1
|
Chernyi N, Gavrilova D, Saruhanyan M, Oloruntimehin ES, Karabelsky A, Bezsonov E, Malogolovkin A. Recent Advances in Gene Therapy for Hemophilia: Projecting the Perspectives. Biomolecules 2024; 14:854. [PMID: 39062568 PMCID: PMC11274510 DOI: 10.3390/biom14070854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
One of the well-known X-linked genetic disorders is hemophilia, which could be hemophilia A as a result of a mutation in the F8 (factor VIII) gene or hemophilia B as a result of a mutation in the F9 (factor IX) gene, leading to insufficient levels of the proteins essential for blood coagulation cascade. In patients with severe hemophilia, factor VIII or factor IX activities in the blood plasma are considerably low, estimated to be less than 1%. This is responsible for spontaneous or post-traumatic bleeding episodes, or both, leading to disease complications and death. Current treatment of hemophilia relies on the prevention of bleeding, which consists of expensive lifelong replacement infusion therapy of blood plasma clotting factors, their recombinant versions, or therapy with recombinant monoclonal antibodies. Recently emerged gene therapy approaches may be a potential game changer that could reshape the therapeutic outcomes of hemophilia A or B using a one-off vector in vivo delivery and aim to achieve long-term endogenous expression of factor VIII or IX. This review examines both traditional approaches to the treatment of hemophilia and modern methods, primarily focusing on gene therapy, to update knowledge in this area. Recent technological advances and gene therapeutics in the pipeline are critically reviewed and summarized. We consider gene therapy to be the most promising method as it may overcome the problems associated with more traditional treatments, such as the need for constant and expensive infusions and the presence of an immune response to the antibody drugs used to treat hemophilia.
Collapse
Affiliation(s)
- Nikita Chernyi
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
| | - Darina Gavrilova
- Department of Biology and General Genetics, First Moscow State Medical University (Sechenov University), Moscow 105043, Russia;
| | - Mane Saruhanyan
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
| | - Ezekiel S. Oloruntimehin
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
| | - Alexander Karabelsky
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354530, Russia;
| | - Evgeny Bezsonov
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
- Department of Biology and General Genetics, First Moscow State Medical University (Sechenov University), Moscow 105043, Russia;
| | - Alexander Malogolovkin
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354530, Russia;
| |
Collapse
|
2
|
Zangi AR, Amiri A, Pazooki P, Soltanmohammadi F, Hamishehkar H, Javadzadeh Y. Non-viral and viral delivery systems for hemophilia A therapy: recent development and prospects. Ann Hematol 2024; 103:1493-1511. [PMID: 37951852 DOI: 10.1007/s00277-023-05459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/17/2023] [Indexed: 11/14/2023]
Abstract
Recent advancements have focused on enhancing factor VIII half-life and refining its delivery methods, despite the well-established knowledge that factor VIII deficiency is the main clotting protein lacking in hemophilia. Consequently, both viral and non-viral delivery systems play a crucial role in enhancing the quality of life for hemophilia patients. The utilization of viral vectors and the manipulation of non-viral vectors through targeted delivery are significant advancements in the field of cellular and molecular therapies for hemophilia. These developments contribute to the progression of treatment strategies and hold great promise for improving the overall well-being of individuals with hemophilia. This review study comprehensively explores the application of viral and non-viral vectors in cellular (specifically T cell) and molecular therapy approaches, such as RNA, monoclonal antibody (mAb), and CRISPR therapeutics, with the aim of addressing the challenges in hemophilia treatment. By examining these innovative strategies, the study aims to shed light on potential solutions to enhance the efficacy and outcomes of hemophilia therapy.
Collapse
Affiliation(s)
- Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran
| | - Ala Amiri
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Pouya Pazooki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, 5166-15731, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran.
| |
Collapse
|
3
|
Mattar CNZ, Chan JKY, Choolani M. Gene modification therapies for hereditary diseases in the fetus. Prenat Diagn 2023; 43:674-686. [PMID: 36965009 PMCID: PMC10946994 DOI: 10.1002/pd.6347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/27/2023]
Abstract
Proof-of-principle disease models have demonstrated the feasibility of an intrauterine gene modification therapy (in utero gene therapy (IUGT)) approach to hereditary diseases as diverse as coagulation disorders, haemoglobinopathies, neurogenetic disorders, congenital metabolic, and pulmonary diseases. Gene addition, which requires the delivery of an integrating or episomal transgene to the target cell nucleus to be transcribed, and gene editing, where the mutation is corrected within the gene of origin, have both been used successfully to increase normal protein production in a bid to reverse or arrest pathology in utero. While most experimental models have employed lentiviral, adenoviral, and adeno-associated viral vectors engineered to efficiently enter target cells, newer models have also demonstrated the applicability of non-viral lipid nanoparticles. Amelioration of pathology is dependent primarily on achieving sustained therapeutic transgene expression, silencing of transgene expression, production of neutralising antibodies, the dilutional effect of the recipient's growth on the mass of transduced cells, and the degree of pre-existing cellular damage. Safety assessment of any IUGT strategy will require long-term postnatal surveillance of both the fetal recipient and the maternal bystander for cell and genome toxicity, oncogenic potential, immune-responsiveness, and germline mutation. In this review, we discuss advances in the field and the push toward clinical translation of IUGT.
Collapse
Affiliation(s)
- Citra N. Z. Mattar
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| | - Jerry K. Y. Chan
- KK Women's and Children's HospitalSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Mahesh Choolani
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| |
Collapse
|
4
|
Rose M, Gao K, Cortez‐Toledo E, Agu E, Hyllen AA, Conroy K, Pan G, Nolta JA, Wang A, Zhou P. Endothelial cells derived from patients' induced pluripotent stem cells for sustained factor VIII delivery and the treatment of hemophilia A. Stem Cells Transl Med 2020; 9:686-696. [PMID: 32162786 PMCID: PMC7214661 DOI: 10.1002/sctm.19-0261] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Hemophilia A (HA) is a bleeding disorder characterized by spontaneous and prolonged hemorrhage. The disease is caused by mutations in the coagulation factor 8 gene (F8) leading to factor VIII (FVIII) deficiency. Since FVIII is primarily produced in endothelial cells (ECs) in a non-diseased human being, ECs hold great potential for development as a cell therapy for HA. We showed that HA patient-specific induced pluripotent stem cells (HA-iPSCs) could provide a renewable supply of ECs. The HA-iPSC-derived ECs were transduced with lentiviral vectors to stably express the functional B domain deleted F8 gene, the luciferase gene, and the enhanced green fluorescent protein gene (GFP). When transplanted intramuscularly into neonatal and adult immune deficient mice, the HA-iPSC-derived ECs were retained in the animals for at least 10-16 weeks and maintained their expression of FVIII, GFP, and the endothelial marker CD31, as demonstrated by bioluminescence imaging and immunostaining, respectively. When transplanted into HA mice, these transduced HA-iPSC-derived ECs significantly reduced blood loss in a tail-clip bleeding test and produced therapeutic plasma levels (11.2%-369.2%) of FVIII. Thus, our studies provide proof-of-concept that HA-iPSC-derived ECs can serve as a factory to deliver FVIII for the treatment of HA not only in adults but also in newborns.
Collapse
Affiliation(s)
- Melanie Rose
- Stem Cell Program, Department of Internal MedicineUniversity of California Davis Medical CenterSacramentoCalifornia
| | - Kewa Gao
- Department of SurgeryUniversity of California Davis Medical CenterSacramentoCalifornia
- Institute for Pediatric Regenerative MedicineShriners Hospitals for ChildrenSacramentoCalifornia
| | - Elizabeth Cortez‐Toledo
- Stem Cell Program, Department of Internal MedicineUniversity of California Davis Medical CenterSacramentoCalifornia
| | - Emmanuel Agu
- Stem Cell Program, Department of Internal MedicineUniversity of California Davis Medical CenterSacramentoCalifornia
| | - Alicia A. Hyllen
- Stem Cell Program, Department of Internal MedicineUniversity of California Davis Medical CenterSacramentoCalifornia
| | - Kelsey Conroy
- Stem Cell Program, Department of Internal MedicineUniversity of California Davis Medical CenterSacramentoCalifornia
| | - Guangjin Pan
- Key Laboratory of Regenerative BiologyGuangzhou Institute of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Jan A. Nolta
- Stem Cell Program, Department of Internal MedicineUniversity of California Davis Medical CenterSacramentoCalifornia
- University of California Davis Gene Therapy CenterSacramentoCalifornia
| | - Aijun Wang
- Department of SurgeryUniversity of California Davis Medical CenterSacramentoCalifornia
- Institute for Pediatric Regenerative MedicineShriners Hospitals for ChildrenSacramentoCalifornia
- Department of Biomedical EngineeringUniversity of California DavisDavisCalifornia
| | - Ping Zhou
- Stem Cell Program, Department of Internal MedicineUniversity of California Davis Medical CenterSacramentoCalifornia
- University of California Davis Gene Therapy CenterSacramentoCalifornia
| |
Collapse
|
5
|
Patel SR, Lundgren TS, Spencer HT, Doering CB. The Immune Response to the fVIII Gene Therapy in Preclinical Models. Front Immunol 2020; 11:494. [PMID: 32351497 PMCID: PMC7174743 DOI: 10.3389/fimmu.2020.00494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Neutralizing antibodies to factor VIII (fVIII), referred to as "inhibitors," remain the most challenging complication post-fVIII replacement therapy. Preclinical development of novel fVIII products involves studies incorporating hemophilia A (HA) and wild-type animal models. Though immunogenicity is a critical aspect of preclinical pharmacology studies, gene therapy studies tend to focus on fVIII expression levels without major consideration for immunogenicity. Therefore, little clarity exists on whether preclinical testing can be predictive of clinical immunogenicity risk. Despite this, but perhaps due to the potential for transformative benefits, clinical gene therapy trials have progressed rapidly. In more than two decades, no inhibitors have been observed. However, all trials are conducted in previously treated patients without a history of inhibitors. The current review thus focuses on our understanding of preclinical immunogenicity for HA gene therapy candidates and the potential indication for inhibitor treatment, with a focus on product- and platform-specific determinants, including fVIII transgene sequence composition and tissue/vector biodistribution. Currently, the two leading clinical gene therapy vectors are adeno-associated viral (AAV) and lentiviral (LV) vectors. For HA applications, AAV vectors are liver-tropic and employ synthetic, high-expressing, liver-specific promoters. Factors including vector serotype and biodistribution, transcriptional regulatory elements, transgene sequence, dosing, liver immunoprivilege, and host immune status may contribute to tipping the scale between immunogenicity and tolerance. Many of these factors can also be important in delivery of LV-fVIII gene therapy, especially when delivered intravenously for liver-directed fVIII expression. However, ex vivo LV-fVIII targeting and transplantation of hematopoietic stem and progenitor cells (HSPC) has been demonstrated to achieve durable and curative fVIII production without inhibitor development in preclinical models. A critical variable appears to be pre-transplantation conditioning regimens that suppress and/or ablate T cells. Additionally, we and others have demonstrated the potential of LV-fVIII HSPC and liver-directed AAV-fVIII gene therapy to eradicate pre-existing inhibitors in murine and canine models of HA, respectively. Future preclinical studies will be essential to elucidate immune mechanism(s) at play in the context of gene therapy for HA, as well as strategies for preventing adverse immune responses and promoting immune tolerance even in the setting of pre-existing inhibitors.
Collapse
Affiliation(s)
- Seema R. Patel
- Hemostasis and Thrombosis Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Taran S. Lundgren
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - H. Trent Spencer
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Christopher B. Doering
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| |
Collapse
|
6
|
Rodriguez M, Porada CD, Almeida-Porada G. Mechanistic Insights into Factor VIII Immune Tolerance Induction via Prenatal Cell Therapy in Hemophilia A. CURRENT STEM CELL REPORTS 2019; 5:145-161. [PMID: 32351874 DOI: 10.1007/s40778-019-00165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Purpose of Review Prenatal stem cell and gene therapy approaches are amongst the few therapies that can promise the birth of a healthy infant with specific known genetic diseases. This review describes fetal immune cell signaling and its potential influence on donor cell engraftment, and summarizes mechanisms of central T cell tolerance to peripherally-acquired antigen in the context of prenatal therapies for Hemophilia A. Recent Findings During early gestation, different subsets of antigen presenting cells take up peripherally-acquired, non-inherited antigens and induce the deletion of antigen-reactive T-cell precursors in the thymus, demonstrating the potential for using prenatal cell and gene therapies to induce central tolerance to FVIII in the context of prenatal diagnosis/therapy of Hemophilia A. Summary Prenatal cell and gene therapies are promising approaches to treat several genetic disorders including Hemophilia A and B. Understanding the mechanisms of how FVIII-specific tolerance is achieved during ontogeny could help develop novel therapies for HA and better approaches to overcome FVIII inhibitors.
Collapse
Affiliation(s)
- Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Graҫa Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
7
|
Luo X, Chen J, Schroeder JA, Allen KP, Baumgartner CK, Malarkannan S, Hu J, Williams CB, Shi Q. Platelet Gene Therapy Promotes Targeted Peripheral Tolerance by Clonal Deletion and Induction of Antigen-Specific Regulatory T Cells. Front Immunol 2018; 9:1950. [PMID: 30237796 PMCID: PMC6136275 DOI: 10.3389/fimmu.2018.01950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022] Open
Abstract
Delivery of gene therapy as well as of biologic therapeutics is often hampered by the immune response of the subject receiving the therapy. We have reported that effective gene therapy for hemophilia utilizing platelets as a delivery vehicle engenders profound tolerance to the therapeutic product. In this study, we investigated whether this strategy can be applied to induce immune tolerance to a non-coagulant protein and explored the fundamental mechanism of immune tolerance induced by platelet-targeted gene delivery. We used ovalbumin (OVA) as a surrogate non-coagulant protein and constructed a lentiviral vector in which OVA is driven by the platelet-specific αIIb promoter. Platelet-specific OVA expression was introduced by bone marrow transduction and transplantation. Greater than 95% of OVA was stored in platelet α-granules. Control mice immunized with OVA generated OVA-specific IgG antibodies; however, mice expressing OVA in platelets did not. Furthermore, OVA expression in platelets was sufficient to prevent the rejection of skin grafts from CAG-OVA mice, demonstrating that immune tolerance developed in platelet-specific OVA-transduced recipients. To assess the mechanism(s) involved in this tolerance we used OTII mice that express CD4+ effector T cells specific for an OVA-derived peptide. After platelet-specific OVA gene transfer, these mice showed normal thymic maturation of the T cells ruling against central tolerance. In the periphery, tolerance involved elimination of OVA-specific CD4+ effector T cells by apoptosis and expansion of an OVA-specific regulatory T cell population. These experiments reveal the existence of natural peripheral tolerance processes to platelet granule contents which can be co-opted to deliver therapeutically important products.
Collapse
Affiliation(s)
- Xiaofeng Luo
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States.,Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Juan Chen
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States
| | - Jocelyn A Schroeder
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States.,Departments of Pediatrics, Medicine, Microbiology and Immunology, and Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, United States.,MACC Fund Research Center, Milwaukee, WI, United States
| | - Kenneth P Allen
- Departments of Pediatrics, Medicine, Microbiology and Immunology, and Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Subramaniam Malarkannan
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States.,Departments of Pediatrics, Medicine, Microbiology and Immunology, and Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Calvin B Williams
- Departments of Pediatrics, Medicine, Microbiology and Immunology, and Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, United States
| | - Qizhen Shi
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States.,Departments of Pediatrics, Medicine, Microbiology and Immunology, and Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, United States.,MACC Fund Research Center, Milwaukee, WI, United States
| |
Collapse
|
8
|
Chen Y, Luo X, Schroeder JA, Chen J, Baumgartner CK, Hu J, Shi Q. Immune tolerance induced by platelet-targeted factor VIII gene therapy in hemophilia A mice is CD4 T cell mediated. J Thromb Haemost 2017; 15:1994-2004. [PMID: 28799202 PMCID: PMC5630523 DOI: 10.1111/jth.13800] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Indexed: 02/03/2023]
Abstract
Essentials The immune response is a significant concern in gene therapy. Platelet-targeted gene therapy can restore hemostasis and induce immune tolerance. CD4 T cell compartment is tolerized after platelet gene therapy. Preconditioning regimen affects immune tolerance induction in platelet gene therapy. SUMMARY Background Immune responses are a major concern in gene therapy. Our previous studies demonstrated that platelet-targeted factor VIII (FVIII) (2bF8) gene therapy together with in vivo drug selection of transduced cells can rescue the bleeding diathesis and induce immune tolerance in FVIIInull mice. Objective To investigate whether non-selectable 2bF8 lentiviral vector (LV) for the induction of platelet-FVIII expression is sufficient to induce immune tolerance and how immune tolerance is induced after 2bF8LV gene therapy. Methods Platelet-FVIII expression was introduced by 2bF8LV transduction and transplantation. FVIII assays and tail bleeding tests were used to confirm the success of platelet gene therapy. Animals were challenged with rhF8 to explore if immune tolerance was induced after gene therapy. Treg cell analysis, T-cell proliferation assay and memory B-cell-mediated ELISPOT assay were used to investigate the potential mechanisms of immune tolerance. Results We showed that platelet-FVIII expression was sustained and the bleeding diathesis was restored in FVIIInull mice after 2bF8LV gene therapy. None of the transduced recipients developed anti-FVIII inhibitory antibodies in the groups preconditioned with 660 cGy irradiation or busulfan plus ATG treatment even after rhF8 challenge. Treg cells significantly increased in 2bF8LV-transduced recipients and the immune tolerance developed was transferable. CD4+ T cells from treated animals failed to proliferate in response to rhF8 re-stimulation, but memory B cells could differentiate into antibody secreting cells in 2bF8LV-transduced recipients. Conclusion 2bF8LV gene transfer without in vivo selection of manipulated cells can introduce immune tolerance in hemophilia A mice and this immune tolerance is CD4+ T cell mediated.
Collapse
Affiliation(s)
- Y Chen
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - X Luo
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - J A Schroeder
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J Chen
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
| | - C K Baumgartner
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
| | - J Hu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Q Shi
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, USA
- MACC Fund Research Center, Milwaukee, WI, USA
| |
Collapse
|
9
|
|
10
|
Almeida-Porada G, Atala A, Porada CD. In utero stem cell transplantation and gene therapy: rationale, history, and recent advances toward clinical application. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16020. [PMID: 27069953 PMCID: PMC4813605 DOI: 10.1038/mtm.2016.20] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Recent advances in high-throughput molecular testing have made it possible to diagnose most genetic disorders relatively early in gestation with minimal risk to the fetus. These advances should soon allow widespread prenatal screening for the majority of human genetic diseases, opening the door to the possibility of treatment/correction prior to birth. In addition to the obvious psychological and financial benefits of curing a disease in utero, and thereby enabling the birth of a healthy infant, there are multiple biological advantages unique to fetal development, which provide compelling rationale for performing potentially curative treatments, such as stem cell transplantation or gene therapy, prior to birth. Herein, we briefly review the fields of in utero transplantation (IUTx) and in utero gene therapy and discuss the biological hurdles that have thus far restricted success of IUTx to patients with immunodeficiencies. We then highlight several recent experimental breakthroughs in immunology, hematopoietic/marrow ontogeny, and in utero cell delivery, which have collectively provided means of overcoming these barriers, thus setting the stage for clinical application of these highly promising therapies in the near future.
Collapse
Affiliation(s)
- Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| |
Collapse
|
11
|
Effects of FVIII immunity on hepatocyte and hematopoietic stem cell-directed gene therapy of murine hemophilia A. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15056. [PMID: 26909355 PMCID: PMC4750467 DOI: 10.1038/mtm.2015.56] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 02/08/2023]
Abstract
Immune responses to coagulation factors VIII (FVIII) and IX (FIX) represent primary obstacles to hemophilia treatment. Previously, we showed that hematopoietic stem cell (HSC) retroviral gene therapy induces immune nonresponsiveness to FVIII in both naive and preimmunized murine hemophilia A settings. Liver-directed adeno-associated viral (AAV)-FIX vector gene transfer achieved similar results in preclinical hemophilia B models. However, as clinical immune responses to FVIII and FIX differ, we investigated the ability of liver-directed AAV-FVIII gene therapy to affect FVIII immunity in hemophilia A mice. Both FVIII naive and preimmunized mice were administered recombinant AAV8 encoding a liver-directed bioengineered FVIII expression cassette. Naive animals receiving high or mid-doses subsequently achieved near normal FVIII activity levels. However, challenge with adjuvant-free recombinant FVIII induced loss of FVIII activity and anti-FVIII antibodies in mid-dose, but not high-dose AAV or HSC lentiviral (LV) vector gene therapy cohorts. Furthermore, unlike what was shown previously for FIX gene transfer, AAV-FVIII administration to hemophilia A inhibitor mice conferred no effect on anti-FVIII antibody or inhibitory titers. These data suggest that functional differences exist in the immune modulation achieved to FVIII or FIX in hemophilia mice by gene therapy approaches incorporating liver-directed AAV vectors or HSC-directed LV.
Collapse
|
12
|
Ohmori T, Mizukami H, Ozawa K, Sakata Y, Nishimura S. New approaches to gene and cell therapy for hemophilia. J Thromb Haemost 2015; 13 Suppl 1:S133-42. [PMID: 26149014 DOI: 10.1111/jth.12926] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hemophilia is considered suitable for gene therapy because it is caused by a single gene abnormality, and therapeutic coagulation factor levels may vary across a broad range. Recent success of hemophilia B gene therapy with an adeno-associated virus (AAV) vector in a clinical trial showed the real prospect that, through gene therapy, a cure for hemophilia may become a reality. However, AAV-mediated gene therapy is not applicable to patients with hemophilia A at present, and neutralizing antibodies against AAV reduce the efficacy of AAV-mediated strategies. Because patients that benefit from AAV treatment (hemophilia B without neutralizing antibodies) are estimated to represent only 15% of total patients with hemophilia, the development of basic technologies for hemophilia A and those that result in higher therapeutic effects are critical. In this review, we present an outline of gene therapy methods for hemophilia, including the transition of technical developments thus far and our novel techniques.
Collapse
Affiliation(s)
- T Ohmori
- Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - H Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - K Ozawa
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Y Sakata
- Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - S Nishimura
- Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
- Translational Systems Biology and Medicine Initiative, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Abstract
Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| | - Roland W Herzog
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| |
Collapse
|
14
|
Porada CD, Rodman C, Ignacio G, Atala A, Almeida-Porada G. Hemophilia A: an ideal disease to correct in utero. Front Pharmacol 2014; 5:276. [PMID: 25566073 PMCID: PMC4263089 DOI: 10.3389/fphar.2014.00276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/27/2014] [Indexed: 01/13/2023] Open
Abstract
Hemophilia A (HA) is the most frequent inheritable defect of the coagulation proteins. The current standard of care for patients with HA is prophylactic factor infusion, which is comprised of regular (2-3 times per week) intravenous infusions of recombinant or plasma-derived FVIII to maintain hemostasis. While this treatment has greatly increased the quality of life and lengthened the life expectancy for many HA patients, its high cost, the need for lifelong infusions, and the fact that it is unavailable to roughly 75% of the world's HA patients make this type of treatment far from ideal. In addition, this lifesaving therapy suffers from a high risk of treatment failure due to immune response to the infused FVIII. There is thus a need for novel treatments, such as those using stem cells and/or gene therapy, which have the potential to mediate long-term correction or permanent cure following a single intervention. In the present review, we discuss the clinical feasibility and unique advantages that an in utero approach to treating HA could offer, placing special emphasis on a new sheep model of HA we have developed and on the use of mesenchymal stromal cells (MSC) as cellular vehicles for delivering the FVIII gene.
Collapse
Affiliation(s)
| | | | | | | | - Graça Almeida-Porada
- Regenerative Medicine, Wake Forest Institute for Regenerative MedicineWinston-Salem, NC, USA
| |
Collapse
|
15
|
Doering CB, Spencer HT. Replacing bad (F)actors: hemophilia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2014; 2014:461-467. [PMID: 25696895 DOI: 10.1182/asheducation-2014.1.461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hemophilia A and B are bleeding disorders that result from functional deficiencies in specific circulating blood clotting factors termed factor VIII (FVIII) and factor IX (FIX), respectively, and collectively display an incidence of 1 in 4000 male births. Stem cell transplantation therapies hold the promise of providing a cure for hemophilia, but currently available transplantable stem cell products do not confer endogenous FIX or FVIII biosynthesis. For this reason, stem cell-based approaches for hemophilia have focused primarily on genetic engineering of pluripotent or multipotent stem cells. While pluripotent stem cells have been branded with high expectation and promise, they remain poorly characterized in terms of clinical utility and safety. In contrast, adult-lineage-restricted stem cells are established agents in the clinical armamentarium. Of the clinically established stem cell types, hematopoietic stem cells (HSCs) are the most utilized and represent the standard of care for several genetic and acquired diseases. Furthermore, HSCs are ideal cellular vehicles for gene therapy applications because they self-renew, repopulate the entire blood lineage while concurrently amplifying the transgene copy number >10(6) fold, and also have direct access to the bloodstream. Current research on HSC transplantation gene therapy approaches for hemophilia A and B is focused on the following: (1) identification of safe and efficient methods of nucleic acid transfer, (2) optimization of transgene product expression, (3) minimization of conditioning-regimen-related toxicity while maintaining HSC engraftment, and (4) overcoming preexisting immunity. Based on the existing data and current rate of progress, clinical trials of HSC transplantation gene therapy for hemophilia are predicted to begin in the coming years.
Collapse
Affiliation(s)
- Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - H Trent Spencer
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
16
|
Fomin ME, Togarrati PP, Muench MO. Progress and challenges in the development of a cell-based therapy for hemophilia A. J Thromb Haemost 2014; 12:1954-65. [PMID: 25297648 PMCID: PMC4388483 DOI: 10.1111/jth.12750] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Indexed: 12/11/2022]
Abstract
Hemophilia A results from an insufficiency of factor VIII (FVIII). Although replacement therapy with plasma-derived or recombinant FVIII is a life-saving therapy for hemophilia A patients, such therapy is a life-long treatment rather than a cure for the disease. In this review, we discuss the possibilities, progress, and challenges that remain in the development of a cell-based cure for hemophilia A. The success of cell therapy depends on the type and availability of donor cells, the age of the host and method of transplantation, and the levels of engraftment and production of FVIII by the graft. Early therapy, possibly even prenatal transplantation, may yield the highest levels of engraftment by avoiding immunological rejection of the graft. Potential cell sources of FVIII include a specialized subset of endothelial cells known as liver sinusoidal endothelial cells (LSECs) present in the adult and fetal liver, or patient-specific endothelial cells derived from induced pluripotent stem cells that have undergone gene editing to produce FVIII. Achieving sufficient engraftment of transplanted LSECs is one of the obstacles to successful cell therapy for hemophilia A. We discuss recent results from transplants performed in animals that show production of functional and clinically relevant levels of FVIII obtained from donor LSECs. Hence, the possibility of treating hemophilia A can be envisioned through persistent production of FVIII from transplanted donor cells derived from a number of potential cell sources or through creation of donor endothelial cells from patient-specific induced pluripotent stem cells.
Collapse
Affiliation(s)
- Marina E. Fomin
- Cell Therapy Core, Blood Systems Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Padma Priya Togarrati
- Cell Therapy Core, Blood Systems Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Marcus O. Muench
- Cell Therapy Core, Blood Systems Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
- Liver Center, University of California, San Francisco, CA
| |
Collapse
|
17
|
Doering CB, Spencer HT. Advancements in gene transfer-based therapy for hemophilia A. Expert Rev Hematol 2014; 2:673-683. [PMID: 20577574 DOI: 10.1586/ehm.09.63] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gene therapy has promised clinical benefit to those suffering with hemophilia A, but this benefit has not yet been realized. However, during the past two decades, basic and applied gene therapy research has progressed and the goal of gene therapy for hemophilia A is once again in our sights. The hemophilia A patient population suffers from a disease that requires invasive, lifelong management, is exorbitantly expensive to treat, has geographically limited treatment access and can become untreatable due to immune reactions to the treatment product. Subsequent to the cloning of the factor VIII gene and cDNA in the early 1980s, academic and commercial research laboratories began to pursue gene transfer-based therapies to supplement or supplant the available protein replacement therapy. However, to date, clinical trials for gene therapy of hemophilia A have been unsuccessful. Three trials have been conducted with each having tested a different gene-transfer strategy and each demonstrating that there is a considerable barrier to achieving sustained expression of therapeutic amounts of factor VIII. Recent progress has been made in gene-transfer technology and, relevant to hemophilia A, towards increasing the biosynthetic efficiency of factor VIII. These advances are now being combined to develop novel strategies to treat and possibly cure hemophilia A.
Collapse
Affiliation(s)
- Christopher B Doering
- Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, GA 30322, USA, Tel.: +1 404 727 7988
| | | |
Collapse
|
18
|
The mesenchymal stem cells derived from transgenic mice carrying human coagulation factor VIII can correct phenotype in hemophilia A mice. J Genet Genomics 2013; 40:617-28. [PMID: 24377868 DOI: 10.1016/j.jgg.2013.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/20/2022]
Abstract
Hemophilia A (HA) is an inherited X-linked recessive bleeding disorder caused by coagulant factor VIII (FVIII) deficiency. Previous studies showed that introduction of mesenchymal stem cells (MSCs) modified by FVIII-expressing retrovirus may result in phenotypic correction of HA animals. This study aimed at the investigation of an alternative gene therapy strategy that may lead to sustained FVIII transgene expression in HA mice. B-domain-deleted human FVIII (hFVIIIBD) vector was microinjected into single-cell embryos of wild-type mice to generate a transgenic mouse line, from which hFVIIIBD-MSCs were isolated, followed by transplantation into HA mice. RT-PCR and real-time PCR analysis demonstrated the expression of hFVIIIBD in multi-organs of recipient HA mice. Immunohistochemistry showed the presence of hFVIIIBD positive staining in multi-organs of recipient HA mice. ELISA indicated that plasma hFVIIIBD level in recipient mice reached its peak (77 ng/mL) at the 3rd week after implantation, and achieved sustained expression during the 5-week observation period. Plasma FVIII activities of recipient HA mice increased from 0% to 32% after hFVIIIBD-MSCs transplantation. APTT (activated partial thromboplastin time) value decreased in hFVIIIBD-MSCs transplanted HA mice compared with untreated HA mice (45.5 s vs. 91.3 s). Our study demonstrated an effective phenotypic correction in HA mice using genetically modified MSCs from hFVIIIBD transgenic mice.
Collapse
|
19
|
Chuah MK, Evens H, VandenDriessche T. Gene therapy for hemophilia. J Thromb Haemost 2013; 11 Suppl 1:99-110. [PMID: 23809114 DOI: 10.1111/jth.12215] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/13/2013] [Indexed: 11/29/2022]
Abstract
Hemophilia A and B are X-linked monogenic disorders resulting from deficiencies of factor VIII and FIX, respectively. Purified clotting factor concentrates are currently intravenously administered to treat hemophilia, but this treatment is non-curative. Therefore, gene-based therapies for hemophilia have been developed to achieve sustained high levels of clotting factor expression to correct the clinical phenotype. Over the past two decades, different types of viral and non-viral gene delivery systems have been explored for hemophilia gene therapy research with a variety of target cells, particularly hepatocytes, hematopoietic stem cells, skeletal muscle cells, and endothelial cells. Lentiviral and adeno-associated virus (AAV)-based vectors are among the most promising vectors for hemophilia gene therapy. In preclinical hemophilia A and B animal models, the bleeding phenotype was corrected with these vectors. Some of these promising preclinical results prompted clinical translation to patients suffering from a severe hemophilic phenotype. These patients receiving gene therapy with AAV vectors showed long-term expression of therapeutic FIX levels, which is a major step forwards in this field. Nevertheless, the levels were insufficient to prevent trauma or injury-induced bleeding episodes. Another challenge that remains is the possible immune destruction of gene-modified cells by effector T cells, which are directed against the AAV vector antigens. It is therefore important to continuously improve the current gene therapy approaches to ultimately establish a real cure for hemophilia.
Collapse
Affiliation(s)
- M K Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | | | | |
Collapse
|
20
|
Porada CD, Almeida-Porada G. Treatment of Hemophilia A in Utero and Postnatally using Sheep as a Model for Cell and Gene Delivery. ACTA ACUST UNITED AC 2013; S1. [PMID: 23264887 DOI: 10.4172/2157-7412.s1-011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hemophilia A represents the most common inheritable deficiency of the coagulation proteins. Current state-of- the-art treatment consists of frequent prophylactic infusions of plasma-derived or recombinant FVIII protein to maintain hemostasis, and has greatly increased life expectancy and quality of life for many hemophilia A patients. This treatment approach is, however, far from ideal, due to the need for lifelong intravenous infusions, the high treatment cost, and the fact that it is unavailable to a large percentage of the world's hemophiliacs. There is thus a need for novel treatments that can promise long-term or permanent correction. In contrast to existing protein based therapeutics, gene therapy offers to provide a permanent cure following few, or even a single, treatment. In the present paper, we review ongoing work towards this end, focusing on studies we have performed in a large animal model. Some of the key topics covered in this review include the unique opportunities sheep offer as a model system, the re-establishment and clinical and molecular characterization of a line of sheep with severe hemophilia A, the advantages and feasibility of treating a disease like hemophilia A in utero, and the use of Mesenchymal Stem Cells (MSC) as cellular delivery vehicles for the FVIII gene. The review finishes with a brief discussion of our recent success correcting ovine hemophilia A with a postnatal transplant with gene-modified MSC, and the limitations of this approach that remain to be overcome.
Collapse
|
21
|
Chuah MK, Nair N, VandenDriessche T. Recent progress in gene therapy for hemophilia. Hum Gene Ther 2012; 23:557-65. [PMID: 22671033 DOI: 10.1089/hum.2012.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hemophilia A and B are X-linked monogenic disorders caused by deficiencies in coagulation factor VIII (FVIII) and factor IX (FIX), respectively. Current treatment for hemophilia involves intravenous infusion of clotting factor concentrates. However, this does not constitute a cure, and the development of gene-based therapies for hemophilia to achieve prolonged high level expression of clotting factors to correct the bleeding diathesis are warranted. Different types of viral and nonviral gene delivery systems and a wide range of different target cells, including hepatocytes, skeletal muscle cells, hematopoietic stem cells (HSCs), and endothelial cells, have been explored for hemophilia gene therapy. Adeno-associated virus (AAV)-based and lentiviral vectors are among the most promising vectors for hemophilia gene therapy. Stable correction of the bleeding phenotypes in hemophilia A and B was achieved in murine and canine models, and these promising preclinical studies prompted clinical trials in patients suffering from severe hemophilia. These studies recently resulted in the first demonstration that long-term expression of therapeutic FIX levels could be achieved in patients undergoing gene therapy. Despite this progress, there are still a number of hurdles that need to be overcome. In particular, the FIX levels obtained were insufficient to prevent bleeding induced by trauma or injury. Moreover, the gene-modified cells in these patients can become potential targets for immune destruction by effector T cells, specific for the AAV vector antigens. Consequently, more efficacious approaches are needed to achieve full hemostatic correction and to ultimately establish a cure for hemophilia A and B.
Collapse
Affiliation(s)
- Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, B-1090 Brussels, Belgium
| | | | | |
Collapse
|
22
|
Chuah MK, Vandendriessche T. Platelet-directed gene therapy overcomes inhibitory antibodies to factor VIII. J Thromb Haemost 2012; 10:1566-9. [PMID: 22642298 DOI: 10.1111/j.1538-7836.2012.04794.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M K Chuah
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | | |
Collapse
|
23
|
Sabatino DE, Nichols TC, Merricks E, Bellinger DA, Herzog RW, Monahan PE. Animal models of hemophilia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:151-209. [PMID: 22137432 PMCID: PMC3713797 DOI: 10.1016/b978-0-12-394596-9.00006-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The X-linked bleeding disorder hemophilia is caused by mutations in coagulation factor VIII (hemophilia A) or factor IX (hemophilia B). Unless prophylactic treatment is provided, patients with severe disease (less than 1% clotting activity) typically experience frequent spontaneous bleeds. Current treatment is largely based on intravenous infusion of recombinant or plasma-derived coagulation factor concentrate. More effective factor products are being developed. Moreover, gene therapies for sustained correction of hemophilia are showing much promise in preclinical studies and in clinical trials. These advances in molecular medicine heavily depend on availability of well-characterized small and large animal models of hemophilia, primarily hemophilia mice and dogs. Experiments in these animals represent important early and intermediate steps of translational research aimed at development of better and safer treatments for hemophilia, such a protein and gene therapies or immune tolerance protocols. While murine models are excellent for studies of large groups of animals using genetically defined strains, canine models are important for testing scale-up and for long-term follow-up as well as for studies that require larger blood volumes.
Collapse
Affiliation(s)
- Denise E. Sabatino
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Timothy C. Nichols
- Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Elizabeth Merricks
- Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Dwight A. Bellinger
- Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Roland W. Herzog
- Department of Pediatrics, University of Florida, Gainesville, Florida 32610
| | - Paul E. Monahan
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27516
| |
Collapse
|
24
|
Zakas PM, Spencer HT, Doering CB. Engineered Hematopoietic Stem Cells as Therapeutics for Hemophilia A. ACTA ACUST UNITED AC 2012; 1. [PMID: 25383239 DOI: 10.4172/2157-7412.s1-003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Philip M Zakas
- Graduate Program in Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Emory University
| | - H Trent Spencer
- Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Christopher B Doering
- Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
25
|
Scott DW, Lozier JN. Gene therapy for haemophilia: prospects and challenges to prevent or reverse inhibitor formation. Br J Haematol 2011; 156:295-302. [PMID: 22055221 DOI: 10.1111/j.1365-2141.2011.08925.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monogenic hereditary diseases, such as haemophilia A and B, are ideal targets for gene therapeutic approaches. While these diseases can be treated with protein therapeutics, such as factor VIII (FVIII) or IX (FIX), the notion that permanent transfer of the genes encoding these factors can cure haemophilia is very attractive. An underlying problem with a gene therapy approach, however, is the patient's immune response to the therapeutic protein (as well as to the transmission vector), leading to the formation of inhibitory antibodies. Even more daunting is reversing an existing immune response in patients with pre-existing inhibitors. In this review, we will describe the laboratory and clinical progress, and the challenges met thus far, in achieving the goal of gene therapy efficacy, with a focus on the goal of tolerance induction.
Collapse
Affiliation(s)
- David W Scott
- Uniformed Services University for the Health Sciences, Bethesda, MD 20814, USA.
| | | |
Collapse
|
26
|
Ramezani A, Zweier-Renn LA, Hawley RG. Factor VIII delivered by haematopoietic stem cell-derived B cells corrects the phenotype of haemophilia A mice. Thromb Haemost 2011; 105:676-87. [PMID: 21264447 PMCID: PMC3117307 DOI: 10.1160/th10-11-0725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 01/06/2011] [Indexed: 01/27/2023]
Abstract
The main impediments to clinical application of haematopoietic stem cell (HSC) gene therapy for treatment of haemophilia A are the bone marrow transplant-related risks and the potential for insertional mutagenesis caused by retroviral vectors. To circumvent these limitations, we have adapted a non-myeloablative conditioning regimen and directed factor VIII (FVIII) protein synthesis to B lineage cells using an insulated lentiviral vector containing an immunoglobulin heavy chain enhancer-promoter. Transplantation of lentiviral vector-modified HSCs resulted in therapeutic levels of FVIII in the circulation of all transplanted mice for the duration of the study (six months). Immunostaining of spleen cells showed that the majority of FVIII was synthesised by B220+ B cells and CD138+ plasma cells. Subsequent challenge with recombinant FVIII elicited at most a minor anti-FVIII antibody response, demonstrating induction of immune hyporesponsiveness. All transplant recipients exhibited clot formation and survived tail clipping, indicating correction of their haemophilic phenotype. Therapeutic levels of FVIII could be transferred to secondary recipients by bone marrow transplantation, confirming gene transfer into long-term repopulating HSCs. Moreover, short-term therapeutic FVIII levels could also be achieved in secondary recipients by adoptive transfer of HSC-derived splenic B cells. Our findings support pursuit of B cell-directed protein delivery as a potential clinical approach to treat haemophilia A and other disorders correctable by systemically distributed proteins.
Collapse
Affiliation(s)
- Ali Ramezani
- Department of Anatomy and Regenerative Biology The George Washington University, Washington, DC
| | - Lynnsey A. Zweier-Renn
- Department of Anatomy and Regenerative Biology The George Washington University, Washington, DC
- Graduate Program in Biochemistry and Molecular Genetics, The George Washington University, Washington, DC
| | - Robert G. Hawley
- Department of Anatomy and Regenerative Biology The George Washington University, Washington, DC
- Graduate Program in Biochemistry and Molecular Genetics, The George Washington University, Washington, DC
| |
Collapse
|
27
|
Petrus I, Chuah M, VandenDriessche T. Gene therapy strategies for hemophilia: benefits versus risks. J Gene Med 2011; 12:797-809. [PMID: 20848668 DOI: 10.1002/jgm.1500] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hemophilia is an inherited bleeding disorder caused by a deficiency of functional clotting factors VIII or IX in the blood plasma. The drawbacks of the classical protein substitution therapy fueled interest in alternative treatments by gene therapy. Hemophilia has been recognized as an ideal target disease for gene therapy because a relatively modest increase in clotting factor levels can result in a significant therapeutic benefit. Consequently, introducing a functional FVIII or FIX gene copy into the appropriate target cells could ultimately provide a cure for hemophilic patients. Several cell types have been explored for hemophilia gene therapy, including hepatocytes, muscle, endothelial and hematopoietic cells. Both nonviral and viral vectors have been considered for the development of hemophilia gene therapy, including transposons, γ-retroviral, lentiviral, adenoviral and adeno-associated viral vectors. Several of these strategies have resulted in stable correction of the bleeding diathesis in hemophilia A and B murine as well as canine models, paving the way towards clinical trials. Although clotting factor expression has been detected in hemophilic patients treated by gene therapy, the challenge now lies in obtaining prolonged therapeutic FVIII or FIX levels in these patients. This review highlights the benefits and potential risks of the different gene therapy strategies for hemophilia that have been developed.
Collapse
Affiliation(s)
- Inge Petrus
- Free University of Brussels, Vesalius Research Center, Flanders Institute of Biotechnology (VIB) & University of Leuven, Belgium
| | | | | |
Collapse
|
28
|
Doering CB, Archer D, Spencer HT. Delivery of nucleic acid therapeutics by genetically engineered hematopoietic stem cells. Adv Drug Deliv Rev 2010; 62:1204-12. [PMID: 20869414 PMCID: PMC2991563 DOI: 10.1016/j.addr.2010.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/17/2010] [Accepted: 09/08/2010] [Indexed: 01/02/2023]
Abstract
Several populations of adult human stem cells have been identified, but only a few of these are in routine clinical use. The hematopoietic stem cell (HSC) is arguably the most well characterized and the most routinely transplanted adult stem cell. Although details regarding several aspects of this cell's phenotype are not well understood, transplant of HSCs has advanced to become the standard of care for the treatment of a range of monogenic diseases and several types of cancer. It has also proven to be an excellent target for genetic manipulation, and clinical trials have already demonstrated the usefulness of targeting this cell as a means of delivering nucleic acid therapeutics for the treatment of several previously incurable diseases. It is anticipated that additional clinical trials will soon follow, such as genetically engineering HSCs with vectors to treat monogenic diseases such as hemophilia A. In addition to the direct targeting of HSCs, induced pluripotent stem (iPS) cells have the potential to replace virtually any engineered stem cell therapeutic, including HSCs. We now know that for the broad use of genetically modified HSCs for the treatment of non-lethal diseases, e.g. hemophilia A, we must be able to regulate the introduction of nucleic acid sequences into these target cells. We can begin to refine transduction protocols to provide safer approaches to genetically manipulate HSCs and strategies are being developed to improve the overall safety of gene transfer. This review focuses on recent advances in the systemic delivery of nucleic acid therapeutics using genetically modified stem cells, specifically focusing on i) the use of retroviral vectors to genetically modify HSCs, ii) the expression of fVIII from hematopoietic stem cells for the treatment of hemophilia A, and iii) the use of genetically engineered hematopoietic cells generated from iPS cells as treatment for disorders of hematopoiesis.
Collapse
Affiliation(s)
- Christopher B Doering
- Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
29
|
Abstract
Ectopically expressed, human B-domainless (hB) factor 8 (F8) in platelets improves hemostasis in hemophilia A mice in several injury models. However, in both a cuticular bleeding model and a cremaster laser arteriole/venule injury model, there were limitations to platelet-derived (p) hBF8 efficacy, including increased clot embolization. We now address whether variants of F8 with enhanced activity, inactivation resistant F8 (IR8) and canine (c) BF8, would improve clotting efficacy. In both transgenic and lentiviral murine model approaches, pIR8 expressed at comparable levels to phBF8, but pcBF8 expressed at only approximately 30%. Both variants were more effective than hBF8 in cuticular bleeding and FeCl(3) carotid artery models. However, in the cremaster injury model, only pcBF8 was more effective, markedly decreasing clot embolization. Because inhibitors of F8 are stored in platelet granules and IR8 is not protected by binding to von Willebrand factor, we also tested whether pIR8 was effective in the face of inhibitors and found that pIR8 is protected from the inhibitors. In summary, pF8 variants with high specific activity are more effective in controlling bleeding, but this improved efficacy was inconsistent between bleeding models, perhaps reflecting the underlying mechanism(s) for the increased specific activity of the studied F8 variants.
Collapse
|
30
|
Zweier-Renn LA, Hawley TS, Burkett S, Ramezani A, Riz I, Adler RL, Hickstein DD, Hawley RG. Hematopoietic immortalizing function of the NKL-subclass homeobox gene TLX1. Genes Chromosomes Cancer 2010; 49:119-31. [PMID: 19862821 DOI: 10.1002/gcc.20725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Translocations resulting in ectopic expression of the TLX1 homeobox gene (previously known as HOX11) are recurrent events in human T-cell acute lymphoblastic leukemia (T-ALL). Transduction of primary murine hematopoietic stem/progenitor cells with retroviral vectors expressing TLX1 readily yields immortalized hematopoietic progenitor cell lines. Understanding the processes involved in TLX1-mediated cellular immortalization should yield insights into the growth and differentiation pathways altered by TLX1 during the development of T-ALL. In recent clinical gene therapy trials, hematopoietic clonal dominance or T-ALL-like diseases have occurred as a direct consequence of insertional activation of the EVI1, PRDM16 or LMO2 proto-oncogenes by the retroviral vectors used to deliver the therapeutic genes. Additionally, the generation of murine hematopoietic progenitor cell lines due to retroviral integrations into Evi1 or Prdm16 has also been recently reported. Here, we determined by linker-mediated nested polymerase chain reaction the integration sites in eight TLX1-immortalized hematopoietic cell lines. Notably, no common integration site was observed among the cell lines. Moreover, no insertions into the Evi1 or Prdm16 genes were identified although insertion near Lmo2 was observed in one instance. However, neither Lmo2 nor any of the other genes examined surrounding the integration sites showed differential vector-influenced expression compared to the cell lines lacking such insertions. While we cannot exclude the possibility that insertional side effects transiently provided a selective growth/survival advantage to the hematopoietic progenitor populations, our results unequivocally rule out insertions into Evi1 and Prdm16 as being integral to the TLX1-initiated immortalization process.
Collapse
Affiliation(s)
- Lynnsey A Zweier-Renn
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Dooriss KL, Denning G, Gangadharan B, Javazon EH, McCarty DA, Spencer HT, Doering CB. Comparison of factor VIII transgenes bioengineered for improved expression in gene therapy of hemophilia A. Hum Gene Ther 2010; 20:465-78. [PMID: 19222367 DOI: 10.1089/hum.2008.150] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Successful gene therapy of hemophilia A depends on the sustained expression of therapeutic levels of factor VIII (fVIII). Because of mRNA instability, interactions with resident endoplasmic reticulum (ER) chaperones, and the requirement for carbohydrate-facilitated transport from the ER to the Golgi apparatus, fVIII is expressed at much lower levels from mammalian cells than other proteins of similar size and complexity. A number of bioengineered forms of B domain-deleted (BDD) human fVIII have been generated and shown to have enhanced expression. Previously, we demonstrated that recombinant BDD porcine fVIII exhibits high-level expression due to specific sequence elements that increase biosynthesis via enhanced posttranslational transit through the secretory pathway. In the current study, high-expression recombinant fVIII constructs were compared directly in order to determine the relative expression of the various bioengineered fVIII transgenes. The data demonstrate that BDD porcine fVIII expression is superior to that of any of the human fVIII variant constructs tested. Mean fVIII expression of 18 units/10(6) cells/24 hr was observed from HEK-293 cells expressing a single copy of the porcine fVIII transgene, which was 36- to 225-fold greater than that of any human fVIII transgene tested. Furthermore, greater than 10-fold higher expression was observed in human cells transduced with BDD porcine fVIII versus BDD human fVIII-encoding lentiviral vectors, even at low proviral copy numbers, supporting its use over other human fVIII variants in future hemophilia A gene therapy clinical trials.
Collapse
Affiliation(s)
- Kerry L Dooriss
- Molecular and Systems Pharmacology Graduate Program, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Sadelain M, Chang A, Lisowski L. Supplying clotting factors from hematopoietic stem cell-derived erythroid and megakaryocytic lineage cells. Mol Ther 2009; 17:1994-9. [PMID: 19844194 DOI: 10.1038/mt.2009.238] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Systemically distributed proteins such as clotting factors have been traditionally expressed from muscle or liver to achieve therapeutic, long-term expression. As long-lived cell capable of generating an abundant progeny, hematopoietic stem cells (HSCs) also merit consideration for this purpose. To be clinically relevant, this approach would require that hematopoietic cells be capable of expressing high levels of functional, secreted proteins, that the risk of insertional oncogenesis be minimized, and that sufficient stem cell engraftment be achieved following minimally invasive conditioning. Recent reports demonstrate the feasibility of expressing either factor IX (FIX) or factor VIII (FVIII) in erythroblasts and platelets using lineage-restricted vectors, resulting in effective treatments in mouse models of hemophilia. The erythroid system is especially powerful in providing high protein output, yielding FIX levels approaching 1 micro g/ml per vector copy in the plasma of long-term hematopoietic chimeras, a secretion level that vastly outperforms any other current mammalian constitutive or long-terminal repeat (LTR)-driven vector system. These early but promising studies raise the prospect of further developing these strategies for clinical investigation.
Collapse
Affiliation(s)
- Michel Sadelain
- Center for Cell Engineering, Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | | | |
Collapse
|
33
|
Correction of murine hemophilia A following nonmyeloablative transplantation of hematopoietic stem cells engineered to encode an enhanced human factor VIII variant using a safety-augmented retroviral vector. Blood 2009; 114:526-34. [PMID: 19470695 DOI: 10.1182/blood-2009-01-199653] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Insertional mutagenesis by retroviral vectors is a major impediment to the clinical application of hematopoietic stem cell gene transfer for the treatment of hematologic disorders. We recently developed an insulated self-inactivating gammaretroviral vector, RMSinOFB, which uses a novel enhancer-blocking element that significantly decreases genotoxicity of retroviral integration. In this study, we used the RMSinOFB vector to evaluate the efficacy of a newly bioengineered factor VIII (fVIII) variant (efVIII)--containing a combination of A1 domain point mutations (L303E/F309S) and an extended partial B domain for improved secretion plus A2 domain mutations (R484A/R489A/P492A) for reduced immunogenicity--toward successful treatment of murine hemophilia A. In cell lines, efVIII was secreted at up to 6-fold higher levels than an L303E/F309S A1 domain-only fVIII variant (sfVIIIDeltaB). Most important, when compared with a conventional gammaretroviral vector expressing sfVIIIDeltaB, lower doses of RMSin-efVIII-OFB-transduced hematopoietic stem cells were needed to generate comparable curative fVIII levels in hemophilia A BALB/c mice after reduced-intensity total body irradiation or nonmyeloablative chemotherapy conditioning regimens. These data suggest that the safety-augmented RMSin-efVIII-OFB platform represents an encouraging step in the development of a clinically appropriate gene addition therapy for hemophilia A.
Collapse
|
34
|
Directed engineering of a high-expression chimeric transgene as a strategy for gene therapy of hemophilia A. Mol Ther 2009; 17:1145-54. [PMID: 19259064 DOI: 10.1038/mt.2009.35] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human coagulation factor VIII (fVIII) is inefficiently biosynthesized in vitro and has proven difficult to express at therapeutic levels using available clinical gene-transfer technologies. Recently, we showed that a porcine and certain hybrid human/porcine fVIII transgenes demonstrate up to 100-fold greater expression than human fVIII. In this study, we extend these results to describe the use of a humanized, high-expression, hybrid human/porcine fVIII transgene that is 89% identical to human fVIII and was delivered by lentiviral vectors (LVs) to hematopoietic stem cells for gene therapy of hemophilia A. Recombinant human immunodeficiency virus-based vectors encoding the fVIII chimera efficiently transduced human embryonic kidney (HEK)-293T cells. Cells transduced with hybrid human/porcine fVIII encoding vectors expressed fVIII at levels 6- to 100-fold greater than cells transduced with vectors encoding human fVIII. Transplantation of transduced hematopoietic stem and progenitor cells into hemophilia A mice resulted in long-term fVIII expression at therapeutic levels despite <5% genetically modified blood mononuclear cells. Furthermore, the simian immunodeficiency virus (SIV) -derived vector effectively transduced the human hematopoietic cell lines K562, EU1, U.937, and Jurkat as well as the nonhematopoietic cell lines, HEK-293T and HeLa. All cell lines expressed hybrid human/porcine fVIII, albeit at varying levels with the K562 cells expressing the highest level of the hematopoietic cell lines. From these studies, we conclude that humanized high-expression hybrid fVIII transgenes can be utilized in gene therapy applications for hemophilia A to significantly increase fVIII expression levels compared to what has been previously achieved.
Collapse
|
35
|
Abstract
The recent development of leukemia in gene therapy patients with X-linked severe combined immunodeficiency disease because of retroviral vector insertional mutagenesis has prompted reassessment of the genotoxic potential of integrating vector systems. In this chapter, various strategies are described to reduce the associated risks of retroviral genomic integration. These include deletion of strong transcriptional enhancer-promoter elements in the retroviral long terminal repeats, flanking the retroviral transcriptional unit with enhancer blocking sequences and designing vectors with improved RNA 3' end processing. Protocols are provided to evaluate the relative biosafety of the modified vectors based on their ability to immortalize hematopoietic progenitor cells and propensity to trigger clonal hematopoiesis or leukemogenesis following hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Ali Ramezani
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC, USA
| | | | | |
Collapse
|
36
|
Herzog RW, Cao O, Hagstrom JN, Wang L. Gene therapy for treatment of inherited haematological disorders. Expert Opin Biol Ther 2007; 6:509-22. [PMID: 16610980 DOI: 10.1517/14712598.6.5.509] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene therapy, a molecular medicine based on vector-mediated transfer of therapeutic genes, holds promise for a cure of monogenetic inherited diseases. In recent years, tremendous progress has been reported in the treatment of haematological disorders: clinical trials in severe combined immune deficiencies have been successful by using retroviral vectors to express target genes in haematopoietic stem cells, which after transplantation efficiently reconstituted the immune system concomitant with substantial improvement in the clinical status of patients. Conversely, unexpected adverse events were also encountered. In other work, progress towards clinical studies on ex vivo gene transfer for Fanconi anaemia and haemoglobinopathies has been made. Each approach features a unique treatment strategy and also faces various impediments to success. In the case of the X-linked bleeding disorder haemophilia, several Phase I/II clinical trials were conducted, including in vivo administration of viral vectors to skeletal muscle and liver. Adeno-associated viral gene transfer of coagulation Factor IX has been documented in human subjects, reaching therapeutic levels after infusion into a hepatic blood vessel. However, sustained expression of therapeutic levels (as shown in large animal models of haemophilia) has not yet been achieved in humans. In general, long-term follow-up will be important for assessment of the safety of all existing gene therapy strategies.
Collapse
Affiliation(s)
- Roland W Herzog
- Department of Pediatrics, University of Florida, Cellular and Molecular Therapy, Alachua, FL 32615, USA.
| | | | | | | |
Collapse
|
37
|
Matsui H, Shibata M, Brown B, Labelle A, Hegadorn C, Andrews C, Hebbel RP, Galipeau J, Hough C, Lillicrap D. Ex Vivo Gene Therapy for Hemophilia A That Enhances Safe Delivery and Sustained In Vivo Factor VIII Expression from Lentivirally Engineered Endothelial Progenitors. Stem Cells 2007; 25:2660-9. [PMID: 17615271 DOI: 10.1634/stemcells.2006-0699] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Novel therapeutic strategies for hemophilia must be at least as effective as current treatments and demonstrate long-term safety. To date, several small clinical trials of hemophilia gene transfer have failed to show the promise of preclinical evaluations. Therefore, we wanted to develop and evaluate the feasibility of a novel ex vivo gene transfer strategy whereby cells derived from progenitor cells are engineered to express factor VIII (FVIII) and then implanted subcutaneously to act as a depot for FVIII expression. Circulating blood outgrowth endothelial cells (BOECs) were isolated from canine and murine blood and transduced with a lentiviral vector encoding the canine FVIII transgene. To enhance safety, these cells were implanted subcutaneously in a Matrigel scaffold, and the efficacy of this strategy was compared with i.v. delivery of engineered BOECs in nonhemophilic nonobese diabetic/severe combined immunodeficiency mice. Therapeutic levels of FVIII persisted for 15 weeks, and these levels of stable expression were extended to 20 weeks when the cytomegalovirus promoter was replaced with the thrombomodulin regulatory element. Subsequent studies in immunocompetent hemophilic mice, pretreated with tolerizing doses of FVIII or with transient immunosuppression, showed therapeutic FVIII expression for 27 weeks before the eventual return to baseline levels. This loss of transgene expression appears to be due to the disappearance of the implanted cells. The animals treated with either of the two tolerizing regimens did not develop anti-FVIII antibodies. Biodistribution analysis demonstrated that BOECs were retained inside the subcutaneous implants. These results indicate, for the first time, that genetically modified endothelial progenitor cells implanted in a subcutaneous scaffold can provide sustained therapeutic levels of FVIII and are a promising and safe treatment modality for hemophilia A. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Hideto Matsui
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ide LM, Gangadharan B, Chiang KY, Doering CB, Spencer HT. Hematopoietic stem-cell gene therapy of hemophilia A incorporating a porcine factor VIII transgene and nonmyeloablative conditioning regimens. Blood 2007; 110:2855-63. [PMID: 17569821 PMCID: PMC2018667 DOI: 10.1182/blood-2007-04-082602] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Insufficient expression of factor VIII (fVIII) is a major hurdle in the development of successful nucleic acid treatments for hemophilia. However, we recently showed that under myeloablative and reduced-intensity total body irradiation (TBI) conditioning, transplantation of hematopoietic stem cells (HSCs) transduced with recombinant retroviruses containing B domain-deleted porcine fVIII (BDDpfVIII) sequences provides curative fVIII levels in a hemophilia A mouse model. In the current study, we tested BDDpfVIII activity after nonmyeloablative conditioning with busulfan, cyclophosphamide, or fludarabine and immunosuppressive agents CTLA4-Ig + anti-CD40L or anti-(murine)thymocyte serum (ATS). ATS is similar in action to anti-(human)thymocyte globulin (ATG), which is used clinically with busulfan in bone marrow transplantations to increase donor cell engraftment. Mice conditioned with busulfan + ATS and that received a transplant of BDDpfVIII-transduced stem-cell antigen 1-positive cells exhibited moderate levels of donor cell chimerism (between 20% and 60%) and achieved sustained fVIII levels more than 1 U/mL. Similar results were observed in mice preimmunized with human fVIII and conditioned with 5 Gy TBI + ATS or busulfan + ATS. These data demonstrate that it is possible to achieve sufficient fVIII expression after transplantation of BDDpfVIII-transduced HSCs following low-toxicity pretransplantation conditioning with targeted immunosuppression, potentially even in the context of preexisting inhibitors.
Collapse
Affiliation(s)
- Lucienne M Ide
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Emory University and Children's Healthcare of Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
39
|
Doering CB, Gangadharan B, Dukart HZ, Spencer HT. Hematopoietic stem cells encoding porcine factor VIII induce pro-coagulant activity in hemophilia A mice with pre-existing factor VIII immunity. Mol Ther 2007; 15:1093-9. [PMID: 17387335 DOI: 10.1038/sj.mt.6300146] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The development of inhibitory antibodies directed against factor VIII (fVIII) remains the most significant clinical complication associated with the treatment of hemophilia A. Recently, we demonstrated that transplantation of genetically modified hematopoietic stem cells containing a high-expression porcine fVIII transgene promoted sustained high-level fVIII expression in naïve hemophilia A mice. In the current study, a similar gene transfer strategy was tested in hemophilia A mice harboring clinically significant anti-human factor VIII (anti-hfVIII) inhibitory antibody titers. Although the majority of mice contained circulating antibodies that cross-reacted with and inhibited porcine fVIII activity, transplantation of genetically modified hematopoietic stem cells containing a porcine fVIII transgene into myeloablated hemophilia A mice induced high-level fVIII activity. Furthermore, anti-hfVIII antibody titers steadily declined throughout the course of the study. However, non-myeloablative transplantation conditioning resulted in only partial success. No correlation between pre-transplantation antibody titers and post-transplantation fVIII activity levels or donor cell engraftment was observed. These data suggest that hematopoietic stem cell transplantation-based gene therapy incorporating a high-expression porcine fVIII transgene can be utilized successfully to treat hemophilia A patients harboring anti-hfVIII inhibitors.
Collapse
Affiliation(s)
- Christopher B Doering
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
40
|
Liang SB, Yoshimitsu M, Poeppl A, Rasaiah VI, Cai J, Fowler DH, Medin JA. Multiple Reduced-intensity Conditioning Regimens Facilitate Correction of Fabry Mice After Transplantation of Transduced Cells. Mol Ther 2007; 15:618-27. [PMID: 17228315 DOI: 10.1038/sj.mt.6300075] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hematopoietic cell transplantation can impact lysosomal storage disorders (LSDs) and will be enhanced by gene therapy. Transduced cells in LSDs often secrete the therapeutic hydrolase, which can be used by bystander cells. However, toxicity associated with myeloablative transplant preparative regimens limits many applications of this approach in gene therapy. We hypothesized that reduced-intensity (RI) conditioning regimens would allow stable engraftment of therapeutically transduced cells and allow correction of Fabry disease. We transplanted transduced cells into Fabry mice receiving eight different clinically relevant chemotherapy- and/or radiotherapy-based RI conditioning regimens generating modest and transient lymphoid/myeloid cell depletion. Two comprehensive transplantation Protocols were performed. Firstly, transplantation of 0.38 x 10(6) gene-modified stem/progenitor cells was nominally effective; none of the RI regimens led to stable alpha-galactosidase A (alpha-gal A) correction. Secondly, transduced cells were preselected for functional transgene expression and transplanted at a higher dose (0.72 x 10(6) cells). Each RI regimen yielded engraftment of functional transgene-positive cells through 180 days along with increased plasma alpha-gal A activity. Importantly, the RI regimens mediated broad organ enzyme correction and were not associated with immune responses against alpha-gal A. RI conditioning thus has an important role in gene therapy for LSDs; a variety of regimens can be effective in this context.
Collapse
Affiliation(s)
- Sheng-Ben Liang
- Division of Stem Cell and Developmental Biology, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Chang AH, Sadelain M. The Genetic Engineering of Hematopoietic Stem Cells: the Rise of Lentiviral Vectors, the Conundrum of the LTR, and the Promise of Lineage-restricted Vectors. Mol Ther 2007; 15:445-56. [PMID: 17228317 DOI: 10.1038/sj.mt.6300060] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent studies on the integration patterns of different categories of retroviral vectors, the genotoxicity of long-terminal repeats (LTRs) and other genetic elements, the rise of lentiviral technology and the emergence of regulated vector systems providing tissue-restricted transgene expression and RNA interference, are profoundly changing the landscape of stem cell-based therapies. New developments in vector design and an increasing understanding of the mechanisms underlying insertional oncogenesis are ushering in a new phase in hematopoietic stem cell (HSC) engineering, thus bringing the hitherto exclusive reliance on LTR-driven, gamma-retroviral vectors to an end. Based on their ability to transduce non-dividing cells and their genomic stability, lentiviral vectors offer new prospects for the manipulation of HSCs. Tissue-specific vectors, as exemplified by globin vectors, not only provide therapeutic efficacy, but may also enhance safety, insofar that they restrict transgene expression in stem cells, progenitor cells and blood cells in all but the transcriptionally targeted lineage. This review provides a survey of these advances as well as several remaining challenges, focusing in particular on the importance of achieving adequate levels of protein expression from a limited number of vector copies per cell-ideally one to two.
Collapse
Affiliation(s)
- Alex H Chang
- Laboratory of Gene Transfer and Gene Expression, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
42
|
Shi Q, Wilcox DA, Fahs SA, Fang J, Johnson BD, DU LM, Desai D, Montgomery RR. Lentivirus-mediated platelet-derived factor VIII gene therapy in murine haemophilia A. J Thromb Haemost 2007; 5:352-61. [PMID: 17269937 DOI: 10.1111/j.1538-7836.2007.02346.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Previous studies from our laboratory have demonstrated that lineage-targeted synthesis of factor VIII (FVIII) under the direction of the platelet-specific integrin alphaIIb gene promoter (2bF8) can correct the murine haemophilia A phenotype even in the presence of high titer inhibitory antibodies in a transgenic mouse model. OBJECTIVE In this study, we assessed the efficacy of using a genetic therapy approach to correct haemophilia A in FVIII-deficient (FVIII(null)) mice by transplantation of bone marrow (BM) transduced with a lentivirus (LV)-based gene transfer cassette encoding 2bF8. RESULTS Functional FVIII activity (FVIII:C) was detected in platelet lysates from treated mice and the levels were similar to 2bF8 heterozygous transgenic mice. Mice transplanted with 2bF8 LV-transduced BM survived tail clipping and we did not detected inhibitory or non-inhibitory FVIII antibodies over the period of this study (11 months). Furthermore, BM transferred from the primary transplant recipients into FVIII(null) secondary recipients demonstrated sustained platelet-FVIII expression leading to correction of the haemophilia A phenotype showing that gene transfer occurred within long-term repopulating haematopoietic stem cells. CONCLUSIONS These results demonstrate that ectopic expression of FVIII in platelets by lentivirus-mediated bone marrow transduction/transplantation may be a promising strategy for gene therapy of haemophilia A in humans.
Collapse
Affiliation(s)
- Q Shi
- Department of Pediatrics, Medical College of Wisconsin Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Shi Q, Wilcox DA, Fahs SA, Weiler H, Wells CW, Cooley BC, Desai D, Morateck PA, Gorski J, Montgomery RR. Factor VIII ectopically targeted to platelets is therapeutic in hemophilia A with high-titer inhibitory antibodies. J Clin Invest 2006; 116:1974-82. [PMID: 16823491 PMCID: PMC1483176 DOI: 10.1172/jci28416] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 04/18/2006] [Indexed: 11/17/2022] Open
Abstract
Inhibitory immune response to exogenously infused factor VIII (FVIII) is a major complication in the treatment of hemophilia A. Generation of such inhibitors has the potential to disrupt gene therapy for hemophilia A. We explore what we believe to be a novel approach to overcome this shortcoming. Human B-domain-deleted FVIII (hBDDFVIII) was expressed under the control of the platelet-specific alphaIIb promoter in platelets of hemophilic (FVIIInull) mice to create 2bF8trans mice. The FVIII transgene product was stored in platelets and released at the site of platelet activation. In spite of the lack of FVIII in the plasma of 2bF8trans mice, the bleeding phenotype of FVIIInull mice was corrected. More importantly, the bleeding phenotype was corrected in the presence of high inhibitory antibody titers introduced into the mice by infusion or by spleen cell transfer from recombinant hBDDFVIII-immunized mice. Our results demonstrate that this approach to the targeted expression of FVIII in platelets has the potential to correct hemophilia A, even in the presence of inhibitory immune responses to infused FVIII.
Collapse
Affiliation(s)
- Qizhen Shi
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - David A. Wilcox
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Scot A. Fahs
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hartmut Weiler
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Clive W. Wells
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C. Cooley
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Drashti Desai
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Patricia A. Morateck
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jack Gorski
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Robert R. Montgomery
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
44
|
Abstract
At first sight, haemophilia A would appear to be an ideal candidate for treatment by gene therapy. There is a single gene defect; cells in different parts of the body, but especially the liver, produce Factor VIII, and only 5% of normal levels of Factor VIII are necessary to prevent the serious symptoms of bleeding. This review attempts to outline the status of gene therapy at present and efforts that have been made to overcome the difficulties and remaining problems that require solving. Undoubtedly, success will be achieved, but it is likely that considerably more work will be necessary before experimental models can be introduced into the clinic with any likelihood of success. The most successful results in animals that may have clinical application were from introducing the Factor VIII gene to newborn animals before antibodies are produced, presumably inducing a state of tolerance.
Collapse
Affiliation(s)
- Shu Uin Gan
- National University of Singapore, Department of Surgery, MD11, 04-08, 10 Medical Drive, 117597 Singapore.
| | | | | |
Collapse
|
45
|
Ohmori T, Mimuro J, Takano K, Madoiwa S, Kashiwakura Y, Ishiwata A, Niimura M, Mitomo K, Tabata T, Hasegawa M, Ozawa K, Sakata Y. Efficient expression of a transgene in platelets using simian immunodeficiency virus-based vector harboring glycoprotein Ibalpha promoter: in vivo model for platelet-targeting gene therapy. FASEB J 2006; 20:1522-4. [PMID: 16723382 DOI: 10.1096/fj.05-5161fje] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Platelets release several mediators that modify vascular integrity and hemostasis. In the present study, we developed a technique for efficient transgene expression in platelets in vivo and examined whether this targeted-gene-product delivery system using a platelet release reaction could be exploited for clinical applications. Analysis of luciferase reporter gene constructs driven by platelet-specific promoters (the GPIIb, GPIbalpha, and GPVI) revealed that the GPIbalpha promoter was the most potent in the megakaryoblastic cell line UT-7/TPO and human CD34+-derived megakaryocytes. Transduction of UT-7/TPO; CD34+-derived megakaryocytes; and c-Kit+, ScaI+, and Lineage- (KSL) murine hematopoietic stem cells with a simian immunodeficiency virus (SIV)-based lentiviral vector carrying eGFP resulted in efficient, dose-dependent expression of eGFP, and the GPIbalpha promoter seemed to bestow megakaryocytic-specific expression. Transplantation of KSL cells transduced with SIV vector containing eGFP into mice showed that there was preferable expression of eGFP in platelets driven by the GPIbalpha promoter [7-11% for the cytomeglovirus (CMV) promoter, 16-27% for the GPIbalpha promoter]. Furthermore, transplantation of ex vivo-transduced KSL cells by SIV vector carrying human factorVIII (hFVIII) driven by the GPIbalpha promoter induced the production of detectable transcripts of the hFVIII gene and the hFVIII antigen in bone marrow and spleen for at least 90 days and partially corrected the hemophilia A phenotype. Platelet-targeting gene therapy using SIV vectors appears to be promising for gene therapy approaches toward not only inherited platelet diseases but also other hemorrhagic disorders such as hemophilia A.
Collapse
Affiliation(s)
- Tsukasa Ohmori
- Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical School, Minamikawachi, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gangadharan B, Parker ET, Ide LM, Spencer HT, Doering CB. High-level expression of porcine factor VIII from genetically modified bone marrow-derived stem cells. Blood 2006; 107:3859-64. [PMID: 16449528 DOI: 10.1182/blood-2005-12-4961] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Clinical success for gene therapy of hemophilia A will be judged by achievement of sustained, therapeutic levels of coagulation factor VIII (fVIII). Previous clinical trials have suffered from transient, subtherapeutic expression of human fVIII transgenes. Porcine fVIII contains sequence elements that enable more efficient biosynthesis than human fVIII due to enhanced posttranslational transit through the secretory pathway. In this study, we evaluated ex vivo retroviral gene transfer of a high-expression porcine fVIII transgene into bone marrow-derived stromal and hematopoietic stem/progenitor cells (MSCs and HSCs, respectively) and transplantation into genetically immunocompetent hemophilia A mice. Both MSCs and HSCs demonstrated high-level expression of porcine fVIII in vivo. However, following transplantation of gene-modified MSCs, fVIII activity levels rapidly returned to baseline due to the formation of anti-porcine fVIII-neutralizing antibodies. Alternatively, transplantation of HSCs into myeloablated and nonmyeloablated hemophilia A mice resulted in high-level fVIII expression despite low-level hematopoietic reconstitution by gene-modified cells. FVIII expression was sustained beyond 10 months, indicating that immunologic tolerance to porcine fVIII was achieved. Furthermore, transplantation of bone marrow from primary recipients into naive secondary recipients resulted in sustained, high-level fVIII expression demonstrating successful genetic modification and engraftment of HSCs.
Collapse
Affiliation(s)
- Bagirath Gangadharan
- Emory Children's Center, Rm 418, Emory University, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
47
|
Moayeri M, Hawley TS, Hawley RG. Correction of murine hemophilia A by hematopoietic stem cell gene therapy. Mol Ther 2005; 12:1034-42. [PMID: 16226058 PMCID: PMC2387180 DOI: 10.1016/j.ymthe.2005.09.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/12/2005] [Accepted: 09/12/2005] [Indexed: 11/21/2022] Open
Abstract
A serious complication of current protein replacement therapy for hemophilia A patients with coagulation factor VIII (FVIII) deficiency is the frequent development of anti-FVIII inhibitor antibodies that preclude therapeutic benefit from further treatment. Induction of tolerance by persistent high-level FVIII synthesis following transplantation with hematopoietic stem cells expressing a retrovirally delivered FVIII transgene offers the possibility of permanently correcting the disease. Here, we transplanted bone marrow cells transduced with an optimized MSCV-based FVIII oncoretroviral vector into immunocompetent hemophilia A mice that had been conditioned with a potentially lethal dose of irradiation (800 cGy), a sublethal dose of irradiation (550 cGy), or a nonmyeloablative preparative regimen involving busulfan. Therapeutic levels of FVIII (42, 18, and 11% of normal, respectively) were detected in the plasma of the transplant recipients for the duration of the study (over 6 months). Moreover, subsequent challenge with recombinant FVIII elicited at most a minor anti-FVIII inhibitor antibody response in any of the experimental animals, in contrast to the vigorous neutralizing humoral reaction to FVIII that was stimulated in naive hemophilia A mice. These findings represent an encouraging advance toward potential clinical application and long-term amelioration or cure of this progressively debilitating, life-threatening bleeding disorder.
Collapse
Affiliation(s)
- Morvarid Moayeri
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington DC 20037, USA
- Graduate Genetics Program, The George Washington University, Washington, DC 20052 USA
| | - Teresa S. Hawley
- Flow Cytometry Core Facility, The George Washington University Medical Center, Washington DC 20037, USA
| | - Robert G. Hawley
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington DC 20037, USA
- Graduate Genetics Program, The George Washington University, Washington, DC 20052 USA
- To whom correspondence and reprint requests should be addressed at the Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037, USA. Fax: 202−994−8885. E-mail:
| |
Collapse
|
48
|
Bigger BW, Siapati EK, Mistry A, Waddington SN, Nivsarkar MS, Jacobs L, Perrett R, Holder MV, Ridler C, Kemball-Cook G, Ali RR, Forbes SJ, Coutelle C, Wright N, Alison M, Thrasher AJ, Bonnet D, Themis M. Permanent partial phenotypic correction and tolerance in a mouse model of hemophilia B by stem cell gene delivery of human factor IX. Gene Ther 2005; 13:117-26. [PMID: 16163377 DOI: 10.1038/sj.gt.3302638] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune responses against an introduced transgenic protein are a potential risk in many gene replacement strategies to treat genetic disease. We have developed a gene delivery approach for hemophilia B based on lentiviral expression of human factor IX in purified hematopoietic stem cells. In both normal C57Bl/6J and hemophilic 129/Sv recipient mice, we observed the production of therapeutic levels of human factor IX, persisting for at least a year with tolerance to human factor IX antigen. Secondary and tertiary recipients also demonstrate long-term production of therapeutic levels of human factor IX and tolerance, even at very low levels of donor chimerism. Furthermore, in hemophilic mice, partial functional correction of treated mice and phenotypic rescue is achieved. These data show the potential of a stem cell approach to gene delivery to tolerize recipients to a secreted foreign transgenic protein and, with appropriate modification, may be of use in developing treatments for other genetic disorders.
Collapse
Affiliation(s)
- B W Bigger
- Gene Therapy Research Group, Faculty of Medicine, Imperial College London, South Kensington, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- C Hough
- Department of Pathology and Molecular Medicine, Richardson Laboratories, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
50
|
Xu L, Nichols TC, Sarkar R, McCorquodale S, Bellinger DA, Ponder KP. Absence of a desmopressin response after therapeutic expression of factor VIII in hemophilia A dogs with liver-directed neonatal gene therapy. Proc Natl Acad Sci U S A 2005; 102:6080-5. [PMID: 15837921 PMCID: PMC1087916 DOI: 10.1073/pnas.0409249102] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hemophilia A (HA) is a bleeding disorder caused by factor VIII (FVIII) deficiency. FVIII replacement therapy can reduce bleeding but is expensive, inconvenient, and complicated by development of antibodies that inhibit FVIII activity in 30% of patients. Neonatal hepatic gene therapy could result in continuous secretion of FVIII into blood and might reduce immunological responses. Newborn HA mice and dogs that were injected i.v. with a retroviral vector (RV) expressing canine B domain-deleted FVIII (cFVIII) achieved plasma cFVIII activity that was 139 +/- 22% and 116 +/- 5% of values found in normal dogs, respectively, which was stable for 1.5 yr. Coagulation tests were normalized, no bleeding had occurred, and no inhibitors were detected. This is a demonstration of long-term fully therapeutic gene therapy for HA in a large animal model. Desmopressin (DDAVP; 1-deamino-[d-Arg(8)]vasopressin) is a drug that increases FVIII activity by inducing release of FVIII complexed with von Willebrand factor from endothelial cells. It has been unclear, however, if the FVIII is synthesized by endothelial cells or is taken up from blood. Because the plasma cFVIII in these RV-treated dogs derives primarily from transduced hepatocytes, they provided a unique opportunity to study the biology of the DDAVP response. Here we show that DDAVP did not increase plasma cFVIII levels in the RV-treated dogs, although von Willebrand factor was increased appropriately. This result suggests that the increase in FVIII in normal dogs after DDAVP is due to release of FVIII synthesized by endothelial cells.
Collapse
Affiliation(s)
- Lingfei Xu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|