1
|
Ochiai H, Yamamoto T. Construction and Evaluation of Zinc Finger Nucleases. Methods Mol Biol 2023; 2637:1-25. [PMID: 36773134 DOI: 10.1007/978-1-0716-3016-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Zinc finger nucleases (ZFNs) are programmable nucleases that have contributed significantly to past genome-editing research. They are now utilized much less owing to the advent of transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats and CRISPR-associated protein system (CRISPR-Cas). These new methods allow for easier generation of reagents that target genomic sequences of interest and are less labor-intensive than ZFNs at targeting desired sequences. However, fundamental ZFN patents have expired, enabling a wide range of their distribution for clinical and industrial applications. This article introduces a ZFN construction protocol that uses bacterial one-hybrid (B1H) selection and single-strand annealing (SSA) assay.
Collapse
Affiliation(s)
- Hiroshi Ochiai
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
2
|
Kim TH, Lee SW. Therapeutic Application of Genome Editing Technologies in Viral Diseases. Int J Mol Sci 2022; 23:5399. [PMID: 35628210 PMCID: PMC9140762 DOI: 10.3390/ijms23105399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
Viral infections can be fatal and consequently, they are a serious threat to human health. Therefore, the development of vaccines and appropriate antiviral therapeutic agents is essential. Depending on the virus, it can cause an acute or a chronic infection. The characteristics of viruses can act as inhibiting factors for the development of appropriate treatment methods. Genome editing technology, including the use of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), is a technology that can directly target and modify genomic sequences in almost all eukaryotic cells. The development of this technology has greatly expanded its applicability in life science research and gene therapy development. Research on the use of this technology to develop therapeutics for viral diseases is being conducted for various purposes, such as eliminating latent infections or providing resistance to new infections. In this review, we will look at the current status of the development of viral therapeutic agents using genome editing technology and discuss how this technology can be used as a new treatment approach for viral diseases.
Collapse
Affiliation(s)
- Tae Hyeong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea;
| | - Seong-Wook Lee
- Department of Bioconvergence Engineering, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
| |
Collapse
|
3
|
Zhang Y, Li M. Genome Editing Technologies as Cellular Defense Against Viral Pathogens. Front Cell Dev Biol 2021; 9:716344. [PMID: 34336867 PMCID: PMC8320169 DOI: 10.3389/fcell.2021.716344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
Viral infectious diseases are significant threats to the welfare of world populations. Besides the widespread acute viral infections (e.g., dengue fever) and chronic infections [e.g., those by the human immunodeficiency virus (HIV) and hepatitis B virus (HBV)], emerging viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose great challenges to the world. Genome editing technologies, including clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), have played essential roles in the study of new treatment for viral infectious diseases in cell lines, animal models, and clinical trials. Genome editing tools have been used to eliminate latent infections and provide resistance to new infections. Increasing evidence has shown that genome editing-based antiviral strategy is simple to design and can be quickly adapted to combat infections by a wide spectrum of viral pathogens, including the emerging coronaviruses. Here we review the development and applications of genome editing technologies for preventing or eliminating infections caused by HIV, HBV, HPV, HSV, and SARS-CoV-2, and discuss how the latest advances could enlighten further development of genome editing into a novel therapy for viral infectious diseases.
Collapse
|
4
|
Turchiano G, Andrieux G, Klermund J, Blattner G, Pennucci V, El Gaz M, Monaco G, Poddar S, Mussolino C, Cornu TI, Boerries M, Cathomen T. Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq. Cell Stem Cell 2021; 28:1136-1147.e5. [PMID: 33626327 DOI: 10.1016/j.stem.2021.02.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/28/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Genome editing has shown great promise for clinical translation but also revealed the risk of genotoxicity caused by off-target effects of programmable nucleases. Here we describe chromosomal aberrations analysis by single targeted linker-mediated PCR sequencing (CAST-Seq), a preclinical assay to identify and quantify chromosomal aberrations derived from on-target and off-target activities of CRISPR-Cas nucleases or transcriptional activator-like effector nucleases (TALENs), respectively, in human hematopoietic stem cells (HSCs). Depending on the employed designer nuclease, CAST-Seq detected translocations in 0%-0.5% of gene-edited human CD34+ HSCs, and up to 20% of on-target loci harbored gross rearrangements. Moreover, CAST-Seq detected distinct types of chromosomal aberrations, such as homology-mediated translocations, that are mediated by homologous recombination and not off-target activity. CAST-Seq is a sensitive assay able to identify and quantify unintended chromosomal rearrangements in addition to the more typical mutations at off-target sites. CAST-Seq analyses may be particularly relevant for therapeutic genome editing to enable thorough risk assessment before clinical application of gene-edited products.
Collapse
Affiliation(s)
- Giandomenico Turchiano
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany.
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, 79110 Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Georges Blattner
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Valentina Pennucci
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Melina El Gaz
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Gianni Monaco
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Sushmita Poddar
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Tatjana I Cornu
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, 79110 Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany.
| |
Collapse
|
5
|
Bukhari H, Müller T. Endogenous Fluorescence Tagging by CRISPR. Trends Cell Biol 2019; 29:912-928. [PMID: 31522960 DOI: 10.1016/j.tcb.2019.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023]
Abstract
Fluorescent proteins have revolutionized biomedical research as they are easy to use for protein tagging, cope without fixation or permeabilization, and thus, enable live cell imaging in various models. Current methods allow easy and quick integration of fluorescent markers to endogenous genes of interest. In this review, we introduce the three central methods, zinc finger nucleases (ZFNs), transcription activator-like effectors (TALENs), and CRISPR, that have been widely used to manipulate cells or organisms. Focusing on CRISPR technology, we give an overview on homology-directed repair (HDR)-, microhomology-mediated end joining (MMEJ)-, and nonhomologous end joining (NHEJ)-based strategies for the knock-in of markers, figure out recent developments of the technique for highly efficient knock-in, and demonstrate pros and cons. We highlight the unique aspects of fluorescent protein knock-ins and pinpoint specific improvements and perspectives, like the combination of editing with stem cell derived organoid development.
Collapse
Affiliation(s)
- Hassan Bukhari
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Molecular Biochemistry, Cell Signalling, Ruhr-University Bochum, Bochum, Germany
| | - Thorsten Müller
- Department of Molecular Biochemistry, Cell Signalling, Ruhr-University Bochum, Bochum, Germany; Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany.
| |
Collapse
|
6
|
di Domenico A, Carola G, Calatayud C, Pons-Espinal M, Muñoz JP, Richaud-Patin Y, Fernandez-Carasa I, Gut M, Faella A, Parameswaran J, Soriano J, Ferrer I, Tolosa E, Zorzano A, Cuervo AM, Raya A, Consiglio A. Patient-Specific iPSC-Derived Astrocytes Contribute to Non-Cell-Autonomous Neurodegeneration in Parkinson's Disease. Stem Cell Reports 2019; 12:213-229. [PMID: 30639209 PMCID: PMC6372974 DOI: 10.1016/j.stemcr.2018.12.011] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 01/16/2023] Open
Abstract
Parkinson's disease (PD) is associated with the degeneration of ventral midbrain dopaminergic neurons (vmDAns) and the accumulation of toxic α-synuclein. A non-cell-autonomous contribution, in particular of astrocytes, during PD pathogenesis has been suggested by observational studies, but remains to be experimentally tested. Here, we generated induced pluripotent stem cell-derived astrocytes and neurons from familial mutant LRRK2 G2019S PD patients and healthy individuals. Upon co-culture on top of PD astrocytes, control vmDAns displayed morphological signs of neurodegeneration and abnormal, astrocyte-derived α-synuclein accumulation. Conversely, control astrocytes partially prevented the appearance of disease-related phenotypes in PD vmDAns. We additionally identified dysfunctional chaperone-mediated autophagy (CMA), impaired macroautophagy, and progressive α-synuclein accumulation in PD astrocytes. Finally, chemical enhancement of CMA protected PD astrocytes and vmDAns via the clearance of α-synuclein accumulation. Our findings unveil a crucial non-cell-autonomous contribution of astrocytes during PD pathogenesis, and open the path to exploring novel therapeutic strategies aimed at blocking the pathogenic cross talk between neurons and glial cells.
Collapse
Affiliation(s)
- Angelique di Domenico
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain
| | - Giulia Carola
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain
| | - Carles Calatayud
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain; Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Meritxell Pons-Espinal
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain
| | - Juan Pablo Muñoz
- Institute for Research in Biomedicine (IRB), Carrer Baldiri Reixac 10, Barcelona 08028, Spain
| | - Yvonne Richaud-Patin
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, Barcelona 08908, Spain; Centre for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Irene Fernandez-Carasa
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain
| | - Marta Gut
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Armida Faella
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain
| | - Janani Parameswaran
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain; Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona 08028, Spain
| | - Isidro Ferrer
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain; Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid 28049, Spain
| | - Eduardo Tolosa
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid 28049, Spain; Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona 08036, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB), Carrer Baldiri Reixac 10, Barcelona 08028, Spain
| | | | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, Barcelona 08908, Spain; Centre for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid 28029, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain; Department of Molecular and Translational Medicine, University of Brescia, Brescia 25121, Italy.
| |
Collapse
|
7
|
Abstract
Manipulation of gene expression can be facilitated by editing the genome or the epigenome. Precise genome editing is traditionally achieved by using designer nucleases which are generally exploited to eliminate a specific gene product. Upon the introduction of a site-specific DNA double-strand break (DSB) by the nuclease, endogenous DSB repair mechanisms are in turn harnessed to induce DNA sequence changes that can result in target gene inactivation. Minimal off-target effects can be obtained by endowing designer nucleases with the highly specific DNA-binding domain (DBD) derived from transcription activator-like effectors (TALEs). In contrast, epigenome editing allows gene expression control without inducing changes in the DNA sequence by specifically altering epigenetic marks, as histone tails modifications or DNA methylation patterns within promoter or enhancer regions. Importantly, this approach allows both up- and downregulation of the target gene expression, and the effect is generally reversible. TALE-based designer epigenome modifiers combine the high specificity of TALE-derived DBDs with the power of epigenetic modifier domains to induce fast and long-lasting changes in the epigenetic landscape of a target gene and control its expression. Here we provide a detailed description for the generation of TALE-based designer epigenome modifiers and of a suitable reporter cell line to easily monitor their activity.
Collapse
Affiliation(s)
- Sandra Nitsch
- Institute for Cell and Gene Therapy & Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg, Germany
| | - Claudio Mussolino
- Institute for Cell and Gene Therapy & Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Mohanta TK, Bashir T, Hashem A, Abd Allah EF, Bae H. Genome Editing Tools in Plants. Genes (Basel) 2017; 8:E399. [PMID: 29257124 PMCID: PMC5748717 DOI: 10.3390/genes8120399] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022] Open
Abstract
Genome editing tools have the potential to change the genomic architecture of a genome at precise locations, with desired accuracy. These tools have been efficiently used for trait discovery and for the generation of plants with high crop yields and resistance to biotic and abiotic stresses. Due to complex genomic architecture, it is challenging to edit all of the genes/genomes using a particular genome editing tool. Therefore, to overcome this challenging task, several genome editing tools have been developed to facilitate efficient genome editing. Some of the major genome editing tools used to edit plant genomes are: Homologous recombination (HR), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), pentatricopeptide repeat proteins (PPRs), the CRISPR/Cas9 system, RNA interference (RNAi), cisgenesis, and intragenesis. In addition, site-directed sequence editing and oligonucleotide-directed mutagenesis have the potential to edit the genome at the single-nucleotide level. Recently, adenine base editors (ABEs) have been developed to mutate A-T base pairs to G-C base pairs. ABEs use deoxyadeninedeaminase (TadA) with catalytically impaired Cas9 nickase to mutate A-T base pairs to G-C base pairs.
Collapse
Affiliation(s)
| | - Tufail Bashir
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza 12619, Egypt.
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
9
|
When Long Noncoding RNAs Meet Genome Editing in Pluripotent Stem Cells. Stem Cells Int 2017; 2017:3250624. [PMID: 29333164 PMCID: PMC5733163 DOI: 10.1155/2017/3250624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
Most of the human genome can be transcribed into RNAs, but only a minority of these regions produce protein-coding mRNAs whereas the remaining regions are transcribed into noncoding RNAs. Long noncoding RNAs (lncRNAs) were known for their influential regulatory roles in multiple biological processes such as imprinting, dosage compensation, transcriptional regulation, and splicing. The physiological functions of protein-coding genes have been extensively characterized through genome editing in pluripotent stem cells (PSCs) in the past 30 years; however, the study of lncRNAs with genome editing technologies only came into attentions in recent years. Here, we summarize recent advancements in dissecting the roles of lncRNAs with genome editing technologies in PSCs and highlight potential genome editing tools useful for examining the functions of lncRNAs in PSCs.
Collapse
|
10
|
Axton RA, Haideri SS, Lopez-Yrigoyen M, Taylor HA, Forrester LM. SplitAx: A novel method to assess the function of engineered nucleases. PLoS One 2017; 12:e0171698. [PMID: 28212417 PMCID: PMC5315338 DOI: 10.1371/journal.pone.0171698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/24/2017] [Indexed: 12/29/2022] Open
Abstract
Engineered nucleases have been used to generate knockout or reporter cell lines and a range of animal models for human disease. These new technologies also hold great promise for therapeutic genome editing. Current methods to evaluate the activity of these nucleases are time consuming, require extensive optimization and are hampered by readouts with low signals and high background. We have developed a simple and easy to perform method (SplitAx) that largely addresses these issues and provides a readout of nuclease activity. The assay involves splitting the N-terminal (amino acid 1-158) coding region of GFP and an out-of-frame of C-terminal region with a nuclease binding site sequence. Following exposure to the test nuclease, cutting and repair by error prone non-homologous end joining (NHEJ) restores the reading frame resulting in the production of a full length fluorescent GFP protein. Fluorescence can also be restored by complementation between the N-terminal and C-terminal coding sequences in trans. We demonstrate successful use of the SplitAx assay to assess the function of zinc finger nucleases, CRISPR hCAS9 and TALENS. We also test the activity of multiple gRNAs in CRISPR/hCas9/D10A systems. The zinc finger nucleases and guide RNAs that showed functional activity in the SplitAx assay were then used successfully to target the endogenous AAVS1, SOX6 and Cfms loci. This simple method can be applied to other unrelated proteins such as ZsGreen1 and provides a test system that does not require complex optimization.
Collapse
Affiliation(s)
- Richard A. Axton
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, United Kingdom
| | - Sharmin S. Haideri
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, United Kingdom
| | - Martha Lopez-Yrigoyen
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, United Kingdom
| | - Helen A. Taylor
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, United Kingdom
| | - Lesley M. Forrester
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Abstract
Zinc-finger nucleases (ZFNs) are programmable nucleases that have opened the door to the genome editing era. The construction of ZFNs recognizing a target sequence of interest is laborious, and has not been widely used recently. However, key ZFN patents are expiring over the next 2-4 years, enabling a wide range of deployments for clinical and industrial applications. This article introduces a ZFN construction protocol that uses bacterial one-hybrid (B1H) selection and single-stranded annealing (SSA) assay.
Collapse
Affiliation(s)
- Hiroshi Ochiai
- PRESTO, JST, Higashi-Hiroshima, 739-8530, Japan. .,Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8530, Japan.
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| |
Collapse
|
12
|
Müller M, Lee CM, Gasiunas G, Davis TH, Cradick TJ, Siksnys V, Bao G, Cathomen T, Mussolino C. Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome. Mol Ther 2016; 24:636-44. [PMID: 26658966 PMCID: PMC4786917 DOI: 10.1038/mt.2015.218] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 11/27/2015] [Indexed: 12/17/2022] Open
Abstract
RNA-guided nucleases (RGNs) based on the type II CRISPR-Cas9 system of Streptococcus pyogenes (Sp) have been widely used for genome editing in experimental models. However, the nontrivial level of off-target activity reported in several human cells may hamper clinical translation. RGN specificity depends on both the guide RNA (gRNA) and the protospacer adjacent motif (PAM) recognized by the Cas9 protein. We hypothesized that more stringent PAM requirements reduce the occurrence of off-target mutagenesis. To test this postulation, we generated RGNs based on two Streptococcus thermophilus (St) Cas9 proteins, which recognize longer PAMs, and performed a side-by-side comparison of the three RGN systems targeted to matching sites in two endogenous human loci, PRKDC and CARD11. Our results demonstrate that in samples with comparable on-target cleavage activities, significantly lower off-target mutagenesis was detected using St-based RGNs as compared to the standard Sp-RGNs. Moreover, similarly to SpCas9, the StCas9 proteins accepted truncated gRNAs, suggesting that the specificities of St-based RGNs can be further improved. In conclusion, our results show that Cas9 proteins with longer or more restrictive PAM requirements provide a safe alternative to SpCas9-based RGNs and hence a valuable option for future human gene therapy applications.
Collapse
Affiliation(s)
- Maximilian Müller
- Institute for Cell and Gene Therapy, Medical Center – University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ciaran M Lee
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | - Timothy H Davis
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Thomas J Cradick
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Current address: CRISPR Therapeutics, Cambridge, Massachusetts, USA
| | | | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, Medical Center – University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Freiburg, Germany
| | - Claudio Mussolino
- Institute for Cell and Gene Therapy, Medical Center – University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Llewellyn GN, Exline CM, Holt N, Cannon PM. Using Engineered Nucleases to Create HIV-Resistant Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
The Use and Development of TAL Effector Nucleases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
|
16
|
Kime C, Mandegar MA, Srivastava D, Yamanaka S, Conklin BR, Rand TA. Efficient CRISPR/Cas9-Based Genome Engineering in Human Pluripotent Stem Cells. ACTA ACUST UNITED AC 2016; 88:21.4.1-21.4.23. [PMID: 26724721 DOI: 10.1002/0471142905.hg2104s88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human pluripotent stem cells (hPS cells) are rapidly emerging as a powerful tool for biomedical discovery. The advent of human induced pluripotent stem cells (hiPS cells) with human embryonic stem (hES)-cell-like properties has led to hPS cells with disease-specific genetic backgrounds for in vitro disease modeling and drug discovery as well as mechanistic and developmental studies. To fully realize this potential, it will be necessary to modify the genome of hPS cells with precision and flexibility. Pioneering experiments utilizing site-specific double-strand break (DSB)-mediated genome engineering tools, including zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), have paved the way to genome engineering in previously recalcitrant systems such as hPS cells. However, these methods are technically cumbersome and require significant expertise, which has limited adoption. A major recent advance involving the clustered regularly interspaced short palindromic repeats (CRISPR) endonuclease has dramatically simplified the effort required for genome engineering and will likely be adopted widely as the most rapid and flexible system for genome editing in hPS cells. In this unit, we describe commonly practiced methods for CRISPR endonuclease genomic editing of hPS cells into cell lines containing genomes altered by insertion/deletion (indel) mutagenesis or insertion of recombinant genomic DNA.
Collapse
Affiliation(s)
- Cody Kime
- Gladstone Institute of Cardiovascular Disease, San Francisco, California
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, California
- Present address: Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Mohammad A Mandegar
- Gladstone Institute of Cardiovascular Disease, San Francisco, California
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, California
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, California
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, California
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California
| | - Shinya Yamanaka
- Gladstone Institute of Cardiovascular Disease, San Francisco, California
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, California
- Department of Anatomy, University of California, San Francisco, San Francisco, California
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Bruce R Conklin
- Gladstone Institute of Cardiovascular Disease, San Francisco, California
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, California
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Tim A Rand
- Gladstone Institute of Cardiovascular Disease, San Francisco, California
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, California
| |
Collapse
|
17
|
Progress and Prospects of Anti-HBV Gene Therapy Development. Int J Mol Sci 2015; 16:17589-610. [PMID: 26263978 PMCID: PMC4581210 DOI: 10.3390/ijms160817589] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/11/2022] Open
Abstract
Despite the availability of an effective vaccine against hepatitis B virus (HBV), chronic infection with the virus remains a major global health concern. Current drugs against HBV infection are limited by emergence of resistance and rarely achieve complete viral clearance. This has prompted vigorous research on developing better drugs against chronic HBV infection. Advances in understanding the life cycle of HBV and improvements in gene-disabling technologies have been impressive. This has led to development of better HBV infection models and discovery of new drug candidates. Ideally, a regimen against chronic HBV infection should completely eliminate all viral replicative intermediates, especially covalently closed circular DNA (cccDNA). For the past few decades, nucleic acid-based therapy has emerged as an attractive alternative that may result in complete clearance of HBV in infected patients. Several genetic anti-HBV strategies have been developed. The most studied approaches include the use of antisense oligonucleotides, ribozymes, RNA interference effectors and gene editing tools. This review will summarize recent developments and progress made in the use of gene therapy against HBV.
Collapse
|
18
|
Rahman SH, Kuehle J, Reimann C, Mlambo T, Alzubi J, Maeder ML, Riedel H, Fisch P, Cantz T, Rudolph C, Mussolino C, Joung JK, Schambach A, Cathomen T. Rescue of DNA-PK Signaling and T-Cell Differentiation by Targeted Genome Editing in a prkdc Deficient iPSC Disease Model. PLoS Genet 2015; 11:e1005239. [PMID: 26000857 PMCID: PMC4441453 DOI: 10.1371/journal.pgen.1005239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/26/2015] [Indexed: 12/22/2022] Open
Abstract
In vitro disease modeling based on induced pluripotent stem cells (iPSCs) provides a powerful system to study cellular pathophysiology, especially in combination with targeted genome editing and protocols to differentiate iPSCs into affected cell types. In this study, we established zinc-finger nuclease-mediated genome editing in primary fibroblasts and iPSCs generated from a mouse model for radiosensitive severe combined immunodeficiency (RS-SCID), a rare disorder characterized by cellular sensitivity to radiation and the absence of lymphocytes due to impaired DNA-dependent protein kinase (DNA-PK) activity. Our results demonstrate that gene editing in RS-SCID fibroblasts rescued DNA-PK dependent signaling to overcome radiosensitivity. Furthermore, in vitro T-cell differentiation from iPSCs was employed to model the stage-specific T-cell maturation block induced by the disease causing mutation. Genetic correction of the RS-SCID iPSCs restored T-lymphocyte maturation, polyclonal V(D)J recombination of the T-cell receptor followed by successful beta-selection. In conclusion, we provide proof that iPSC-based in vitro T-cell differentiation is a valuable paradigm for SCID disease modeling, which can be utilized to investigate disorders of T-cell development and to validate gene therapy strategies for T-cell deficiencies. Moreover, this study emphasizes the significance of designer nucleases as a tool for generating isogenic disease models and their future role in producing autologous, genetically corrected transplants for various clinical applications. Due to the limited availability and lifespan of some primary cells, in vitro disease modeling with induced pluripotent stem cells (iPSCs) offers a valuable complementation to in vivo studies. The goal of our study was to establish an in vitro disease model for severe combined immunodeficiency (SCID), a group of inherited disorders of the immune system characterized by the lack of T-lymphocytes. To this end, we generated iPSCs from fibroblasts of a radiosensitive SCID (RS-SCID) mouse model and established a protocol to recapitulate T-lymphopoiesis from iPSCs in vitro. We used designer nucleases to edit the underlying mutation in prkdc, the gene encoding DNA-PKcs, and demonstrated that genetic correction of the disease locus rescued DNA-PK dependent signaling, restored normal radiosensitivity, and enabled T-cell maturation and polyclonal T-cell receptor recombination. We hence provide proof that the combination of two promising technology platforms, iPSCs and designer nucleases, with a protocol to generate T-cells in vitro, represents a powerful paradigm for SCID disease modeling and the evaluation of therapeutic gene editing strategies. Furthermore, our system provides a basis for further development of iPSC-derived cell products with the potential for various clinical applications, including infusions of in vitro derived autologous T-cells to stabilize patients after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Shamim H. Rahman
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Johannes Kuehle
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Christian Reimann
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Tafadzwa Mlambo
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Jamal Alzubi
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Morgan L. Maeder
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Heimo Riedel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Biochemistry and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Paul Fisch
- Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Tobias Cantz
- Translational Hepatology and Stem Cell Biology, REBIRTH cluster of excellence, Hannover Medical School, Hannover, Germany
| | - Cornelia Rudolph
- Institute for Cellular and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | - Claudio Mussolino
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - J. Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- * E-mail: (AS); (TC)
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- * E-mail: (AS); (TC)
| |
Collapse
|
19
|
Nicholson SA, Moyo B, Arbuthnot PB. Progress and prospects of engineered sequence-specific DNA modulating technologies for the management of liver diseases. World J Hepatol 2015; 7:859-873. [PMID: 25937863 PMCID: PMC4411528 DOI: 10.4254/wjh.v7.i6.859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/16/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are one of the leading causes of mortality in the world. The hepatic illnesses, which include inherited metabolic disorders, hemophilias and viral hepatitides, are complex and currently difficult to treat. The maturation of gene therapy has heralded new avenues for developing effective intervention for these diseases. DNA modification using gene therapy is now possible and available technology may be exploited to achieve long term therapeutic benefit. The ability to edit DNA sequences specifically is of paramount importance to advance gene therapy for application to liver diseases. Recent development of technologies that allow for this has resulted in rapid advancement of gene therapy to treat several chronic illnesses. Improvements in application of derivatives of zinc finger proteins (ZFPs), transcription activator-like effectors (TALEs), homing endonucleases (HEs) and clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR associated (Cas) systems have been particularly important. These sequence-specific technologies may be used to modify genes permanently and also to alter gene transcription for therapeutic purposes. This review describes progress in development of ZFPs, TALEs, HEs and CRISPR/Cas for application to treating liver diseases.
Collapse
|
20
|
Semaan M, Ivanusic D, Denner J. Cytotoxic Effects during Knock Out of Multiple Porcine Endogenous Retrovirus (PERV) Sequences in the Pig Genome by Zinc Finger Nucleases (ZFN). PLoS One 2015; 10:e0122059. [PMID: 25909512 PMCID: PMC4409370 DOI: 10.1371/journal.pone.0122059] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/10/2015] [Indexed: 01/20/2023] Open
Abstract
Xenotransplantation has been proposed as a solution to the shortage of suitable human donors for transplantation and pigs are currently favoured as donor animals. However, xenotransplantation may be associated with the transmission of zoonotic microorganisms. Whereas most porcine microorganisms representing a risk for the human recipient may be eliminated by designated pathogen free breeding, multiple copies of porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs and cannot be eliminated this way. PERVs are released as infectious particles and infect human cells. The zinc finger nuclease (ZFN) technology allows knocking out specifically cellular genes, however it was not yet used to eliminate multiple integrated proviral sequences with a strong conservation in the target sequence. To reduce the risk of horizontal PERV transmission and to knock out as many as possible proviruses, for the first time the powerful tool of the ZFN technology was used. ZFN were designed to bind specifically to sequences conserved in all known replication-competent proviruses. Expression and transport of the ZFN into the nucleus was shown by Western blot analysis, co-localisation analysis, PLA and FRET. Survival of transfected cells was analysed using fluorescent ZFN and cell counting. After transfection a strong expression of the ZFN proteins and a co-localisation of the expressed ZFN proteins were shown. However, expression of the ZFN was found to be extremely toxic for the transfected cells. The induced cytotoxicity was likely due to the specific cutting of the high copy number of the PERV proviruses, which is also commonly observed when ZFN with low specificity cleave numerous off-target sites in a genome. This is the first attempt to knock out multiple, nearly identical, genes in a cellular genome using ZFN. The attempt failed, and other strategies should be used to prevent PERV transmission.
Collapse
Affiliation(s)
| | - Daniel Ivanusic
- Robert Koch Institute, Nordufer 20, Berlin, Germany
- Freie Universität Berlin, Kaiserswerther Str. 16–18, Berlin, Germany
| | - Joachim Denner
- Robert Koch Institute, Nordufer 20, Berlin, Germany
- * E-mail:
| |
Collapse
|
21
|
Abstract
The tools for genome engineering have become very powerful and accessible over the last several years. CRISPR/Cas nucleases, TALENs and ZFNs can all be designed to produce highly specific double-strand breaks in chromosomal DNA. These breaks are processed by cellular DNA repair machinery leading to localized mutations and to intentional sequence replacements. Because these repair processes are common to essentially all organisms, the targetable nucleases have been applied successfully to a wide range of animals, plants, and cultured cells. In each case, the mode of delivery of the nuclease, the efficiency of cleavage and the repair outcome depend on the biology of the particular system being addressed. These reagents are being used to introduce favorable characteristics into organisms of economic significance, and the prospects for enhancing human gene therapy appear very bright.
Collapse
Affiliation(s)
- Dana Carroll
- Department of Biochemistry, School of Medicine, University of Utah, Emma Eccles Jones Medical Research Building, Rm 4520, 15N. Medical Drive East, Salt Lake City, UT, 84112-5650, USA,
| |
Collapse
|
22
|
Gersbach CA, Gaj T, Barbas CF. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc Chem Res 2014; 47:2309-18. [PMID: 24877793 PMCID: PMC4139171 DOI: 10.1021/ar500039w] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The understanding
of gene regulation and the structure and function
of the human genome increased dramatically at the end of the 20th
century. Yet the technologies for manipulating the genome have been
slower to develop. For instance, the field of gene therapy has been
focused on correcting genetic diseases and augmenting tissue repair
for more than 40 years. However, with the exception of a few very
low efficiency approaches, conventional genetic engineering methods
have only been able to add auxiliary genes to cells. This has been
a substantial obstacle to the clinical success of gene therapies and
has also led to severe unintended consequences in several cases. Therefore,
technologies that facilitate the precise modification of cellular
genomes have diverse and significant implications in many facets of
research and are essential for translating the products of the Genomic
Revolution into tangible benefits for medicine and biotechnology.
To address this need, in the 1990s, we embarked on a mission to develop
technologies for engineering protein–DNA interactions with
the aim of creating custom tools capable of targeting any DNA sequence.
Our goal has been to allow researchers to reach into genomes to specifically
regulate, knock out, or replace any gene. To realize these goals,
we initially focused on understanding and manipulating zinc finger
proteins. In particular, we sought to create a simple and straightforward
method that enables unspecialized laboratories to engineer custom
DNA-modifying proteins using only defined modular components, a web-based
utility, and standard recombinant DNA technology. Two significant
challenges we faced were (i) the development of zinc finger domains
that target sequences not recognized by naturally occurring zinc finger
proteins and (ii) determining how individual zinc finger domains could
be tethered together as polydactyl proteins to recognize unique locations
within complex genomes. We and others have since used this modular
assembly method to engineer artificial proteins and enzymes that activate,
repress, or create defined changes to user-specified genes in human
cells, plants, and other organisms. We have also engineered novel
methods for externally controlling protein activity and delivery,
as well as developed new strategies for the directed evolution of
protein and enzyme function. This Account summarizes our work in these
areas and highlights independent studies that have successfully used
the modular assembly approach to create proteins with novel function.
We also discuss emerging alternative methods for genomic targeting,
including transcription activator-like effectors (TALEs) and CRISPR/Cas
systems, and how they complement the synthetic zinc finger protein
technology.
Collapse
Affiliation(s)
- Charles A. Gersbach
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Thomas Gaj
- The
Skaggs Institute for Chemical Biology and the Departments of Chemistry
and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Carlos F. Barbas
- The
Skaggs Institute for Chemical Biology and the Departments of Chemistry
and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
23
|
Zhang W, Chen H, Zheng X, Wang D, Ji H, Xia H, Mao Q. Targeted genome correction by a single adenoviral vector simultaneously carrying an inducible zinc finger nuclease and a donor template. J Biotechnol 2014; 188:1-6. [PMID: 25116362 DOI: 10.1016/j.jbiotec.2014.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/28/2014] [Accepted: 08/01/2014] [Indexed: 01/24/2023]
Abstract
Zinc finger nuclease (ZFN) technology, which can be used to induce targeted genome correction in the presence of a DNA donor template, is becoming an attractive strategy for treating monogenic diseases. This strategy requires efficient delivery of ZFN and donor template into cells, ideally, in a single viral vector to achieve efficient genome editing and to avoid unwanted mutagenesis. In this study, we successfully produced a single adenoviral (Ad) vector with high titer that carried a ZFN expression cassette and a donor template simultaneously. We then demonstrated that this single Ad system could mediate efficient site-specific genome correction in vitro and ex vivo. The gene correction efficiency of the single Ad was significantly higher than that of the double Ad system. This novel vector will be a promising ZFN and donor delivery system for treatment of monogenic diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Co-Innovation Center for Qinba Regions' Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, PR China
| | - Hao Chen
- Co-Innovation Center for Qinba Regions' Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, PR China
| | - Xiaojing Zheng
- Co-Innovation Center for Qinba Regions' Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, PR China
| | - Dongyang Wang
- Co-Innovation Center for Qinba Regions' Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, PR China
| | - Haiyan Ji
- Co-Innovation Center for Qinba Regions' Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, PR China
| | - Haibin Xia
- Co-Innovation Center for Qinba Regions' Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, PR China.
| | - Qinwen Mao
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
24
|
Zacchigna S, Zentilin L, Giacca M. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ Res 2014; 114:1827-46. [PMID: 24855205 DOI: 10.1161/circresaha.114.302331] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of vectors based on the small parvovirus adeno-associated virus has gained significant momentum during the past decade. Their high efficiency of transduction of postmitotic tissues in vivo, such as heart, brain, and retina, renders these vectors extremely attractive for several gene therapy applications affecting these organs. Besides functional correction of different monogenic diseases, the possibility to drive efficient and persistent transgene expression in the heart offers the possibility to develop innovative therapies for prevalent conditions, such as ischemic cardiomyopathy and heart failure. Therapeutic genes are not only restricted to protein-coding complementary DNAs but also include short hairpin RNAs and microRNA genes, thus broadening the spectrum of possible applications. In addition, several spontaneous or engineered variants in the virus capsid have recently improved vector efficiency and expanded their tropism. Apart from their therapeutic potential, adeno-associated virus vectors also represent outstanding investigational tools to explore the function of individual genes or gene combinations in vivo, thus providing information that is conceptually similar to that obtained from genetically modified animals. Finally, their single-stranded DNA genome can drive homology-directed gene repair at high efficiency. Here, we review the main molecular characteristics of adeno-associated virus vectors, with a particular view to their applications in the cardiovascular field.
Collapse
Affiliation(s)
- Serena Zacchigna
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.)
| | - Lorena Zentilin
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.)
| | - Mauro Giacca
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.).
| |
Collapse
|
25
|
Mussolino C, Alzubi J, Fine EJ, Morbitzer R, Cradick TJ, Lahaye T, Bao G, Cathomen T. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 2014; 42:6762-73. [PMID: 24792154 PMCID: PMC4041469 DOI: 10.1093/nar/gku305] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Designer nucleases have been successfully employed to modify the genomes of various model organisms and human cell types. While the specificity of zinc-finger nucleases (ZFNs) and RNA-guided endonucleases has been assessed to some extent, little data are available for transcription activator-like effector-based nucleases (TALENs). Here, we have engineered TALEN pairs targeting three human loci (CCR5, AAVS1 and IL2RG) and performed a detailed analysis of their activity, toxicity and specificity. The TALENs showed comparable activity to benchmark ZFNs, with allelic gene disruption frequencies of 15–30% in human cells. Notably, TALEN expression was overall marked by a low cytotoxicity and the absence of cell cycle aberrations. Bioinformatics-based analysis of designer nuclease specificity confirmed partly substantial off-target activity of ZFNs targeting CCR5 and AAVS1 at six known and five novel sites, respectively. In contrast, only marginal off-target cleavage activity was detected at four out of 49 predicted off-target sites for CCR5- and AAVS1-specific TALENs. The rational design of a CCR5-specific TALEN pair decreased off-target activity at the closely related CCR2 locus considerably, consistent with fewer genomic rearrangements between the two loci. In conclusion, our results link nuclease-associated toxicity to off-target cleavage activity and corroborate TALENs as a highly specific platform for future clinical translation.
Collapse
Affiliation(s)
- Claudio Mussolino
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, 79106 Freiburg, Germany Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79108 Freiburg, Germany Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jamal Alzubi
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, 79106 Freiburg, Germany Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79108 Freiburg, Germany Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Eli J Fine
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Robert Morbitzer
- Institute of Genetics, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | - Thomas J Cradick
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Thomas Lahaye
- Institute of Genetics, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany Center for Plant Molecular Biology, Eberhard-Karls-University, 72076 Tübingen, Germany
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, 79106 Freiburg, Germany Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79108 Freiburg, Germany Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
26
|
Lentiviral protein transduction with genome-modifying HIV-1 integrase-I-PpoI fusion proteins: studies on specificity and cytotoxicity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:379340. [PMID: 24860818 PMCID: PMC4016911 DOI: 10.1155/2014/379340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/12/2014] [Indexed: 01/14/2023]
Abstract
Rare-cutting endonucleases, such as the I-PpoI, can be used for the induction of double strand breaks (DSBs) in genome editing and targeted integration based on homologous recombination. For therapeutic approaches, the specificity and the pattern of off-target effects are of high importance in these techniques. For its applications, the endonuclease needs to be transported into the target cell nucleus, where the mechanism of transport may affect its function. Here, we have studied the lentiviral protein transduction of the integrase (IN)-PpoI fusion protein using the cis-packaging method. In genome-wide interaction studies, IN-fusion proteins were verified to bind their target sequence containing 28S ribosomal RNA (rRNA) genes with a 100-fold enrichment, despite the well-documented behavior of IN to be tethered into various genomic areas by host-cell factors. In addition, to estimate the applicability of the method, DSB-induced cytotoxic effects with different vector endonuclease configurations were studied in a panel of cells. Varying the amount and activity of endonuclease enabled the adjustment of ratio between the induced DSBs and transported DNA. In cell studies, certain cancerous cell lines were especially prone to DSBs in rRNA genes, which led us to test the protein transduction in a tumour environment in an in vivo study. In summary, the results highlight the potential of lentiviral vectors (LVVs) for the nuclear delivery of endonucleases.
Collapse
|
27
|
Bertoni C. Emerging gene editing strategies for Duchenne muscular dystrophy targeting stem cells. Front Physiol 2014; 5:148. [PMID: 24795643 PMCID: PMC4001063 DOI: 10.3389/fphys.2014.00148] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/28/2014] [Indexed: 01/06/2023] Open
Abstract
The progressive loss of muscle mass characteristic of many muscular dystrophies impairs the efficacy of most of the gene and molecular therapies currently being pursued for the treatment of those disorders. It is becoming increasingly evident that a therapeutic application, to be effective, needs to target not only mature myofibers, but also muscle progenitors cells or muscle stem cells able to form new muscle tissue and to restore myofibers lost as the result of the diseases or during normal homeostasis so as to guarantee effective and lost lasting effects. Correction of the genetic defect using oligodeoxynucleotides (ODNs) or engineered nucleases holds great potential for the treatment of many of the musculoskeletal disorders. The encouraging results obtained by studying in vitro systems and model organisms have set the groundwork for what is likely to become an emerging field in the area of molecular and regenerative medicine. Furthermore, the ability to isolate and expand from patients various types of muscle progenitor cells capable of committing to the myogenic lineage provides the opportunity to establish cell lines that can be used for transplantation following ex vivo manipulation and expansion. The purpose of this article is to provide a perspective on approaches aimed at correcting the genetic defect using gene editing strategies and currently under development for the treatment of Duchenne muscular dystrophy (DMD), the most sever of the neuromuscular disorders. Emphasis will be placed on describing the potential of using the patient own stem cell as source of transplantation and the challenges that gene editing technologies face in the field of regenerative biology.
Collapse
Affiliation(s)
- Carmen Bertoni
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles CA, USA
| |
Collapse
|
28
|
Yanik M, Alzubi J, Lahaye T, Cathomen T, Pingoud A, Wende W. TALE-PvuII fusion proteins--novel tools for gene targeting. PLoS One 2013; 8:e82539. [PMID: 24349308 PMCID: PMC3857828 DOI: 10.1371/journal.pone.0082539] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/01/2013] [Indexed: 12/15/2022] Open
Abstract
Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.
Collapse
Affiliation(s)
- Mert Yanik
- Institute for Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jamal Alzubi
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Thomas Lahaye
- ZMBP – General Genetics, University of Tuebingen, Tuebingen, Germany
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Alfred Pingoud
- Institute for Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Wolfgang Wende
- Institute for Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
29
|
Manjunath N, Yi G, Dang Y, Shankar P. Newer gene editing technologies toward HIV gene therapy. Viruses 2013; 5:2748-66. [PMID: 24284874 PMCID: PMC3856413 DOI: 10.3390/v5112748] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/02/2013] [Accepted: 11/08/2013] [Indexed: 01/27/2023] Open
Abstract
Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called "Berlin patient" who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.
Collapse
Affiliation(s)
- N. Manjunath
- Authors to whom correspondence should be addressed; E-Mails: (N.M.); (P.S.); Tel.: +1-915-215-4241 (N.M.); +1-915-215-4242 (P.S); Fax: +1-915-783-1271 (N.M. and P.S)
| | | | | | - Premlata Shankar
- Authors to whom correspondence should be addressed; E-Mails: (N.M.); (P.S.); Tel.: +1-915-215-4241 (N.M.); +1-915-215-4242 (P.S); Fax: +1-915-783-1271 (N.M. and P.S)
| |
Collapse
|
30
|
Pillay LM, Selland LG, Fleisch VC, Leighton PLA, Cheng CS, Famulski JK, Ritzel RG, March LD, Wang H, Allison WT, Waskiewicz AJ. Evaluating the mutagenic activity of targeted endonucleases containing a Sharkey FokI cleavage domain variant in zebrafish. Zebrafish 2013; 10:353-64. [PMID: 23781947 DOI: 10.1089/zeb.2012.0832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthetic targeted endonucleases such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) have recently emerged as powerful tools for targeted mutagenesis, especially in organisms that are not amenable to embryonic stem cell manipulation. Both ZFNs and TALENs consist of DNA-binding arrays that are fused to the nonspecific FokI nuclease domain. In an effort to improve targeted endonuclease mutagenesis efficiency, we enhanced their catalytic activity using the Sharkey FokI nuclease domain variant. All constructs tested display increased DNA cleavage activity in vitro. We demonstrate that one out of four ZFN arrays containing the Sharkey FokI variant exhibits a dramatic increase in mutagenesis frequency in vivo in zebrafish. The other three ZFNs exhibit no significant alteration of activity in vivo. Conversely, we demonstrate that TALENs containing the Sharkey FokI variant exhibit absent or severely reduced in vivo mutagenic activity in zebrafish. Notably, Sharkey ZFNs and TALENs do not generate increased toxicity-related defects or mortality. Our results present Sharkey ZFNs as an effective alternative to conventional ZFNs, but advise against the use of Sharkey TALENs.
Collapse
Affiliation(s)
- Laura M Pillay
- Department of Biological Sciences, University of Alberta , Edmonton, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wilson KA, McEwen AE, Pruett-Miller SM, Zhang J, Kildebeck EJ, Porteus MH. Expanding the Repertoire of Target Sites for Zinc Finger Nuclease-mediated Genome Modification. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e88. [PMID: 23632390 PMCID: PMC3650245 DOI: 10.1038/mtna.2013.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 02/05/2013] [Indexed: 11/08/2022]
Abstract
Recent studies have shown that zinc finger nucleases (ZFNs) are powerful reagents for making site-specific genomic modifications. The generic structure of these enzymes includes a ZF DNA-binding domain and nuclease domain (Fn) are separated by an amino acid "linker" and cut genomic DNA at sites that have a generic structure (site1)-(spacer)-(site2) where the "spacer" separates the two binding sites. In this work, we compare the activity of ZFNs with different linkers on target sites with different spacer lengths. We found those nucleases with linkers' lengths of 2 or 4 amino acid (aa) efficiently cut at target sites with 5 or 6 base pair (bp) spacers, and that those ZFNs with a 5-aa linker length efficiently cut target sites with 6 or 7 bp spacers. In addition, we demonstrate that the Oligomerized Pool ENgineering (OPEN) platform used for making three-fingered ZF proteins (ZFPs) can be modified to incorporate modular assembly fingers (including those recognizing ANNs, CNNs, and TNNs) and we were able to generate nucleases that efficiently cut cognate target sites. The ability to use module fingers in the OPEN platform at target sites of 5-7 bp spacer lengths increases the probability of finding a ZFN target site to 1 in 4 bp. These findings significantly expand the range of sites that can be potentially targeted by these custom-engineered proteins.Molecular Therapy - Nucleic Acids (2013) 2, e88; doi:10.1038/mtna.2013.13; published online 30 April 2013.
Collapse
Affiliation(s)
- Kimberly A Wilson
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Abbye E McEwen
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University, Chicago, Illinois, USA
| | - Shondra M Pruett-Miller
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jiuli Zhang
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Eric J Kildebeck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, California, USA
| |
Collapse
|
32
|
Wilson KA, Chateau ML, Porteus MH. Design and Development of Artificial Zinc Finger Transcription Factors and Zinc Finger Nucleases to the hTERT Locus. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e87. [PMID: 23612114 PMCID: PMC3650244 DOI: 10.1038/mtna.2013.12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 02/05/2013] [Indexed: 01/07/2023]
Abstract
The ability to direct human telomerase reverse transcriptase (hTERT) expression through either genetic control or tunable regulatory factors would advance not only our understanding of the transcriptional regulation of this gene, but also potentially produce new strategies for addressing telomerase-associated disease. In this work, we describe the engineering of artificial zinc finger transcription factors (ZFTFs) and ZF nucleases (ZFNs) to target sequences within the hTERT promoter and exon-1. We were able to identify several active ZFTFs that demonstrate a broadly tunable response when screened by a cell-based transcriptional reporter assay. Using the same DNA-binding domains, we generated ZFNs that were screened in combinatorial pairs in cell-based extrachromosomal single-strand annealing (SSA) assays and in gene-targeting assays using stably integrated constructs. Selected ZFN pairs were tested for the ability to induce sequence changes in a Cel1 assay and we observed frequencies of genomic modification up to 18.7% at the endogenous hTERT locus. These screening strategies have pinpointed several ZFN pairs that may be useful in gene editing of the hTERT locus. Our work provides a foundation for using engineered ZF proteins (ZFPs) for modulation of the hTERT locus.Molecular Therapy - Nucleic Acids (2013) 2, e87; doi:10.1038/mtna.2013.12; published online 23 April 2013.
Collapse
Affiliation(s)
- Kimberly A Wilson
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Morgan L Chateau
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew H Porteus
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Department of Pediatrics, Stanford University, Stanford, California, USA
| |
Collapse
|
33
|
Sarkar A, Kumar S, Punetha A, Grover A, Sundar D. Analysis and Prediction of DNA-Recognition by Zinc Finger Proteins. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Zinc fingers are the most abundant class of DNA-binding proteins encoded in the eukaryotic genomes. Custom-designed zinc finger proteins attached to various DNA-modifying domains can be used to achieve highly specific genome modification, which has tremendous applications in molecular therapeutics. Analysis of sequence and structure of the zinc finger proteins provides clues for understanding protein-DNA interactions and aid in custom-design of zinc finger proteins with tailor-made specificity. Computational methods for prediction of recognition helices for C2H2 zinc fingers that bind to specific target DNA sites could provide valuable insights for researchers interested in designing specific zinc finger proteins for biological and biomedical applications. In this chapter, we describe the zinc finger protein-DNA interaction patterns, challenges in engineering the recognition-specificity of zinc finger proteins, the computational methods of prediction of proteins that recognize specific target DNA sequence and their applications in molecular therapeutics.
Collapse
|
34
|
Zerbato M, Holic N, Moniot-Frin S, Ingrao D, Galy A, Perea J. The brown algae Pl.LSU/2 group II intron-encoded protein has functional reverse transcriptase and maturase activities. PLoS One 2013; 8:e58263. [PMID: 23505475 PMCID: PMC3594303 DOI: 10.1371/journal.pone.0058263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/01/2013] [Indexed: 01/13/2023] Open
Abstract
Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner.
Collapse
Affiliation(s)
- Madeleine Zerbato
- Inserm, U951 Evry, France
- University of Evry Val d’Essonne, UMR S_951, Evry, France
- Genethon, Evry, France
| | - Nathalie Holic
- Inserm, U951 Evry, France
- University of Evry Val d’Essonne, UMR S_951, Evry, France
- Genethon, Evry, France
| | - Sophie Moniot-Frin
- Inserm, U951 Evry, France
- University of Evry Val d’Essonne, UMR S_951, Evry, France
- Genethon, Evry, France
| | - Dina Ingrao
- Inserm, U951 Evry, France
- University of Evry Val d’Essonne, UMR S_951, Evry, France
- Genethon, Evry, France
| | - Anne Galy
- Inserm, U951 Evry, France
- University of Evry Val d’Essonne, UMR S_951, Evry, France
- Genethon, Evry, France
| | - Javier Perea
- Inserm, U951 Evry, France
- University of Evry Val d’Essonne, UMR S_951, Evry, France
- Genethon, Evry, France
| |
Collapse
|
35
|
Frenkel-Morgenstern M, Valencia A. Novel domain combinations in proteins encoded by chimeric transcripts. ACTA ACUST UNITED AC 2013; 28:i67-74. [PMID: 22689780 PMCID: PMC3371848 DOI: 10.1093/bioinformatics/bts216] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Motivation: Chimeric RNA transcripts are generated by different mechanisms including pre-mRNA trans-splicing, chromosomal translocations and/or gene fusions. It was shown recently that at least some of chimeric transcripts can be translated into functional chimeric proteins. Results: To gain a better understanding of the design principles underlying chimeric proteins, we have analyzed 7,424 chimeric RNAs from humans. We focused on the specific domains present in these proteins, comparing their permutations with those of known human proteins. Our method uses genomic alignments of the chimeras, identification of the gene–gene junction sites and prediction of the protein domains. We found that chimeras contain complete protein domains significantly more often than in random data sets. Specifically, we show that eight different types of domains are over-represented among all chimeras as well as in those chimeras confirmed by RNA-seq experiments. Moreover, we discovered that some chimeras potentially encode proteins with novel and unique domain combinations. Given the observed prevalence of entire protein domains in chimeras, we predict that certain putative chimeras that lack activation domains may actively compete with their parental proteins, thereby exerting dominant negative effects. More generally, the production of chimeric transcripts enables a combinatorial increase in the number of protein products available, which may disturb the function of parental genes and influence their protein–protein interaction network. Availability: our scripts are available upon request. Contact:avalencia@cnio.es Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Milana Frenkel-Morgenstern
- Structural Biology and BioComputing Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | | |
Collapse
|
36
|
Sajwan S, Takasu Y, Tamura T, Uchino K, Sezutsu H, Zurovec M. Efficient disruption of endogenous Bombyx gene by TAL effector nucleases. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:17-23. [PMID: 23142190 DOI: 10.1016/j.ibmb.2012.10.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 06/01/2023]
Abstract
Engineered nucleases are proteins that are able to cleave DNA at specified sites in the genome. These proteins have recently been used for gene targeting in a number of organisms. We showed earlier that zinc finger nucleases (ZFNs) can be used for generating gene-specific mutations in Bombyx mori by an error-prone DNA repair process of non-homologous end joining (NHEJ). Here we test the utility of another type of chimeric nuclease based on bacterial TAL effector proteins in order to induce targeted mutations in silkworm DNA. We designed three TAL effector nucleases (TALENs) against the genomic locus BmBLOS2, previously targeted by ZFNs. All three TALENs were able to induce mutations in silkworm germline cells suggesting a higher success rate of this type of chimeric enzyme. The efficiency of two of the tested TALENs was slightly higher than of the successful ZFN used previously. Simple design, high frequency of candidate targeting sites and comparable efficiency of induction of NHEJ mutations make TALENs an important alternative to ZFNs.
Collapse
Affiliation(s)
- Suresh Sajwan
- Institute of Entomology, Biology Centre ASCR, and Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | | | | | | | | | | |
Collapse
|
37
|
Nuclease Mediated Targeted Genome Modification in Mammalian Cells. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Engineered Zinc Finger Nucleases for Targeted Genome Editing. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
39
|
Rahman SH, Bobis-Wozowicz S, Chatterjee D, Gellhaus K, Pars K, Heilbronn R, Jacobs R, Cathomen T. The nontoxic cell cycle modulator indirubin augments transduction of adeno-associated viral vectors and zinc-finger nuclease-mediated gene targeting. Hum Gene Ther 2013; 24:67-77. [PMID: 23072634 PMCID: PMC3555098 DOI: 10.1089/hum.2012.168] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/08/2012] [Indexed: 01/28/2023] Open
Abstract
Parameters that regulate or affect the cell cycle or the DNA repair choice between non-homologous end-joining and homology-directed repair (HDR) are excellent targets to enhance therapeutic gene targeting. Here, we have evaluated the impact of five cell-cycle modulating drugs on targeted genome engineering mediated by DNA double-strand break (DSB)-inducing nucleases, such as zinc-finger nucleases (ZFNs). For a side-by-side comparison, we have established four reporter cell lines by integrating a mutated EGFP gene into either three transformed human cell lines or primary umbilical cord-derived mesenchymal stromal cells (UC-MSCs). After treatment with different cytostatic drugs, cells were transduced with adeno-associated virus (AAV) vectors that encode a nuclease or a repair donor to rescue EGFP expression through DSB-induced HDR. We show that transient cell-cycle arrest increased AAV transduction and AAV-mediated HDR up to six-fold in human cell lines and ten-fold in UC-MSCs, respectively. Targeted gene correction was observed in up to 34% of transduced cells. Both the absolute and the relative gene-targeting frequencies were dependent on the cell type, the cytostatic drug, the vector dose, and the nuclease. Treatment of cells with the cyclin-dependent kinase inhibitor indirubin-3'-monoxime was especially promising as this compound combined high stimulatory effects with minimal cytotoxicity. In conclusion, indirubin-3'-monoxime significantly improved AAV transduction and the efficiency of AAV/ZFN-mediated gene targeting and may thus represent a promising compound to enhance DSB-mediated genome engineering in human stem cells, such as UC-MSCs, which hold great promise for future clinical applications.
Collapse
Affiliation(s)
- Shamim H Rahman
- Laboratory of Cell and Gene Therapy, Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79108 Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Merlin C, Beaver LE, Taylor OR, Wolfe SA, Reppert SM. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases. Genome Res 2013; 23:159-68. [PMID: 23009861 PMCID: PMC3530676 DOI: 10.1101/gr.145599.112] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/21/2012] [Indexed: 11/26/2022]
Abstract
The development of reverse-genetic tools in "nonmodel" insect species with distinct biology is critical to establish them as viable model systems. The eastern North American monarch butterfly (Danaus plexippus), whose genome is sequenced, has emerged as a model to study animal clocks, navigational mechanisms, and the genetic basis of long-distance migration. Here, we developed a highly efficient gene-targeting approach in the monarch using zinc-finger nucleases (ZFNs), engineered nucleases that generate mutations at targeted genomic sequences. We focused our ZFN approach on targeting the type 2 vertebrate-like cryptochrome gene of the monarch (designated cry2), which encodes a putative transcriptional repressor of the monarch circadian clockwork. Co-injections of mRNAs encoding ZFNs targeting the second exon of monarch cry2 into "one nucleus" stage embryos led to high-frequency nonhomologous end-joining-mediated, mutagenic lesions in the germline (up to 50%). Heritable ZFN-induced lesions in two independent lines produced truncated, nonfunctional CRY2 proteins, resulting in the in vivo disruption of circadian behavior and the molecular clock mechanism. Our work genetically defines CRY2 as an essential transcriptional repressor of the monarch circadian clock and provides a proof of concept for the use of ZFNs for manipulating genes in the monarch butterfly genome. Importantly, this approach could be used in other lepidopterans and "nonmodel" insects, thus opening new avenues to decipher the molecular underpinnings of a variety of biological processes.
Collapse
Affiliation(s)
- Christine Merlin
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Lauren E. Beaver
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Orley R. Taylor
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, USA
| | - Scot A. Wolfe
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Steven M. Reppert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
41
|
Siddique AN, Nunna S, Rajavelu A, Zhang Y, Jurkowska RZ, Reinhardt R, Rots MG, Ragozin S, Jurkowski TP, Jeltsch A. Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol 2012; 425:479-91. [PMID: 23220192 DOI: 10.1016/j.jmb.2012.11.038] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 02/08/2023]
Abstract
The C-terminal domain of the Dnmt3a de novo DNA methyltransferase (Dnmt3a-C) forms a complex with the C-terminal domain of Dnmt3L, which stimulates its catalytic activity. We generated and characterized single-chain (sc) fusion proteins of both these domains with linker lengths between 16 and 30 amino acid residues. The purified sc proteins showed about 10-fold higher DNA methylation activities than Dnmt3a-C in vitro and were more active in bacterial cells as well. After fusing the Dnmt3a-3L sc enzyme to an artificial zinc-finger protein targeting the vascular endothelial cell growth factor A (VEGF-A) promoter, we demonstrate successful targeting of DNA methylation to the VEGF-A promoter in human cells and observed that almost complete methylation of 12 CpG sites in the gene promoter could be achieved. Targeted methylation by the Dnmt3a-3L sc enzymes was about twofold higher than that of Dnmt3a-C, indicating that Dnmt3a-3L sc variants are more efficient as catalytic modules in chimeric DNA methyltransfeases than Dnmt3a-C. Targeted methylation of the VEGF-A promoter with the Dnmt3a-3L sc variant led to a strong silencing of VEGF-A expression, indicating that the artificial DNA methylation of an endogenous promoter is a powerful strategy to achieve silencing of the corresponding gene in human cells.
Collapse
Affiliation(s)
- Abu Nasar Siddique
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang W, Zheng X, Wang Y, Mao Q, Xia H. Establishment of a cell line carrying single copy of an exogenous mutant reporter gene for assaying the biological activity of ZFNs. J Biotechnol 2012; 162:191-6. [DOI: 10.1016/j.jbiotec.2012.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 09/20/2012] [Accepted: 10/04/2012] [Indexed: 11/30/2022]
|
43
|
Mussolino C, Cathomen T. TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 2012; 23:644-50. [DOI: 10.1016/j.copbio.2012.01.013] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/25/2012] [Accepted: 01/25/2012] [Indexed: 12/18/2022]
|
44
|
Zhang W, Guo Y, Zhang C, Ji H, Meng W, Wang D, Li X, Mao Q, Xia H. Rescue the failed half-ZFN by a sensitive mammalian cell-based luciferase reporter system. PLoS One 2012; 7:e45169. [PMID: 23028823 PMCID: PMC3445457 DOI: 10.1371/journal.pone.0045169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/14/2012] [Indexed: 11/30/2022] Open
Abstract
ZFN technology is a powerful research tool and has been used for genome editing in cells lines, animals and plants. The generation of functional ZFNs for particular targets in mammalian genome is still challenging for an average research group. The modular-assembly method is relatively fast, easy-to-practice but has a high failure rate. Some recent studies suggested that a ZFP with low binding activity might be able to form a working ZFN pair with another binding active half-ZFP. In order to unveil the potential ZFP candidates among those with low binding activities, this paper established a highly sensitive mammalian cell-based transcriptional reporter system to assess the DNA binding activities of ZFPs by inserting multiple copies of ZFN target sequence fragment (TSF) of an interested gene (e. g., hPGRN or hVEGF). Our results showed that this system increased the screening sensitivity up to 50-fold and markedly amplified the differences in the binding activities between different ZFPs. We also found that the targeted chromosomal gene repair efficiency of each hPGRN or hVEGF ZFN pair was in proportion with the combination of the binding activities of the ZFL (Left zinc finger) and ZFR (Right zinc finger). A hPGRN ZFR with low binding ability was able to form a biological active ZFN if combined with a hPGRN ZFL with relatively high binding ability. Lastly, site-specific genome editing by hPGRN ZFNs generated by this system was confirmed by sequencing, and the PGRN knock-out cell line showed significantly decreased cell growth compared with the control. Our system will provide a valuable tool for further optimizing the nucleases with regard to specificity and cytotoxicity.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, People’s Republic of China
| | - Yuanxu Guo
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, People’s Republic of China
| | - Chen Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, People’s Republic of China
| | - Haiyan Ji
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, People’s Republic of China
| | - Wenpeng Meng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, People’s Republic of China
| | - Dongyang Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, People’s Republic of China
| | - Xing Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, People’s Republic of China
| | - Qinwen Mao
- Departmet of Pathology, Northwestern University Feinberg School of Medicine Chicago, Chicago, Illinois, United States of America
- * E-mail: (QM); (HX)
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, People’s Republic of China
- * E-mail: (QM); (HX)
| |
Collapse
|
45
|
Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Mol Ther 2012; 20:1852-62. [PMID: 22776959 DOI: 10.1038/mt.2012.126] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Sleeping Beauty (SB) transposon is a nonviral, integrating vector system with proven efficacy in preclinical animal models, and thus holds promise for future clinical applications. However, SB has a close-to-random insertion profile that could lead to genotoxic effects, thereby presenting a potential safety issue. We evaluated zinc finger (ZF) DNA-binding domains (DBDs) for their abilities to introduce a bias into SB's insertion profile. E2C, that binds a unique site in the erbB-2 gene, mediated locus-specific transposon insertions at low frequencies. A novel ZF targeting LINE1 repeats, ZF-B, showed specific binding to an 18-bp site represented by ~12,000 copies in the human genome. We mapped SB insertions using linear-amplification (LAM)-PCR and Illumina sequencing. Targeted insertions with ZF-B peaked at approximately fourfold enrichment of transposition around ZF-B binding sites yielding ~45% overall frequency of insertion into LINE1. A decrease in the ZF-B dataset with respect to transposon insertions in genes was found, suggesting that LINE1 repeats act as a sponge that "soak up" a fraction of SB insertions and thereby redirect them away from genes. Improvements in ZF technology and a careful choice of targeted genomic regions may improve the safety profile of SB for future clinical applications.
Collapse
|
46
|
Ramirez CL, Certo MT, Mussolino C, Goodwin MJ, Cradick TJ, McCaffrey AP, Cathomen T, Scharenberg AM, Joung JK. Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res 2012; 40:5560-8. [PMID: 22373919 PMCID: PMC3384306 DOI: 10.1093/nar/gks179] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 11/17/2022] Open
Abstract
Engineered zinc finger nucleases (ZFNs) induce DNA double-strand breaks at specific recognition sequences and can promote efficient introduction of desired insertions, deletions or substitutions at or near the cut site via homology-directed repair (HDR) with a double- and/or single-stranded donor DNA template. However, mutagenic events caused by error-prone non-homologous end-joining (NHEJ)-mediated repair are introduced with equal or higher frequency at the nuclease cleavage site. Furthermore, unintended mutations can also result from NHEJ-mediated repair of off-target nuclease cleavage sites. Here, we describe a simple and general method for converting engineered ZFNs into zinc finger nickases (ZFNickases) by inactivating the catalytic activity of one monomer in a ZFN dimer. ZFNickases show robust strand-specific nicking activity in vitro. In addition, we demonstrate that ZFNickases can stimulate HDR at their nicking site in human cells, albeit at a lower frequency than by the ZFNs from which they were derived. Finally, we find that ZFNickases appear to induce greatly reduced levels of mutagenic NHEJ at their target nicking site. ZFNickases thus provide a promising means for inducing HDR-mediated gene modifications while reducing unwanted mutagenesis caused by error-prone NHEJ.
Collapse
Affiliation(s)
- Cherie L. Ramirez
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael T. Certo
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Claudio Mussolino
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Mathew J. Goodwin
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas J. Cradick
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Anton P. McCaffrey
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Toni Cathomen
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew M. Scharenberg
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - J. Keith Joung
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
47
|
Abstract
Many devastating human diseases are caused by mutations in a single gene that prevent a somatic cell from carrying out its essential functions, or by genetic changes acquired as a result of infectious disease or in the course of cell transformation. Targeted gene therapies have emerged as potential strategies for treatment of such diseases. These therapies depend upon rare-cutting endonucleases to cleave at specific sites in or near disease genes. Targeted gene correction provides a template for homology-directed repair, enabling the cell's own repair pathways to erase the mutation and replace it with the correct sequence. Targeted gene disruption ablates the disease gene, disabling its function. Gene targeting can also promote other kinds of genome engineering, including mutation, insertion, or gene deletion. Targeted gene therapies present significant advantages compared to approaches to gene therapy that depend upon delivery of stably expressing transgenes. Recent progress has been fueled by advances in nuclease discovery and design, and by new strategies that maximize efficiency of targeting and minimize off-target damage. Future progress will build on deeper mechanistic understanding of critical factors and pathways.
Collapse
Affiliation(s)
- Olivier Humbert
- Departments of Immunology and Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | |
Collapse
|
48
|
Abstract
Genome editing with the use of zinc finger nucleases has been successfully applied to variety of a eukaryotic cells. Furthermore, the proof of concept for this approach has been extended to diverse animal models from Drosophila to mice. Engineered zinc finger nucleases are able to target specifically and manipulate disease-causing genes through site-specific double strand DNA breaks followed by non-homologous end joining or homologous recombination mechanisms. Consequently, this technology has considerable flexibility that can result in either a gain or loss of function of the targeted gene. In addition to this flexibility, gene therapy by zinc finger nucleases may enable persistent long term gene modification without continuous transfection- a potential advantage over RNA interference or direct gene inhibitors. With systemic viral delivery systems, this gene-editing approach corrected the mutant factor IX in models of mouse hemophilia. Moreover, phase I clinical trials have been initiated with zinc finger nucleases in patients with glioblastoma and HIV. Thus, this emerging field has significant promise as a therapeutic strategy for human genetic diseases, infectious diseases and oncology. In this article, we will review recent advances and potential risks in zinc finger nuclease gene therapy.
Collapse
Affiliation(s)
- S-T Chou
- Department of Pathology, University of Maryland School of Medicine, MSTF Building, 10 South Pine Street, Baltimore, MD 21201, USA ; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742
| | | | | |
Collapse
|
49
|
Händel EM, Gellhaus K, Khan K, Bednarski C, Cornu TI, Müller-Lerch F, Kotin RM, Heilbronn R, Cathomen T. Versatile and efficient genome editing in human cells by combining zinc-finger nucleases with adeno-associated viral vectors. Hum Gene Ther 2012; 23:321-9. [PMID: 21980922 PMCID: PMC3300077 DOI: 10.1089/hum.2011.140] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/05/2011] [Indexed: 11/13/2022] Open
Abstract
Zinc-finger nucleases (ZFNs) have become a valuable tool for targeted genome engineering. Based on the enzyme's ability to create a site-specific DNA double-strand break, ZFNs promote genome editing by activating the cellular DNA damage response, including homology-directed repair (HDR) and nonhomologous end-joining. The goal of this study was (i) to demonstrate the versatility of combining the ZFN technology with a vector platform based on adeno-associated virus (AAV), and (ii) to assess the toxicity evoked by this platform. To this end, human cell lines that harbor enhanced green fluorescence protein (EGFP) reporters were generated to easily quantify the frequencies of gene deletion, gene disruption, and gene correction. We demonstrated that ZFN-encoding AAV expression vectors can be employed to induce large chromosomal deletions or to disrupt genes in up to 32% of transduced cells. In combination with AAV vectors that served as HDR donors, the AAV-ZFN platform was utilized to correct a mutation in EGFP in up to 6% of cells. Genome editing on the DNA level was confirmed by genotyping. Although cell cycle profiling revealed a modest G2/M arrest at high AAV-ZFN vector doses, platform-induced apoptosis could not be detected. In conclusion, the combined AAV-ZFN vector technology is a useful tool to edit the human genome with high efficiency. Because AAV vectors can transduce many cell types relevant for gene therapy, the ex vivo and in vivo delivery of ZFNs via AAV vectors will be of great interest for the treatment of inherited disorders.
Collapse
Affiliation(s)
- Eva-Maria Händel
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Katharina Gellhaus
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Kafaitullah Khan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Christien Bednarski
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Tatjana I. Cornu
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Felix Müller-Lerch
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Robert M. Kotin
- Molecular Virology and Gene Delivery Section, Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Regine Heilbronn
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Toni Cathomen
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| |
Collapse
|
50
|
Affiliation(s)
- Jesús Prieto
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fdez Almagro, Madrid, Spain
| | | | | |
Collapse
|