1
|
Li Y, Wang X, Ye F, Hong X, Chen Y, Huang J, Liu J, Huang X, Liang L, Guo Y, Shi F, Zhu K, Lin L, Huang W. Acid-responsive engineered bacteria with aberrant In-Situ anti-PD-1 expression for post-ablation immunotherapy of hepatocellular carcinoma. Biomed Pharmacother 2025; 186:118046. [PMID: 40209305 DOI: 10.1016/j.biopha.2025.118046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025] Open
Abstract
Local thermal ablation (TA) can not only reduce the tumor burden of hepatocellular carcinoma (HCC) but also stimulate the host anti-tumor immune response, offering a promising avenue for combination with immune checkpoint blockade (ICB). However, tumor recurrence and ICB resistance are associated with residual tumor masses caused by incomplete TA treatment. Thus, adjuvant therapy that can accurately eliminate residual HCC tumors post-TA is expected to improve prognosis. Bacteria-mediated tumor therapy has showed promising potential for tumor-targeting ability and in situ therapeutic proteins expression in the tumor. Here, we presented a kind of nonpathogenic engineered bacteria (named PD-1@EcM) for the potent tumor-targeting and acidic-controlled production of fusion protein comprising a mouse-derived anti-PD-1 single-chain variable fragment (scFv). A single injection of this engineered bacteria demonstrated a significantly tumor inhibition and extended survival in advanced murine primary and metastatic post-TA treatment HCC model. We observed that this engineered bacteria elicited an enhanced antitumour immune response resulting in an extensive priming of activated CD8+ T cells and polarization of tumor-associated macrophage from M2 phenotype to M1 phenotype. Taken together, this work provides a novel strategy to address major challenges in TA therapy and expand the current applications of bacteria-based platforms for precision therapy.
Collapse
Affiliation(s)
- Yue Li
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Xiaobin Wang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Feilong Ye
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Xiaoyang Hong
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Ye Chen
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Jiabai Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Jianxin Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Xinkun Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Licong Liang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Yongjian Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China
| | - Feng Shi
- Department of Interventional Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern medical university, Guangzhou, China
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China.
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China.
| | - Wensou Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Changgangdong Road, Haizhu District, Guangzhou, Guangdong Province 510261, China.
| |
Collapse
|
2
|
Alaizeri ZM, Alhadlaq HA, Aldawood S, Ahamed M. Chemical synthesis, characterization, and anticancer potential of CuO/ZrO 2/TiO 2/RGO nanocomposites against human breast (MCF-7) cancer cells. RSC Adv 2024; 14:37697-37708. [PMID: 39600998 PMCID: PMC11588041 DOI: 10.1039/d4ra07039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Nanocomposites (NCs) have attractive potential applications in gas-sensing, energy, photocatalysis, and biomedicine. In the present work, the fabrication of CuO/ZrO2/TiO2/RGO nanocomposites (NCs) was done via a simple chemical route. Our aim in this work was to synthesis and investigate the selective anticancer activity of TiO2 NPs by supporting CuO, ZrO2, and RGO toward cancer and normal cells. Different analytical techniques, such as X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, photoluminescence (PL) spectroscopy, and dynamic light scattering (DLS), were carefully applied to characterize the physicochemical properties of the produced samples. XRD results showed that the phase and crystal structure of TiO2 NPs were enhanced after adding CuO, ZrO2, and RGO. TEM and SEM images showed that CuO/ZrO2/TiO2/RGO NCs were similarly distributed on RGO sheets with high crystallinity, excellent quality of lattice fringes, and lower agglomeration compared with pure TiO2 NPs. EDX and XPS analysis confirmed the presence of elements Cu, Zr, Ti, O, and C in the obtained CuO/ZrO2/TiO2/RGO NCs. Raman and FTIR spectra verified the presence of functional groups and crystal structures in the produced samples. PL data showed that the optical properties of TiO2 improved after adding CuO, ZrO2, and RGO sheets owing to the reduction in the recombination rate between the electron-hole pair. DLS analysis showed that the prepared CuO/ZrO2/TiO2/RGO NCs had excellent colloidal stability and good distribution in the suspension of the media culture. Anticancer results for CuO/ZrO2/TiO2/RGO NCs exhibited about 2-fold higher toxicity for 24 h and 4-fold for 48 h against breast cancer (MCF-7) cells than pure TiO2 NPs, while their biocompatibility was excellent against HUVEC normal cells. Additionally, the IC50 values of CuO/ZrO2/TiO2/RGO NCs were 44.19 ± 1.2 μg mL-1 and 24.52 ± 0.8 μg mL-1 for 24 h and 48 h, respectively. These results indicate that adding CuO, ZrO2, and RGO plays a crucial role in enhancing the anticancer property of TiO2 NPs. This study suggests that CuO/ZrO2/TiO2/RGO NCs could be applied in cancer therapy applications in in vivo models.
Collapse
Affiliation(s)
- ZabnAllah M Alaizeri
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Hisham A Alhadlaq
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
3
|
Datta D, Sulthana S, Strauss J, Puri A, Priyanka Bandi S, Singh S. Reconnoitring signaling pathways and exploiting innovative approaches tailoring multifaceted therapies for skin cancer. Int J Pharm 2024; 665:124719. [PMID: 39293575 DOI: 10.1016/j.ijpharm.2024.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nowadays, skin cancer is widespread just like a varied malignant cancer which can cause serious health issues. Skin cancer, which encompasses malignant melanoma, basal cell carcinoma, and squamous cell carcinoma, is a prevalent form of cancer among humans. Due to its broad prevalence, financial burden, mortality rates, and cosmetic effects, it is a major public health issue. Skin cancer treatment involves surgery, chemotherapy, and radiation. Recently, personalized treatment in the fields of targeted therapies and precision medicine has been shown to diagnose early detection of every individual tumor by knowing their genetic and molecular characteristics. To target the molecular pathways responsible for tumor growth and reduce the damage to healthy tissue, new targeted therapies have emerged for melanoma, basal cell carcinoma, and squamous cell carcinoma. B-raf serine/threonine kinase (BRAF) and mitogen-activated protein kinase (MEK) inhibitors, immune checkpoint inhibitors, and precision medications have strong response rates to improve patient survival. Targeted therapeutics like nanocarriers have shown promising results by reducing skin irritation and protecting encapsulated therapeutics. These formulations have been shown to improve the transdermal permeability of anticancer drugs. The consideration of employing physical techniques to enhance the permeation of nanocarriers warrants attention to augment the dermal permeation of anticancer agents and facilitate targeted drug delivery within neoplastic cells. Targeted therapies face obstacles like resistance mechanisms and treatment strategy monitoring. Taken together, this review delves into the basic mechanisms of skin cancer, current treatment methods, drug resistance processes, and nano-based targeted techniques for cancer treatment. It will also delineate the challenges and perspectives in pre-clinical and clinical contexts.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Safiya Sulthana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Silva MLS. Lectin-modified drug delivery systems - Recent applications in the oncology field. Int J Pharm 2024; 665:124685. [PMID: 39260750 DOI: 10.1016/j.ijpharm.2024.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Chemotherapy with cytotoxic drugs remains the core treatment for cancer but, due to the difficulty to find general and usable biochemical differences between cancer cells and normal cells, many of these drugs are associated with lack of specificity, resulting in side effects and collateral cytotoxicity that impair patients' adherence to therapy. Novel cancer treatments in which the cytotoxic effect is maximized while adverse effects are reduced can be implemented by developing targeted therapies that exploit the specific features of cancer cells, such as the typical expression of aberrant glycans. Modification of drug delivery systems with lectins is one of the strategies to implement targeted chemotherapies, as lectins are able to specifically recognize and bind to cancer-associated glycans expressed at the surface of cancer cells, guiding the drug treatment towards these cells and not affecting healthy ones. In this paper, recent advances on the development of lectin-modified drug delivery systems for targeted cancer treatments are thoroughly reviewed, with a focus on their properties and performance in diverse applications, as well as their main advantages and limitations. The synthesis and analytical characterization of the cited lectin-modified drug delivery systems is also briefly described. A comparison with free-drug treatments and with antibody-modified drug delivery systems is presented, emphasizing the advantages of lectin-modified drug delivery systems. Main constraints and potential challenges of lectin-modified drug delivery systems, including key difficulties for clinical translation of these systems, and the required developments in this area, are also signalled.
Collapse
Affiliation(s)
- Maria Luísa S Silva
- Centro de Estudos Globais, Universidade Aberta, Rua da Escola Politécnica 147, 1269-001 Lisboa, Portugal.
| |
Collapse
|
5
|
Wu X, Xin Y, Zhang H, Quan L, Ao Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int J Nanomedicine 2024; 19:7415-7471. [PMID: 39071502 PMCID: PMC11278852 DOI: 10.2147/ijn.s460047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/18/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer, as the foremost challenge among human diseases, has plagued medical professionals for many years. While there have been numerous treatment approaches in clinical practice, they often cause additional harm to patients. The emergence of nanotechnology has brought new directions for cancer treatment, which can deliver anticancer drugs specifically to tumor areas. This article first introduces the application scenarios of nanotherapies and treatment strategies of nanomedicine. Then, the noteworthy characteristics exhibited by biopolymer materials were described, which make biopolymers stand out in polymeric nanomedicine delivery. Next, we focus on summarizing the state-of-art studies of five categories of proteins (Albumin, Gelatin, Silk fibroin, Zein, Ferritin), nine varieties of polysaccharides (Chitosan, Starch, Hyaluronic acid, Dextran, cellulose, Fucoidan, Carrageenan, Lignin, Pectin) and liposomes in the field of anticancer drug delivery. Finally, we also provide a summary of the advantages and limitations of these biopolymers, discuss the prevailing impediments to their application, and discuss in detail the prospective research directions. This review not only helps readers understand the current development status of nano anticancer drug delivery systems based on biopolymers, but also is helpful for readers to understand the properties of various biopolymers and find suitable solutions in this field through comparative reading.
Collapse
Affiliation(s)
- Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
6
|
Yang X, Nie W, Wang C, Fang Z, Shang L. Microfluidic-based multifunctional microspheres for enhanced oral co-delivery of probiotics and postbiotics. Biomaterials 2024; 308:122564. [PMID: 38581763 DOI: 10.1016/j.biomaterials.2024.122564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Probiotic-based therapies have shown great potential in the prevention and treatment of many diseases by positively regulating intestinal flora homeostasis. However, the efficacy of oral probiotics is severely limited due to the loss of bioactivity, short intestinal retention time, and insufficient therapeutic effect. Here, based on droplet microfluidics, we developed a hydrogel microsphere with colonic targeting and mucoadhesive capabilities as a multifunctional delivery platform, which can be used for co-delivery of probiotics (Escherichia coli Nissle 1917, EcN) and auxiliary molecules (indole-3-propionic acid, IPA), achieving synergistic therapeutic effects. In vivo studies shown that the integrated multifunctional microspheres can significantly reduce intestinal inflammation, repair intestinal barrier function, enhance probiotic colonization in the intestine, and modulate disordered intestinal flora, demonstrating enhanced therapeutic effects in a mouse model of colitis. This work reveals that microfluidic-based smart droplet microspheres can provide a versatile platform for advanced microbial therapies.
Collapse
Affiliation(s)
- Xinyuan Yang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Weimin Nie
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chong Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhonglin Fang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Liu BN, Gao XL, Piao Y. Mapping the intellectual structure and emerging trends for the application of nanomaterials in gastric cancer: A bibliometric study. World J Gastrointest Oncol 2024; 16:2181-2199. [PMID: 38764848 PMCID: PMC11099444 DOI: 10.4251/wjgo.v16.i5.2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/11/2024] [Accepted: 03/21/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Recent reviews have outlined the main nanomaterials used in relation to gastrointestinal tumors and described the basic properties of these materials. However, the research hotspots and trends in the application of nanomaterials in gastric cancer (GC) remain obscure. AIM To demonstrate the knowledge structure and evolutionary trends of research into the application of nanomaterials in GC. METHODS Publications related to the application of nanomaterials in GC were retrieved from the Web of Science Core Collection for this systematic review and bibliometric study. VOSviewer and CiteSpace were used for bibliometric and visualization analyses. RESULTS From 2000 to 2022, the application of nanomaterials in GC developed rapidly. The keyword co-occurrence analysis showed that the related research topics were divided into three clusters: (1) The application of nanomaterials in GC treatment; (2) The application and toxicity of nanomaterials in GC diagnosis; and (3) The effects of nanomaterials on the biological behavior of GC cells. Complexes, silver nanoparticles, and green synthesis are the latest high-frequency keywords that represent promising future research directions. CONCLUSION The application of nanomaterials in GC diagnosis and treatment and the mechanisms of their effects on GC cells have been major themes in this field over the past 23 years.
Collapse
Affiliation(s)
- Bo-Na Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang 110015, Liaoning Province, China
| | - Xiao-Li Gao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang 110015, Liaoning Province, China
| | - Ying Piao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang 110015, Liaoning Province, China
| |
Collapse
|
8
|
Chen W, Lu Y, Sun X, Leng J, Lin S, He X, Zhang C, Yuan C. A multifunctional CaCO 3 bioreactor coated with coordination polymers enhances cancer immunotherapy. J Control Release 2024; 368:780-796. [PMID: 38499091 DOI: 10.1016/j.jconrel.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Designing effective nanomedicines to induce durable anti-tumor immunity represents a promising strategy for improving moderate immune stimulation. In this study, we engineered a multifunctional nanoreactor (named SCGFP NPs) for remodeling the tumor microenvironment (TME) to improve the therapeutic efficacy of immunotherapy. The core of SCGFP NPs consists of CaCO3 loaded with SN38, prepared by the gas diffusion method, and coated with a significant amount of gallic acid-Fe3+-PEG coordination polymer on the surface. In the acidic TME, SCGFP NPs explosively release exogenous Ca2+ and SN38. The SN38-induced intracellular Ca2+ accumulation and exogenous Ca2+ synergistically trigger immunogenic cell death (ICD) through sustained Ca2+ overload. The ablation of tumors with high-intensity photothermal therapy (PTT) by near-infrared (NIR) irradiation of GA-Fe3+ induces tumor cell necrosis, further enhancing ICD activation. Additionally, SN38 upregulates PD-L1, amplifying tumor responsiveness to immune checkpoint inhibitors (ICIs). This study indicates that SCGFP NPs, through the integration of a trimodal therapeutic strategy, hold enormous potential for various types of tumor immunotherapy through distinct mechanisms or synergistic effects.
Collapse
Affiliation(s)
- Weiguo Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yishuang Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xiaoya Sun
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Jiafu Leng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Shuai Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Chunfeng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Chunsu Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
9
|
Shen X, Pan D, Gong Q, Gu Z, Luo K. Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives. Bioact Mater 2024; 32:445-472. [PMID: 37965242 PMCID: PMC10641097 DOI: 10.1016/j.bioactmat.2023.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Effective tumor treatment depends on optimizing drug penetration and accumulation in tumor tissue while minimizing systemic toxicity. Nanomedicine has emerged as a key solution that addresses the rapid clearance of free drugs, but achieving deep drug penetration into solid tumors remains elusive. This review discusses various strategies to enhance drug penetration, including manipulation of the tumor microenvironment, exploitation of both external and internal stimuli, pioneering nanocarrier surface engineering, and development of innovative tactics for active tumor penetration. One outstanding strategy is organelle-affinitive transfer, which exploits the unique properties of specific tumor cell organelles and heralds a potentially transformative approach to active transcellular transfer for deep tumor penetration. Rigorous models are essential to evaluate the efficacy of these strategies. The patient-derived xenograft (PDX) model is gaining traction as a bridge between laboratory discovery and clinical application. However, the journey from bench to bedside for nanomedicines is fraught with challenges. Future efforts should prioritize deepening our understanding of nanoparticle-tumor interactions, re-evaluating the EPR effect, and exploring novel nanoparticle transport mechanisms.
Collapse
Affiliation(s)
- Xiaoding Shen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
10
|
Chen Z, Liao Z, Liu M, Lin F, Chen S, Wang G, Zheng Z, Liu B, Li C, Wang Z, Chen T, Huang H, Liao Q, Cui W. Nucleus Pulposus-Targeting Nanocarriers Facilitate Mirna-Based Therapeutics for Intervertebral Disc Degeneration. Adv Healthc Mater 2023; 12:e2301337. [PMID: 37625164 DOI: 10.1002/adhm.202301337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/23/2023] [Indexed: 08/27/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common cause of low back pain. Understanding its molecular mechanisms is the basis for developing specific treatment. To demonstrate that miR-22-3p is critical in the regulation of IDD, miRNA microarray analyses are conducted in conjunction with in vivo and in vitro experiments. The miR-22-3p knockout (KO) mice show a marked decrease in the histological scores. Bioinformatic analysis reveals that miR-22-3p plays a mechanistic role in the development of IDD by targeting SIRT1, which in turn activates the JAK1/STAT3 signaling pathway. This is confirmed by a luciferase reporter assay and western blot analysis. Therapeutically, the delivery of miR-22-3p inhibitors and mimics through the synthesized nanoparticles in the IDD model alleviates and aggravates IDD, respectively. The nanocarriers enhance transportation of miR-22-3p to nucleus pulposus cells, thus enabling the in vivo inhibition of miR-22-3p for therapeutic purposes and consequently promoting the development of miRNA-specific drugs for IDD.
Collapse
Affiliation(s)
- Zhonghui Chen
- Orthopaedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350000, China
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000, China
| | - Zhong Liao
- Orthopaedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350000, China
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Ming Liu
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Fengfei Lin
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Shunyou Chen
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Geng Wang
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Zhong Zheng
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Boling Liu
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Chaoxiong Li
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Zheqiang Wang
- Department of Sport's Medicine, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, 350000, China
| | - Tianlai Chen
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Hongzhe Huang
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Qi Liao
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000, China
| | - Weiliang Cui
- Orthopaedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350000, China
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| |
Collapse
|
11
|
Dai J, Chen C, Yin M, Li H, Li W, Zhang Z, Wang Q, Du Z, Xu X, Wang Y. Interactions between gold nanoparticles with different morphologies and human serum albumin. Front Chem 2023; 11:1273388. [PMID: 37927561 PMCID: PMC10620604 DOI: 10.3389/fchem.2023.1273388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: Three different shapes of gold nanoparticles were synthesized in this experiment. At the same time, studies compared their effects with human serum albumin (HSA). Methods: Gold nanoparticles (AuNPs) with three different morphologies, such as, nanospheres (AuNSs), nanorods (AuNRs), and nanoflowers (AuNFs) were synthesized via a seeding method and their characteristic absorption peaks were detected using ultraviolet-visible (UV-vis) absorption spectroscopy, Telectron microscopy (TEM), Dynamic Light Scattering (DLS) and Zeta potential measurements, circular dichroism (CD), and Fourier transform infrared spectroscopy (FTIR) to study the interactions between them and HSA. By comparing the thermodynamic parameters and quenching mechanism of the three materials, similarities and differences were determined in their interactions with HSA. Results: The results showed that with an increase in the concentration of the AuNPs with the three different morphologies, the UV-vis absorption peak intensity of the mixed solution increased, but its fluorescence intensity was quenched. This indicates that the three types of AuNPs interact with HSA, and that the interactions between them represent a static quenching process, which is consistent with the conclusions derived from three-dimensional fluorescence experiments. Through variable-temperature fluorescence experiments, the binding constants, number of binding sites, and thermodynamic parameters of the interactions between the three types of AuNPs and HSA were determined. The Gibbs free energy changes were <0, indicating that the reactions of the three types of AuNPs with HSA are spontaneous, resulting in associated matter. Binding constant measurements indicated that the strongest binding took place between the AuNFs and HSA. In addition, the results of fluorescence, CD spectroscopy, and FTIR showed that three different shapes of AuNPs can induce conformational changes in HSA and reduce the α-helix content. Among them, AuNFs have the smallest ability to induce conformational changes. Discussion: According to studies, AuNFs interact more favorably with HSA. This can be used as a reference for the administration of drugs containing AuNPs.
Collapse
Affiliation(s)
- Jiahui Dai
- Clinical Medical College, Jining Medical University, Jining, Shandong, China
| | - Chao Chen
- Clinical Medical College, Jining Medical University, Jining, Shandong, China
| | - Man Yin
- Clinical Medical College, Jining Medical University, Jining, Shandong, China
| | - Huixing Li
- Program for Scientific Research Innovation Team in Precision Medicine of Gynecologic Oncology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Wenbo Li
- Laboratory of New Antitumor Drug Molecular Design and Synthesis, College of Basic Medical, Jining Medical University, Jining, Shandong, China
| | - Zhaowei Zhang
- Laboratory of New Antitumor Drug Molecular Design and Synthesis, College of Basic Medical, Jining Medical University, Jining, Shandong, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongyu Du
- Laboratory of New Antitumor Drug Molecular Design and Synthesis, College of Basic Medical, Jining Medical University, Jining, Shandong, China
| | - Xiangyu Xu
- Laboratory of New Antitumor Drug Molecular Design and Synthesis, College of Basic Medical, Jining Medical University, Jining, Shandong, China
| | - Yunfei Wang
- Program for Scientific Research Innovation Team in Precision Medicine of Gynecologic Oncology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
12
|
Abstract
Primary brain cancer or brain cancer is the overgrowth of abnormal or malignant cells in the brain or its nearby tissues that form unwanted masses called brain tumors. People with malignant brain tumors suffer a lot, and the expected life span of the patients after diagnosis is often only around 14 months, even with the most vigorous therapies. The blood-brain barrier (BBB) is the main barrier in the body that restricts the entry of potential chemotherapeutic agents into the brain. The chances of treatment failure or low therapeutic effects are some significant drawbacks of conventional treatment methods. However, recent advancements in nanotechnology have generated hope in cancer treatment. Nanotechnology has shown a vital role starting from the early detection, diagnosis, and treatment of cancer. These tiny nanomaterials have great potential to deliver drugs across the BBB. Beyond just drug delivery, nanomaterials can be simulated to generate fluorescence to detect tumors. The current Review discusses in detail the challenges of brain cancer treatment and the application of nanotechnology to overcome those challenges. The success of chemotherapeutic treatment or the surgical removal of tumors requires proper imaging. Nanomaterials can provide imaging and therapeutic benefits for cancer. The application of nanomaterials in the diagnosis and treatment of brain cancer is discussed in detail by reviewing past studies.
Collapse
Affiliation(s)
- Yogita Ale
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun, Uttarakhand 248007, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
13
|
Yang Y, Cheng N, Luo Q, Shao N, Ma X, Chen J, Luo L, Xiao Z. How Nanotherapeutic Platforms Play a Key Role in Glioma? A Comprehensive Review of Literature. Int J Nanomedicine 2023; 18:3663-3694. [PMID: 37427368 PMCID: PMC10327925 DOI: 10.2147/ijn.s414736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Glioblastoma (GBM), a highly aggressive form of brain cancer, is considered one of the deadliest cancers, and even with the most advanced medical treatments, most affected patients have a poor prognosis. However, recent advances in nanotechnology offer promising avenues for the development of versatile therapeutic and diagnostic nanoplatforms that can deliver drugs to brain tumor sites through the blood-brain barrier (BBB). Despite these breakthroughs, the use of nanoplatforms in GBM therapy has been a subject of great controversy due to concerns over the biosafety of these nanoplatforms. In recent years, biomimetic nanoplatforms have gained unprecedented attention in the biomedical field. With advantages such as extended circulation times, and improved immune evasion and active targeting compared to conventional nanosystems, bionanoparticles have shown great potential for use in biomedical applications. In this prospective article, we endeavor to comprehensively review the application of bionanomaterials in the treatment of glioma, focusing on the rational design of multifunctional nanoplatforms to facilitate BBB infiltration, promote efficient accumulation in the tumor, enable precise tumor imaging, and achieve remarkable tumor suppression. Furthermore, we discuss the challenges and future trends in this field. Through careful design and optimization of nanoplatforms, researchers are paving the way toward safer and more effective therapies for GBM patients. The development of biomimetic nanoplatform applications for glioma therapy is a promising avenue for precision medicine, which could ultimately improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Yongqing Yang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Nianlan Cheng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Qiao Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xiaocong Ma
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
14
|
López-Goerne T, Padilla-Godínez FJ. Catalytic Nanomedicine as a Therapeutic Approach to Brain Tumors: Main Hypotheses for Mechanisms of Action. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091541. [PMID: 37177086 PMCID: PMC10180296 DOI: 10.3390/nano13091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary malignant tumor of the brain. Although there are currently a wide variety of therapeutic approaches focused on tumor elimination, such as radiotherapy, chemotherapy, and tumor field therapy, among others, the main approach involves surgery to remove the GBM. However, since tumor growth occurs in normal brain tissue, complete removal is impossible, and patients end up requiring additional treatments after surgery. In this line, Catalytic Nanomedicine has achieved important advances in developing bionanocatalysts, brain-tissue-biocompatible catalytic nanostructures capable of destabilizing the genetic material of malignant cells, causing their apoptosis. Previous work has demonstrated the efficacy of bionanocatalysts and their selectivity for cancer cells without affecting surrounding healthy tissue cells. The present review provides a detailed description of these nanoparticles and their potential mechanisms of action as antineoplastic agents, covering the most recent research and hypotheses from their incorporation into the tumor bed, internalization via endocytosis, specific chemotaxis by mitochondrial and nuclear genetic material, and activation of programmed cell death. In addition, a case report of a patient with GBM treated with the bionanocatalysts following tumor removal surgery is described. Finally, the gaps in knowledge that must be bridged before the clinical translation of these compounds with such a promising future are detailed.
Collapse
Affiliation(s)
- Tessy López-Goerne
- Nanotechnology and Nanomedicine Laboratory, Department of Health Care, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico
| | - Francisco J Padilla-Godínez
- Nanotechnology and Nanomedicine Laboratory, Department of Health Care, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico
| |
Collapse
|
15
|
He Q, Zheng R, Ma J, Zhao L, Shi Y, Qiu J. Responsive manganese-based nanoplatform amplifying cGAS-STING activation for immunotherapy. Biomater Res 2023; 27:29. [PMID: 37061706 PMCID: PMC10105937 DOI: 10.1186/s40824-023-00374-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/03/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) signaling pathway has attracted great attention for its ability to up-regulate innate immune response and thus enhance cancer immunotherapy. However, many STING agonists limit the further advancement of immunotherapy due to weak tumor responsiveness or low activation efficiency. The responsive and effective activation of cGAS-STING signaling in tumors is a highly challenging process. METHODS In this study, a manganese-based nanoplatform (MPCZ NPs) was constructed that could responsively and efficiently generate more manganese ions (Mn2+) and reactive oxygen species (ROS) to activate cGAS-STING signaling pathway. Briefly, manganese dioxide (MnO2) was loaded with zinc protoporphyrin IX (ZPP) molecule and coated by polydopamine (PDA) embedded with NH4HCO3 to obtain MPCZ NPs. Additionally, MPCZ NPs were evaluated in vitro and in vivo for their antitumor effects by methyl thiazolyl tetrazolium (MTT) assay and TUNEL assays, respectively. RESULTS In this system, tumor responsiveness was achieved by exogenous (laser irradiation) and endogenous (high levels GSH) stimulation, which triggered the collapse or degradation of PDA and MnO2. Moreover, the release of Mn2+ augmented the cGAS-STING signaling pathway and enhanced the conversion of hydrogen peroxide (H2O2) to hydroxyl radical (·OH) under NIR laser irradiation. Furthermore, the release of ZPP and the elimination of GSH by MPCZ NPs inhibited HO-1 activity and prevented ROS consumption, respectively. CONCLUSIONS This adopted open source and reduce expenditure strategy to effectively generate more ROS and Mn2+ to responsively activate cGAS-STING signaling pathway, providing a new strategy for improving immunotherapy.
Collapse
Affiliation(s)
- Qingbin He
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271000, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Runxiao Zheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Junchi Ma
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271000, China
| | - Luyang Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yafang Shi
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Jianfeng Qiu
- School of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271016, China.
| |
Collapse
|
16
|
Nirmala MJ, Kizhuveetil U, Johnson A, G B, Nagarajan R, Muthuvijayan V. Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Adv 2023; 13:8606-8629. [PMID: 36926304 PMCID: PMC10013677 DOI: 10.1039/d2ra07863e] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer is known as the most dangerous disease in the world in terms of mortality and lack of effective treatment. Research on cancer treatment is still active and of great social importance. Since 1930, chemotherapeutics have been used to treat cancer. However, such conventional treatments are associated with pain, side effects, and a lack of targeting. Nanomedicines are an emerging alternative due to their targeting, bioavailability, and low toxicity. Nanoparticles target cancer cells via active and passive mechanisms. Since FDA approval for Doxil®, several nano-therapeutics have been developed, and a few have received approval for use in cancer treatment. Along with liposomes, solid lipid nanoparticles, polymeric nanoparticles, and nanoemulsions, even newer techniques involving extracellular vesicles (EVs) and thermal nanomaterials are now being researched and implemented in practice. This review highlights the evolution and current status of cancer therapy, with a focus on clinical/pre-clinical nanomedicine cancer studies. Insight is also provided into the prospects in this regard.
Collapse
Affiliation(s)
- M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Uma Kizhuveetil
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Athira Johnson
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Balaji G
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Ramamurthy Nagarajan
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Vignesh Muthuvijayan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600 036 India
| |
Collapse
|
17
|
Angolkar M, Paramshetti S, Halagali P, Jain V, Patil AB, Somanna P. Nanotechnological advancements in the brain tumor therapy: a novel approach. Ther Deliv 2023; 13:531-557. [PMID: 36802944 DOI: 10.4155/tde-2022-0035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Nanotechnological advancements over the past few years have led to the development of newer treatment strategies in brain cancer therapy which leads to the establishment of nano oncology. Nanostructures with high specificity, are best suitable to penetrate the blood-brain barrier (BBB). Their desired physicochemical properties, such as small sizes, shape, higher surface area to volume ratio, distinctive structural features, and the possibility to attach various substances on their surface transform them into potential transport carriers able to cross various cellular and tissue barriers, including the BBB. The review emphasizes nanotechnology-based treatment strategies for the exploration of brain tumors and highlights the current progress of different nanomaterials for the effective delivery of drugs for brain tumor therapy.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Praveen Halagali
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Amit B Patil
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Preethi Somanna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| |
Collapse
|
18
|
Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, Feng G, Tang S, Li Z, Zhang Y, Chen S, Yang C, Law WC, Dong B, Xu G, Yong KT. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci 2022; 10:6862-6892. [PMID: 36222758 DOI: 10.1039/d2bm01001a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy has shown great potential in the treatment of many diseases by downregulating the expression of certain genes. The development of gene vectors as a vehicle for gene therapy has greatly facilitated the widespread clinical application of nucleic acid materials (DNA, mRNA, siRNA, and miRNA). Currently, both viral and non-viral vectors are used as delivery systems of nucleic acid materials for gene therapy. However, viral vector-based gene therapy has several limitations, including immunogenicity and carcinogenesis caused by the exogenous viral vectors. To address these issues, non-viral nanocarrier-based gene therapy has been explored for superior performance with enhanced gene stability, high treatment efficiency, improved tumor-targeting, and better biocompatibility. In this review, we discuss various non-viral vector-mediated gene therapy approaches using multifunctional biodegradable or non-biodegradable nanocarriers, including polymer-based nanoparticles, lipid-based nanoparticles, carbon nanotubes, gold nanoparticles (AuNPs), quantum dots (QDs), silica nanoparticles, metal-based nanoparticles and two-dimensional nanocarriers. Various strategies to construct non-viral nanocarriers based on their delivery efficiency of targeted genes will be introduced. Subsequently, we discuss the cellular uptake pathways of non-viral nanocarriers. In addition, multifunctional gene therapy based on non-viral nanocarriers is summarized, in which the gene therapy can be combined with other treatments, such as photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy and chemotherapy. We also provide a comprehensive discussion of the biological toxicity and safety of non-viral vector-based gene therapy. Finally, the present limitations and challenges of non-viral nanocarriers for gene therapy in future clinical research are discussed, to promote wider clinical applications of non-viral vector-based gene therapy.
Collapse
Affiliation(s)
- Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhenxu Yang
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shikang Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shuo Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Yibin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shilin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
19
|
Wu L, Zhang Y, Wang Z, Zhang Y, Zou J, Qiu L. Aptamer-Based Cancer Cell Analysis and Treatment. ChemistryOpen 2022; 11:e202200141. [PMID: 36264016 PMCID: PMC9583543 DOI: 10.1002/open.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Aptamers are a class of single-stranded DNA or RNA oligonucleotides that can exclusively bind to various targets with high affinity and selectivity. Regarded as "chemical antibodies", aptamers possess several intrinsic advantages, including easy synthesis, convenient modification, high programmability, and good biocompatibility. In recent decades, many studies have demonstrated the superiority of aptamers as molecular tools for various biological applications, particularly in the area of cancer theranostics. In this review, we focus on recent progress in developing aptamer-based strategies for the precise analysis and treatment of cancer cells.
Collapse
Affiliation(s)
- Limei Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering College of Biology, Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangsha, Hunan410082P. R. China
| | - Yutong Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering College of Biology, Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangsha, Hunan410082P. R. China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering College of Biology, Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangsha, Hunan410082P. R. China
| | - Yue Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering College of Biology, Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangsha, Hunan410082P. R. China
| | - Jianmei Zou
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and BioengineeringGuilin University of TechnologyGuilin, Guangxi541004P. R. China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering College of Biology, Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangsha, Hunan410082P. R. China
| |
Collapse
|
20
|
Feng Z, Wang Y, Xu H, Guo Y, Xia W, Zhao C, Zhao X, Wu J. Recent advances in bacterial therapeutics based on sense and response. Acta Pharm Sin B 2022; 13:1014-1027. [PMID: 36970195 PMCID: PMC10031265 DOI: 10.1016/j.apsb.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/26/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Intelligent drug delivery is a promising strategy for cancer therapies. In recent years, with the rapid development of synthetic biology, some properties of bacteria, such as gene operability, excellent tumor colonization ability, and host-independent structure, make them ideal intelligent drug carriers and have attracted extensive attention. By implanting condition-responsive elements or gene circuits into bacteria, they can synthesize or release drugs by sensing stimuli. Therefore, compared with traditional drug delivery, the usage of bacteria for drug loading has better targeting ability and controllability, and can cope with the complex delivery environment of the body to achieve the intelligent delivery of drugs. This review mainly introduces the development of bacterial-based drug delivery carriers, including mechanisms of bacterial targeting to tumor colonization, gene deletions or mutations, environment-responsive elements, and gene circuits. Meanwhile, we summarize the challenges and prospects faced by bacteria in clinical research, and hope to provide ideas for clinical translation.
Collapse
Affiliation(s)
- Zhuo Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Yuchen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Haiheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Yunfei Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Wen Xia
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Chenxuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaozhi Zhao
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China
- Corresponding authors. Tel.: +025 83592629.
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
- Corresponding authors. Tel.: +025 83592629.
| |
Collapse
|
21
|
Takakura Y, Takahashi Y. Strategies for persistent retention of macromolecules and nanoparticles in the blood circulation. J Control Release 2022; 350:486-493. [PMID: 36029894 DOI: 10.1016/j.jconrel.2022.05.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
The enhanced permeability and retention (EPR) effect has been the gold standard in developing drug delivery systems for passive tumor targeting. Although the importance of this concept remains unchanged, some controversies have arisen. In this review, various strategies for tumor targeting using macromolecules and nanoparticles based on the EPR effect are discussed from the viewpoint of pharmacokinetics. Overall, such strategies seek to retain therapeutic material in the blood circulation, which is a key factor for successful targeting. Strategies using macromolecules, including antibody-drug conjugates, serum albumin-based delivery systems, PEGylated recombinant proteins, and stealth liposomes as well as nanoparticle-based strategies such as those based on lipid nanoparticles, and polymeric micelles, have been discussed. The feasibility of small extracellular vesicles, a new class of nanosized delivery carriers, is also discussed.
Collapse
Affiliation(s)
- Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
22
|
Ma P, Lai X, Luo Z, Chen Y, Loh XJ, Ye E, Li Z, Wu C, Wu YL. Recent advances in mechanical force-responsive drug delivery systems. NANOSCALE ADVANCES 2022; 4:3462-3478. [PMID: 36134346 PMCID: PMC9400598 DOI: 10.1039/d2na00420h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Mechanical force responsive drug delivery systems (in terms of mechanical force induced chemical bond breakage or physical structure destabilization) have been recently explored to exhibit a controllable pharmaceutical release behaviour at a molecular level. In comparison with chemical or biological stimulus triggers, mechanical force is not only an external but also an internal stimulus which is closely related to the physiological status of patients. However, although this mechanical force stimulus might be one of the most promising and feasible sources to achieve on-demand pharmaceutical release, current research in this field is still limited. Hence, this tutorial review aims to comprehensively evaluate the recent advances in mechanical force-responsive drug delivery systems based on different types of mechanical force, in terms of direct stimulation by compressive, tensile, and shear force, or indirect/remote stimulation by ultrasound and a magnetic field. Furthermore, the exciting developments and current challenges in this field will also be discussed to provide a blueprint for potential clinical translational research of mechanical force-responsive drug delivery systems.
Collapse
Affiliation(s)
- Panqin Ma
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Xiyu Lai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 138634 Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 138634 Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 138634 Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) Agency for Science, Technology, and Research (ASTAR) Singapore 138634 Singapore
- Department of Materials Science and Engineering, National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| |
Collapse
|
23
|
Khursheed R, Dua K, Vishwas S, Gulati M, Jha NK, Aldhafeeri GM, Alanazi FG, Goh BH, Gupta G, Paudel KR, Hansbro PM, Chellappan DK, Singh SK. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Pharmacotherapy 2022; 150:112951. [PMID: 35447546 DOI: 10.1016/j.biopha.2022.112951] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
The current advancements in nanotechnology are as an outcome of the development of engineered nanoparticles. Various metallic nanoparticles have been extensively explored for various biomedical applications. They attract lot of attention in biomedical field due to their significant inert nature, and nanoscale structures, with size similar to many biological molecules. Their intrinsic characteristics which include electronic, optical, physicochemical and, surface plasmon resonance, that can be changed by altering certain particle characteristics such as size, shape, environment, aspect ratio, ease of synthesis and functionalization properties have led to numerous applications in various fields of biomedicine. These include targeted drug delivery, sensing, photothermal and photodynamic therapy, imaging, as well as the modulation of two or three applications. The current article also discusses about the various properties of metallic nanoparticles and their applications in cancer imaging and therapeutics. The associated bottlenecks related to their clinical translation are also discussed.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | | | - Fayez Ghadeer Alanazi
- Lemon Pharmacies, Eastern region, Kingdom of Saudi Arabia, Hafr Al Batin 39957, Saudi Arabia
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
24
|
Zhu X, Su T, Wang S, Zhou H, Shi W. New Advances in Nano-Drug Delivery Systems: Helicobacter pylori and Gastric Cancer. Front Oncol 2022; 12:834934. [PMID: 35619913 PMCID: PMC9127958 DOI: 10.3389/fonc.2022.834934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/29/2022] [Indexed: 01/07/2023] Open
Abstract
With the development of materials science and biomedicine, the application of nanomaterials in the medical field is further promoted. In the process of the diagnosis and treatment of diseases, a variety of drugs need to be used. It is an ideal state to make these drugs arrive at a specific location at a specific time and release at a specific speed, which can improve the bioavailability of drugs and reduce the adverse effects of drugs on normal tissues. Traditional drug delivery methods such as tablets, capsules, syrups, and ointments have certain limitations. The emergence of a new nano-drug delivery system further improves the accuracy of drug delivery and the efficacy of drugs. It is well known that the development of the cancer of the stomach is the most serious consequence for the infection of Helicobacter pylori. For the patients who are suffering from gastric cancer, the treatments are mainly surgery, chemotherapy, targeted and immune therapy, and other comprehensive treatments. Although great progress has been made, the diagnosis and prognosis of gastric cancer are still poor with patients usually diagnosed with cancer at an advanced stage. Current treatments are of limited benefits for patients, resulting in a poor 5-year survival rate. Nanomaterials may play a critical role in early diagnosis. A nano-drug delivery system can significantly improve the chemotherapy, targeted therapy, and immunotherapy of advanced gastric cancer, reduce the side effects of the original treatment plan and provide patients with better benefits. It is a promising treatment for gastric cancer. This article introduces the application of nanomaterials in the diagnosis and treatment of H. pylori and gastric cancer.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Su
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shouhua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiqing Zhou
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weibin Shi
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
López CL, Brempelis KJ, Matthaei JF, Montgomery KS, Srinivasan S, Roy D, Huang F, Kreuser SA, Gardell JL, Blumenthal I, Chiefari J, Jensen MC, Crane CA, Stayton PS. Arming Immune Cell Therapeutics with Polymeric Prodrugs. Adv Healthc Mater 2022; 11:e2101944. [PMID: 34889072 PMCID: PMC9847575 DOI: 10.1002/adhm.202101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/16/2021] [Indexed: 01/21/2023]
Abstract
Engineered immune cells are an exciting therapeutic modality, which survey and attack tumors. Backpacking strategies exploit cell targeting capabilities for delivery of drugs to combat tumors and their immune-suppressive environments. Here, a new platform for arming cell therapeutics through dual receptor and polymeric prodrug engineering is developed. Macrophage and T cell therapeutics are engineered to express a bioorthogonal single chain variable fragment receptor. The receptor binds a fluorescein ligand that directs cell loading with ligand-tagged polymeric prodrugs, termed "drugamers." The fluorescein ligand facilitates stable binding of drugamer to engineered macrophages over 10 days with 80% surface retention. Drugamers also incorporate prodrug monomers of the phosphoinositide-3-kinase inhibitor, PI-103. The extended release of PI-103 from the drugamer sustains antiproliferative activity against a glioblastoma cell line compared to the parent drug. The versatility and modularity of this cell arming system is demonstrated by loading T cells with a second fluorescein-drugamer. This drugamer incorporates a small molecule estrogen analog, CMP8, which stabilizes a degron-tagged transgene to provide temporal regulation of protein activity in engineered T cells. These results demonstrate that this bioorthogonal receptor and drugamer system can be used to arm multiple immune cell classes with both antitumor and transgene-activating small molecule prodrugs.
Collapse
Affiliation(s)
- Ciana L López
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA,Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Katherine J Brempelis
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - James F Matthaei
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Kate S Montgomery
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA
| | - Selvi Srinivasan
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA
| | - Debashish Roy
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA
| | - Fei Huang
- CSIRO Manufacturing, Bag 10, Bayview Avenue, Clayton, VIC. 3168, Australia
| | - Shannon A Kreuser
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Jennifer L Gardell
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Ian Blumenthal
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA,Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - John Chiefari
- CSIRO Manufacturing, Bag 10, Bayview Avenue, Clayton, VIC. 3168, Australia
| | - Michael C Jensen
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA,Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, WA 98101, USA,Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Courtney A Crane
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA,Department of Neurological Surgery, University of Washington, Seattle WA 98195, USA
| | - Patrick S Stayton
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA
| |
Collapse
|
26
|
Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management. Int J Mol Sci 2022; 23:ijms23052856. [PMID: 35269998 PMCID: PMC8911433 DOI: 10.3390/ijms23052856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the most common types of cancer among women globally. It is caused by mutations in the estrogen/progesterone receptors and conventional treatment methods are commonly utilized. About 70–80 percent of individuals with the early-stage non-metastatic disease may be cured. Conventional treatment is far less than the optimal ratio, as demonstrated through the high mortality rate of women with this cancer. However, conventional treatment methods like surgery, radiotherapy, and chemotherapy are not as effective as expected and lead to concerns about low bioavailability, low cellular uptake, emerging resistance, and adverse toxicities. A nanomedicine-based approach is a promising alternative for breast cancer treatment. The present era is witnessing rapid advancements in nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. This paper focuses on nanomedicine-based therapeutic interventions that are becoming more widely accepted for improving treatment effectiveness and reducing undesired side effects in breast cancer patients. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review.
Collapse
|
27
|
Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev 2022; 182:114115. [PMID: 35077821 DOI: 10.1016/j.addr.2022.114115] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
CNS tumors remain among the deadliest forms of cancer, resisting conventional and new treatment approaches, with mortality rates staying practically unchanged over the past 30 years. One of the primary hurdles for treating these cancers is delivering drugs to the brain tumor site in therapeutic concentration, evading the blood-brain (tumor) barrier (BBB/BBTB). Supramolecular nanomedicines (NMs) are increasingly demonstrating noteworthy prospects for addressing these challenges utilizing their unique characteristics, such as improving the bioavailability of the payloadsviacontrolled pharmacokinetics and pharmacodynamics, BBB/BBTB crossing functions, superior distribution in the brain tumor site, and tumor-specific drug activation profiles. Here, we review NM-based brain tumor targeting approaches to demonstrate their applicability and translation potential from different perspectives. To this end, we provide a general overview of brain tumor and their treatments, the incidence of the BBB and BBTB, and their role on NM targeting, as well as the potential of NMs for promoting superior therapeutic effects. Additionally, we discuss critical issues of NMs and their clinical trials, aiming to bolster the potential clinical applications of NMs in treating these life-threatening diseases.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
28
|
Ye M, Gao Y, Liang M, Qiu W, Ma X, Xu J, Hu J, Xue P, Kang Y, Xu Z. Microenvironment-responsive chemotherapeutic nanogels for enhancing tumor therapy via DNA damage and glutathione consumption. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214309] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Gonzalez-Valdivieso J, Garcia-Sampedro A, Hall AR, Girotti A, Arias FJ, Pereira SP, Acedo P. Smart Nanoparticles as Advanced Anti-Akt Kinase Delivery Systems for Pancreatic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55790-55805. [PMID: 34788541 DOI: 10.1021/acsami.1c14592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pancreatic cancer is one of the deadliest cancers partly due to late diagnosis, poor drug delivery to the target site, and acquired resistance to therapy. Therefore, more effective therapies are urgently needed to improve the outcome of patients. In this work, we have tested self-assembling genetically engineered polymeric nanoparticles formed by elastin-like recombinamers (ELRs), carrying a small peptide inhibitor of the protein kinase Akt, in both PANC-1 and patient-derived pancreatic cancer cells (PDX models). Nanoparticle cell uptake was measured by flow cytometry, and subcellular localization was determined by confocal microscopy, which showed a lysosomal localization of these nanoparticles. Furthermore, metabolic activity and cell viability were significantly reduced after incubation with nanoparticles carrying the Akt inhibitor in a time- and dose-dependent fashion. Self-assembling 73 ± 3.2 nm size nanoparticles inhibited phosphorylation and consequent activation of Akt protein, blocked the NF-κB signaling pathway, and triggered caspase 3-mediated apoptosis. Furthermore, in vivo assays showed that ELR-based nanoparticles were suitable devices for drug delivery purposes with long circulating time and minimum toxicity. Hence, the use of these smart nanoparticles could lead to the development of more effective treatment options for pancreatic cancer based on the inhibition of Akt.
Collapse
Affiliation(s)
- Juan Gonzalez-Valdivieso
- Smart Biodevices for NanoMed Group, University of Valladolid, Paseo Belén, Valladolid 47011, Spain
| | - Andres Garcia-Sampedro
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, United Kingdom
| | - Andrew R Hall
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, United Kingdom
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, United Kingdom
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo Belén, Valladolid 47011, Spain
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, Paseo Belén, Valladolid 47011, Spain
| | - Stephen P Pereira
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, United Kingdom
| | - Pilar Acedo
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, United Kingdom
| |
Collapse
|
31
|
Alotaibi BS, Buabeid M, Ibrahim NA, Kharaba ZJ, Ijaz M, Noreen S, Murtaza G. Potential of Nanocarrier-Based Drug Delivery Systems for Brain Targeting: A Current Review of Literature. Int J Nanomedicine 2021; 16:7517-7533. [PMID: 34795481 PMCID: PMC8593899 DOI: 10.2147/ijn.s333657] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
The advent of nanotechnologies such as nanocarriers and nanotherapeutics has changed the treatment strategy and developed a more efficacious novel drug delivery system. Various drug delivery systems are focused on drug-targeting of brain cells. However, the manifestation of the brain barrier is the main hurdle for the effective delivery of chemotherapeutics, ultimately causing treatment failure of various drugs. To solve this problem, various nanocarrier-based drug delivery system has been developed for brain targeting. This review outlines nanocarrier-based composites for different brain diseases and highlights nanocarriers for drug targeting towards brain cells. It also summarizes the latest developments in nanocarrier-based delivery systems containing liposomal systems, dendrimers, polymeric micelles, polymeric nanocarriers, quantum dots (QDs), and gold nanoparticles. Besides, the optimal properties of nanocarriers and therapeutic implications for brain targeting have been extensively studied. Finally, the potential applications and research opportunities for nanocarriers in brain targeting are discussed.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Manal Buabeid
- Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Nihal Abdalla Ibrahim
- Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Zelal Jaber Kharaba
- Department of Clinical Sciences, College of Pharmacy, Al-Ain University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Munazza Ijaz
- Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| |
Collapse
|
32
|
Hueso M, Mallén A, Suñé-Pou M, Aran JM, Suñé-Negre JM, Navarro E. ncRNAs in Therapeutics: Challenges and Limitations in Nucleic Acid-Based Drug Delivery. Int J Mol Sci 2021; 22:ijms222111596. [PMID: 34769025 PMCID: PMC8584088 DOI: 10.3390/ijms222111596] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are emerging therapeutic tools but there are barriers to their translation to clinical practice. Key issues concern the specificity of the targets, the delivery of the molecules, and their stability, while avoiding “on-target” and “off-target” side effects. In this “ncRNA in therapeutics” issue, we collect several studies of the differential expression of ncRNAs in cardiovascular diseases, bone metabolism-related disorders, neurology, and oncology, and their potential to be used as biomarkers or therapeutic targets. Moreover, we review recent advances in the use of antisense ncRNAs in targeted therapies with a particular emphasis on their basic biological mechanisms, their translational potential, and future trends.
Collapse
Affiliation(s)
- Miguel Hueso
- Department of Nephrology, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, 08907 L’Hospitalet de Llobregat, Spain;
- Correspondence: (M.H.); (E.N.); Tel.: +34-932607602 (M.H.); Fax: +34-932607603 (M.H.)
| | - Adrián Mallén
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, 08907 L’Hospitalet de Llobregat, Spain;
| | - Marc Suñé-Pou
- Pharmacy and Pharmaceutical Technology and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (M.S.-P.); (J.M.S.-N.)
| | - Josep M. Aran
- Immunoinflammatory Processes and Gene Therapeutics Lab, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - Josep M. Suñé-Negre
- Pharmacy and Pharmaceutical Technology and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (M.S.-P.); (J.M.S.-N.)
| | - Estanislao Navarro
- Independent Researcher, 08950 Barcelona, Spain
- Correspondence: (M.H.); (E.N.); Tel.: +34-932607602 (M.H.); Fax: +34-932607603 (M.H.)
| |
Collapse
|
33
|
Paraiso WKD, Garcia-Chica J, Ariza X, Zagmutt S, Fukushima S, Garcia J, Mochida Y, Serra D, Herrero L, Kinoh H, Casals N, Kataoka K, Rodríguez-Rodríguez R, Quader S. Poly-ion complex micelles effectively deliver CoA-conjugated CPT1A inhibitors to modulate lipid metabolism in brain cells. Biomater Sci 2021; 9:7076-7091. [PMID: 34397074 DOI: 10.1039/d1bm00689d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carnitine palmitoyltransferase 1A (CPT1A) is a central player in lipid metabolism, catalyzing the first step to fatty acid oxidation (FAO). Inhibiting CPT1A, especially in the brain, can have several pharmacological benefits, such as in treating obesity and brain cancer. C75-CoA is a strong competitive inhibitor of CPT1A. However, due to its negatively charged nature, it has low cellular permeability. Herein, we report the use of poly-ion complex (PIC) micelles to deliver the specific CPT1A inhibitors (±)-, (+)-, and (-)-C75-CoA into U87MG glioma cells and GT1-7 neurons. PIC micelles were formed through charge-neutralization of the cargo with the cationic side chain of PEG-poly{N-[N'-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-PAsp(DET)), forming particles with 55 to 65 nm diameter. Upon short-term incubation with cells, the micelle-encapsulated CPT1A inhibitors resulted in up to 5-fold reduction of ATP synthesis compared to the free drug, without an apparent decline in cell viability. Micelle treatment showed a discernible decrease in 14C-palmitate oxidation into CO2 and acid-soluble metabolites, confirming that the substantial lowering of ATP production has resulted from FAO inhibition. Micelle treatment also diminished IC50 by 2 to 4-fold over the free drug-treated U87MG after long-term incubation. To measure the cellular uptake of these CoA-adduct loaded PIC micelles, we synthesized a fluorescent CoA derivative and prepared Fluor-CoA micelles which showed efficient internalization in the cell lines, both in 2D and 3D culture models, especially in neurons where uptake reached up to 3-fold over the free dye. Our results starkly demonstrate that the PIC micelles are a promising delivery platform for anionic inhibitors of CPT1A in glioma cells and neurons, laying the groundwork for future research or clinical applications.
Collapse
Affiliation(s)
- West Kristian D Paraiso
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.
| | - Jesús Garcia-Chica
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, E-08195 Spain. and Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, E-08028 Spain
| | - Xavier Ariza
- Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, E-08028 Spain and Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, E-28029 Spain
| | - Sebastián Zagmutt
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, E-08195 Spain.
| | - Shigeto Fukushima
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.
| | - Jordi Garcia
- Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, E-08028 Spain and Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, E-28029 Spain
| | - Yuki Mochida
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, E-08028 Spain and Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, E-28029 Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, E-08028 Spain and Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, E-28029 Spain
| | - Hiroaki Kinoh
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, E-08195 Spain. and Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, E-28029 Spain
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, E-08195 Spain.
| | - Sabina Quader
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.
| |
Collapse
|
34
|
Titania Nanosheet Generates Peroxynitrite-Dependent S-Nitrosylation and Enhances p53 Function in Lung Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13081233. [PMID: 34452194 PMCID: PMC8401232 DOI: 10.3390/pharmaceutics13081233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Metal nanomaterials can enhance the efficacy of current cancer therapies. Here, we show that Ti0.8O2 nanosheets cause cytotoxicity in several lung cancer cells but not in normal cells. The nanosheet-treated cells showed certain apoptosis characteristics. Protein analysis further indicated the activation of the p53-dependent death mechanism. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses revealed the cellular uptake of the nanosheets and the induction of cell morphological change. The nanosheets also exhibited a substantial apoptosis effect on drug-resistant metastatic primary lung cancer cells, and it was found that the potency of the nanosheets was dramatically higher than standard drugs. Ti0.8O2 nanosheets induce apoptosis through a molecular mechanism involving peroxynitrite (ONOO−) generation. As peroxynitrite is known to be a potent inducer of S-nitrosylation, we further found that the nanosheets mediated the S-nitrosylation of p53 at C182, resulting in higher protein-protein complex stability, and this was likely to induce the surrounding residues, located in the interface region, to bind more strongly to each other. Molecular dynamics analysis revealed that S-nitrosylation stabilized the p53 dimer with a ΔGbindresidue of <−1.5 kcal/mol. These results provide novel insight on the apoptosis induction effect of the nanosheets via a molecular mechanism involving S-nitrosylation of the p53 protein, emphasizing the mechanism of action of nanomaterials for cancer therapy.
Collapse
|
35
|
Nandgude T, Pagar R. Plausible role of chitosan in drug and gene delivery against resistant breast cancer cells. Carbohydr Res 2021; 506:108357. [PMID: 34146935 DOI: 10.1016/j.carres.2021.108357] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023]
Abstract
Breast cancer is the highest global spread of invasive cancer in women. While significant progress has been made in breast cancer, diagnostic and therapeutic effective prevention and treatment options remain scarce. Concerning chitosan-based chemotherapeutic therapies, the studies reported cell migration resistance, improved drug absorption, membrane interaction and permeability, immune stimulating behavior, and extended in-vitro drug release. However, chitosan has been practically restricted mostly to unmodified forms. Targeted distribution is ensured by chitosan-based ligand conjugated carrier systems in conjunction with active moieties such as DNA, RNA, proteins, and therapeutic agents. The purpose of this context is to emphasize the efficient drug delivery to breast cancer cell lines using chitosan. Chitosan also exhibited excellent capabilities in gene packaging. For the interaction of bioactive molecules and the regulation of the drug release profile, chemical modification of chitosan is beneficial. This article discusses the various chitosan-based ligand conjugated carrier systems. From the studies reviewed it can be concluded that chitosan derivatives are promising materials for targeted and non-viral gene delivery in treatment of breast cancer.
Collapse
Affiliation(s)
- Tanaji Nandgude
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Science & Research, Pimpri, Pune, 411018, Maharashtra, India.
| | - Roshani Pagar
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Science & Research, Pimpri, Pune, 411018, Maharashtra, India.
| |
Collapse
|
36
|
Wang Q, Wang Y, Liu S, Sha X, Song X, Dai Y, Zhao M, Cai L, Xu K, Li J. Theranostic nanoplatform to target macrophages enables the inhibition of atherosclerosis progression and fluorescence imaging of plaque in ApoE(-/-) mice. J Nanobiotechnology 2021; 19:222. [PMID: 34320994 PMCID: PMC8317354 DOI: 10.1186/s12951-021-00962-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/12/2021] [Indexed: 12/03/2022] Open
Abstract
Background Rupture of atherosclerotic plaque can cause acute malignant heart and cerebrovascular events, such as acute coronary heart disease, stroke and so on, which seriously threaten the safety of human life and property. Therefore, the early diagnosis and inhibition of atherosclerotic plaque progress still be a vital task. Results In this study, we presented the development of composite mesoporous silica nanoparticle (Ru(bpy)3@SiO2-mSiO2, CMSN)-based nanomedicines (NMs) (Ru(bpy)3@SiO2-mSiO2@SRT1720@AntiCD36, CMSN@SRT@Anti) for accurate diagnosis and treatment of atherosclerosis (AS). In vitro cell experiments showed that both RAW264.7 and oxidized low density lipoprotein (ox-LDL)-stimulated RAW264.7 cells could significantly uptake CMSN@SRT@Anti. Conversely, little fluorescence signal could be observed in CMSN@SRT group, showing the excellent targeting ability of CMSN@SRT@Anti to Class II scavenger receptor, CD36 on macrophage. Additionally, such fluorescence signal was significantly stronger in ox-LDL-stimulated RAW264.7 cells, which might benefit from the upregulated expression of CD36 on macrophages after ox-LDL treatment. For another, compared with free SRT1720, CMSN@SRT@Anti had a better and more significant effect on the inhibition of macrophage foaming process, which indicated that drug-carrying mesoporous silicon with targeting ability could enhance the efficacy of SRT1720. Animal experimental results showed that after the abdominal injection of CMSN@SRT@Anti, the aortic lesions of ApoE-/-mice could be observed with obvious and persistent fluorescence signals. After 4 weeks post-treatment, the serum total cholesterol, aortic plaque status and area were significantly improved in the mouse, and the effect was better than that in the free SRT1720 group or the CMSN@SRT group. Conclusions The designed CMSN@SRT@Anti with excellent biocompatibility, high-performance and superior atherosclerosis-targeting ability has great potential for accurate identification and targeted therapy of atherosclerotic diseases. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00962-w.
Collapse
Affiliation(s)
- Qi Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Yong Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Siwen Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Xuan Sha
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Xiaoxi Song
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Yue Dai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Mingming Zhao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Lulu Cai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China. .,Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China. .,Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
37
|
Zhu Z, Zheng Z, Liu J. Comparison of COVID-19 and Lung Cancer via Reactive Oxygen Species Signaling. Front Oncol 2021; 11:708263. [PMID: 34277453 PMCID: PMC8283805 DOI: 10.3389/fonc.2021.708263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
COVID-19 and lung cancer are two severe pulmonary diseases that cause millions of deaths globally each year. Understanding the dysregulated signaling pathways between them can benefit treating the related patients. Recent studies suggest the critical role of reactive oxygen species (ROS) in both diseases, indicating an interplay between them. Here we reviewed references showing that ROS and ROS-associated signaling pathways, specifically via NRF2, HIF-1, and Nf-κB pathways, may bridge mutual impact between COVID-19 and lung cancer. As expected, typical ROS-associated inflammation pathways (HIF-1 and Nf-κB) are activated in both diseases. The activation of both pathways in immune cells leads to an overloading immune response and exacerbates inflammation in COVID-19. In lung cancer, HIF-1 activation facilitates immune escape, while Nf-κB activation in T cells suppresses tumor growth. However, the altered NRF2 pathway show opposite trends between them, NRF2 pathways exert immunosuppressive effects in both diseases, as it represses the immune response in COVID-19 patients while facilitates the immune escape of tumor cells. Furthermore, we summarized the therapeutic targets (e.g., phytochemicals) on these ROS pathways. In sum, our review focus on the understanding of ROS Signaling in COVID-19 and lung cancer, showing that modulating ROS signaling pathways may alleviate the potentially mutual impacts between COVID-19 and lung cancer patients.
Collapse
Affiliation(s)
- Zilan Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Ziyi Zheng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| |
Collapse
|
38
|
Akbari A, Sedaghat M, Heshmati J, Tabaeian SP, Dehghani S, Pizarro AB, Rostami Z, Agah S. Molecular mechanisms underlying curcumin-mediated microRNA regulation in carcinogenesis; Focused on gastrointestinal cancers. Biomed Pharmacother 2021; 141:111849. [PMID: 34214729 DOI: 10.1016/j.biopha.2021.111849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin is a bioactive ingredient found in the Rhizomes of Curcuma longa. Curcumin is well known for its chemopreventive and anti-cancer properties. Recent findings have demonstrated several pharmacological and biological impacts of curcumin, related to the control and the management of gastrointestinal cancers. Mechanistically, curcumin exerts its biological impacts via antioxidant and anti-inflammatory effects through the interaction with various transcription factors and signaling molecules. Moreover, epigenetic modulators such as microRNAs (miRNAs) have been revealed as novel targets of curcumin. Curcumin was discovered to regulate the expression of numerous pathogenic miRNAs in gastric, colorectal, esophageal and liver cancers. The present systematic review was performed to identify miRNAs that are modulated by curcumin in gastrointestinal cancers.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Meghdad Sedaghat
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Javad Heshmati
- Songhor Healthcare Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sadegh Dehghani
- Radiation Sciences Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Rostami
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Zhu L, Shi Y, Xiong Y, Ba L, Li Q, Qiu M, Zou Z, Peng G. Emerging self-assembling peptide nanomaterial for anti-cancer therapy. J Biomater Appl 2021; 36:882-901. [PMID: 34180306 DOI: 10.1177/08853282211027882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently it is mainly focused on anti-tumor comprehensive treatments like finding target tumor cells or activating immune cells to inhibit tumor recurrence and metastasis. At present, chemotherapy and molecular-targeted drugs can inhibit tumor cell growth to a certain extent. However, multi-drug resistance and immune escape often make it difficult for new drugs to achieve expected effects. Peptide hydrogel nanoparticles is a new type of biological material with functional peptide chains as the core and self-assembling peptide (SAP) as the framework. It has a variety of significant biological functions, including effective local inflammation suppression and non-drug-resistant cell killing. Besides, it can induce immune activation more persistently in an adjuvant independent manner when compared with simple peptides. Thus, SAP nanomaterial has great potential in regulating cell physiological functions, drug delivery and sensitization, vaccine design and immunotherapy. Not only that, it is also a potential way to focus on some specific proteins and cells through peptides, which has already been examined in previous research. A full understanding of the function and application of SAP nanoparticles can provide a simple and practical strategy for the development of anti-tumor drugs and vaccine design, which contributes to the historical transition of peptide nanohydrogels from bench to bedside and brings as much survival benefits as possible to cancer patients.
Collapse
Affiliation(s)
- Lisheng Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ba
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuting Li
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjun Qiu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenwei Zou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Moin A, Rizvi SMD, Hussain T, Gowda DV, Subaiea GM, Elsayed MMA, Ansari M, Alanazi AS, Yadav H. Current Status of Brain Tumor in the Kingdom of Saudi Arabia and Application of Nanobiotechnology for Its Treatment: A Comprehensive Review. Life (Basel) 2021; 11:421. [PMID: 34063122 PMCID: PMC8148129 DOI: 10.3390/life11050421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Brain tumors are the most challenging of all tumors and accounts for about 3% of all cancer allied deaths. The aim of the present review is to examine the brain tumor prevalence and treatment modalities available in the Kingdom of Saudi Arabia. It also provides a comprehensive analysis of the application of various nanotechnology-based products for brain cancer treatments along with their prospective future advancements. METHODS A literature review was performed to identify and summarize the current status of brain cancer in Saudi Arabia and the scope of nanobiotechnology in its treatment. RESULTS Depending upon the study population data analysis, gliomas, astrocytoma, meningioma, and metastatic cancer have a higher incidence rate in Saudi Arabia than in other countries, and are mostly treated in accordance with conventional treatment modalities for brain cancer. Due to the poor prognosis of cancer, it has an average survival rate of 2 years. Conventional therapy includes surgery, radiotherapy, chemotherapy, and a combination thereof, but these do not control the disease's recurrence. Among the various nanomaterials discussed, liposomes and polymeric nanoformulations have demonstrated encouraging outcomes for facilitated brain cancer treatment. CONCLUSIONS Nanomaterials possess the capacity to overcome the shortcomings of conventional therapies. Polymer-based nanomaterials have shown encouraging outcomes against brain cancer when amalgamated with other nano-based therapies. Nonetheless, nanomaterials could be devised that possess minimal toxicity towards normal cells or that specifically target tumor cells. In addition, rigorous clinical investigations are warranted to prepare them as an efficient and safe modality for brain cancer therapy.
Collapse
Affiliation(s)
- Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (M.M.A.E.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (M.M.A.E.)
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| | - D. V. Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, Mysuru 570015, India;
| | - Gehad M. Subaiea
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| | - Mustafa M. A. Elsayed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (M.M.A.E.)
| | - Mukhtar Ansari
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (M.A.); (A.S.A.)
| | - Abulrahman Sattam Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (M.A.); (A.S.A.)
| | - Hemant Yadav
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| |
Collapse
|
41
|
Thompson M, Scholz C. Highly Branched Polymers Based on Poly(amino acid)s for Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1119. [PMID: 33925961 PMCID: PMC8145254 DOI: 10.3390/nano11051119] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 01/16/2023]
Abstract
Polymers consisting of amino acid building blocks continue to receive consideration for biomedical applications. Since poly(amino acid)s are built from natural amino acids, the same building blocks proteins are made of, they are biocompatible, biodegradable and their degradation products are metabolizable. Some amino acids display a unique asymmetrical AB2 structure, which facilitates their ability to form branched structures. This review compares the three forms of highly branched polymeric structures: structurally highly organized dendrimers, dendrigrafts and the less organized, but readily synthesizable hyperbranched polymers. Their syntheses are reviewed and compared, methods of synthesis modulations are considered and variations on their traditional syntheses are shown. The potential use of highly branched polymers in the realm of biomedical applications is discussed, specifically their applications as delivery vehicles for genes and drugs and their use as antiviral compounds. Of the twenty essential amino acids, L-lysine, L-glutamic acid, and L-aspartic acid are asymmetrical AB2 molecules, but the bulk of the research into highly branched poly(amino acid)s has focused on the polycationic poly(L-lysine) with a lesser extent on poly(L-glutamic acid). Hence, the majority of potential applications lies in delivery systems for nucleic acids and this review examines and compares how these three types of highly branched polymers function as non-viral gene delivery vectors. When considering drug delivery systems, the small size of these highly branched polymers is advantageous for the delivery of inhalable drug. Even though highly branched polymers, in particular dendrimers, have been studied for more than 40 years for the delivery of genes and drugs, they have not translated in large scale into the clinic except for promising antiviral applications that have been commercialized.
Collapse
Affiliation(s)
| | - Carmen Scholz
- Department of Chemistry, University of Alabama in Huntsville, 301 Sparkman Dr., Huntsville, AL 35899, USA;
| |
Collapse
|
42
|
Pan C, Li J, Hou W, Lin S, Wang L, Pang Y, Wang Y, Liu J. Polymerization-Mediated Multifunctionalization of Living Cells for Enhanced Cell-Based Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007379. [PMID: 33629757 DOI: 10.1002/adma.202007379] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Surface decoration of living cells by exogenous substances offers a unique tool for understanding and tuning cell behaviors, which plays a critical role in cell-based therapy. Here, a facile yet versatile approach for decorating individual living cells with multimodal coatings is reported. By simply co-depositing with dopamine under a cytocompatible condition, various functional small molecules and polymers can be encoded to form a multifunctional coating on a cell's surface. The accessibility and versatility of this method to decorate diverse cells, including bacteria, fungi, and mammalian cells is demonstrated. With the ability to tune surface functions, ligand co-deposited gut microbiota is prepared as oral therapeutics for targeted treatment of colitis. Given the dual cytoprotective and targeting effects of the coating, decorated cells show more than 30-times higher bioavailability in the gut and fourfold higher accumulation in the inflamed tissue in comparison with those of uncoated bacteria. Multimodal therapeutic cells further validate strikingly increased treatment efficacy over clinical aminosalicylic acid in colitis mice. Decorating with multifunctional coatings proposes a robust platform for developing multimodal cells for enhanced cell-based therapy.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Juanjuan Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Weiliang Hou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yan Pang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jinyao Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
43
|
Chen X, Xie B, Huang L, Wan J, Wang Y, Shi X, Qiao Y, Song H, Wang H. Quantitative self-assembly of pure drug cocktails as injectable nanomedicines for synergistic drug delivery and cancer therapy. Theranostics 2021; 11:5713-5727. [PMID: 33897877 PMCID: PMC8058735 DOI: 10.7150/thno.55250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
New strategies to fabricate nanomedicines with high translational capacity are urgently desired. Herein, a new class of self-assembled drug cocktails that addresses the multiple challenges of manufacturing clinically useful cancer nanomedicines was reported. Methods: With the aid of a molecular targeted agent, dasatinib (DAS), cytotoxic cabazitaxel (CTX) forms nanoassemblies (CD NAs) through one-pot process, with nearly quantitative entrapment efficiency and ultrahigh drug loading of up to 100%. Results: Surprisingly, self-assembled CD NAs show aggregation-induced emission, enabling particle trafficking and drug release in living cells. In preclinical models of human cancer, including a patient-derived melanoma xenograft, CD NAs demonstrated striking therapeutic synergy to produce a durable recession in tumor growth. Impressively, CD NAs alleviated the toxicity of the parent CTX agent and showed negligible immunotoxicity in animals. Conclusions: Overall, this approach does not require any carrier matrices, offering a scalable and cost-effective methodology to create a new generation of nanomedicines for the safe and efficient delivery of drug combinations.
Collapse
|
44
|
Saluja V, Mishra Y, Mishra V, Giri N, Nayak P. Dendrimers based cancer nanotheranostics: An overview. Int J Pharm 2021; 600:120485. [PMID: 33744447 DOI: 10.1016/j.ijpharm.2021.120485] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Cancer is a known deadliest disease that requires a judicious diagnostic, targeting, and treatment strategy for an early prognosis and selective therapy. The major pitfalls of the conventional approach are non-specificity in targeting, failure to precisely monitor therapy outcome, and cancer progression leading to malignancies. The unique physicochemical properties offered by nanotechnology derived nanocarriers have the potential to radically change the landscape of cancer diagnosis and therapeutic management. An integrative approach of utilizing both diagnostic and therapeutic functionality using a nanocarrier is termed as nanotheranostic. The nanotheranostics platform is designed in such a way that overcomes various biological barriers, efficiently targets the payload to the desired locus, and simultaneously supports planning, monitoring, and verification of treatment delivery to demonstrate an enhanced therapeutic efficacy. Thus, a nanotheranostic platform could potentially assist in drug targeting, image-guided focal therapy, drug release and distribution monitoring, predictionof treatment response, and patient stratification. A class of highly branched nanocarriers known as dendrimers is recognized as an advanced nanotheranostic platform that has the potential to revolutionize the oncology arena by its unique and exciting features. A dendrimer is a well-defined three-dimensional globular chemical architecture with a high level of monodispersity, amenability of precise size control, and surface functionalization. All the dendrimer properties exhibit a reproducible pharmacokinetic behavior that could ensure the desired biodistribution and efficacy. Dendrimers are thus being exploited as a nanotheranostic platform embodying a diverse class of therapeutic, imaging, and targeting moieties for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Vikrant Saluja
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana, Punjab, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yachana Mishra
- Department of Zoology, Shri Shakti Degree College, Sankhahari, Ghatampur, Kanpur Nagar, Uttar Pradesh, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Namita Giri
- College of Pharmacy, Ferris State University, Big Rapids, MI 49307, USA
| | - Pallavi Nayak
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana, Punjab, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
45
|
Gonzalez-Valdivieso J, Girotti A, Schneider J, Arias FJ. Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. Int J Pharm 2021; 599:120438. [PMID: 33662472 DOI: 10.1016/j.ijpharm.2021.120438] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 01/03/2023]
Abstract
Cancer has reached pandemic dimensions in the whole world. Although current medicine offers multiple treatment options against cancer, novel therapeutic strategies are needed due to the low specificity of chemotherapeutic drugs, undesired side effects and the presence of different incurable types of cancer. Among these new strategies, nanomedicine arises as an encouraging approach towards personalized medicine with high potential for present and future cancer patients. Therefore, nanomedicine aims to develop novel tools with wide potential in cancer treatment, imaging or even theranostic purposes. Even though numerous preclinical studies have been published with successful preliminary results, promising nanosystems have to face multiple obstacles before adoption in clinical practice as safe options for patients with cancer. In this MiniReview, we provide a short overview on the latest advances in current nanomedicine approaches, challenges and promising strategies towards more accurate cancer treatment.
Collapse
Affiliation(s)
- Juan Gonzalez-Valdivieso
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain.
| | - Alessandra Girotti
- BIOFORGE Research Group (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain
| | - Jose Schneider
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; Department of Obstetrics & Gynecology, University of Valladolid, School of Medicine, 47005 Valladolid, Spain
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain
| |
Collapse
|
46
|
Sanati S, Taghavi S, Abnous K, Taghdisi SM, Babaei M, Ramezani M, Alibolandi M. Fabrication of anionic dextran-coated micelles for aptamer targeted delivery of camptothecin and survivin-shRNA to colon adenocarcinoma. Gene Ther 2021; 29:55-68. [PMID: 33633357 DOI: 10.1038/s41434-021-00234-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/08/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
In this study, we synthesized PLA-PEI micelles which was co-loaded with an anticancer drug, camptothecin (CPT), and survivin-shRNA (sur-shRNA). The hydrophobic CPT was encapsulated in the core of the polymeric micelles while sur-shRNA was adsorbed on the shell of the cationic micelles. Then, the positively-charged sur-shRNA-loaded micelles were coated with poly carboxylic acid dextran (PCAD) to form PLA/PEI-CPT-SUR-DEX. To selectively target the system to colon cancer cells, AS1411 aptamer was covalently attached to the surface of the PCAD-coated nanoparticles (PLA/PEI-CPT-SUR-DEX-APT). PLA/PEI-CPT-SUR-DEX-APT enhanced cellular uptake through receptor-mediated endocytosis followed by increased CPT accumulation, downregulation of survivin, and thereby 38% cell apoptosis. In C26 tumor-bearing mice models, after administered intravenously, PLA/PEI-CPT-SUR-DEX-APT and PLA/PEI-CPT-SUR-DEX formulations resulted in a significant inhibition of the tumor growth with tumor inhibition rate of 93% and 87%, respectively. Therefore, PLA/PEI-CPT-SUR-DEX-APT could be a versatile co-delivery vehicle for promising therapy of colorectal cancer.
Collapse
Affiliation(s)
- Setareh Sanati
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Taghavi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Babaei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
47
|
Hu M, Zhang J, Kong L, Yu Y, Hu Q, Yang T, Wang Y, Tu K, Qiao Q, Qin X, Zhang Z. Immunogenic Hybrid Nanovesicles of Liposomes and Tumor-Derived Nanovesicles for Cancer Immunochemotherapy. ACS NANO 2021; 15:3123-3138. [PMID: 33470095 DOI: 10.1021/acsnano.0c09681] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exploring a rational delivery system of integrating chemotherapy with immunotherapy to broaden benefits of cancer immunochemotherapy is still under challenge. Herein, we developed doxorubicin (DOX)-loaded biomimetic hybrid nanovesicles (DOX@LINV) via fusing artificial liposomes (LIPs) with tumor-derived nanovesicles (TNVs) for combinational immunochemotherapy. DOX@LINV with a homologous targeting ability could deliver DOX to tumor tissue and elicit an effective immunogenic cell death response to improve the immunogenicity of a tumor. Meanwhile, the preserved tumor antigens and endogenous danger signals in DOX@LINV activated dendritic cells and induced a subsequent antigen-specific T cell immune response. DOX@LINV displayed a specific antitumor effect on murine melanoma, Lewis lung cancer, and 4T1 breast cancer based on the infiltration of effector immune cells and improvement of the immunosuppressive tumor microenvironment. Furthermore, the combination of DOX@LINV with immune checkpoint inhibitor amplified antitumor efficacy with 33.3% of the mice being tumor-free. Therefore, the hybrid LINV is a promising drug delivery platform with a boosted antitumor immune response for effective immunochemotherapy.
Collapse
Affiliation(s)
- Mei Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiao Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yulin Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Qiao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianya Qin
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
48
|
Elter JK, Quader S, Eichhorn J, Gottschaldt M, Kataoka K, Schacher FH. Core-Cross-linked Fluorescent Worm-Like Micelles for Glucose-Mediated Drug Delivery. Biomacromolecules 2021; 22:1458-1471. [PMID: 33555175 DOI: 10.1021/acs.biomac.0c01661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We herein report the fabrication of core-crosslinked, fluorescent, and surface-functionalized worm-like block copolymer micelles as drug delivery vehicles. The polyether-based diblock terpolymer [allyl-poly(ethylene oxide)-block-poly(2-ethylhexyl glycidyl ether-co-furfuryl glycidyl ether)] was synthesized via anionic ring opening polymerization, and self-assembly in water as a selective solvent led to the formation of long filomicelles. Subsequent cross-linking was realized using hydrophobic bismaleimides as well as a designed fluorescent cross-linker for thermally induced Diels-Alder reactions with the furfuryl units incorporated in the hydrophobic block of the diblock terpolymer. As a fluorescent cross-linker, we synthesized and incorporated a cyanine 5-based bismaleimide in the cross-linking process, which can be used for fluorescence tracking of the particles. Furthermore, we covalently attached glucose to the allyl end groups present on the surface of the micelles to investigate active glucose-mediated transport into suitable cell lines. First studies in 2D as well as 3D cell culture models suggest a glucose-dependent uptake of the particles into cells despite their unusually large size compared to other nanoparticle systems used in drug delivery.
Collapse
Affiliation(s)
- Johanna K Elter
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, Jena D-07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena D-07743, Germany
| | - Sabina Quader
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Jonas Eichhorn
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, Jena D-07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena D-07743, Germany
| | - Michael Gottschaldt
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, Jena D-07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena D-07743, Germany
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.,Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, Jena D-07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena D-07743, Germany
| |
Collapse
|
49
|
Application of new multicomponent nanosystems for overcoming doxorubicin resistance in breast cancer therapy. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-020-01653-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Rai A, Noor S, Ahmad SI, Alajmi MF, Hussain A, Abbas H, Hasan GM. Recent Advances and Implication of Bioengineered Nanomaterials in Cancer Theranostics. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:91. [PMID: 33494239 PMCID: PMC7909769 DOI: 10.3390/medicina57020091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Cancer is one of the most common causes of death and affects millions of lives every year. In addition to non-infectious carcinogens, infectious agents contribute significantly to increased incidence of several cancers. Several therapeutic techniques have been used for the treatment of such cancers. Recently, nanotechnology has emerged to advance the diagnosis, imaging, and therapeutics of various cancer types. Nanomaterials have multiple advantages over other materials due to their small size and high surface area, which allow retention and controlled drug release to improve the anti-cancer property. Most cancer therapies have been known to damage healthy cells due to poor specificity, which can be avoided by using nanosized particles. Nanomaterials can be combined with various types of biomaterials to make it less toxic and improve its biocompatibility. Based on these properties, several nanomaterials have been developed which possess excellent anti-cancer efficacy potential and improved diagnosis. This review presents the latest update on novel nanomaterials used to improve the diagnostic and therapeutic of pathogen-associated and non-pathogenic cancers. We further highlighted mechanistic insights into their mode of action, improved features, and limitations.
Collapse
Affiliation(s)
- Ayushi Rai
- Department of Nanoscience, Central University of Gujarat, Sector 29, Gandhinagar 382030, India;
| | - Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Syed Ishraque Ahmad
- Department of Chemistry, Zakir Husain Delhi College, University of Delhi, New Delhi 110002, India;
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.)
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.)
| | - Hashim Abbas
- Department of Medicine, Nottingham University Hospitals, NHS Trust, Nottingham NG7 2UH, UK;
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|