1
|
Yang X, Gao X, Jiang X, Yue K, Luo P. Targeting capabilities of engineered extracellular vesicles for the treatment of neurological diseases. Neural Regen Res 2025; 20:3076-3094. [PMID: 39435635 PMCID: PMC11881733 DOI: 10.4103/nrr.nrr-d-24-00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024] Open
Abstract
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases. Owing to their therapeutic properties and ability to cross the blood-brain barrier, extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions, including ischemic stroke, traumatic brain injury, neurodegenerative diseases, glioma, and psychosis. However, the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body. To address these limitations, multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles, thereby enabling the delivery of therapeutic contents to specific tissues or cells. Therefore, this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles, exploring their applications in treating traumatic brain injury, ischemic stroke, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, glioma, and psychosis. Additionally, we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases. This review offers new insights for developing highly targeted therapies in this field.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Kangyi Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
2
|
Zhao M, Liu S, Wang Y, Lou P, Lv K, Wu T, Li L, Wu Q, Zhu J, Lu Y, Wan M, Liu J. In Vivo Reprogramming of Tissue-Derived Extracellular Vesicles for Treating Chronic Tissue Injury Through Metabolic Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415556. [PMID: 40162496 DOI: 10.1002/advs.202415556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Extracellular vesicles (EVs) have emerged as promising therapeutics for regenerative medicine, but the efficacy of current exogenous EV-based therapies for treating chronic tissue injury is still unsatisfactory. Exercise can affect skeletal muscle EV secretion and that this process regulates the systemic health-promoting role of exercise, suggesting that fine-tuning of endogenous tissue EV secretion may provide a new therapeutic avenue. Here, this work reports that in vivo reprogramming of EV secretion via metabolic engineering is a promising strategy for treating chronic diseases. Briefly, exercise enhanced mitochondrial metabolism and EV production in healthy skeletal muscles, and EVs from healthy skeletal muscles subjected to exercise or metabolic engineering (boosting mitochondrial biogenesis via AAV-mediated muscle-specific TFAM overexpression) exerted cellular protective effects in vitro. In injured skeletal muscles, in vivo metabolic engineering therapy could reprogram EV secretion patterns (reducing pathological EV compositions while increasing beneficial EV compositions) by regulating multiple EV biogenesis and cargo sorting pathways. Reprogrammed muscle-derived EVs could reach major organs and tissues via the circulation and then simultaneously attenuated multiple-tissue (e.g., muscle and kidney) injury in chronic kidney disease. This study highlights that in vivo reprogramming of tissue-derived EVs via a metabolic engineering approach is a potential strategy for treating diverse chronic diseases.
Collapse
Affiliation(s)
- Meng Zhao
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Shuyun Liu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yizhuo Wang
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Peng Lou
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Lv
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tian Wu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lan Li
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianyi Wu
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Jiaying Zhu
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Yanrong Lu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meihua Wan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingping Liu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Liu S, Wu J, Jiang H, Zhou Y, Huang X, Wang Y, Xie Z, Liao Z, Ding Z, Liu J, Hu X, Mao H, Liu S, Chen B. CircFBLN2 regulates duck myoblast proliferation and differentiation through miR-22-5p and MEF2C interaction. Poult Sci 2025; 104:105063. [PMID: 40120247 PMCID: PMC11987613 DOI: 10.1016/j.psj.2025.105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
The growth and development of duck skeletal muscle significantly affect duck meat production, making it essential to understand the molecular mechanisms underlying these processes. Circular RNAs (circRNAs) and microRNAs (miRNAs) are identified in many species and play essential roles in the regulation of myogenic processes; however, research on circRNAs and miRNAs involved in the duck skeletal muscle development is limited. In prior whole-transcriptome RNA sequencing study, we identified differential expression of miR-22-5p and the novel circular RNA circFBLN2, which arises from the second exon of the FBLN2 gene, in duck primary myoblasts (DPMs). In this study, we confirmed the circular structure of circFBLN2 and explored its expression patterns and functional implications in myogenesis. To elucidate the function of circFBLN2 in the myogenic processes of duck, we conducted experiments involving both the silencing and overexpression of circFBLN2 in DPMs. Our findings indicated that circFBLN2 inhibits DPM proliferation while promoting their differentiation. Conversely, when miR-22-5p was silenced and overexpressed, it exhibited opposing effects by promoting the proliferation of DPMs and inhibiting their differentiation. These results suggest a complex dynamic interplay between circFBLN2 and miR-22-5p in the regulation of DPMs proliferation and differentiation. Additionally, our results revealed that both circFBLN2 and myocyte enhancer factor 2 C (MEF2C) act as sponges for miR-22-5p, as demonstrated by binding predictions and dual-luciferase reporter assays. These results offer novel perspectives on the regulatory pathways underlying the duck embryonic skeletal muscle development, underscoring the pivotal function of circFBLN2 in the regulation of miR-22-5p expression. This research deepens our comprehension of the molecular underpinnings of avian myogenesis, potentially paving the way for more effective approaches to bolster growth and development of livestock.
Collapse
Affiliation(s)
- Shuibing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jintao Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Hongxia Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ya'nan Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xuwen Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yuxiang Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zhanbin Xie
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Zurong Liao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zhenxvan Ding
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Sanfeng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
4
|
Rahbar Saadat Y, Abbasi A, Hejazian SS, Hekmatshoar Y, Ardalan M, Farnood F, Zununi Vahed S. Combating chronic kidney disease-associated cachexia: A literature review of recent therapeutic approaches. BMC Nephrol 2025; 26:133. [PMID: 40069669 PMCID: PMC11895341 DOI: 10.1186/s12882-025-04057-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/05/2025] [Indexed: 03/15/2025] Open
Abstract
In 2008, the Society on Sarcopenia, Cachexia, and Wasting Disorders introduced a generic definition for all types of cachexia: "a complex metabolic syndrome associated with the underlying illness characterized by a loss of muscle, with or without fat loss". It is well-known that the presence of inflammatory burden in end-stage renal disease (ESRD) patients may lead to the evolution of cachexia. Since the etiology of cachexia in chronic kidney disease (CKD) is multifactorial, thus the successful treatment must involve several concomitant measures (nutritional interventions, appetite stimulants, and anti-inflammatory pharmacologic agents) to provide integrated effective therapeutic modalities to combat causative factors and alleviate the outcomes of patients. Given the high mortality rate associated with cachexia, developing new therapeutic modalities are prerequisite for ameliorating patients with CKD worldwide. The present review aims to discuss some therapeutic strategies and provide an update on advances in nutritional approaches to counteract cachexia.
Collapse
Affiliation(s)
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Sina Hejazian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Hekmatshoar
- Medical Biology Department, School of Medicine, Altinbas University, Istanbul, Türkiye
| | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
5
|
Liu X, Yao Z, Zhang L, Shyh‐Chang N. Muscle-Derived Bioactive Factors: MyoEVs and Myokines. Cell Prolif 2025; 58:e13801. [PMID: 39737773 PMCID: PMC11882754 DOI: 10.1111/cpr.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025] Open
Abstract
Overview of the functions and applications of myokines and MyoEVs.
Collapse
Affiliation(s)
- Xupeng Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Ziyue Yao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Liping Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Ng Shyh‐Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
6
|
Yao XC, Wu JJ, Yuan ST, Yuan FL. Recent insights and perspectives into the role of the miRNA‑29 family in innate immunity (Review). Int J Mol Med 2025; 55:53. [PMID: 39886977 PMCID: PMC11781520 DOI: 10.3892/ijmm.2025.5494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025] Open
Abstract
Innate immunity is the first line of defence against pathogenic microorganisms and is nearly universal among eukaryotes. The innate immune system is composed of various organs, cells and immune molecules. MicroRNAs (miRs) are a class of small non‑coding RNAs (~22 nucleotides) that are widely involved in post‑transcriptional regulation of proteins within the innate immune system through the recognition of seed sequences. The present review summarizes the role of the miR‑29 family in innate immunity, with a focus on its specific functions in the differentiation of T cells, B cells, natural killer cells and macrophages, as well as the mechanisms by which the miR‑29 family participates in innate immune signalling. Additionally, this review discusses how the miR‑29 family helps the host combat infections by hepatitis B and C viruses, human immunodeficiency virus and influenza A virus through the regulation of specific signalling molecules. This comprehensive analysis of existing studies emphasizes the importance of the miR‑29 family in maintaining immune balance and defence against pathogens.
Collapse
Affiliation(s)
- Xing-Chen Yao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, P.R. China
| | - Sheng-Tao Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, P.R. China
| |
Collapse
|
7
|
Jia J, Wang L, Zhou Y, Zhang P, Chen X. Muscle-derived extracellular vesicles mediate crosstalk between skeletal muscle and other organs. Front Physiol 2025; 15:1501957. [PMID: 39844898 PMCID: PMC11750798 DOI: 10.3389/fphys.2024.1501957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Skeletal muscle (SKM) has crucial roles in locomotor activity and posture within the body and also functions have been recognized as an actively secretory organ. Numerous bioactive molecules are secreted by SKM and transported by extracellular vesicles (EVs), a novel class of mediators of communication between cells and organs that contain various types of cargo molecules including lipids, proteins and nucleic acids. SKM-derived EVs (SKM-EVs) are intercellular communicators with significant roles in the crosstalk between SKM and other organs. In this review, we briefly describe the biological characteristics, composition, and uptake mechanisms of EVs, particularly exosomes, comprehensively summarize the regulatory effects of SKM-EVs on the function of, which include myogenesis, muscle repair and regeneration, as well as metabolic regulation. Furthermore, we explore the impact of SKM- EVs on various organs including bone, the cardiovascular system, adipose tissue, and nervous system. As emerging evidence suggests that SKM-EVs are involved in the development and regulation of type 2 diabetes (T2D), systemic inflammation, and other chronic diseases, we also highlight the potential of SKM-EVs as therapeutic targets and diagnostic biomarkers, emphasizing the need for further research to elucidate the complex mechanisms underlying intercellular communication in physiological and pathological contexts.
Collapse
Affiliation(s)
- Jiajie Jia
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lu Wang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yue Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Peng Zhang
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoping Chen
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
8
|
Rubini A, Zanotti F, Licastro D, Calogero G, Bettini G, Piccoli C, Rubini G, Lovatti L, Zavan B. Therapeutic Potential of Feline Adipose-Derived Stem Cell Exosomes in the Treatment of Feline Idiopathic Cystitis: A Characterization and Functional Analysis of miRNA Content. Nanotheranostics 2025; 9:38-51. [PMID: 39744099 PMCID: PMC11667565 DOI: 10.7150/ntno.99383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/28/2024] [Indexed: 04/05/2025] Open
Abstract
Feline Idiopathic Cystitis (FIC), is a chronic lower urinary tract condition in cats analogous to PBS/IC in women, which presents significant treatment challenges due to its idiopathic nature. Recent advancements in regenerative medicine highlight the potential of Adipose Tissue-Derived Stem Cells (ADSCs), particularly through their secretome, which includes mediators, bioactive molecules, and extracellular vesicles (EVs). Notably, exosomes, a subset of EVs, facilitate cell-to-cell communication and, when derived from ADSCs, exhibit anti-inflammatory properties and contribute to tissue regeneration. In this work, we aim to characterize the content of exosomes derived from feline ADSCs (fADSCs) to elucidate their mechanisms of action on recipient cells and assess their therapeutic potential for FIC. Exosomes were isolated from fADSCs and their microRNA (miRNA) content sequenced using Illumina technology. Our findings demonstrate that fADSC-derived exosomes harbor miRNAs that can induce regenerative processes, such as cell proliferation, immune modulation, angiogenesis, and anti-inflammatory responses. Key miRNAs identified include fca-miR-221, fca-let-7f-5p, fca-miR-337-5p, fca-miR-542-5p, fca-miR-24-3p, fca-miR-205, and fca-miR-23a, which promote proliferative, angiogenic, differentiation, and regenerative mechanisms. Additionally, miRNAs with anti-inflammatory effects, such as fca-miR-193a-5p and fca-miR-127-3p, and those positively regulating the immune system, including fca-let-7a-5p and fca-miR-chrC1_18846-5p, were identified. Of particular interest, fca-miR-219-5p (has-miR-6766-3p) has been reported to suppress liver fibrosis.These results underline the therapeutic potential of fADSC-derived exosomes in treating FIC and suggest innovative strategies for feline veterinary medicine.
Collapse
Affiliation(s)
- Andrea Rubini
- Ultravet Diagnostics, 40017, San Giovanni in Persiceto, Italy
| | - Federica Zanotti
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Giulia Calogero
- Ultravet Diagnostics, 40017, San Giovanni in Persiceto, Italy
| | - Gisella Bettini
- Clinica Veterinaria Estense, Via Pianelle, 31, 44123 Francolino (Ferrara), Italy
| | - Cristiana Piccoli
- Clinica Veterinaria Estense, Via Pianelle, 31, 44123 Francolino (Ferrara), Italy
| | | | - Luca Lovatti
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
9
|
Sun H, Zou Y, Chen Z, He Y, Ye K, Liu H, Qiu L, Zhang Y, Mai Y, Chen X, Mao Z, Wang W, Yi C. Nanodrug-Engineered Exosomes Achieve a Jointly Dual-Pathway Inhibition on Cuproptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413408. [PMID: 39639737 PMCID: PMC11775538 DOI: 10.1002/advs.202413408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Cuproptosis, caused by an intracellular overload of copper (Cu) ions and overexpression of ferredoxin 1 (FDX1), is identified for its regulatory role in the skin wound healing process. This study verifies the presence of cuproptosis in skin wound beds and reactive oxygen species-induced cells model. To address the two pathways leading to cell cuproptosis, a nanodrug-engineered exosomes is proposed. A Cu-chelator (Clioquinol, CQ) polydopamine (PDA)-modified stem cell exosome loaded with siRNA-FDX1, named EXOsiFDX1-PDA@CQ, is designed to efficiently inhibit the two cuproptosis pathways. The functionalized exosomes are loaded into an injectable hydrogel and applied to treat diabetic wounds in mice and acute skin wounds in pigs. The local and controlled release of EXOsiFDX1-PDA@CQ ensures the retention of the therapeutic agent at wound beds, effectively promoting wound healing. The strategy of engineered exosomes with functional nanoparticles (NPs) proposed in this study offers an efficient and scalable new approach for regulating cuproptosis.
Collapse
Affiliation(s)
- Hanxiao Sun
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Yang Zou
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Zhengtai Chen
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Yan He
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Kai Ye
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Huan Liu
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Lihong Qiu
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Yufan Zhang
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Yuexue Mai
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Xinghong Chen
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Wei Wang
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Chenggang Yi
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| |
Collapse
|
10
|
Zhao S, Di Y, Fan H, Xu C, Li H, Wang Y, Wang W, Li C, Wang J. Targeted delivery of extracellular vesicles: the mechanisms, techniques and therapeutic applications. MOLECULAR BIOMEDICINE 2024; 5:60. [PMID: 39567444 PMCID: PMC11579273 DOI: 10.1186/s43556-024-00230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
Extracellular vesicles (EVs) are cell-derived vesicles with a phospholipid bilayer measuring 50-150 nm in diameter with demonstrated therapeutic potentials. Limitations such as the natural biodistribution (mainly concentrated in the liver and spleen) and short plasma half-life of EVs present significant challenges to their clinical translation. In recent years, growing research indicated that engineered EVs with enhanced targeting to lesion sites have markedly promoted therapeutic efficacy. However, there is a dearth of systematic knowledge on the recent advances in engineering EVs for targeted delivery. Herein, we provide an overview of the targeting mechanisms, engineering techniques, and clinical translations of natural and engineered EVs in therapeutic applications. Enrichment of EVs at lesion sites may be achieved through the recognition of tissue markers, pathological changes, and the circumvention of mononuclear phagocyte system (MPS). Alternatively, external stimuli, including magnetic fields and ultrasound, may also be employed. EV engineering techniques that fulfill targeting functions includes genetic engineering, membrane fusion, chemical modification and physical modification. A comparative statistical analysis was conducted to elucidate the discrepancies between the diverse techniques on size, morphology, stability, targeting and therapeutic efficacy in vitro and in vivo. Additionally, a summary of the registered clinical trials utilizing EVs from 2010 to 2023 has been provided, with a full discussion on the perspectives. This review provides a comprehensive overview of the mechanisms and techniques associated with targeted delivery of EVs in therapeutic applications to advocate further explorations of engineered EVs and accelerate their clinical applications.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yunfeng Di
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huilan Fan
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chengyan Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haijing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yong Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
| | - Wei Wang
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chun Li
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyu Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
11
|
Han D, Chen YB, Zhao K, Li HZ, Chen XY, Zhu GZ, Tu C, Gao JW, Zhuang JS, Wu ZY, Zhong ZM. Tanshinone IIA alleviates inflammation-induced skeletal muscle atrophy by regulating mitochondrial dysfunction. Arch Biochem Biophys 2024; 762:110215. [PMID: 39547552 DOI: 10.1016/j.abb.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Skeletal muscle atrophy, characterized by loss of muscle mass and function, is often linked to systemic inflammation. Tanshinone IIA (Tan IIA), a major active constituent of Salvia miltiorrhiza, has anti-inflammatory and antioxidant properties. However, the effect of Tan IIA on inflammation-induced skeletal muscle atrophy remains unclear. Here, a mice model of the inflammatory muscle atrophy was established using lipopolysaccharide (LPS). Tan IIA intervention significantly increased muscle mass and strength, improved muscle fiber size, and maintained the integrity of skeletal muscle mitochondrial morphology in LPS-treated mice. Myotubes derived from myosatellite cells (MUSCs) were exposed to LPS in vitro. Tan IIA treatment inhibited LPS-induced muscle protein degradation and increased myotube diameter. Notably, Tan IIA attenuated LPS-induced inflammatory response and hyperactive mitophagy both in vivo and in vitro. In addition, Tan IIA treatment effectively diminished oxidative stress, inhibited the accumulation of mitochondrial reactive oxygen species (mtROS), and attenuated mitochondrial fission in LPS-treated myotubes. Reducing mtROS production helped to inhibit LPS-induced excessive mitophagy and myotubes atrophy. Together, our results reveal that Tan IIA can protect against inflammation-induced skeletal muscle atrophy by regulating mitochondrial dysfunction, presenting innovative potential therapeutics for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Dong Han
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun-Biao Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hong-Zhou Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing-Yu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Zheng Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Tu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Wen Gao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Shen Zhuang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Yong Wu
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao-Ming Zhong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Liu C, Li Q, Ma JX, Lu B, Criswell T, Zhang Y. Exosome-mediated renal protection: Halting the progression of fibrosis. Genes Dis 2024; 11:101117. [PMID: 39263535 PMCID: PMC11388648 DOI: 10.1016/j.gendis.2023.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/13/2024] Open
Abstract
Renal fibrosis is a complex and multifactorial process that involves inflammation, cell proliferation, collagen, and fibronectin deposition in the kidney, ultimately leading to chronic kidney disease and even end-stage renal disease. The main goal of treatment is to slow down or halt the progression of fibrosis and to improve or preserve kidney function. Despite significant progress made in understanding the underlying mechanisms of renal fibrosis, current therapies have limited renal protection as the disease progresses. Exosomes derived from stem cells are a newer area of research for the treatment of renal fibrosis. Exosomes as nano-sized extracellular vesicles carry proteins, lipids, and nucleic acids, which can be taken up by local or distant cells, serving as mediators of intercellular communication and as drug delivery vehicles. Exosomes deliver molecules that reduce inflammation, renal fibrosis and extracellular matrix protein production, and promote tissue regeneration in animal models of kidney disease. Additionally, they have several advantages over stem cells, such as being non-immunogenic, having low risk of tumor formation, and being easier to produce and store. This review describes the use of natural and engineered exosomes containing therapeutic agents capable of mediating anti-inflammatory and anti-fibrotic processes during both acute kidney injury and chronic kidney disease. Exosome-based therapies will be compared with stem cell-based treatments for tissue regeneration, with a focus on renal protection. Finally, future directions and strategies for improving the therapeutic efficacy of exosomes are discussed.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Baisong Lu
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Tracy Criswell
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
13
|
Luo J, Pu Q, Wu X. Recent Advances of Exosomes Derived from Skeletal Muscle and Crosstalk with Other Tissues. Int J Mol Sci 2024; 25:10877. [PMID: 39456658 PMCID: PMC11507631 DOI: 10.3390/ijms252010877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Skeletal muscle plays a crucial role in movement, metabolism, and energy homeostasis. As the most metabolically active endocrine organ in the body, it has recently attracted widespread attention. Skeletal muscle possesses the ability to release adipocytokines, bioactive peptides, small molecular metabolites, nucleotides, and other myogenic cell factors; some of which have been shown to be encapsulated within small vesicles, particularly exosomes. These skeletal muscle exosomes (SKM-Exos) are released into the bloodstream and subsequently interact with receptor cell membranes to modulate the physiological and pathological characteristics of various tissues. Therefore, SKM-Exos may facilitate diverse interactions between skeletal muscle and other tissues while also serving as biomarkers that reflect the physiological and pathological states of muscle function. This review delves into the pivotal role and intricate molecular mechanisms of SKM-Exos and its derived miRNAs in the maturation and rejuvenation of skeletal muscle, along with their intercellular signaling dynamics and physiological significance in interfacing with other tissues.
Collapse
Affiliation(s)
- Jia Luo
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Qiang Pu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xiaoqian Wu
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Zhang HQ, Zhang YN, Deng CL, Zhu QX, Zhang ZR, Li XD, Yuan ZM, Zhang B. Rational design of self-amplifying virus-like vesicles with Ebola virus glycoprotein as vaccines. Mol Ther 2024; 32:3695-3711. [PMID: 39217415 PMCID: PMC11489537 DOI: 10.1016/j.ymthe.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
As emerging and re-emerging pathogens, filoviruses, especially Ebola virus (EBOV), pose a great threat to public health and require sustained attention and ongoing surveillance. More vaccines and antiviral drugs are imperative to be developed and stockpiled to respond to unpredictable outbreaks. Virus-like vesicles, generated by alphavirus replicons expressing homogeneous or heterogeneous glycoproteins (GPs), have demonstrated the capacity of self-propagation and shown great potential in vaccine development. Here, we describe a novel class of EBOV-like vesicles (eVLVs) incorporating both EBOV GP and VP40. The eVLVs exhibited similar antigenicity as EBOV. In murine models, eVLVs were highly attenuated and elicited robust GP-specific antibodies with neutralizing activities. Importantly, a single dose of eVLVs conferred complete protection in a surrogate EBOV lethal mouse model. Furthermore, our VLVs strategy was also successfully applied to Marburg virus (MARV), the representative member of the genus Marburgvirus. Taken together, our findings indicate the feasibility of an alphavirus-derived VLVs strategy in combating infection of filoviruses represented by EBOV and MARV, which provides further evidence of the potential of this platform for universal live-attenuated vaccine development.
Collapse
Affiliation(s)
- Hong-Qing Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Nan Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China; Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Cheng-Lin Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China
| | - Qin-Xuan Zhu
- Hunan Normal University, School of Medicine, Changsha 410081, China
| | - Zhe-Rui Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China
| | - Xiao-Dan Li
- Hunan Normal University, School of Medicine, Changsha 410081, China
| | - Zhi-Ming Yuan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Bo Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hubei Jiangxia Laboratory, Wuhan 430200, China.
| |
Collapse
|
15
|
Yang S, Xiong L, Yang G, Xiang J, Li L, Kang L, Liang Z. KLF13 restrains Dll4-muscular Notch2 axis to improve the muscle atrophy. J Cachexia Sarcopenia Muscle 2024; 15:1869-1882. [PMID: 38973459 PMCID: PMC11446702 DOI: 10.1002/jcsm.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Muscle atrophy can cause muscle dysfunction and weakness. Krüppel-like factor 13 (KLF13), a central regulator of cellular energy metabolism, is highly expressed in skeletal muscles and implicated in the pathogenesis of several diseases. This study investigated the role of KLF13 in muscle atrophy, which could be a novel therapeutic target. METHODS The effects of gene knockdown and pharmacological targeting of KLF13 on skeletal muscle atrophy were investigated using cell-based and animal models. Clofoctol, an antibiotic and KLF13 agonist, was also investigated as a candidate for repurposing. The mechanisms related to skeletal muscle atrophy were assessed by measuring the expression levels and activation statuses of key regulatory pathways and validated using gene knockdown and RNA sequencing. RESULTS In a dexamethasone-induced muscle atrophy mouse model, the KLF13 knockout group had decreased muscle strength (N) (1.77 ± 0.10 vs. 1.48 ± 0.16, P < 0.01), muscle weight (%) [gastrocnemius (Gas): 76.0 ± 5.69 vs. 60.7 ± 7.23, P < 0.001; tibialis anterior (TA): 75.8 ± 6.21 vs. 67.5 ± 5.01, P < 0.05], and exhaustive running distance (m) (495.5 ± 64.8 vs. 315.5 ± 60.9, P < 0.05) compared with the control group. KLF13 overexpression preserved muscle mass (Gas: 100 ± 6.38 vs. 120 ± 14.4, P < 0.01) and the exhaustive running distance (423.8 ± 59.04 vs. 530.2 ± 77.45, P < 0.05) in an in vivo diabetes-induced skeletal muscle atrophy model. Clofoctol treatment protected against dexamethasone-induced muscle atrophy. Myotubes treated with dexamethasone, an atrophy-inducing glucocorticoid, were aggravated by KLF13 knockout, but anti-atrophic effects were achieved by inducing KLF13 overexpression. We performed a transcriptome analysis and luciferase reporter assays to further explore this mechanism, finding that delta-like 4 (Dll4) was a novel target gene of KLF13. The KLF13 transcript repressed Dll4, inhibiting the Dll4-Notch2 axis and preventing muscle atrophy. Dexamethasone inhibited KLF13 expression by inhibiting myogenic differentiation 1 (i.e., MYOD1)-mediated KLF13 transcriptional activation and promoting F-Box and WD repeat domain containing 7 (i.e., FBXW7)-mediated KLF13 ubiquitination. CONCLUSIONS This study sheds new light on the mechanisms underlying skeletal muscle atrophy and potential drug targets. KLF13 regulates muscle atrophy and is a potential therapeutic target. Clofoctol is an attractive compound for repurposing studies to treat skeletal muscle atrophy.
Collapse
Affiliation(s)
- Shu Yang
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| | - Lijiao Xiong
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| | - Guangyan Yang
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| | - Jiaqing Xiang
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| | - Lixing Li
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| | - Lin Kang
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
- The Biobank of National Innovation Center for Advanced Medical DevicesShenzhen People's HospitalShenzhenChina
| | - Zhen Liang
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| |
Collapse
|
16
|
Li Y, Chen Z, Guo J, Meng D, Pang X, Sun Z, Pu L, Yang S, Yang M, Peng Y. Enhanced brain-targeting and efficacy of cannabidiol via RVG-Exo/CBD nanodelivery system. Biochem Biophys Res Commun 2024; 725:150260. [PMID: 38878760 DOI: 10.1016/j.bbrc.2024.150260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
This study introduces an innovative brain-targeted drug delivery system, RVG-Exo/CBD, utilizing rabies virus glycoprotein (RVG)-engineered exosomes for encapsulating cannabidiol (CBD). The novel delivery system was meticulously characterized, confirming the maintenance of exosomal integrity, size, and successful drug encapsulation with a high drug loading rate of 83.0 %. Evaluation of the RVG-Exo/CBD's brain-targeting capability demonstrated superior distribution and retention in brain tissue compared to unmodified exosomes, primarily validated through in vivo fluorescence imaging. The efficacy of this delivery system was assessed using a behavioral sensitization model in mice, where RVG-Exo/CBD notably suppressed methamphetamine-induced hyperactivity more effectively than CBD alone, indicating a reduction in effective dose and enhanced bioavailability. Overall, the RVG-Exo/CBD system emerges as a promising strategy for enhancing the therapeutic efficacy and safety of CBD, particularly for neurological applications, highlighting its potential for addressing the limitations associated with traditional CBD administration in clinical settings.
Collapse
Affiliation(s)
- Yingrui Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Ze Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Jia Guo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Deshuang Meng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Xin Pang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China; School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, China
| | - Zepeng Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China; School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, China
| | - Li Pu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China; School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, China
| | - Shuiyue Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China; School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, China
| | - Min Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China.
| | - Yinghua Peng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China.
| |
Collapse
|
17
|
Nan QY, Piao SG, Jin JZ, Chung BH, Yang CW, Li C. Pathogenesis and management of renal fibrosis induced by unilateral ureteral obstruction. Kidney Res Clin Pract 2024; 43:586-599. [PMID: 38325866 PMCID: PMC11467363 DOI: 10.23876/j.krcp.23.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 02/09/2024] Open
Abstract
Regardless of the underlying etiology, renal fibrosis is the final histological outcome of progressive kidney disease. Unilateral ureteral obstruction (UUO) is an ideal and reproducible experimental rodent model of renal fibrosis, which is characterized by tubulointerstitial inflammatory responses, accumulation of extracellular matrix, tubular dilatation and atrophy, and fibrosis. The magnitude of UUO-induced renal fibrosis is experimentally manipulated by the species chosen, animal age, and the severity and duration of the obstruction, while relief of the obstruction allows the animal to recover from fibrosis. The pathogenesis of renal fibrosis is complex and multifactorial and is orchestrated by activation of renin-angiotensin system (RAS), oxidative stress, inflammatory response, transforming growth factor beta 1-Smad pathway, activated myofibroblasts, cell death (apoptosis, autophagy, ferroptosis, and necroptosis), destruction of intracellular organelles, and signaling pathway. The current therapeutic approaches have limited efficacy. Inhibition of RAS and use of antioxidants and antidiabetic drugs, such as inhibitors of sodium-glucose cotransporter 2 and dipeptidyl peptidase-4, have recently gained attention as therapeutic strategies to prevent renal scarring. This literature review highlights the state of the art regarding the molecular mechanisms relevant to the management of renal fibrosis caused by UUO.
Collapse
Affiliation(s)
- Qi Yan Nan
- Department of Nephrology, Yanbian University Hospital, Yanji, China
- Department of Intensive Care Unit, Yanbian University Hospital, Yanji, China
| | - Shang Guo Piao
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Ji Zhe Jin
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Byung Ha Chung
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Can Li
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| |
Collapse
|
18
|
Ding Z, Ma G, Zhou B, Cheng S, Tang W, Han Y, Chen L, Pang W, Chen Y, Yang D, Cao H. Targeting miR-29 mitigates skeletal senescence and bolsters therapeutic potential of mesenchymal stromal cells. Cell Rep Med 2024; 5:101665. [PMID: 39168101 PMCID: PMC11384963 DOI: 10.1016/j.xcrm.2024.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024]
Abstract
Mesenchymal stromal cell (MSC) senescence is a key factor in skeletal aging, affecting the potential of MSC applications. Identifying targets to prevent MSC and skeletal senescence is crucial. Here, we report increased miR-29 expression in bone tissues of aged mice, osteoporotic patients, and senescent MSCs. Genetic overexpression of miR-29 in Prx1-positive MSCs significantly accelerates skeletal senescence, reducing cortical bone thickness and trabecular bone mass, while increasing femur cross-sectional area, bone marrow adiposity, p53, and senescence-associated secretory phenotype (SASP) levels. Mechanistically, miR-29 promotes senescence by upregulating p53 via targeting Kindlin-2 mRNA. miR-29 knockdown in BMSCs impedes skeletal senescence, enhances bone mass, and accelerates calvarial defect regeneration, also reducing lipopolysaccharide (LPS)-induced organ injuries and mortality. Thus, our findings underscore miR-29 as a promising therapeutic target for senescence-related skeletal diseases and acute inflammation-induced organ damage.
Collapse
Affiliation(s)
- Zhen Ding
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Bo Zhou
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Cheng
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wanze Tang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingying Han
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Litong Chen
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Pang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yangshan Chen
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dazhi Yang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
19
|
Salybekov AA, Okamura S, Ohtake T, Hidaka S, Asahara T, Kobayashi S. Extracellular Vesicle Transplantation Is Beneficial for Acute Kidney Injury. Cells 2024; 13:1335. [PMID: 39195224 PMCID: PMC11352623 DOI: 10.3390/cells13161335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Under vasculogenic conditioning, certain pro-inflammatory subsets within peripheral blood mononuclear cells (PBMCs) undergo phenotypic transformation into pro-regenerative types, such as vasculogenic endothelial progenitor cells, M2 macrophages, and regulatory T cells. These transformed cells are collectively termed regeneration-associated cells (RACs). In this study, we aimed to investigate the therapeutic efficacy of RAC-derived extracellular vesicles (RACev) compared with a vehicle-treated group in the context of renal ischemia-reperfusion injury (R-IRI). Human PBMCs were cultured with defined growth factor cocktails for seven days to harvest RACs. EV quantity and size were characterized by nanoparticle tracking analysis. Notably, the systemic injection of RACev significantly decreased serum creatinine and blood urine nitrogen at day three compared to the control group. Histologically, the treatment group showed less fibrosis in the cortex and medullary areas (p < 0.04 and p < 0.01) compared to the control group. The CD31 staining confirmed enhanced capillary densities in the treatment group compared to the control group (p < 0.003). These beneficial effects were accompanied by angiogenesis, anti-fibrosis, anti-inflammation, and anti-apoptosis RACev miR delivery to ischemic injury to control inflammatory, endothelial mesenchymal transition, and hypoxia pathways. In vivo bioluminescence analysis demonstrated a preferential accumulation of RACev in the IR-injured kidney. The systemic transplantation of RACev beneficially restored kidney function by protecting from tissue fibrosis and through anti-inflammation, angiogenesis, and anti-apoptosis miR delivery to the ischemic tissue.
Collapse
Affiliation(s)
- Amankeldi A. Salybekov
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan; (T.O.); (S.H.); (S.K.)
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan; (S.O.); (T.A.)
| | - Shigeaki Okamura
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan; (S.O.); (T.A.)
| | - Takayasu Ohtake
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan; (T.O.); (S.H.); (S.K.)
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan; (S.O.); (T.A.)
- Division of Regenerative Medicine, Department of Center for Clinical and Translational Science, Shonan Kamakura General Hospital, Okamoto 1-1370, Kamakura 2478533, Japan
| | - Sumi Hidaka
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan; (T.O.); (S.H.); (S.K.)
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan; (S.O.); (T.A.)
| | - Takayuki Asahara
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan; (S.O.); (T.A.)
| | - Shuzo Kobayashi
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan; (T.O.); (S.H.); (S.K.)
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan; (S.O.); (T.A.)
| |
Collapse
|
20
|
Bakinowska E, Olejnik-Wojciechowska J, Kiełbowski K, Skoryk A, Pawlik A. Pathogenesis of Sarcopenia in Chronic Kidney Disease-The Role of Inflammation, Metabolic Dysregulation, Gut Dysbiosis, and microRNA. Int J Mol Sci 2024; 25:8474. [PMID: 39126043 PMCID: PMC11313360 DOI: 10.3390/ijms25158474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic kidney disease (CKD) is a progressive disorder associated with a decline in kidney function. Consequently, patients with advanced stages of CKD require renal replacement therapies, such as dialysis and kidney transplantation. Various conditions lead to the development of CKD, including diabetes mellitus, hypertension, and glomerulonephritis, among others. The disease is associated with metabolic and hormonal dysregulation, including uraemia and hyperparathyroidism, as well as with low-grade systemic inflammation. Altered homeostasis increases the risk of developing severe comorbidities, such as cardiovascular diseases or sarcopenia, which increase mortality. Sarcopenia is defined as a progressive decline in muscle mass and function. However, the precise mechanisms that link CKD and the development of sarcopenia are poorly understood. Knowledge about these linking mechanisms might lead to the introduction of precise treatment strategies that could prevent muscle wasting. This review discusses inflammatory mediators, metabolic and hormonal dysregulation, gut microbiota dysbiosis, and non-coding RNA alterations that could link CKD and sarcopenia.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
- Independent Laboratory of Community Nursing, Pomeranian Medical University, 71-210 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Anastasiia Skoryk
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| |
Collapse
|
21
|
Du J, Wu Q, Bae EJ. Epigenetics of Skeletal Muscle Atrophy. Int J Mol Sci 2024; 25:8362. [PMID: 39125931 PMCID: PMC11312722 DOI: 10.3390/ijms25158362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Skeletal muscle atrophy, characterized by diminished muscle strength and mass, arises from various causes, including malnutrition, aging, nerve damage, and disease-related secondary atrophy. Aging markedly escalates the prevalence of sarcopenia. Concurrently, the incidence of muscle atrophy significantly rises among patients with chronic ailments such as heart failure, diabetes, and chronic obstructive pulmonary disease (COPD). Epigenetics plays a pivotal role in skeletal muscle atrophy. Aging elevates methylation levels in the promoter regions of specific genes within muscle tissues. This aberrant methylation is similarly observed in conditions like diabetes, neurological disorders, and cardiovascular diseases. This study aims to explore the relationship between epigenetics and skeletal muscle atrophy, thereby enhancing the understanding of its pathogenesis and uncovering novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiacheng Du
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Qian Wu
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
22
|
Bahadorani M, Nasiri M, Dellinger K, Aravamudhan S, Zadegan R. Engineering Exosomes for Therapeutic Applications: Decoding Biogenesis, Content Modification, and Cargo Loading Strategies. Int J Nanomedicine 2024; 19:7137-7164. [PMID: 39050874 PMCID: PMC11268655 DOI: 10.2147/ijn.s464249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Exosomes emerge from endosomal invagination and range in size from 30 to 200 nm. Exosomes contain diverse proteins, lipids, and nucleic acids, which can indicate the state of various physiological and pathological processes. Studies have revealed the remarkable clinical potential of exosomes in diagnosing and prognosing multiple diseases, including cancer, cardiovascular disorders, and neurodegenerative conditions. Exosomes also have the potential to be engineered and deliver their cargo to a specific target. However, further advancements are imperative to optimize exosomes' diagnostic and therapeutic capabilities for practical implementation in clinical settings. This review highlights exosomes' diagnostic and therapeutic applications, emphasizing their engineering through simple incubation, biological, and click chemistry techniques. Additionally, the loading of therapeutic agents onto exosomes, utilizing passive and active strategies, and exploring hybrid and artificial exosomes are discussed.
Collapse
Affiliation(s)
- Mehrnoosh Bahadorani
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Mahboobeh Nasiri
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Shyam Aravamudhan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Reza Zadegan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| |
Collapse
|
23
|
Zhang Z, Zhang X, Gao X, Fang B, Tian S, Kang P, Zhao Y. MiR-150-5p Alleviates Renal Tubule Epithelial Cell Fibrosis via the Inhibition of Epithelial-Mesenchymal Transition by Targeting ZEB1. Int Arch Allergy Immunol 2024; 185:827-835. [PMID: 38763133 DOI: 10.1159/000538670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 05/21/2024] Open
Abstract
INTRODUCTION Although microRNA (miR)-150-5p participates in the progression of renal fibrosis, its mechanism of action remains elusive. METHODS A mouse model of unilateral ureteral obstruction was used. The in vitro renal fibrosis model was established by stimulating human kidney 2 (HK-2) cells with transforming growth factor beta 1 (TGF-β1). The expression profiles of miR-150-5p, zinc finger E-box binding homeobox 1 (ZEB1), and other fibrosis- and epithelial-mesenchymal transition (EMT)-linked proteins were determined using Western blot and quantitative reverse transcription polymerase chain reaction. The relationship between miR-150-5p and ZEB1 in HK-2 cells was confirmed by a dual-luciferase reporter assay. RESULTS Both in vivo and in vitro renal fibrosis models revealed reduced miR-150-5p expression and elevated ZEB1 level. A significant decrease in E-cadherin levels, as well as increases in alpha smooth muscle actin (α-SMA) and collagen type I (Col-I) levels, was seen in TGF-β1-treated HK-2 cells. The overexpression of miR-150-5p ameliorated TGF-β1-mediated fibrosis and EMT. Notably, miR-150-5p acts by directly targeting ZEB1. A significant reversal of the inhibitory impact of miR-150-5p on TGF-β1-mediated fibrosis and EMT in HK-2 cells was observed upon ZEB1 overexpression. CONCLUSION MiR-150-5p suppresses TGF-β1-induced fibrosis and EMT by targeting ZEB1 in HK-2 cells, providing helpful insights into the therapeutic intervention of renal fibrosis.
Collapse
Affiliation(s)
- Zhizhong Zhang
- Department of Urology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xinyu Zhang
- Department of Stomatology, Yinchuan Guolong Hospital, Yinchuan, China
| | - Xiangming Gao
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Bing Fang
- Department of General Medicine, Yinchuan Meinian Health Hospital, Yinchuan, China
| | - Shuyu Tian
- Internal Medicine, Yinchuan Guolong Hospital, Yinchuan, China
| | - Ping Kang
- Department of Surgery, Yinchuan Guolong Hospital, Yinchuan, China
| | - Yi Zhao
- Department of Urology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
24
|
Kasula V, Padala V, Gupta N, Doyle D, Bagheri K, Anastasio A, Adams SB. The Use of Extracellular Vesicles in Achilles Tendon Repair: A Systematic Review. Biomedicines 2024; 12:942. [PMID: 38790904 PMCID: PMC11117955 DOI: 10.3390/biomedicines12050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Achilles tendon (AT) pathologies are common musculoskeletal conditions that can significantly impair function. Despite various traditional treatments, recovery is often slow and may not restore full functionality. The use of extracellular vesicles (EVs) has emerged as a promising therapeutic option due to their role in cell signaling and tissue regeneration. This systematic review aims to consolidate current in vivo animal study findings on the therapeutic effects of EVs on AT injuries. An extensive literature search was conducted using the PubMed, Scopus, and Embase databases for in vivo animal studies examining the effects of EVs on AT pathologies. The extracted variables included but were not limited to the study design, type of EVs used, administration methods, efficacy of treatment, and proposed therapeutic mechanisms. After screening, 18 studies comprising 800 subjects were included. All but one study reported that EVs augmented wound healing processes in the AT. The most proposed mechanisms through which this occurred were gene regulation of the extracellular matrix (ECM), the enhancement of macrophage polarization, and the delivery of therapeutic microRNAs to the injury site. Further research is warranted to not only explore the therapeutic potential of EVs in the context of AT pathologies, but also to establish protocols for their clinical application.
Collapse
Affiliation(s)
- Varun Kasula
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Vikram Padala
- Department of Orthopedic Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nithin Gupta
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - David Doyle
- Department of Orthopedic Surgery, Central Michigan University College of Medicine, Saginaw, MI 48602, USA
| | - Kian Bagheri
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Albert Anastasio
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Samuel Bruce Adams
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
25
|
Fu X, Luo X, Xiao P, Guo N. Yin Yang 1 facilitates the activation, inflammation, and extracellular matrix deposition of hepatic stellate cells in hepatic fibrosis. Pathol Int 2024; 74:197-209. [PMID: 38353379 DOI: 10.1111/pin.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 04/11/2024]
Abstract
Chronic hepatic diseases often involve fibrosis as a pivotal factor in their progression. This study investigates the regulatory mechanisms of Yin Yang 1 (YY1) in hepatic fibrosis. Our data reveal that YY1 binds to the prolyl hydroxylase domain 1 (PHD1) promoter. Rats treated with carbon tetrachloride (CCl4) display heightened fibrosis in liver tissues, accompanied by increased levels of YY1, PHD1, and the fibrosis marker alpha-smooth muscle actin (α-SMA). Elevated levels of YY1, PHD1, and α-SMA are observed in the liver tissues of CCl4-treated rats, primary hepatic stellate cells (HSCs) isolated from fibrotic liver tissues, and transforming growth factor beta-1 (TGF-β1)-induced HSCs. The human HSC cell line LX-2, upon YY1 overexpression, exhibits enhanced TGF-β1-induced activation, leading to increased expression of extracellular matrix (ECM)-related proteins and inflammatory cytokines. YY1 silencing produces the opposite effect. YY1 exerts a positive regulatory effect on the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and PHD1 expression. PHD1 silencing rescues the promotion of YY1 in cell activation, ECM-related protein expression, and inflammatory cytokine production in TGF-β1-treated LX-2 cells. Overall, our findings propose a model wherein YY1 facilitates TGF-β1-induced HSC activation, ECM-related protein expression, and inflammatory cytokine production by promoting PHD1 expression and activating the PI3K/AKT signaling pathway. This study positions YY1 as a promising therapeutic target for hepatic fibrosis.
Collapse
Affiliation(s)
- Xiao Fu
- General Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Xin Luo
- General Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Ping Xiao
- General Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Ninghong Guo
- Clinical Trial Center, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|
26
|
Xue K, Mi B. Engineered Extracellular Vesicles in Chronic Kidney Diseases: A Comprehensive Review. Int J Nanomedicine 2024; 19:2377-2393. [PMID: 38469058 PMCID: PMC10926925 DOI: 10.2147/ijn.s452393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Chronic kidney diseases (CKD) present a formidable global health challenge, characterized by a deficiency of effective treatment options. Extracellular vesicles (EVs), recognized as multifunctional drug delivery systems in biomedicine, have gained accumulative interest. Specifically, engineered EVs have emerged as a promising therapeutic approach for targeted drug delivery, potentially addressing the complexities of CKD management. In this review, we systematically dissect EVs, elucidating their classification, biogenesis, composition, and cargo molecules. Furthermore, we explore techniques for EV engineering and strategies for their precise renal delivery, focusing on cargo loading and transportation, providing a comprehensive perspective. Moreover, this review also discusses and summarizes the diverse therapeutic applications of engineered EVs in CKD, emphasizing their anti-inflammatory, immunomodulatory, renoprotective, and tissue-regenerating effects. It critically evaluates the challenges and limitations in translating EV therapies from laboratory settings to clinical applications, while outlining future prospects and emerging trends.
Collapse
Affiliation(s)
- Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
27
|
Shan Z, Zhuang Z, Ren P, Zhao L, Zheng D, Chen W, Jin J. miR-664a-5p promotes experimental membranous nephropathy progression through HIPK2/Calpain1/GSα-mediated autophagy inhibition. J Cell Mol Med 2024; 28:e18074. [PMID: 38186203 PMCID: PMC10844711 DOI: 10.1111/jcmm.18074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/09/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024] Open
Abstract
We previously found that miR-664a-5p is specifically expressed in urinary exosomes of idiopathic membranous nephropathy (IMN) patients. Homeodomain-interacting protein kinase 2 (HIPK2), a nuclear serine/threonine kinase, plays an important role in nephropathy. But the function of these factors and their connection in MN are unclear. To investigate the function and mechanism of miR-664a-5p in MN, the miR-664a-5p expression in HK-2 cells, exosomes, podocytes and renal tissues were studied, as well as cell growth and apoptosis of these cells, the binding of miR-664a-5p to HIPK2 mRNA, the levels of relative proteins and autophagy. The MN progression in MN mice model was also studied. Albumin increased the miR-664a-5p content and apoptosis of HK-2 cells, which was blocked by miR-664a-5p antagomir. miR-664a-5p bound to the 3' UTR of HIPK2 mRNA, resulting in the up-regulation of Calpain1, GSα shear and the inhibition of autophagy level. Autophagy inhibitor CQ blocked the protective effect of miR-664a-5p antagomir, HIPK2 overexpression, Calpain inhibitor SJA6017 on albumin-mediated injury. MiR-664a-5p from albumin-treated HK-2 cells could be horizontally transported to podocytes through exosomes. Exosomes from albumin-treated HK-2 cells promoted progression of MN mice, AAV-Anti-miR-664-5p (mouse homology miRNA) could improve them. Albumin increases the miR-664a-5p level and causes changes of HIPK2/Calpain1/GSα pathway, which leads to autophagy inhibition and apoptosis up-regulation of renal tubular epithelial cells. miR-664a-5p can horizontally enter podocytes through exosomes resulting in podocytes injury. Targeted inhibition of miR-664a-5p can reduce the apoptosis of renal tubule cells and podocytes, and may improve the MN progression.
Collapse
Affiliation(s)
- Zhiming Shan
- Laboratory Medicine CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Zhenchao Zhuang
- Department of Laboratory MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouZhejiangChina
| | - Peiyao Ren
- Department of NephrologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouZhejiangChina
| | - Li Zhao
- Urology & Nephrology Center, Department of NephrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Danna Zheng
- Urology & Nephrology Center, Department of NephrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Wei Chen
- Four Provincial Marginal Traditional Chinese Medicine Hospitals (Quzhou Traditional Chinese Medicine Hospital) Affiliated to Zhejiang University of Traditional Chinese MedicineQuzhouZhejiangChina
| | - Juan Jin
- Department of NephrologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouZhejiangChina
| |
Collapse
|
28
|
Ban J, Chang S, Ma P, Wang X, Liu F. lncRNA Profiling of Exosomes and Its Communication Role in Regulating Silica-Stimulated Macrophage Apoptosis and Fibroblast Activation. Biomolecules 2024; 14:146. [PMID: 38397383 PMCID: PMC10886698 DOI: 10.3390/biom14020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Long-term silica particle exposure leads to interstitial pulmonary inflammation and fibrosis, called silicosis. Silica-activated macrophages secrete a wide range of cytokines resulting in persistent inflammation. In addition, silica-stimulated activation of fibroblast is another checkpoint in the progression of silicosis. The pathogenesis after silica exposure is complex, involving intercellular communication and intracellular signaling pathway transduction, which was ignored previously. Exosomes are noteworthy because of their crucial role in intercellular communication by delivering bioactive substances, such as lncRNA. However, the expression profile of exosomal lncRNA in silicosis has not been reported yet. In this study, exosomes were isolated from the peripheral serum of silicosis patients or healthy donors. The exosomal lncRNAs were profiled using high-throughput sequencing technology. Target genes were predicted, and functional annotation was performed using differentially expressed lncRNAs. Eight aberrant expressed exosomal lncRNAs were considered to play a key role in the process of silicosis according to the OPLS-DA. Furthermore, the increased expression of lncRNA MSTRG.43085.16 was testified in vitro. Its target gene PARP1 was critical in regulating apoptosis based on bioinformatics analysis. In addition, the effects of exosomes on macrophage apoptosis and fibroblast activation were checked based on a co-cultured system. Our findings suggested that upregulation of lncRNA MSTRG.43085.16 could regulate silica-induced macrophage apoptosis through elevating PARP1 expression, and promote fibroblast activation, implying that the exosomal lncRNA MSTRG.43085.16 might have potential as a biomarker for the early diagnosis of silicosis.
Collapse
Affiliation(s)
- Jiaqi Ban
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, China; (J.B.); (S.C.); (P.M.)
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Shuai Chang
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, China; (J.B.); (S.C.); (P.M.)
| | - Pengwei Ma
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, China; (J.B.); (S.C.); (P.M.)
| | - Xin Wang
- Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China;
| | - Fangwei Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, China; (J.B.); (S.C.); (P.M.)
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
29
|
Sasso CV, Lhamyani S, Hevilla F, Padial M, Blanca M, Barril G, Jiménez-Salcedo T, Martínez ES, Nogueira Á, Lago-Sampedro AM, Olveira G. Modulation of miR-29a and miR-29b Expression and Their Target Genes Related to Inflammation and Renal Fibrosis by an Oral Nutritional Supplement with Probiotics in Malnourished Hemodialysis Patients. Int J Mol Sci 2024; 25:1132. [PMID: 38256206 PMCID: PMC10816158 DOI: 10.3390/ijms25021132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Malnutrition is prevalent in patients with chronic kidney disease (CKD), especially those on hemodialysis. Recently, our group described that a new oral nutritional supplement (ONS), specifically designed for malnourished (or at risk) hemodialysis patients with a "similar to the Mediterranean diet" pattern, improved caloric-protein intake, nutritional status and biomarkers of inflammation and oxidation. Our aim in this study was to evaluate whether the new ONS, associated with probiotics or not, may produce changes in miRNA's expression and its target genes in malnourished hemodialysis patients, compared to individualized diet recommendations. We performed a randomized, multicenter, parallel-group trial in malnourished hemodialysis patients with three groups (1: control (C) individualized diet (n = 11); 2: oral nutritional supplement (ONS) + placebo (ONS-PL) (n = 10); and 3: ONS + probiotics (ONS-PR) (n = 10)); the trial was open regarding the intake of ONS or individualized diet recommendations but double-blinded for the intake of probiotics. MiRNAs and gene expression levels were analyzed by RT-qPCR at baseline and after 3 and 6 months. We observed that the expression of miR-29a and miR-29b increased significantly in patients with ONS-PR at 3 months in comparison with baseline, stabilizing at the sixth month. Moreover, we observed differences between studied groups, where miR-29b expression levels were elevated in patients receiving ONS-PR compared to the control group in the third month. Regarding the gene expression levels, we observed a decrease in the ONS-PR group compared to the control group in the third month for RUNX2 and TNFα. TGFB1 expression was decreased in the ONS-PR group compared to baseline in the third month. PTEN gene expression was significantly elevated in the ONS-PR group at 3 months in comparison with baseline. LEPTIN expression was significantly increased in the ONS-PL group at the 3-month intervention compared to baseline. The new oral nutritional supplement associated with probiotics increases the expression levels of miR-29a and miR-29b after 3 months of intervention, modifying the expression of target genes with anti-inflammatory and anti-fibrotic actions. This study highlights the potential benefit of this oral nutritional supplement, especially associated with probiotics, in malnourished patients with chronic renal disease on hemodialysis.
Collapse
Affiliation(s)
- Corina Verónica Sasso
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; (C.V.S.); (S.L.); (F.H.); (M.P.)
- Instituto de Investigación Biomédica de Málaga IBIMA-Plataforma BIONAND, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Said Lhamyani
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; (C.V.S.); (S.L.); (F.H.); (M.P.)
- Instituto de Investigación Biomédica de Málaga IBIMA-Plataforma BIONAND, 29009 Málaga, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 29010 Málaga, Spain
| | - Francisco Hevilla
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; (C.V.S.); (S.L.); (F.H.); (M.P.)
- Instituto de Investigación Biomédica de Málaga IBIMA-Plataforma BIONAND, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Marina Padial
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; (C.V.S.); (S.L.); (F.H.); (M.P.)
- Instituto de Investigación Biomédica de Málaga IBIMA-Plataforma BIONAND, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - María Blanca
- Servicio de Endocrinología y Nutrición, Hospital Universitario Rey Juan Carlos, 28933 Madrid, Spain; (M.B.); (E.S.M.)
| | - Guillermina Barril
- Servicio de Nefrología, Hospital de la Princesa, 28006 Madrid, Spain; (G.B.); (Á.N.)
| | | | - Enrique Sanz Martínez
- Servicio de Endocrinología y Nutrición, Hospital Universitario Rey Juan Carlos, 28933 Madrid, Spain; (M.B.); (E.S.M.)
| | - Ángel Nogueira
- Servicio de Nefrología, Hospital de la Princesa, 28006 Madrid, Spain; (G.B.); (Á.N.)
| | - Ana María Lago-Sampedro
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; (C.V.S.); (S.L.); (F.H.); (M.P.)
- Instituto de Investigación Biomédica de Málaga IBIMA-Plataforma BIONAND, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 29010 Málaga, Spain
| | - Gabriel Olveira
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; (C.V.S.); (S.L.); (F.H.); (M.P.)
- Instituto de Investigación Biomédica de Málaga IBIMA-Plataforma BIONAND, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 29010 Málaga, Spain
| |
Collapse
|
30
|
Huang H, Feng X, Feng Y, Peng Z, Jiao C, Chen H, Fu CR, Xu F, Wang Y, Su X, Luo Z, Wang Q. Bone-Targeting HUVEC-Derived Exosomes Containing miR-503-5p for Osteoporosis Therapy. ACS APPLIED NANO MATERIALS 2024; 7:1156-1169. [DOI: 10.1021/acsanm.3c05056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Affiliation(s)
- Haoqiang Huang
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, No. 388 Zu Chong Zhi Road, Kunshan, Jiangsu 215300, China
| | - Xinting Feng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Feng
- School of Stomatology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221000, China
| | - Zhen Peng
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Chunmeng Jiao
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui Chen
- Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Chieh Ru Fu
- Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Feng Xu
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, No. 388 Zu Chong Zhi Road, Kunshan, Jiangsu 215300, China
| | - Yitao Wang
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, No. 388 Zu Chong Zhi Road, Kunshan, Jiangsu 215300, China
| | - Xiaoping Su
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qing Wang
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, No. 388 Zu Chong Zhi Road, Kunshan, Jiangsu 215300, China
| |
Collapse
|
31
|
Huang H, Chen P, Feng X, Qian Y, Peng Z, Zhang T, Wang Q. Translational studies of exosomes in sports medicine - a mini-review. Front Immunol 2024; 14:1339669. [PMID: 38259444 PMCID: PMC10800726 DOI: 10.3389/fimmu.2023.1339669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
This review in sports medicine focuses on the critical role of exosomes in managing chronic conditions and enhancing athletic performance. Exosomes, small vesicles produced by various cells, are essential for cellular communication and transporting molecules like proteins and nucleic acids. Originating from the endoplasmic reticulum, they play a vital role in modulating inflammation and tissue repair. Their significance in sports medicine is increasingly recognized, particularly in healing athletic injuries, improving articular cartilage lesions, and osteoarthritic conditions by modulating cellular behavior and aiding tissue regeneration. Investigations also highlight their potential in boosting athletic performance, especially through myocytes-derived exosomes that may enhance adaptability to physical training. Emphasizing a multidisciplinary approach, this review underlines the need to thoroughly understand exosome biology, including their pathways and classifications, to fully exploit their therapeutic potential. It outlines future directions in sports medicine, focusing on personalized treatments, clinical evaluations, and embracing technological advancements. This research represents a frontier in using exosomes to improve athletes' health and performance capabilities.
Collapse
Affiliation(s)
- Haoqiang Huang
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Peng Chen
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xinting Feng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yinhua Qian
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Zhijian Peng
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Ting Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Wang
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| |
Collapse
|
32
|
Li W, Wei J, Huang P, Wei Y, Chang L, Liu G. Differential expression of miRNAs revealed by small RNA sequencing in traumatic tracheal stenosis. Front Genet 2024; 14:1291488. [PMID: 38259609 PMCID: PMC10800880 DOI: 10.3389/fgene.2023.1291488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Traumatic tracheal stenosis (TTS) is a major cause of complex difficult airways, without clinically definitive efficacious drugs available. The aim of this study was to provide a general view of interactions between micro and messenger ribonucleic acids (miRNAs and mRNAs) and many potential mechanisms in TTS via small RNA sequencing. Methods: In this study, the identification of miRNAs was completed using small RNA sequencing and samples from four TTS patients and four normal control cases. By using bioinformatics tools, such as miRanda and RNAhybrid, for identifying the candidate target genes of miRNAs with differential expression in each sample, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were employed for enriching the predicted target genes of miRNAs with differential expression based on the correspondence between miRNAs and their target genes. We detected the expression of the candidate miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR). Results: Twenty-four miRNAs with significant differential expression were identified, including 13 upregulated and 11 downregulated ones. Bioinformation technology was adopted to predict 2,496 target genes. These miRNA-target genes were shown to be primarily enriched in cells and organelles with catalytic activity and binding function, such as binding proteins, small molecules, and nucleotides. Finally, they were observed to process into TTS through the intercellular and signal regulation of related inflammatory signaling and fibrosis signaling pathways. QRT-PCR confirmed the upregulation of miR21-5p and miR214-3p and the downregulation of miR141-3p and miR29b-3p, which was expected to become a high-specific miRNA for TTS. Conclusion: Among all the miRNAs detected, 24 miRNAs demonstrated differential expression between the TTS and normal control groups. A total of 2,496 target genes were predicted by bioinformation technology and enriched in inflammatory and fibrotic signaling pathways. These results provide new ideas for further studies and the selection of targets for TTS in the future.
Collapse
Affiliation(s)
- Wentao Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Medical University, Nanning, China
| | - Jinmei Wei
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pingping Huang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuhui Wei
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Chang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Dermatology of Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan Uninversity, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Guangnan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Medical University, Nanning, China
| |
Collapse
|
33
|
Ma S, Qiu Y, Zhang C. Cytoskeleton Rearrangement in Podocytopathies: An Update. Int J Mol Sci 2024; 25:647. [PMID: 38203817 PMCID: PMC10779434 DOI: 10.3390/ijms25010647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Podocyte injury can disrupt the glomerular filtration barrier (GFB), leading to podocytopathies that emphasize podocytes as the glomerulus's key organizer. The coordinated cytoskeleton is essential for supporting the elegant structure and complete functions of podocytes. Therefore, cytoskeleton rearrangement is closely related to the pathogenesis of podocytopathies. In podocytopathies, the rearrangement of the cytoskeleton refers to significant alterations in a string of slit diaphragm (SD) and focal adhesion proteins such as the signaling node nephrin, calcium influx via transient receptor potential channel 6 (TRPC6), and regulation of the Rho family, eventually leading to the disorganization of the original cytoskeletal architecture. Thus, it is imperative to focus on these proteins and signaling pathways to probe the cytoskeleton rearrangement in podocytopathies. In this review, we describe podocytopathies and the podocyte cytoskeleton, then discuss the molecular mechanisms involved in cytoskeleton rearrangement in podocytopathies and summarize the effects of currently existing drugs on regulating the podocyte cytoskeleton.
Collapse
Affiliation(s)
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.M.); (Y.Q.)
| |
Collapse
|
34
|
Wang L, Zhao W, Xia C, Ma S, Li Z, Wang N, Ding L, Wang Y, Cheng L, Liu H, Yang J, Li Y, Rosas I, Yu G. TRIOBP modulates β-catenin signaling by regulation of miR-29b in idiopathic pulmonary fibrosis. Cell Mol Life Sci 2023; 81:13. [PMID: 38157020 PMCID: PMC10756874 DOI: 10.1007/s00018-023-05080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal and devastating lung disease of unknown etiology, described as the result of multiple cycles of epithelial cell injury and fibroblast activation. Despite this impressive increase in understanding, a therapy that reverses this form of fibrosis remains elusive. In our previous study, we found that miR-29b has a therapeutic effect on pulmonary fibrosis. However, its anti-fibrotic mechanism is not yet clear. Recently, our study identified that F-Actin Binding Protein (TRIOBP) is one of the target genes of miR-29b and found that deficiency of TRIOBP increases resistance to lung fibrosis in vivo. TRIOBP knockdown inhibited the proliferation of epithelial cells and attenuated the activation of fibroblasts. In addition, deficiency of Trio Rho Guanine Nucleotide Exchange Factor (TRIO) in epithelial cells and fibroblasts decreases susceptibility to lung fibrosis. TRIOBP interacting with TRIO promoted abnormal epithelial-mesenchymal crosstalk and modulated the nucleocytoplasmic translocation of β-catenin. We concluded that the miR-29b‒TRIOBP-TRIO-β-catenin axis might be a key anti-fibrotic axis in IPF to regulate lung regeneration and fibrosis, which may provide a promising treatment strategy for lung fibrosis.
Collapse
Affiliation(s)
- Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Wenyu Zhao
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Cong Xia
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Shuaichen Ma
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Zhongzheng Li
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Ningdan Wang
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Linke Ding
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Yaxuan Wang
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Lianhui Cheng
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Huibing Liu
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Yajun Li
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Ivan Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China.
| |
Collapse
|
35
|
Qin L, Lin H, Zhu F, Wang J, Feng T, Xu T, Zhang G, Zhang X. CD4 +LAG3 +T cells are decreased in SSc-ILD and affect fibroblast mesenchymal transition by TGF-β3. iScience 2023; 26:108225. [PMID: 38025770 PMCID: PMC10661698 DOI: 10.1016/j.isci.2023.108225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/04/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Pulmonary fibrosis frequently occurs in rheumatic conditions, particularly systemic sclerosis-associated interstitial lung disease (SSc-ILD). The pathology involves cell transformation into interstitial structures and collagen accumulation. CD4+LAG3+T cells, known for immune inhibition, are relevant in autoimmunity. This study investigates CD4+LAG3+T cells in SSc-ILD. Clinical analysis revealed a correlation between CD4+LAG3+T cells and interleukin-6 (IL-6) and erythrocyte sedimentation rate (ESR). Using primary human lung fibroblasts (pHLFs) and murine bone marrow-derived macrophages (BMDMs), we showed that CD4+LAG3+T cells secreted TGF-β3 inhibits TGF-β1-induced mesenchymal transformation, modulates cellular function, and reduces collagen release. In mouse models, CD4+LAG3+T cells exhibited potential in alleviating bleomycin-induced pulmonary fibrosis. This study emphasizes CD4+LAG3+T cells' therapeutic promise against fibrosis and proposes their role as biomarkers.
Collapse
Affiliation(s)
- Linmang Qin
- Department of Rheumatology and Immunology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Haobo Lin
- Department of Rheumatology and Immunology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Fu Zhu
- Liuzhou Worker’s Hospital, Liuzhou 545007, China
| | - Jieying Wang
- Department of Rheumatology and Immunology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Tianxiao Feng
- Department of Rheumatology and Immunology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Ting Xu
- Department of Rheumatology and Immunology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Guangfeng Zhang
- Department of Rheumatology and Immunology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiao Zhang
- Department of Rheumatology and Immunology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
36
|
Zhang X, McLendon JM, Peck BD, Chen B, Song LS, Boudreau RL. Modulation of miR-29 influences myocardial compliance likely through coordinated regulation of calcium handling and extracellular matrix. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102081. [PMID: 38111915 PMCID: PMC10726423 DOI: 10.1016/j.omtn.2023.102081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023]
Abstract
MicroRNAs (miRNAs) control the expression of diverse subsets of target mRNAs, and studies have found miRNA dysregulation in failing hearts. Expression of miR-29 is abundant in heart, increases with aging, and is altered in cardiomyopathies. Prior studies demonstrate that miR-29 reduction via genetic knockout or pharmacologic blockade can blunt cardiac hypertrophy and fibrosis in mice. Surprisingly, this depended on specifically blunting miR-29 actions in cardiomyocytes versus fibroblasts. To begin developing more translationally relevant vectors, we generated a novel transgene-encoded miR-29 inhibitor (TuD-29) that can be incorporated into a viral-mediated gene therapy for cardioprotection. Here, we corroborate that miR-29 expression and activity is higher in cardiomyocytes versus fibroblasts and demonstrate that TuD-29 effectively blunts hypertrophic responses in cultured cardiomyocytes and mouse hearts. Furthermore, we found that adeno-associated virus (AAV)-mediated miR-29 overexpression in mouse hearts induces early diastolic dysfunction, whereas AAV:TuD-29 treatment improves cardiac output by increasing end-diastolic and stroke volumes. The integration of RNA sequencing and miRNA-target interactomes reveals that miR-29 regulates genes involved in calcium handling, cell stress and hypertrophy, metabolism, ion transport, and extracellular matrix remodeling. These investigations support a likely versatile role for miR-29 in influencing myocardial compliance and relaxation, potentially providing a unique therapeutic avenue to improve diastolic function in heart failure patients.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jared M. McLendon
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bailey D. Peck
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Biyi Chen
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Long-Sheng Song
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ryan L. Boudreau
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
37
|
Ji JL, Shi HM, Li ZL, Jin R, Qu GT, Zheng H, Wang E, Qiao YY, Li XY, Ding L, Ding DF, Ding LC, Gan WH, Wang B, Zhang AQ. Satellite cell-derived exosome-mediated delivery of microRNA-23a/27a/26a cluster ameliorates the renal tubulointerstitial fibrosis in mouse diabetic nephropathy. Acta Pharmacol Sin 2023; 44:2455-2468. [PMID: 37596398 PMCID: PMC10692096 DOI: 10.1038/s41401-023-01140-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023]
Abstract
Renal tubulointerstitial fibrosis (TIF) is considered as the final convergent pathway of diabetic nephropathy (DN) without effective therapies currently. MiRNAs play a key role in fibrotic diseases and become promising therapeutic targets for kidney diseases, while miRNA clusters, formed by the cluster arrangement of miRNAs on chromosomes, can regulate diverse biological functions alone or synergistically. In this study, we developed clustered miR-23a/27a/26a-loaded skeletal muscle satellite cells-derived exosomes (Exos) engineered with RVG peptide, and investigated their therapeutic efficacy in a murine model of DN. Firstly, we showed that miR-23a-3p, miR-26a-5p and miR-27a-3p were markedly decreased in serum samples of DN patients using miRNA sequencing. Meanwhile, we confirmed that miR-23a-3p, miR-26a-5p and miR-27a-3p were primarily located in proximal renal tubules and highly negatively correlated with TIF in db/db mice at 20 weeks of age. We then engineered RVG-miR-23a/27a/26a cluster loaded Exos derived from muscle satellite cells, which not only enhanced the stability of miR-23a/27a/26a cluster, but also efficiently delivered more miR-23a/27a/26a cluster homing to the injured kidney. More importantly, administration of RVG-miR-23a/27a/26a-Exos (100 μg, i.v., once a week for 8 weeks) significantly ameliorated tubular injury and TIF in db/db mice at 20 weeks of age. We revealed that miR-23a/27a/26a-Exos enhanced antifibrotic effects by repressing miRNA cluster-targeting Lpp simultaneously, as well as miR-27a-3p-targeting Zbtb20 and miR-26a-5p-targeting Klhl42, respectively. Knockdown of Lpp by injection of AAV-Lpp-RNAi effectively ameliorated the progression of TIF in DN mice. Taken together, we established a novel kidney-targeting Exo-based delivery system by manipulating the miRNA-23a/27a/26a cluster to ameliorate TIF in DN, thus providing a promising therapeutic strategy for DN.
Collapse
Affiliation(s)
- Jia-Ling Ji
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Hui-Min Shi
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Ran Jin
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Gao-Ting Qu
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Hui Zheng
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - E Wang
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Yun-Yang Qiao
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Xing-Yue Li
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Ling Ding
- Department of Pediatrics, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, China
| | - Da-Fa Ding
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Liu-Cheng Ding
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Wei-Hua Gan
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, 210009, China.
| | - Ai-Qing Zhang
- Department of Pediatrics, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, China.
| |
Collapse
|
38
|
Zhang X, Zhao Y, Yan W. The role of extracellular vesicles in skeletal muscle wasting. J Cachexia Sarcopenia Muscle 2023; 14:2462-2472. [PMID: 37867162 PMCID: PMC10751420 DOI: 10.1002/jcsm.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/01/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Skeletal muscle wasting is a complicated metabolic syndrome accompanied by multiple diseases ranging from cancer to metabolic disorders and infectious conditions. The loss of muscle mass significantly impairs muscle function, resulting in poor quality of life and high mortality of associated diseases. The fundamental cellular and molecular mechanisms inducing muscle wasting have been well established, and those related pathways can be activated by a variety of extracellular signals, including inflammatory cytokines and catabolic stimuli. As an emerging messenger of cell-to-cell communications, extracellular vesicles (EVs) also get involved in the progression of muscle wasting by transferring bioactive cargoes including various proteins and non-coding RNAs to skeletal muscle. Like a double-edged sword, EVs play either a pro-wasting or anti-wasting role in the progression of muscle wasting, highly dependent on their parental cells as well as the specific type of cargo they encapsulate. This review aims to illustrate the current knowledge about the biological function of EVs cargoes in skeletal muscle wasting. Additionally, the potential therapeutic implications of EVs in the diagnosis and treatment of skeletal muscle wasting are also discussed. Simultaneously, several outstanding questions are included to shed light on future research.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
39
|
Cheng W, Xu C, Su Y, Shen Y, Yang Q, Zhao Y, Zhao Y, Liu Y. Engineered Extracellular Vesicles: A potential treatment for regeneration. iScience 2023; 26:108282. [PMID: 38026170 PMCID: PMC10651684 DOI: 10.1016/j.isci.2023.108282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Extracellular vesicles (EVs) play a critical role in various physiological and pathological processes. EVs have gained recognition in regenerative medicine due to their biocompatibility and low immunogenicity. However, the practical application of EVs faces challenges such as limited targeting ability, low yield, and inadequate therapeutic effects. To overcome these limitations, engineered EVs have emerged. This review aims to comprehensively analyze the engineering methods utilized for modifying donor cells and EVs, with a focus on comparing the therapeutic potential between engineered and natural EVs. Additionally, it aims to investigate the specific cell effects that play a crucial role in promoting repair and regeneration, while also exploring the underlying mechanisms involved in the field of regenerative medicine.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Chenyu Xu
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yuran Su
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Youqing Shen
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Yang
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Yanhong Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yue Liu
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin University, Tianjin 300211, China
| |
Collapse
|
40
|
Fan W, Zhou M, Zheng S, Liu Y, Pan S, Guo P, Xu M, Hu C, Ding A, Wang Z, Yin S, Zuo K, Xie X. Human umbilical cord mesenchymal stem cell-derived exosomes promote microcirculation in aged diabetic mice by TGF-β1 signaling pathway. Diabetol Metab Syndr 2023; 15:234. [PMID: 37968711 PMCID: PMC10652470 DOI: 10.1186/s13098-023-01191-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Microvascular dysfunction is one of the most common pathological characteristics in Type 2 diabetes. Human mesenchymal stem cell-derived exosomes (hUCMSCs-Exo) have diverse functions in improving microcirculation; however, the molecular mechanism of hUCMSCs-Exo in regulating burn-induced inflammation is not well understood. METHODS hUCMSCs-Exo were extracted by hypervelocity centrifugation method, and exosome morphology was observed by transmission electron microscopy, exosome diameter distribution was detected by particle size analysis, and exosome specific proteins were identified by Western blot.2. DB/DB mice were randomly divided into exosomes group and PBS group. Exosomes and PBS were injected into the tail vein, respectively, and the calf muscle tissue was taken 28 days later. 0.5% Evans blue fluorescence assessment microvascular permeability. The expression of CD31 was detected by immunofluorescence.The morphology and function of microvessels in muscle tissue of lower limbs was evaluated by transmission electron microscopy.3. TMT proteomics was used to detect the changes of differential protein expression in lower limb muscle tissues of the PBS group and the exosome group, and data analysis was performed to screen key signal molecules and their involved biological pathways. Key signal molecules CD105 were verified by Western blot. The expression of TGF-β1 in exosomes were evaluated by Western blot. RESULTS Electron microscopy showed that hUCMSCs-Exo presented a uniform vesicle structure, and NTA showed that its diameter was about 160 nm. Western blot showed positive expression of specific proteins CD9, CD81 and TSG101 on exosomes.2. There is no significant change in blood glucose and body weight before and after the exosome treatment. The exosome group can significantly reduce the exudation of Evans blue. Compared with the PBS group. Meanwhile, CD31 immunofluorescence showed that the red fluorescence of exosome treatment was significantly increased, which was higher than that of PBS group. Transmission electron microscopy showed smooth capillary lumen and smooth and complete surface of endothelial cells in the exosome group, while narrow capillary lumen and fingerlike protrusion of endothelial cells in the PBS group.3.Quantitative analysis of TMT proteomics showed that there were 82 differential proteins, including 49 down-regulated proteins and 33 up-regulated proteins. Go enrichment analysis showed that the differential proteins were involved in molecular function, biological process, cell components,among which CD105 was one of the up-regulated proteins. Through literature search, CD105 was found to be related to endothelial cell proliferation. Therefore, this study verified the changes of CD105 in the exosome group, and it was used as the mechanism study of this study. 4. Western blot analysis showed that the expression of CD105 protein in lower limb muscle tissue of exosome group was significantly increased compared with that of PBS group. Based on the fact that CD105 is a component of the TGF-β1 receptor complex and exosomes are rich in growth factors and cytokines, this study further examined the expression of TGF-β1 in exosomes, and the results showed that exosomes had high expression of TGF-β1. CONCLUSION By improving the integrity of microvascular endothelial cells, hUCMSCs-Exo can improve the permeability of microvessels in diabetic lower muscle tissue, further promote the proliferation of lower limb muscle cells and inhibit the apoptosis of tissue cells. The mechanism may be associated with exosomes rich in TGF-β1, which is likely to promote endothelial cell proliferation and improve permeability through binding to the endothelial CD105/TβR-II receptor complex, while promoting angiogenesis and protecting skeletal muscle cells from apoptosis.
Collapse
Affiliation(s)
- Weijian Fan
- Department of Interventional & Vascular Surgery, Hefei Second People's Hospital, Hefei Hospital Affiliated to Anhui Medical University, Anhui, 230011, China
| | - Mengdie Zhou
- Geriatric department, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 201600, China
| | - Shaoqiu Zheng
- Department of Urinary Surgery Shanghai Pudong New District Zhoupu Hospital, Shanghai, 200100, China
| | - Yang Liu
- Department of Geriatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Songsong Pan
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Peng Guo
- Department of Vascular Surgery, The Fifth Affiliated Hospital of ZhengZhou University, ZhengZhou, 450052, China
| | - Minjie Xu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chao Hu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Anle Ding
- AnHui University of Science and Technology, Huainan, 232001, China
| | - Zan Wang
- AnHui University of Science and Technology, Huainan, 232001, China
| | - Shiwu Yin
- Department of Interventional & Vascular Surgery, Hefei Second People's Hospital, Hefei Hospital Affiliated to Anhui Medical University, Anhui, 230011, China
| | - Keqiang Zuo
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Xiaoyun Xie
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
41
|
Qiao L, Hu J, Qiu X, Wang C, Peng J, Zhang C, Zhang M, Lu H, Chen W. LAMP2A, LAMP2B and LAMP2C: similar structures, divergent roles. Autophagy 2023; 19:2837-2852. [PMID: 37469132 PMCID: PMC10549195 DOI: 10.1080/15548627.2023.2235196] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
LAMP2 (lysosomal associated membrane protein 2) is one of the major protein components of the lysosomal membrane. There currently exist three LAMP2 isoforms, LAMP2A, LAMP2B and LAMP2C, and they vary in distribution and function. LAMP2A serves as a receptor and channel for transporting cytosolic proteins in a process called chaperone-mediated autophagy (CMA). LAMP2B is required for autophagosome-lysosome fusion in cardiomyocytes and is one of the components of exosome membranes. LAMP2C is primarily implicated in a novel type of autophagy in which nucleic acids are taken up into lysosomes for degradation. In this review, the current evidence for the function of each LAMP2 isoform in various pathophysiological processes and human diseases, as well as their possible mechanisms, are comprehensively summarized. We discuss the evolutionary patterns of the three isoforms in vertebrates and provide technical guidance on investigating these isoforms. We are also concerned with the newly arising questions in this particular research area that remain unanswered. Advances in the functions of the three LAMP2 isoforms will uncover new links between lysosomal dysfunction, autophagy and human diseases.Abbreviation: ACSL4: acyl-CoA synthetase long-chain family member 4; AD: Alzheimer disease; Ag: antigens; APP: amyloid beta precursor protein; ATG14: autophagy related 14; AVSF: autophagic vacuoles with unique sarcolemmal features; BBC3/PUMA: BCL2 binding component 3; CCD: C-terminal coiled coil domain; CMA: chaperone-mediated autophagy; CVDs: cardiovascular diseases; DDIT4/REDD1: DNA damage inducible transcript 4; ECs: endothelial cells; ER: endoplasmic reticulum; ESCs: embryonic stem cells; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GBA/β-glucocerebrosidase: glucosylceramidase beta; GSCs: glioblastoma stem cells; HCC: hepatocellular carcinoma; HD: Huntington disease; HSCs: hematopoietic stem cells; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; IL3: interleukin 3; IR: ischemia-reperfusion; LAMP2: lysosomal associated membrane protein 2; LDs: lipid droplets; LRRK2: leucine rich repeat kinase 2; MA: macroautophagy; MHC: major histocompatibility complex; MST1: macrophage stimulating 1; NAFLD: nonalcoholic fatty liver disease; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; NLRP3: NLR family pyrin domain containing 3; PARK7: Parkinsonism associated deglycase; PD: Parkinson disease; PEA15/PED: proliferation and apoptosis adaptor protein 15; PKM/PKM2: pyruvate kinase M1/2; RA: rheumatoid arthritis; RARA: retinoic acid receptor alpha; RCAN1: regulator of calcineurin 1; RCC: renal cell carcinoma; RDA: RNautophagy and DNautophagy; RNAi: RNA interference; RND3: Rho Family GTPase 3; SG-NOS3/eNOS: deleterious glutathionylated NOS3; SLE: systemic lupus erythematosus; TAMs: tumor-associated macrophages; TME: tumor microenvironment; UCHL1: ubiquitin C-terminal hydrolase L1; VAMP8: vesicle associated membrane protein 8.
Collapse
Affiliation(s)
- Lei Qiao
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiayi Hu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaohan Qiu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chunlin Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jieqiong Peng
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Huixia Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenqiang Chen
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
42
|
Palmer TC, Hunter RW. Using RNA-based therapies to target the kidney in cardiovascular disease. Front Cardiovasc Med 2023; 10:1250073. [PMID: 37868774 PMCID: PMC10587590 DOI: 10.3389/fcvm.2023.1250073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
RNA-based therapies are currently used for immunisation against infections and to treat metabolic diseases. They can modulate gene expression in immune cells and hepatocytes, but their use in other cell types has been limited by an inability to selectively target specific tissues. Potential solutions to this targeting problem involve packaging therapeutic RNA molecules into delivery vehicles that are preferentially delivered to cells of interest. In this review, we consider why the kidney is a desirable target for RNA-based therapies in cardiovascular disease and discuss how such therapy could be delivered. Because the kidney plays a central role in maintaining cardiovascular homeostasis, many extant drugs used for preventing cardiovascular disease act predominantly on renal tubular cells. Moreover, kidney disease is a major independent risk factor for cardiovascular disease and a global health problem. Chronic kidney disease is projected to become the fifth leading cause of death by 2040, with around half of affected individuals dying from cardiovascular disease. The most promising strategies for delivering therapeutic RNA selectively to kidney cells make use of synthetic polymers and engineered extracellular vesicles to deliver an RNA cargo. Future research should focus on establishing the safety of these novel delivery platforms in humans, on developing palatable routes of administration and on prioritising the gene targets that are likely to have the biggest impact in cardiovascular disease.
Collapse
Affiliation(s)
- Trecia C. Palmer
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert W. Hunter
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Renal Medicine, Royal Infirmary ofEdinburgh, Edinburgh, United Kingdom
| |
Collapse
|
43
|
Nørregaard R, Mutsaers HAM, Frøkiær J, Kwon TH. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol Rev 2023; 103:2827-2872. [PMID: 37440209 PMCID: PMC10642920 DOI: 10.1152/physrev.00027.2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
44
|
Niculae A, Gherghina ME, Peride I, Tiglis M, Nechita AM, Checherita IA. Pathway from Acute Kidney Injury to Chronic Kidney Disease: Molecules Involved in Renal Fibrosis. Int J Mol Sci 2023; 24:14019. [PMID: 37762322 PMCID: PMC10531003 DOI: 10.3390/ijms241814019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Acute kidney injury (AKI) is one of the main conditions responsible for chronic kidney disease (CKD), including end-stage renal disease (ESRD) as a long-term complication. Besides short-term complications, such as electrolyte and acid-base disorders, fluid overload, bleeding complications or immune dysfunctions, AKI can develop chronic injuries and subsequent CKD through renal fibrosis pathways. Kidney fibrosis is a pathological process defined by excessive extracellular matrix (ECM) deposition, evidenced in chronic kidney injuries with maladaptive architecture restoration. So far, cited maladaptive kidney processes responsible for AKI to CKD transition were epithelial, endothelial, pericyte, macrophage and fibroblast transition to myofibroblasts. These are responsible for smooth muscle actin (SMA) synthesis and abnormal renal architecture. Recently, AKI progress to CKD or ESRD gained a lot of interest, with impressive progression in discovering the mechanisms involved in renal fibrosis, including cellular and molecular pathways. Risk factors mentioned in AKI progression to CKD are frequency and severity of kidney injury, chronic diseases such as uncontrolled hypertension, diabetes mellitus, obesity and unmodifiable risk factors (i.e., genetics, older age or gender). To provide a better understanding of AKI transition to CKD, we have selected relevant and updated information regarding the risk factors responsible for AKIs unfavorable long-term evolution and mechanisms incriminated in the progression to a chronic state, along with possible therapeutic approaches in preventing or delaying CKD from AKI.
Collapse
Affiliation(s)
- Andrei Niculae
- Department of Nephrology, Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihai-Emil Gherghina
- Department of Nephrology, Ilfov County Emergency Clinical Hospital, 022104 Bucharest, Romania
| | - Ileana Peride
- Department of Nephrology, Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mirela Tiglis
- Department of Anesthesia and Intensive Care, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Ana-Maria Nechita
- Department of Nephrology, “St. John” Emergency Clinical Hospital, 042122 Bucharest, Romania
| | | |
Collapse
|
45
|
Wei X, Wang J, Sun Y, Zhao T, Luo X, Lu J, Hou W, Yu X, Xue L, Yan Y, Wang H. MiR-222-3p suppresses C2C12 myoblast proliferation and differentiation via the inhibition of IRS-1/PI3K/Akt pathway. J Cell Biochem 2023; 124:1379-1390. [PMID: 37565526 DOI: 10.1002/jcb.30453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Numerous studies have revealed the profound impact of microRNAs on regulating skeletal muscle development and regeneration. However, the biological function and regulation mechanism of miR-222-3p in skeletal muscle remains largely unknown. In this study, miR-222-3p was found to be abundantly expressed in the impaired skeletal muscles, indicating that it might have function in the development and regeneration process of the skeletal muscle. MiR-222-3p overexpression impeded C2C12 myoblast proliferation and myogenic differentiation, whereas inhibition of miR-222-3p got the opposite results. The dual-luciferase reporter assay showed that insulin receptor substrate-1 (IRS-1) was the target gene of miR-222-3p. We next found that knockdown of IRS-1 could obviously suppress C2C12 myoblast proliferation and differentiation. Additionally, miR-222-3p-induced repression of myoblast proliferation and differentiation was verified to be associated with a decrease in phosphoinositide 3-kinase (PI3K)-Akt signaling. Overall, we demonstrated that miR-222-3p inhibited C2C12 cells myogenesis via IRS-1/PI3K/Akt pathway. Therefore, miR-222-3p may be used as a therapeutic target for alleviating muscle loss caused by inherited and nonhereditary diseases.
Collapse
Affiliation(s)
- Xiaofang Wei
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Juan Wang
- Department of Nephrology, Shanghai General Hosptial, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yaqin Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Tong Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Xiaomao Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Jiayin Lu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Xiuju Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Linli Xue
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Yi Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| |
Collapse
|
46
|
van Zonneveld AJ, Zhao Q, Rotmans JI, Bijkerk R. Circulating non-coding RNAs in chronic kidney disease and its complications. Nat Rev Nephrol 2023; 19:573-586. [PMID: 37286733 DOI: 10.1038/s41581-023-00725-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/09/2023]
Abstract
Post-transcriptional regulation by non-coding RNAs (ncRNAs) can modulate the expression of genes involved in kidney physiology and disease. A large variety of ncRNA species exist, including microRNAs, long non-coding RNAs, piwi-interacting RNAs, small nucleolar RNAs, circular RNAs and yRNAs. Despite early assumptions that some of these species may exist as by-products of cell or tissue injury, a growing body of literature suggests that these ncRNAs are functional and participate in a variety of processes. Although they function intracellularly, ncRNAs are also present in the circulation, where they are carried by extracellular vesicles, ribonucleoprotein complexes or lipoprotein complexes such as HDL. These systemic, circulating ncRNAs are derived from specific cell types and can be directly transferred to a variety of cells, including endothelial cells of the vasculature and virtually any cell type in the kidney, thereby affecting the function of the host cell and/or its response to injury. Moreover, chronic kidney disease itself, as well as injury states associated with transplantation and allograft dysfunction, is associated with a shift in the distribution of circulating ncRNAs. These findings may provide opportunities for the identification of biomarkers with which to monitor disease progression and/or the development of therapeutic interventions.
Collapse
Affiliation(s)
- Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Qiao Zhao
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands.
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
47
|
Cheng WX, Wei SB, Zhou Y, Shao Y, Li MY. Exosomes: potential diagnostic markers and drug carriers for adenomyosis. Front Pharmacol 2023; 14:1216149. [PMID: 37680720 PMCID: PMC10482052 DOI: 10.3389/fphar.2023.1216149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Adenomyosis is a common benign gynecological disorder and an important factor leading to infertility in fertile women. Adenomyosis can cause deep lesions and is persistent and refractory in nature due to its tumor-like biological characteristics, such as the ability to implant, adhere, and invade. The pathogenesis of adenomyosis is currently unclear. Therefore, new therapeutic approaches are urgently required. Exosomes are nanoscale vesicles secreted by cells that carry proteins, genetic materials and other biologically active components. Exosomes play an important role in maintaining tissue homeostasis and regulating immune responses and metabolism. A growing body of work has shown that exosomes and their contents are key to the development and progression of adenomyosis. This review discusses the current research progress, future prospects and challenges in this emerging therapeutic tool by providing an overview of the changes in the adenomyosis uterine microenvironment and the biogenesis and functions of exosomes, with particular emphasis on the role of exosomes and their contents in the regulation of cell migration, proliferation, fibrosis formation, neovascularization, and inflammatory responses in adenomyosis.
Collapse
Affiliation(s)
- Wen-Xiu Cheng
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shao-Bin Wei
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yang Zhou
- Trauma Center, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong, China
| | - Yu Shao
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mao-Ya Li
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
48
|
Koh HB, Kim HJ, Kang SW, Yoo TH. Exosome-Based Drug Delivery: Translation from Bench to Clinic. Pharmaceutics 2023; 15:2042. [PMID: 37631256 PMCID: PMC10459753 DOI: 10.3390/pharmaceutics15082042] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Exosome-based drug delivery is emerging as a promising field with the potential to revolutionize therapeutic interventions. Exosomes, which are small extracellular vesicles released by various cell types, have attracted significant attention due to their unique properties and natural ability to transport bioactive molecules. These nano-sized vesicles, ranging in size from 30 to 150 nm, can effectively transport a variety of cargoes, including proteins, nucleic acids, and lipids. Compared to traditional drug delivery systems, exosomes exhibit unique biocompatibility, low immunogenicity, and reduced toxicity. In addition, exosomes can be designed and tailored to improve targeting efficiency, cargo loading capacity, and stability, paving the way for personalized medicine and precision therapy. However, despite the promising potential of exosome-based drug delivery, its clinical application remains challenging due to limitations in exosome isolation and purification, low loading efficiency of therapeutic cargoes, insufficient targeted delivery, and rapid elimination in circulation. This comprehensive review focuses on the transition of exosome-based drug delivery from the bench to clinic, highlighting key aspects, such as exosome structure and biogenesis, cargo loading methods, surface engineering techniques, and clinical applications. It also discusses challenges and prospects in this emerging field.
Collapse
Affiliation(s)
- Hee Byung Koh
- Division of Nephrology, Department of Internal Medicine, International Saint Mary’s Hospital, College of Medicine, Catholic Kwandong University, Seo-gu, Incheon 22711, Republic of Korea;
| | - Hyo Jeong Kim
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, College of Medicine, Yonsei University, Gangnam-gu, Seoul 06273, Republic of Korea;
| | - Shin-Wook Kang
- Department of Internal Medicine, Institute of Kidney Disease Research, College of Medicine, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, Institute of Kidney Disease Research, College of Medicine, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
49
|
Yao C, Zhang D, Wang H, Zhang P. Recent Advances in Cell Membrane Coated-Nanoparticles as Drug Delivery Systems for Tackling Urological Diseases. Pharmaceutics 2023; 15:1899. [PMID: 37514085 PMCID: PMC10384516 DOI: 10.3390/pharmaceutics15071899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Recent studies have revealed the functional roles of cell membrane coated-nanoparticles (CMNPs) in tackling urological diseases, including cancers, inflammation, and acute kidney injury. Cells are a fundamental part of pathology to regulate nearly all urological diseases, and, therefore, naturally derived cell membranes inherit the functional role to enhance the biopharmaceutical performance of their encapsulated nanoparticles on drug delivery. In this review, methods for CMNP synthesis and surface engineering are summarized. The application of different types of CMNPs for tackling urological diseases is updated, including cancer cell membrane, stem cell membrane, immune cell membrane, erythrocytes cell membranes, and extracellular vesicles, and their potential for clinical use is discussed.
Collapse
Affiliation(s)
- Cenchao Yao
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Heng Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
50
|
Zhu J, Wang S, Yang D, Xu W, Qian H. Extracellular vesicles: emerging roles, biomarkers and therapeutic strategies in fibrotic diseases. J Nanobiotechnology 2023; 21:164. [PMID: 37221595 DOI: 10.1186/s12951-023-01921-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
Extracellular vesicles (EVs), a cluster of cell-secreted lipid bilayer nanoscale particles, universally exist in body fluids, as well as cell and tissue culture supernatants. Over the past years, increasing attention have been paid to the important role of EVs as effective intercellular communicators in fibrotic diseases. Notably, EV cargos, including proteins, lipids, nucleic acids, and metabolites, are reported to be disease-specific and can even contribute to fibrosis pathology. Thus, EVs are considered as effective biomarkers for disease diagnosis and prognosis. Emerging evidence shows that EVs derived from stem/progenitor cells have great prospects for cell-free therapy in various preclinical models of fibrotic diseases and engineered EVs can improve the targeting and effectiveness of their treatment. In this review, we will focus on the biological functions and mechanisms of EVs in the fibrotic diseases, as well as their potential as novel biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Junyan Zhu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Sicong Wang
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dakai Yang
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wenrong Xu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Hui Qian
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|