| | - Chunmei Wang
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Tengfei Xia
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xuan Chen
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Dongliang Li
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Daojun Zheng
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| |
Collapse
|