1
|
Virus-Like Particles as Nanocarriers for Intracellular Delivery of Biomolecules and Compounds. Viruses 2022; 14:v14091905. [PMID: 36146711 PMCID: PMC9503347 DOI: 10.3390/v14091905] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Virus-like particles (VLPs) are nanostructures assemble from viral proteins. Besides widely used for vaccine development, VLPs have also been explored as nanocarriers for cargo delivery as they combine the key advantages of viral and non-viral vectors. While it protects cargo molecules from degradation, the VLP has good cell penetrating property to mediate cargo passing the cell membrane and released into cells, making the VLP an ideal tool for intracellular delivery of biomolecules and drugs. Great progresses have been achieved and multiple challenges are still on the way for broad applications of VLP as delivery vectors. Here we summarize current advances and applications in VLP as a delivery vector. Progresses on delivery of different types of biomolecules as well as drugs by VLPs are introduced, and the strategies for cargo packaging are highlighted which is one of the key steps for VLP mediated intracellular delivery. Production and applications of VLPs are also briefly reviewed, with a discussion on future challenges in this rapidly developing field.
Collapse
|
2
|
Lyu P, Lu B. New Advances in Using Virus-like Particles and Related Technologies for Eukaryotic Genome Editing Delivery. Int J Mol Sci 2022; 23:ijms23158750. [PMID: 35955895 PMCID: PMC9369418 DOI: 10.3390/ijms23158750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 11/21/2022] Open
Abstract
The designer nucleases, including Zinc Finger Nuclease (ZFN), Transcription Activator-Like Effector Nuclease (TALEN), and Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated (CRISPR/Cas), have been widely used for mechanistic studies, animal model generation, and gene therapy development. Clinical trials using designer nucleases to treat genetic diseases or cancers are showing promising results. Despite rapid progress, potential off-targets and host immune responses are challenges to be addressed for in vivo uses, especially in clinical applications. Short-term expression of the designer nucleases is necessary to reduce both risks. Currently, delivery methods enabling transient expression of designer nucleases are being pursued. Among these, virus-like particles as delivery vehicles for short-term designer nuclease expression have received much attention. This review will summarize recent developments in using virus-like particles (VLPs) for safe delivery of gene editing effectors to complement our last review on the same topic. First, we introduce some background information on how VLPs can be used for safe and efficient CRISPR/Cas9 delivery. Then, we summarize recently developed virus-like particles as genome editing vehicles. Finally, we discuss applications and future directions.
Collapse
Affiliation(s)
- Pin Lyu
- School of Physical Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
- Correspondence: ; Tel.: +1-336-713-7276; Fax: +1-336-713-7290
| |
Collapse
|
3
|
Rama A, Pai A, Rosa Barreto D, Kumar Kannan S, Naha A. Virus-Like particles as a Novel Targeted Drug Delivery Platform for Biomedical Applications. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2022:2801-2808. [DOI: 10.52711/0974-360x.2022.00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Virus-Like Particles (VLP) mimics virions immunologically which induces high titers of neutralizing antibodies to conformational epitopes due to the high-density display of epitopes, present multiple proteins which are optimal for uptake by dendritic cells and are assembled in vivo. VLP triggers the immune response of the body against the diseases and is broadly two types like non enveloped VLP’s and Enveloped VLP’s. The present review discusses the production, analysis, and mechanism of action of virus-like particles. Various applications, the Indian Scenario of VLP, Limitations, and future scopes are briefly reviewed and discussed. VLPs imitate authentic viruses in antigenic morphology and offer a stable alternative to attenuated and inactivated viruses in the production of vaccines. It can effectively deliver foreign nucleic acids, proteins, or conjugated compounds to the system, or even to particular types of cells, due to their transducing properties. It retains the ability to infiltrate and render cells useful for a wide range of applications. Used as a tool to increase the immunogenicity of poorly immunogenic antigens, VLP therapeutics can be developed and manufactured in a way that would be sufficiently cheap to be seen globally in many countries. The ability to mass-produce them cost-effectively improves their possibility of being introduced to undeveloped countries.
Collapse
Affiliation(s)
- Annamalai Rama
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anuja Pai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Divya Rosa Barreto
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Siva Kumar Kannan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anup Naha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
4
|
Chuang CK, Lin WM. Points of View on the Tools for Genome/Gene Editing. Int J Mol Sci 2021; 22:9872. [PMID: 34576035 PMCID: PMC8470269 DOI: 10.3390/ijms22189872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
Theoretically, a DNA sequence-specific recognition protein that can distinguish a DNA sequence equal to or more than 16 bp could be unique to mammalian genomes. Long-sequence-specific nucleases, such as naturally occurring Homing Endonucleases and artificially engineered ZFN, TALEN, and Cas9-sgRNA, have been developed and widely applied in genome editing. In contrast to other counterparts, which recognize DNA target sites by the protein moieties themselves, Cas9 uses a single-guide RNA (sgRNA) as a template for DNA target recognition. Due to the simplicity in designing and synthesizing a sgRNA for a target site, Cas9-sgRNA has become the most current tool for genome editing. Moreover, the RNA-guided DNA recognition activity of Cas9-sgRNA is independent of both of the nuclease activities of it on the complementary strand by the HNH domain and the non-complementary strand by the RuvC domain, and HNH nuclease activity null mutant (H840A) and RuvC nuclease activity null mutant (D10A) were identified. In accompaniment with the sgRNA, Cas9, Cas9(D10A), Cas9(H840A), and Cas9(D10A, H840A) can be used to achieve double strand breakage, complementary strand breakage, non-complementary strand breakage, and no breakage on-target site, respectively. Based on such unique characteristics, many engineered enzyme activities, such as DNA methylation, histone methylation, histone acetylation, cytidine deamination, adenine deamination, and primer-directed mutation, could be introduced within or around the target site. In order to prevent off-targeting by the lasting expression of Cas9 derivatives, a lot of transient expression methods, including the direct delivery of Cas9-sgRNA riboprotein, were developed. The issue of biosafety is indispensable in in vivo applications; Cas9-sgRNA packaged into virus-like particles or extracellular vesicles have been designed and some in vivo therapeutic trials have been reported.
Collapse
Affiliation(s)
- Chin-Kai Chuang
- Animal Technology Research Center, Division of Animal Technology, Agricultural Technology Research Institute, No. 52, Kedong 2nd Rd., Zhunan Township, Miaoli County 35053, Taiwan;
| | | |
Collapse
|
5
|
|
6
|
Lyu P, Wang L, Lu B. Virus-Like Particle Mediated CRISPR/Cas9 Delivery for Efficient and Safe Genome Editing. Life (Basel) 2020; 10:366. [PMID: 33371215 PMCID: PMC7766694 DOI: 10.3390/life10120366] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
The discovery of designer nucleases has made genome editing much more efficient than before. The designer nucleases have been widely used for mechanistic studies, animal model generation and gene therapy development. However, potential off-targets and host immune responses are issues still need to be addressed for in vivo uses, especially clinical applications. Short term expression of the designer nucleases is necessary to reduce both risks. Currently, various delivery methods are being developed for transient expression of designer nucleases including Zinc Finger Nuclease (ZNF), Transcription Activator-Like Effector Nuclease (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated (CRISPR/Cas). Recently, virus-like particles are being used for gene editing. In this review, we will talk through commonly used genome editing nucleases, discuss gene editing delivery tools and review the latest literature using virus-like particles to deliver gene editing effectors.
Collapse
Affiliation(s)
- Pin Lyu
- School of Physical Education and Health, Hangzhou Normal University, Hangzhou 311121, China;
| | - Luxi Wang
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA;
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| |
Collapse
|
7
|
Dogrammatzis C, Waisner H, Kalamvoki M. Cloaked Viruses and Viral Factors in Cutting Edge Exosome-Based Therapies. Front Cell Dev Biol 2020; 8:376. [PMID: 32528954 PMCID: PMC7264115 DOI: 10.3389/fcell.2020.00376] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) constitute a heterogeneous group of vesicles released by all types of cells that play a major role in intercellular communication. The field of EVs started gaining attention since it was realized that these vesicles are not waste bags, but they carry specific cargo and they communicate specific messages to recipient cells. EVs can deliver different types of RNAs, proteins, and lipids from donor to recipient cells and they can influence recipient cell functions, despite their limited capacity for cargo. EVs have been compared to viruses because of their size, cell entry pathways, and biogenesis and to viral vectors because they can be loaded with desired cargo, modified, and re-targeted. These properties along with the fact that EVs are stable in body fluids, they can be produced and purified in large quantities, they can cross the blood-brain barrier, and autologous EVs do not appear to cause major adverse effects, have rendered them attractive for therapeutic use. Here, we discuss the potential for therapeutic use of EVs derived from virus infected cells or EVs carrying viral factors. We have focused on six major concepts: (i) the role of EVs in virus-based oncolytic therapy or virus-based gene delivery approaches; (ii) the potential use of EVs for developing viral vaccines or optimizing already existing vaccines; (iii) the role of EVs in delivering RNAs and proteins in the context of viral infections and modulating the microenvironment of infection; (iv) how to take advantage of viral features to design effective means of EV targeting, uptake, and cargo packaging; (v) the potential of EVs in antiviral drug delivery; and (vi) identification of novel antiviral targets based on EV biogenesis factors hijacked by viruses for assembly and egress. It has been less than a decade since more attention was given to EV research and some interesting concepts have already been developed. In the coming years, additional information on EV biogenesis, how they are hijacked and utilized by pathogens, and their impact on the microenvironment of infection is expected to indicate avenues to optimize existing therapeutic tools and develop novel approaches.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
8
|
Lu B, Javidi-Parsijani P, Makani V, Mehraein-Ghomi F, Sarhan WM, Sun D, Yoo KW, Atala ZP, Lyu P, Atala A. Delivering SaCas9 mRNA by lentivirus-like bionanoparticles for transient expression and efficient genome editing. Nucleic Acids Res 2019; 47:e44. [PMID: 30759231 PMCID: PMC6486560 DOI: 10.1093/nar/gkz093] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/21/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system discovered using bacteria has been repurposed for genome editing in human cells. Transient expression of the editor proteins (e.g. Cas9 protein) is desirable to reduce the risk of mutagenesis from off-target activity. Using the specific interaction between bacteriophage RNA-binding proteins and their RNA aptamers, we developed a system able to package up to 100 copies of Staphylococcus aureus Cas9 (SaCas9) mRNA in each lentivirus-like bionanoparticle (LVLP). The SaCas9 LVLPs mediated transient SaCas9 expression and achieved highly efficient genome editing in the presence of guide RNA. Lower off-target rates occurred in cells transduced with LVLPs containing SaCas9 mRNA, compared with cells transduced with adeno-associated virus or lentivirus expressing SaCas9. Our LVLP system may be useful for efficiently delivering Cas9 mRNA to cell lines and primary cells for in vitro and in vivo gene editing applications.
Collapse
Affiliation(s)
- Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Parisa Javidi-Parsijani
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Vishruti Makani
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Farideh Mehraein-Ghomi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Walaa Mohamed Sarhan
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Dongjun Sun
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Kyung Whan Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Zachary P Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Pin Lyu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| |
Collapse
|
9
|
Ferdin J, Goričar K, Dolžan V, Plemenitaš A, Martin JN, Peterlin BM, Deeks SG, Lenassi M. Viral protein Nef is detected in plasma of half of HIV-infected adults with undetectable plasma HIV RNA. PLoS One 2018; 13:e0191613. [PMID: 29364927 PMCID: PMC5783402 DOI: 10.1371/journal.pone.0191613] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/07/2018] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To address the role of translationally active HIV reservoir in chronic inflammation and non-AIDS related disorders, we first need a simple and accurate assay to evaluate viral protein expression in virally suppressed subjects. DESIGN We optimized an HIV Nef enzyme-linked immunosorbent assay (ELISA) and used it to quantify plasma Nef levels as an indicator of the leaky HIV reservoir in an HIV-infected cohort. METHODS This study accessed 134 plasma samples from a well-characterized cohort study of HIV-infected and uninfected adults in San Francisco (the SCOPE cohort). We optimized an ELISA for detection of plasma Nef in HIV-negative subjects and HIV-infected non-controllers, and evaluated its utility to quantify plasma Nef levels in a cross-sectional study of ART-suppressed and elite controller HIV-infected subjects. RESULTS Here, we describe the performance of an optimized HIV Nef ELISA. When we applied this assay to the study cohort we found that plasma Nef levels were correlated with plasma HIV RNA levels in untreated disease. However, we were able to detect Nef in plasma of approximately half of subjects on ART or with elite control, despite the lack of detectable plasma HIV RNA levels using standard assays. Plasma Nef levels were not consistently associated with CD4+ T-cell count, CD8+ T-cell count, self-reported nadir CD4+ T-cell count or the CD4+/CD8+ T-cell ratio in HIV-infected subjects. CONCLUSION Since plasma HIV RNA levels are undetectable in virally suppressed subjects, it is reasonable to assume that viral protein expression in leaky reservoir, and not plasma virions, is the source of Nef accumulating in plasma. To examine this further, improvements of the assay sensitivity, by lowering the background through improvements in the quality of Nef antibodies, and detailed characterization of the HIV reservoirs are needed.
Collapse
Affiliation(s)
- Jana Ferdin
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Goričar
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Plemenitaš
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jeffrey N. Martin
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
| | - Boris M. Peterlin
- Department of Medicine, Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Steven G. Deeks
- Department of Medicine, Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Metka Lenassi
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
10
|
Manfredi F, di Bonito P, Ridolfi B, Anticoli S, Arenaccio C, Chiozzini C, Baz Morelli A, Federico M. The CD8⁺ T Cell-Mediated Immunity Induced by HPV-E6 Uploaded in Engineered Exosomes Is Improved by ISCOMATRIX TM Adjuvant. Vaccines (Basel) 2016; 4:vaccines4040042. [PMID: 27834857 PMCID: PMC5192362 DOI: 10.3390/vaccines4040042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/23/2016] [Accepted: 11/04/2016] [Indexed: 01/29/2023] Open
Abstract
We recently described the induction of an efficient CD8⁺ T cell-mediated immune response against a tumor-associated antigen (TAA) uploaded in engineered exosomes used as an immunogen delivery tool. This immune response cleared tumor cells inoculated after immunization, and controlled the growth of tumors implanted before immunization. We looked for new protocols aimed at increasing the CD8⁺ T cell specific response to the antigen uploaded in engineered exosomes, assuming that an optimized CD8⁺ T cell immune response would correlate with a more effective depletion of tumor cells in the therapeutic setting. By considering HPV-E6 as a model of TAA, we found that the in vitro co-administration of engineered exosomes and ISCOMATRIXTM adjuvant, i.e., an adjuvant composed of purified ISCOPREPTM saponin, cholesterol, and phospholipids, led to a stronger antigen cross-presentation in both B- lymphoblastoid cell lines ( and monocyte-derived immature dendritic cells compared with that induced by the exosomes alone. Consistently, the co-inoculation in mice of ISCOMATRIXTM adjuvant and engineered exosomes induced a significant increase of TAA-specific CD8⁺ T cells compared to mice immunized with the exosomes alone. This result holds promise for effective usage of exosomes as well as alternative nanovesicles in anti-tumor therapeutic approaches.
Collapse
Affiliation(s)
- Francesco Manfredi
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Paola di Bonito
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Barbara Ridolfi
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Simona Anticoli
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Claudia Arenaccio
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Chiara Chiozzini
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Adriana Baz Morelli
- CSL, Ltd., Bio21 Institute, 30 Flemington Road, Melbourne, VIC 3010, Australia.
| | - Maurizio Federico
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| |
Collapse
|
11
|
Abstract
If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action.
Collapse
Affiliation(s)
- Shane Miersch
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
|
13
|
Abstract
Engineering exosomes to upload heterologous proteins represents the last frontier in terms of nanoparticle-based technology. A limited number of methods suitable to associate proteins to exosome membrane has been described so far, and very little is known regarding the possibility to upload proteins inside exosomes. We optimized a method of protein incorporation in exosomes by exploiting the unique properties of a nonfunctional mutant of the HIV-1 Nef protein referred to as Nef(mut). It incorporates at high extents in exosomes meanwhile acting as carrier of protein antigens fused at its C-terminus. Manipulating Nef(mut) allows the incorporation into exosomes of high amounts of heterologous proteins which thus remain protected from external neutralization/degradation factors. These features, together with flexibility in terms of incorporation of foreign antigens and ease of production, make Nef(mut)-based exosomes a convenient vehicle for different applications (e.g., protein transduction, immunization) whose performances are comparable with those of alternative, more complex nanoparticle-based delivery systems.
Collapse
|
14
|
The application of virus-like particles as vaccines and biological vehicles. Appl Microbiol Biotechnol 2015; 99:10415-32. [PMID: 26454868 PMCID: PMC7080154 DOI: 10.1007/s00253-015-7000-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 01/04/2023]
Abstract
Virus-like particles (VLPs) can be spontaneously self-assembled by viral structural proteins under appropriate conditions in vitro while excluding the genetic material and potential replication probability. In addition, VLPs possess several features including can be rapidly produced in large quantities through existing expression systems, highly resembling native viruses in terms of conformation and appearance, and displaying repeated cluster of epitopes. Their capsids can be modified via genetic insertion or chemical conjugation which facilitating the multivalent display of a homologous or heterogeneous epitope antigen. Therefore, VLPs are considered as a safe and effective candidate of prophylactic and therapeutic vaccines. VLPs, with a diameter of approximately 20 to 150 nm, also have the characteristics of nanometer materials, such as large surface area, surface-accessible amino acids with reactive moieties (e.g., lysine and glutamic acid residues), inerratic spatial structure, and good biocompatibility. Therefore, assembled VLPs have great potential as a delivery system for specifically carrying a variety of materials. This review summarized recent researches on VLP development as vaccines and biological vehicles, which demonstrated the advantages and potential of VLPs in disease control and prevention and diagnosis. Then, the prospect of VLP biology application in the future is discussed as well.
Collapse
|
15
|
Retrovirus-based vectors for transient and permanent cell modification. Curr Opin Pharmacol 2015; 24:135-46. [PMID: 26433198 DOI: 10.1016/j.coph.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/04/2015] [Indexed: 01/19/2023]
Abstract
Retroviral vectors are commonly employed for long-term transgene expression via integrating vector technology. However, three alternative retrovirus-based platforms are currently available that allow transient cell modification. Gene expression can be mediated from either episomal DNA or RNA templates, or selected proteins can be directly transferred through retroviral nanoparticles. The different technologies are functionally graded with respect to safety, expression magnitude and expression duration. Improvement of the initial technologies, including modification of vector designs, targeted increase in expression strength and duration as well as improved safety characteristics, has allowed maturation of retroviral systems into efficient and promising tools that meet the technological demands of a wide variety of potential application areas.
Collapse
|
16
|
Di Bonito P, Ridolfi B, Columba-Cabezas S, Giovannelli A, Chiozzini C, Manfredi F, Anticoli S, Arenaccio C, Federico M. HPV-E7 delivered by engineered exosomes elicits a protective CD8⁺ T cell-mediated immune response. Viruses 2015; 7:1079-99. [PMID: 25760140 PMCID: PMC4379561 DOI: 10.3390/v7031079] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/20/2015] [Accepted: 02/28/2015] [Indexed: 12/14/2022] Open
Abstract
We developed an innovative strategy to induce a cytotoxic T cell (CTL) immune response against protein antigens of choice. It relies on the production of exosomes, i.e., nanovesicles spontaneously released by all cell types. We engineered the upload of huge amounts of protein antigens upon fusion with an anchoring protein (i.e., HIV-1 Nefmut), which is an inactive protein incorporating in exosomes at high levels also when fused with foreign proteins. We compared the immunogenicity of engineered exosomes uploading human papillomavirus (HPV)-E7 with that of lentiviral virus-like particles (VLPs) incorporating equivalent amounts of the same antigen. These exosomes, whose limiting membrane was decorated with VSV-G, i.e., an envelope protein inducing pH-dependent endosomal fusion, proved to be as immunogenic as the cognate VLPs. It is noteworthy that the immunogenicity of the engineered exosomes remained unaltered in the absence of VSV-G. Most important, we provide evidence that the inoculation in mouse of exosomes uploading HPV-E7 induces production of anti-HPV E7 CTLs, blocks the growth of syngeneic tumor cells inoculated after immunization, and controls the development of tumor cells inoculated before the exosome challenge. These results represent the proof-of-concept about both feasibility and efficacy of the Nefmut-based exosome platform for the induction of CD8+ T cell immunity.
Collapse
Affiliation(s)
- Paola Di Bonito
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Barbara Ridolfi
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Sandra Columba-Cabezas
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Andrea Giovannelli
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Chiara Chiozzini
- National AIDS Center, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | | | - Simona Anticoli
- National AIDS Center, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Claudia Arenaccio
- National AIDS Center, Istituto Superiore di Sanità, 00161 Rome, Italy.
- Department of Science, University Roma Tre, 00146 Rome, Italy.
| | - Maurizio Federico
- National AIDS Center, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
17
|
Abstract
This review describes nanoparticles made from protein by self-assembly or desolvation as carriers for the delivery of therapeutic proteins.
Collapse
Affiliation(s)
- L. P. Herrera Estrada
- School of Chemical & Biomolecular Engineering. Georgia Institute of Technology
- Atlanta
- USA
| | - J. A. Champion
- School of Chemical & Biomolecular Engineering. Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
18
|
Cai Y, Mikkelsen JG. Driving DNA transposition by lentiviral protein transduction. Mob Genet Elements 2014; 4:e29591. [PMID: 25057443 PMCID: PMC4092313 DOI: 10.4161/mge.29591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022] Open
Abstract
Gene vectors derived from DNA transposable elements have become powerful molecular tools in biomedical research and are slowly moving into the clinic as carriers of therapeutic genes. Conventional uses of DNA transposon-based gene vehicles rely on the intracellular production of the transposase protein from transfected nucleic acids. The transposase mediates mobilization of the DNA transposon, which is typically provided in the context of plasmid DNA. In recent work, we established lentiviral protein transduction from Gag precursors as a new strategy for direct delivery of the transposase protein. Inspired by the natural properties of infecting viruses to carry their own enzymes, we loaded lentivirus-derived particles not only with vector genomes carrying the DNA transposon vector but also with hundreds of transposase subunits. Such particles were found to drive efficient transposition of the piggyBac transposable element in a range of different cell types, including primary cells, and offer a new transposase delivery approach that guarantees short-term activity and limits potential cytotoxicity. DNA transposon vectors, originally developed and launched as a non-viral alternative to viral integrating vectors, have truly become viral. Here, we briefly review our findings and speculate on the perspectives and potential advantages of transposase delivery by lentiviral protein transduction.
Collapse
Affiliation(s)
- Yujia Cai
- Department of Biomedicine; Aarhus University; Aarhus C, Denmark
| | | |
Collapse
|
19
|
Lattanzi L, Federico M. A strategy of antigen incorporation into exosomes: comparing cross-presentation levels of antigens delivered by engineered exosomes and by lentiviral virus-like particles. Vaccine 2012; 30:7229-37. [PMID: 23099330 DOI: 10.1016/j.vaccine.2012.10.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/20/2012] [Accepted: 10/06/2012] [Indexed: 12/25/2022]
Abstract
Among strategies aimed at developing new nanoparticle-based vaccines, exosomes hold much promise. They are nanovesicles released by basically all eukaryotic cell types originating from intraluminal vesicles which accumulate in multivesicular bodies. Exosomes have immunogenic properties whose strength correlates with the amounts of associated antigens. Engineering antigens to target them in exosomes represents the last frontier in terms of nanoparticle-based vaccines. Here we report a new method to incorporate protein antigens in exosomes relying on the unique properties of a mutant of the HIV-1 Nef protein, Nef(mut). This is a biologically inactive mutant we found incorporating into exosomes at high levels also when fused at its C-terminus with foreign proteins. We compared both biochemical and antigenic properties of Nef(mut) exosomes with those of previously characterized Nef(mut) -based lentiviral virus-like particles (VLPs). We found that exosomes incorporate Nef(mut) and fusion protein derivatives with similar efficiency of VLPs. When an envelope fusion protein was associated with both exosomes and VLPs to favor cross-presentation of associated antigens, Nef(mut) and its derivatives incorporated in exosomes were cross-presented at levels at least similar to what observed when the antigens were delivered by engineered VLPs. This occurred despite exosomes entered target cells with an apparent lower efficiency than VLPs. The unique properties of HIV-1 Nef(mut) in terms of exosome incorporation efficiency, carrier of foreign antigens, and lack of anti-cellular effects open the way toward the development of a flexible, safe, cost-effective exosome-based CD8(+) T cell vaccine platform.
Collapse
Affiliation(s)
- Laura Lattanzi
- Department of Hematology, Oncology, and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
20
|
Federico M. From virus-like particles to engineered exosomes for a new generation of vaccines. Future Virol 2012. [DOI: 10.2217/fvl.12.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the last two decades, virus-like particles (VLPs) have been the focus of countless investigations on innovative vaccines. The number of monotypic, multipartite and chimeric VLP-based vaccines proposed have increased even further in the last few years as part of the continuous effort to improve the safety, efficacy and cost–effectiveness of immunogens. As compared with monomer- or subunit-based vaccines, VLPs show several advantages in terms of potency of the elicited immune responses. Chimeric VLPs are quite flexible tools to accommodate foreign peptides, cell proteins and nonself-assembling viral products. However, their use often meets with still unresolved hurdles such as induction of undesired immune responses, neutralization by pre-existing immunity and complex methods of production. Among strategies aimed at developing new nanoparticle-based vaccines, exosomes hold much promise. They are nanovesicles constitutively released by eukaryotic cells that originate from intraluminal vesicles accumulating in multivesicular bodies. Exosomes have immunogenic properties, the strength of which correlates with the amounts of associated antigens. Engineering antigens of interest to target them in exosomes represents the last frontier in terms of nanoparticle-based vaccines.
Collapse
Affiliation(s)
- Maurizio Federico
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
21
|
Protein delivery using engineered virus-like particles. Proc Natl Acad Sci U S A 2011; 108:16998-7003. [PMID: 21949376 DOI: 10.1073/pnas.1101874108] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Over the years, researchers have developed several methods to deliver macromolecules into the cytosol and nucleus of living cells. However, there are limitations to all of these methods. The problems include (i) inefficient uptake, (ii) endosomal entrapment, (iii) delivery that is restricted to certain cell types, and (iv) damage to cells in the delivery process. Retroviral vectors are often used for gene delivery; however, integration of the genome of retroviral vector into the host genome can have serious consequences. Here we describe a safe alternative in which virus-like particles (VLPs), derived from an avian retrovirus, are used to deliver protein to cells. We show that these VLPs are a highly adaptable platform that can be used to deliver proteins either as part of Gag fusion proteins (intracellular delivery) or on the surface of VLPs. We generated VLPs that contain Gag-Cre recombinase, Gag-Fcy::Fur, and Gag-human caspase-8 as a proof-of-concept and demonstrated that the encapsidated proteins are active in recipient cells. In addition, we show that murine IFN-γ and human TNF-related apoptosis-inducing ligand can be displayed on the surface of VLPs, and that these modified VLPs can cause the appropriate response in cells, as evidenced by phosphorylation of STAT1 and induction of cell death, respectively.
Collapse
|
22
|
Quaranta MG, Vincentini O, Felli C, Spadaro F, Silano M, Moricoli D, Giordani L, Viora M. Exogenous HIV-1 Nef upsets the IFN-γ-induced impairment of human intestinal epithelial integrity. PLoS One 2011; 6:e23442. [PMID: 21858117 PMCID: PMC3152569 DOI: 10.1371/journal.pone.0023442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 07/18/2011] [Indexed: 11/20/2022] Open
Abstract
Background The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line. Methodology/Principal Findings We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepitelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by Caco-2 cells while down-regulated IL-10 production. The simultaneous exposure of Caco-2 cells to Nef and IFN-γ did not affect cytokine secretion respect to untreated cells. Finally, we found that Nef counteracted the IFN-γ induced arachidonic acid cascade. Conclusion/Significance Our findings suggest that exogenous Nef, perturbing the IFN-γ-induced impairment of intestinal epithelial cells, could prolong cell survival, thus allowing for accumulation of viral particles. Our results may improve the understanding of AIDS pathogenesis, supporting the discovery of new therapeutic interventions.
Collapse
Affiliation(s)
- Maria Giovanna Quaranta
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sistigu A, Bracci L, Valentini M, Proietti E, Bona R, Negri DRM, Ciccaglione AR, Tritarelli E, Nisini R, Equestre M, Costantino A, Marcantonio C, Santini SM, Lapenta C, Donati S, Tataseo P, Miceli M, Cara A, Federico M. Strong CD8+ T cell antigenicity and immunogenicity of large foreign proteins incorporated in HIV-1 VLPs able to induce a Nef-dependent activation/maturation of dendritic cells. Vaccine 2011; 29:3465-75. [PMID: 21382480 DOI: 10.1016/j.vaccine.2011.02.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 12/21/2022]
Abstract
Virus-like particles (VLPs) are excellent tools for vaccines against pathogens and tumors. They can accommodate foreign polypeptides whose incorporation efficiency and immunogenicity however decrease strongly with the increase of their size. We recently described the CD8(+) T cell immune response against a small foreign antigen (i.e., the 98 amino acid long human papilloma virus E7 protein) incorporated in human immunodeficiency virus (HIV)-1 based VLPs as product of fusion with an HIV-1 Nef mutant (Nef(mut)). Here, we extended our previous investigations by testing the antigenic/immunogenic properties of Nef(mut)-based VLPs incorporating much larger heterologous products, i.e., human hepatitis C virus (HCV) NS3 and influenza virus NP proteins, which are composed of 630 and 498 amino acids, respectively. We observed a remarkable cross-presentation of HCV NS3 in dendritic cells challenged with Nef(mut)-NS3 VLPs, as detected using a NS3 specific CD8(+) T cell clone as well as PBMCs from HCV infected patients. On the other hand, when injected in mice, Nef(mut)-NP VLPs elicited strong anti-NP CD8(+) T cell and CTL immune responses. In addition, we revealed the ability of Nef(mut) incorporated in VLPs to activate and mature primary human immature dendritic cells (iDCs). This phenomenon correlated with the activation of Src tyrosine kinase-related intracellular signaling, and can be transmitted from VLP-challenged to bystander iDCs. Overall, these results prove that Nef(mut)-based VLPs represent a rather flexible platform for the design of innovative CD8(+) T cell vaccines.
Collapse
Affiliation(s)
- A Sistigu
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Federico M. Virus-like particles show promise as candidates for new vaccine strategies. Future Virol 2010. [DOI: 10.2217/fvl.10.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Maurizio Federico
- National AIDS Center, Division of Pathogenesis of Retroviruses, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
25
|
Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitas A, Peterlin BM. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 2010; 11:110-22. [PMID: 19912576 DOI: 10.1111/j.1600-0854.2009.01006.x] [Citation(s) in RCA: 404] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The HIV accessory protein negative factor (Nef) is one of the earliest and most abundantly expressed viral proteins. It is also found in the serum of infected individuals (Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol 2005;17:879-887). Extracellular Nef protein has deleterious effects on CD4(+) T cells (James CO, Huang MB, Khan M, Garcia-Barrio M, Powell MD, Bond VC. Extracellular Nef protein targets CD4(+) T cells for apoptosis by interacting with CXCR4 surface receptors. J Virol 2004;78:3099-3109), the primary targets of HIV, and can suppress immunoglobulin class switching in bystander B cells (Qiao X, He B, Chiu A, Knowles DM, Chadburn A, Cerutti A. Human immunodeficiency virus 1 Nef suppresses CD40-dependent immunoglobulin class switching in bystander B cells. Nat Immunol 2006;7:302-310). Nevertheless, the mode of exit of Nef from infected cells remains a conundrum. We found that Nef stimulates its own export via the release of exosomes from all cells examined. Depending on its intracellular location, these Nef exosomes form at the plasma membrane, late endosomes or both compartments in Jurkat, SupT1 and primary T cells, respectively. Nef release through exosomes is conserved also during HIV-1 infection of peripheral blood lymphocytes (PBLs). Released Nef exosomes cause activation-induced cell death of resting PBLs in vitro. Thus, HIV-infected cells export Nef in bioactive vesicles, which facilitate the depletion of CD4(+) T cells that is a hallmark of acquired immunodeficiency syndrome (AIDS).
Collapse
Affiliation(s)
- Metka Lenassi
- Departments of Medicine, Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Muratori C, Bona R, Federico M. Lentivirus-based virus-like particles as a new protein delivery tool. Methods Mol Biol 2010; 614:111-124. [PMID: 20225039 DOI: 10.1007/978-1-60761-533-0_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Virus Like Particles (VLPs) are self-assembling, nonreplicating, nonpathogenic, genomeless particles similar in size and conformation to intact infectious virions. The possibility of engineering VLPs to incorporate heterologous polypeptides/proteins renders VLPs attractive candidates for vaccine strategies, as well as for protein delivery for basic science. Among the wide number of VLP types, our expertise focused on both retro- and lentivirus based VLPs as protein delivery tools. In particular, here we describe a system relying on the finding that some HIV-1 Nef mutants are incorporated at high levels into both Human Immunodeficiency virus (HIV)-1 and Moloney Leukemia Virus (MLV)-based VLPs. Most importantly, these Nef mutants can efficiently act as anchoring proteins upon fusion with heterologous proteins up to 630 amino acids in length. This chapter describes the preparation of prototypic HIV-1 based VLPs incorporating Nef mutant-GFP fusion molecules. Besides having potential utility in the field of basic virology, these VLPs represent a useful reference model for recovering alternative retro- or lentiviral based VLPs for the cell delivery of polypeptides/proteins of interest.
Collapse
Affiliation(s)
- Claudia Muratori
- Division of Pathogenesis of Retroviruses, National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | | |
Collapse
|
27
|
Anti-tumor CD8+ T cell immunity elicited by HIV-1-based virus-like particles incorporating HPV-16 E7 protein. Virology 2009; 395:45-55. [DOI: 10.1016/j.virol.2009.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/13/2009] [Accepted: 09/10/2009] [Indexed: 11/23/2022]
|
28
|
Green LA, Liu Y, He JJ. Inhibition of HIV-1 infection and replication by enhancing viral incorporation of innate anti-HIV-1 protein A3G: a non-pathogenic Nef mutant-based anti-HIV strategy. J Biol Chem 2009; 284:13363-13372. [PMID: 19324886 DOI: 10.1074/jbc.m806631200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
APOBEC3G (A3G) is a cellular protein that has been identified as an innate anti-human immunodeficiency virus type 1 (HIV-1) factor. One of the major functions of HIV-1 virion infectivity protein (Vif) protein is to target A3G for ubiquitination/proteasome-mediated degradation and, as a result, evade the host innate defense mechanism. Thus, we wished to devise a strategy to restore the anti-HIV activity of A3G by actively targeting it into HIV-1 virions and countering HIV-1 Vif-targeted degradation. In the current study we performed a series of proof-of-concept experiments for this strategy using as a delivery vehicle of A3G, a derivate of non-pathogenic Nef mutant Nef7 that is capable of being efficiently incorporated into HIV-1 virions. We demonstrate that the Nef7.A3G fusion protein retains several important properties of Nef7; that is, the higher virion incorporation efficiency, no PAK-2 (p21-activated kinase 2) activation, and no CD4 and major histocompatibility complex I down-regulation. Meanwhile, we show that virion incorporated Nef7.A3G possesses the anti-HIV infectivity function of A3G. Moreover, we show that virus-like particle-mediated inverse fusion delivery of Nef7.A3G into HIV-infected CD4+ T lymphocytes leads to potent inhibition of HIV-1 replication in these cells. Taken together, these results indicate that Nef7.A3G can effectively restrict HIV infection and replication by restoring the virion incorporation of A3G, even in the presence of Vif.
Collapse
Affiliation(s)
- Linden A Green
- Department of Microbiology and Immunology Walther Cancer Institute, Indianapolis, Indiana 46206
| | - Ying Liu
- Department of Microbiology and Immunology Walther Cancer Institute, Indianapolis, Indiana 46206
| | - Johnny J He
- Department of Microbiology and Immunology Walther Cancer Institute, Indianapolis, Indiana 46206; Center for AIDS Research Walther Cancer Institute, Indianapolis, Indiana 46206; Walther Oncology Center, Indiana University School of Medicine and Walther Cancer Institute, Indianapolis, Indiana 46206; Walther Cancer Institute, Indianapolis, Indiana 46206.
| |
Collapse
|
29
|
Muratori C, Sistigu A, Ruggiero E, Falchi M, Bacigalupo I, Palladino C, Toschi E, Federico M. Macrophages transmit human immunodeficiency virus type 1 products to CD4-negative cells: involvement of matrix metalloproteinase 9. J Virol 2007; 81:9078-87. [PMID: 17581988 PMCID: PMC1951421 DOI: 10.1128/jvi.00675-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It was previously reported that human immunodeficiency virus type 1 (HIV-1) spreads in CD4 lymphocytes through cell-to-cell transmission. Here we report that HIV-1-infected macrophages, but not lymphocytes, transmit HIV-1 products to CD4-negative cells of either epithelial, neuronal, or endothelial origin in the absence of overt HIV-1 infection. This phenomenon was detectable as early as 1 h after the start of cocultivation and depended on cell-to-cell contact but not on the release of viral particles from donor cells. Transfer of HIV-1 products occurred upon their polarization and colocalization within zones of cell-to-cell contact similar to virological synapses. Neither HIV-1 Env nor Nef expression was required but, interestingly, we found that an HIV-1-dependent increase in matrix metalloproteinase 9 production from donor cells significantly contributed to the cell-to-cell transmission of the viral products. The macrophage-driven transfer of HIV-1 products to diverse CD4-negative cell types may have a significant role in AIDS pathogenesis.
Collapse
Affiliation(s)
- Claudia Muratori
- Division of Pathogenesis of Retroviruses, National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Generation and characterization of a stable cell population releasing fluorescent HIV-1-based Virus Like Particles in an inducible way. BMC Biotechnol 2006; 6:52. [PMID: 17192195 PMCID: PMC1769370 DOI: 10.1186/1472-6750-6-52] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 12/27/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The availability of cell lines releasing fluorescent viral particles can significantly support a variety of investigations, including the study of virus-cell interaction and the screening of antiviral compounds. Regarding HIV-1, the recovery of such biologic reagents represents a very hard challenge due to the intrinsic cytotoxicity of many HIV-1 products. We sought to overcome such a limitation by using a cell line releasing HIV-1 particles in an inducible way, and by exploiting the ability of a HIV-1 Nef mutant to be incorporated in virions at quite high levels. RESULTS Here, we report the isolation and characterization of a HIV-1 packaging cell line, termed 18-4s, able to release valuable amounts of fluorescent HIV-1 based Virus-Like Particles (VLPs) in an inducible way. 18-4s cells were recovered by constitutively expressing the HIV-1 NefG3C mutant fused with the enhanced-green fluorescent protein (NefG3C-GFP) in a previously isolated inducible HIV-1 packaging cell line. The G3C mutation creates a palmitoylation site which results in NefG3C-GFP incorporation into virions greatly exceeding that of the wild type counterpart. Upon induction of 18-4s cells with ponasterone A and sodium butyrate, up to 4 mug/ml of VLPs, which had incorporated about 150 molecules of NefG3C-GFP per viral particle, were released into the culture supernatant. Due to their intrinsic strong fluorescence, the 18-4s VLPs were easily detectable by a novel cytofluorometric-based assay developed here. The treatment of target cells with fluorescent 18-4 VLPs pseudotyped with different glycoprotein receptors resulted in these becoming fluorescent as early as two hours post-challenge. CONCLUSION We created a stable cell line releasing fluorescent HIV-1 based VLPs upon induction useful for several applications including the study of virus-cell interactions and the screening of antiviral compounds.
Collapse
|
31
|
Abstract
The understanding that tumor cells can be recognized and eliminated by the immune system has led to intense interest in the development of cancer vaccines. Viruses are naturally occurring agents that cause human disease but have the potential to prevent disease when attenuated forms or subunits are used as vaccines before exposure. A large number of viruses have been engineered as attenuated vaccines for the expression of tumor antigens, immunomodulatory molecules, and as vehicles for direct destruction of tumor cells or expression of highly specific gene products. This article focuses on the major viruses that are under development as cancer vaccines, including the poxviruses, adenoviruses, adeno-associated viruses, herpesviruses, retroviruses, and lentiviruses. The biology supporting these viruses as vaccines is reviewed and clinical progress is reported.
Collapse
Affiliation(s)
- Andrew Eisenberger
- Division of Surgical Oncology and The Tumor Immunology Laboratory, Department of Surgery, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
32
|
Peretti S, Schiavoni I, Pugliese K, Federico M. Selective elimination of HIV-1-infected cells by Env-directed, HIV-1-based virus-like particles. Virology 2005; 345:115-26. [PMID: 16271741 DOI: 10.1016/j.virol.2005.09.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 09/12/2005] [Accepted: 09/22/2005] [Indexed: 01/11/2023]
Abstract
We recently showed that both replicating and resting cells cultivated with ganciclovir (GCV) were killed when challenged with vesicular stomatitis virus G glycoprotein pseudotyped HIV-1-based virus-like particles (VLPs) carrying the Nef7 (i.e., an HIV-1 Nef mutant incorporating in virions at high levels)/herpes simplex virus-1 thymidine kinase (HSV-TK) fusion product. On this basis, a novel anti-HIV therapeutic approach based on Nef7/TK VLPs expressing X4 or R5 HIV cell receptor complexes has been attempted. We here report that (CD4-CXCR4) and (CD4-CCR5) Nef7-based VLPs efficiently enter cells infected by X4- or R5-tropic HIV-1 strains, respectively. Importantly, the delivery of the VLP-associated Nef7/TK led to cell death upon GCV treatment. Of interest, VLPs were effective also against non-replicating, HIV-1-infected primary human monocyte-derived macrophages. HIV-targeted VLPs represent a promising candidate for the treatment of persistently HIV-1-infected cells that are part of virus reservoirs resistant to HAART therapies.
Collapse
Affiliation(s)
- Silvia Peretti
- AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | | | | | | |
Collapse
|