1
|
Liu X, Xiong W, Ye M, Lu T, Yuan K, Chang S, Han Y, Wang Y, Lu L, Bao Y. Non-coding RNAs expression in SARS-CoV-2 infection: pathogenesis, clinical significance, and therapeutic targets. Signal Transduct Target Ther 2023; 8:441. [PMID: 38057315 PMCID: PMC10700414 DOI: 10.1038/s41392-023-01669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been looming globally for three years, yet the diagnostic and treatment methods for COVID-19 are still undergoing extensive exploration, which holds paramount importance in mitigating future epidemics. Host non-coding RNAs (ncRNAs) display aberrations in the context of COVID-19. Specifically, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) exhibit a close association with viral infection and disease progression. In this comprehensive review, an overview was presented of the expression profiles of host ncRNAs following SARS-CoV-2 invasion and of the potential functions in COVID-19 development, encompassing viral invasion, replication, immune response, and multiorgan deficits which include respiratory system, cardiac system, central nervous system, peripheral nervous system as well as long COVID. Furthermore, we provide an overview of several promising host ncRNA biomarkers for diverse clinical scenarios related to COVID-19, such as stratification biomarkers, prognostic biomarkers, and predictive biomarkers for treatment response. In addition, we also discuss the therapeutic potential of ncRNAs for COVID-19, presenting ncRNA-based strategies to facilitate the development of novel treatments. Through an in-depth analysis of the interplay between ncRNA and COVID-19 combined with our bioinformatic analysis, we hope to offer valuable insights into the stratification, prognosis, and treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Wandi Xiong
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, 570228, Haikou, China
| | - Maosen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Yongxiang Wang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, Shandong, China.
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, Shandong, China.
- School of Public Health, Peking University, 100191, Beijing, China.
| |
Collapse
|
2
|
Mulik S, Berber E, Sehrawat S, Rouse BT. Controlling viral inflammatory lesions by rebalancing immune response patterns. Front Immunol 2023; 14:1257192. [PMID: 37671156 PMCID: PMC10475736 DOI: 10.3389/fimmu.2023.1257192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
In this review, we discuss a variety of immune modulating approaches that could be used to counteract tissue-damaging viral immunoinflammatory lesions which typify many chronic viral infections. We make the point that in several viral infections the lesions can be largely the result of one or more aspects of the host response mediating the cell and tissue damage rather than the virus itself being directly responsible. However, within the reactive inflammatory lesions along with the pro-inflammatory participants there are also other aspects of the host response that may be acting to constrain the activity of the damaging components and are contributing to resolution. This scenario should provide the prospect of rebalancing the contributions of different host responses and hence diminish or even fully control the virus-induced lesions. We identify several aspects of the host reactions that influence the pattern of immune responsiveness and describe approaches that have been used successfully, mainly in model systems, to modulate the activity of damaging participants and which has led to lesion control. We emphasize examples where such therapies are, or could be, translated for practical use in the clinic to control inflammatory lesions caused by viral infections.
Collapse
Affiliation(s)
- Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Department of Biological Sciences, Mohali, Punjab, India
| | - Barry Tyrrell Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
3
|
Xia S, Zheng Y, Yan F, Chen G. MicroRNAs modulate neuroinflammation after intracerebral hemorrhage: Prospects for new therapy. Front Immunol 2022; 13:945860. [PMID: 36389834 PMCID: PMC9665326 DOI: 10.3389/fimmu.2022.945860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhagic stroke. After ICH, blood components extravasate from vessels into the brain, activating immune cells and causing them to release a series of inflammatory mediators. Immune cells, together with inflammatory mediators, lead to neuroinflammation in the perihematomal region and the whole brain, and neuroinflammation is closely related to secondary brain injury as well as functional recovery of the brain. Despite recent progress in understanding the pathophysiology of ICH, there is still no effective treatment for this disease. MicroRNAs (miRNAs) are non-coding RNAs 17-25 nucleotides in length that are generated naturally in the human body. They bind complementarily to messenger RNAs and suppress translation, thus regulating gene expression at the post-transcriptional level. They have been found to regulate the pathophysiological process of ICH, particularly the neuroinflammatory cascade. Multiple preclinical studies have shown that manipulating the expression and activity of miRNAs can modulate immune cell activities, influence neuroinflammatory responses, and ultimately affect neurological functions after ICH. This implicates the potentially crucial roles of miRNAs in post-ICH neuroinflammation and indicates the possibility of applying miRNA-based therapeutics for this disease. Thus, this review aims to address the pathophysiological roles and molecular underpinnings of miRNAs in the regulation of neuroinflammation after ICH. With a more sophisticated understanding of ICH and miRNAs, it is possible to translate these findings into new pharmacological therapies for ICH.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonghe Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Shi Y, Cui W, Wang Q, Zhou J, Wu X, Wang J, Zhang S, Hu Q, Han L, Du Y, Ge S, Liu H, Qu Y. MicroRNA-124/Death-Associated Protein Kinase 1 Signaling Regulates Neuronal Apoptosis in Traumatic Brain Injury via Phosphorylating NR2B. Front Cell Neurosci 2022; 16:892197. [PMID: 35783103 PMCID: PMC9240278 DOI: 10.3389/fncel.2022.892197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Death-associated protein kinase 1 (DAPK1), a Ca2+/calmodulin-dependent serine/threonine-protein kinase, promotes neurons apoptosis in ischemic stroke and Alzheimer’s disease (AD). We hypothesized that knockdown DAPK1 may play a protective role in traumatic brain injury (TBI) and explore underlying molecular mechanisms. ELISA, Western blotting, immunofluorescence, dual-luciferase assay, and Reverse Transcription and quantitative Polymerase Chain Reaction (RT-qPCR) were used to determine the mechanism for the role of DAPK1 in TBI. Open field and novel objective recognition tests examined motor and memory functions. The morphology and number of synapses were observed by transmission electron microscopy and Golgi staining. DAPK1 was mainly found in neurons and significantly increased in TBI patients and TBI mice. The dual-luciferase assay showed that DAPK1 was upregulated by miR-124 loss. The number of TUNEL+ cells, expression levels of cleaved caspase3 and p-NR2B/NR2B were significantly reduced after knocking-down DAPK1 or overexpressing miR-124 in TBI mice; and motor and memory dysfunction was recovered. After Tat-NR2B were injected in TBI mice, pathological and behavioral changes were mitigated while the morphology while the number of synapses were not affected. Overall, DAPK1 is a downstream target gene of miR-124 that regulates neuronal apoptosis in TBI mice via NR2B. What’s more, DAPK1 restores motor and memory dysfunctions without affecting the number and morphology of synapses.
Collapse
|
5
|
Brinkmeyer-Langford C, Amstalden K, Konganti K, Hillhouse A, Lawley K, Perez-Gomez A, Young CR, Welsh CJ, Threadgill DW. Resilience in Long-Term Viral Infection: Genetic Determinants and Interactions. Int J Mol Sci 2021; 22:ijms222111379. [PMID: 34768809 PMCID: PMC8584141 DOI: 10.3390/ijms222111379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-induced neurological sequelae resulting from infection by Theiler's murine encephalomyelitis virus (TMEV) are used for studying human conditions ranging from epileptic seizures to demyelinating disease. Mouse strains are typically considered susceptible or resistant to TMEV infection based on viral persistence and extreme phenotypes, such as demyelination. We have identified a broader spectrum of phenotypic outcomes by infecting strains of the genetically diverse Collaborative Cross (CC) mouse resource. We evaluated the chronic-infection gene expression profiles of hippocampi and thoracic spinal cords for 19 CC strains in relation to phenotypic severity and TMEV persistence. Strains were clustered based on similar phenotypic profiles and TMEV levels at 90 days post-infection, and we categorized distinct TMEV response profiles. The three most common profiles included "resistant" and "susceptible," as before, as well as a "resilient" TMEV response group which experienced both TMEV persistence and mild neurological phenotypes even at 90 days post-infection. Each profile had a distinct gene expression signature, allowing the identification of pathways and networks specific to each TMEV response group. CC founder haplotypes for genes involved in these pathways/networks revealed candidate response-specific alleles. These alleles demonstrated pleiotropy and epigenetic (miRNA) regulation in long-term TMEV infection, with particular relevance for resilient mouse strains.
Collapse
Affiliation(s)
- Candice Brinkmeyer-Langford
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
- Correspondence:
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
| | - Koedi Lawley
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Aracely Perez-Gomez
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - David W. Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Neural stem cells secreting bispecific T cell engager to induce selective antiglioma activity. Proc Natl Acad Sci U S A 2021; 118:2015800118. [PMID: 33627401 DOI: 10.1073/pnas.2015800118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor in adults. No treatment provides durable relief for the vast majority of GBM patients. In this study, we've tested a bispecific antibody comprised of single-chain variable fragments (scFvs) against T cell CD3ε and GBM cell interleukin 13 receptor alpha 2 (IL13Rα2). We demonstrate that this bispecific T cell engager (BiTE) (BiTELLON) engages peripheral and tumor-infiltrating lymphocytes harvested from patients' tumors and, in so doing, exerts anti-GBM activity ex vivo. The interaction of BiTELLON with T cells and IL13Rα2-expressing GBM cells stimulates T cell proliferation and the production of proinflammatory cytokines interferon γ (IFNγ) and tumor necrosis factor α (TNFα). We have modified neural stem cells (NSCs) to produce and secrete the BiTELLON (NSCLLON). When injected intracranially in mice with a brain tumor, NSCLLON show tropism for tumor, secrete BiTELLON, and remain viable for over 7 d. When injected directly into the tumor, NSCLLON provide a significant survival benefit to mice bearing various IL13Rα2+ GBMs. Our results support further investigation and development of this therapeutic for clinical translation.
Collapse
|
7
|
Inamura N, Go S, Watanabe T, Takase H, Takakura N, Nakayama A, Takebayashi H, Matsuda J, Enokido Y. Reduction in miR-219 expression underlies cellular pathogenesis of oligodendrocytes in a mouse model of Krabbe disease. Brain Pathol 2021; 31:e12951. [PMID: 33822434 PMCID: PMC8412087 DOI: 10.1111/bpa.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Krabbe disease (KD), also known as globoid cell leukodystrophy, is an inherited demyelinating disease caused by the deficiency of lysosomal galactosylceramidase (GALC) activity. Most of the patients are characterized by early‐onset cerebral demyelination with apoptotic oligodendrocyte (OL) death and die before 2 years of age. However, the mechanisms of molecular pathogenesis in the developing OLs before death and the exact causes of white matter degeneration remain largely unknown. We have recently reported that OLs of twitcher mouse, an authentic mouse model of KD, exhibit developmental defects and endogenous accumulation of psychosine (galactosylsphingosine), a cytotoxic lyso‐derivative of galactosylceramide. Here, we show that attenuated expression of microRNA (miR)‐219, a critical regulator of OL differentiation and myelination, mediates cellular pathogenesis of KD OLs. Expression and functional activity of miR‐219 were repressed in developing twitcher mouse OLs. By using OL precursor cells (OPCs) isolated from the twitcher mouse brain, we show that exogenously supplemented miR‐219 effectively rescued their cell‐autonomous developmental defects and apoptotic death. miR‐219 also reduced endogenous accumulation of psychosine in twitcher OLs. Collectively, these results highlight the role of the reduced miR‐219 expression in KD pathogenesis and suggest that miR‐219 has therapeutic potential for treating KD OL pathologies.
Collapse
Affiliation(s)
- Naoko Inamura
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Shinji Go
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Takashi Watanabe
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Hiroshi Takase
- Core Laboratory, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan.,Department of Neurobiochemistry, Nagoya University School of Medicine, Nagoya, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Junko Matsuda
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Yasushi Enokido
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| |
Collapse
|
8
|
Chastkofsky MI, Pituch KC, Katagi H, Zannikou M, Ilut L, Xiao T, Han Y, Sonabend AM, Curiel DT, Bonner ER, Nazarian J, Horbinski CM, James CD, Saratsis AM, Hashizume R, Lesniak MS, Balyasnikova IV. Mesenchymal Stem Cells Successfully Deliver Oncolytic Virotherapy to Diffuse Intrinsic Pontine Glioma. Clin Cancer Res 2021; 27:1766-1777. [PMID: 33272983 PMCID: PMC7956061 DOI: 10.1158/1078-0432.ccr-20-1499] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/20/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Diffuse intrinsic pontine glioma (DIPG) is among the deadliest of pediatric brain tumors. Radiotherapy is the standard-of-care treatment for DIPG, but offers only transient relief of symptoms for patients with DIPG without providing significant survival benefit. Oncolytic virotherapy is an anticancer treatment that has been investigated for treating various types of brain tumors. EXPERIMENTAL DESIGN Here, we have explored the use of mesenchymal stem cells (MSC) for oncolytic virus (OV) delivery and evaluated treatment efficacy using preclinical models of DIPG. The survivin promoter drives the conditional replication of OV used in our studies. The efficiency of OV entry into the cells is mediated by fiber modification with seven lysine residues (CRAd.S.pK7). Patients' samples and cell lines were analyzed for the expression of viral entry proteins and survivin. The ability of MSCs to deliver OV to DIPG was studied in the context of a low dose of irradiation. RESULTS Our results show that DIPG cells and tumors exhibit robust expression of cell surface proteins and survivin that enable efficient OV entry and replication in DIPG cells. MSCs loaded with OV disseminate within a tumor and release OV throughout the DIPG brainstem xenografts in mice. Administration of OV-loaded MSCs with radiotherapy to mice bearing brainstem DIPG xenografts results in more prolonged survival relative to that conferred by either therapy alone (P < 0.01). CONCLUSIONS Our study supports OV, CRAd.S.pK7, encapsulated within MSCs as a therapeutic strategy that merits further investigation and potential translation for DIPG treatment.
Collapse
Affiliation(s)
- Michael I Chastkofsky
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Katarzyna C Pituch
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hiroaki Katagi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Markella Zannikou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Liliana Ilut
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ting Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - David T Curiel
- Department of Radiation Oncology, University of Washington, St. Louis, Missouri
| | - Erin R Bonner
- Center for Genomics and Precision Medicine, Children's National Medical Center, Washington, D.C
- Institute for Biomedical Sciences, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Javad Nazarian
- Center for Genomics and Precision Medicine, Children's National Medical Center, Washington, D.C
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Amanda M Saratsis
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Division of Neurosurgery, Department of Pediatric Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Rintaro Hashizume
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
9
|
Wang CC, Chen X. A Unified Framework for the Prediction of Small Molecule–MicroRNA Association Based on Cross-Layer Dependency Inference on Multilayered Networks. J Chem Inf Model 2019; 59:5281-5293. [DOI: 10.1021/acs.jcim.9b00667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
10
|
Yao S, Li C, Budenski AM, Li P, Ramos A, Guo S. Expression of microRNAs targeting heat shock protein B8 during in vitro expansion of dental pulp stem cells in regulating osteogenic differentiation. Arch Oral Biol 2019; 107:104485. [PMID: 31376703 DOI: 10.1016/j.archoralbio.2019.104485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The objectives of this study were (a) to determine the differentially expressed microRNAs that can target heat shock protein B8 (HspB8) during in vitro expansion of dental pulp stem cells (DPSCs); (b) to identify microRNAs involved in posttranscriptional regulation of HspB8 expression; and (c) to determine if HspB8-targeting microRNAs play roles on osteogenic differentiation of DPSCs. DESIGN DPSCs were established from rat first molars and expanded in vitro until the passage that cells lost osteogenic potential. TargetScan was used to predict the microRNAs that target HspB8 mRNA. Stem-loop quantitative RT-PCR was conducted to identify the HspB8-targeting microRNAs that were upregulated in late passages. The microRNAs mimics were transfected into DPSCs to assess their effects on HspB8 expression and on osteogenic differentiation. RESULTS let-7b-5p, miR-98-5p, miR-215, miR-219a-1-3p and miR-295-5p were found to consistently increase expression in DPSCs after expansion. HspB8 mRNA and/or protein were significantly decreased in the DPSCs after transfection of miR-215 and miR-219a-1-3p mimics; whereas no significant reduction was seen after transfecting let-7b-5p, miR-98-5p and miR-295-5p mimics. When subjecting the transfected DPSCs to osteogenic induction, reduction of calcium deposition or osteogenic marker expression were observed with miR-215, miR-219a-1-3p and miR-295-5p transfection. CONCLUSIONS Increased expression of miR-215 and miR-219a-1-3p downregulates HspB8 expression, which contributes to the reduction of osteogenic capability of DPSCs. Increased expression of miR295-5p also causes a reduction of osteogenic differentiation, but not involved in HspB8.
Collapse
Affiliation(s)
- Shaomian Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| | - Chunhong Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| | - Angelle M Budenski
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| | - Patricia Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| | - Alexandra Ramos
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| | - Steven Guo
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
11
|
Zhao X, Song X, Bai X, Tan Z, Ma X, Guo J, Zhang Z, Du Q, Huang Y, Tong D. microRNA-222 Attenuates Mitochondrial Dysfunction During Transmissible Gastroenteritis Virus Infection. Mol Cell Proteomics 2019; 18:51-64. [PMID: 30257878 PMCID: PMC6317483 DOI: 10.1074/mcp.ra118.000808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/13/2018] [Indexed: 12/30/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a member of Coronaviridae family. Our previous research showed that TGEV infection could induce mitochondrial dysfunction and upregulate miR-222 level. Therefore, we presumed that miR-222 might be implicated in regulating mitochondrial dysfunction induced by TGEV infection. To verify the hypothesis, the effect of miR-222 on mitochondrial dysfunction was tested and we showed that miR-222 attenuated TGEV-induced mitochondrial dysfunction. To investigate the underlying molecular mechanism of miR-222 in TGEV-induced mitochondrial dysfunction, a quantitative proteomic analysis of PK-15 cells that were transfected with miR-222 mimics and infected with TGEV was performed. In total, 4151 proteins were quantified and 100 differentially expressed proteins were obtained (57 upregulated, 43 downregulated), among which thrombospondin-1 (THBS1) and cluster of differentiation 47 (CD47) were downregulated. THBS1 was identified as the target of miR-222. Knockdown of THBS1 and CD47 decreased mitochondrial Ca2+ level and increased mitochondrial membrane potential (MMP) level. Reversely, overexpression of THBS1 and CD47 elevated mitochondrial Ca2+ level and reduced mitochondrial membrane potential (MMP) level. Together, our data establish a significant role of miR-222 in regulating mitochondrial dysfunction in response to TGEV infection.
Collapse
Affiliation(s)
- Xiaomin Zhao
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiangjun Song
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaoyuan Bai
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhanhang Tan
- §Huyi District Center for Animal Disease Control and Prevention, Xi'an, Shaanxi 710300, P.R. China
| | - Xuelian Ma
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jianxiong Guo
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhichao Zhang
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Qian Du
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yong Huang
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Dewen Tong
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China;.
| |
Collapse
|