1
|
Li Y, Wright NT, Bloch RJ. The juxtamembrane sequence of small ankyrin 1 mediates the binding of its cytoplasmic domain to SERCA1 and is required for inhibitory activity. J Biol Chem 2025; 301:108216. [PMID: 39863105 PMCID: PMC11927728 DOI: 10.1016/j.jbc.2025.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Sarcoplasmic/endoplasmic reticulum Ca2+-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca2+ in skeletal muscle. Due to its vital importance in regulating Ca2+ homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.5), a 17 kDa muscle-specific isoform of ANK1, binds to SERCA1 directly via both its transmembrane and cytoplasmic domains and inhibits SERCA1's ATPase activity. Here, we characterize the interaction between the cytoplasmic domain of sAnk1 (sAnk1(29-155)) and SERCA1. The binding affinity for sAnk1 (29-155) to SERCA1 was 444 nM by blot overlay, about 7-fold weaker than the binding of sAnk1(29-155) to obscurin, a giant protein of the muscle cytoskeleton. Site-directed mutagenesis identified K38, H39, and H41, in the juxtamembrane region, as residues likely to mediate binding to SERCA1. These residues are not required for obscurin binding. Residues R64-K73, which do contribute to obscurin binding, are also required for binding to SERCA1, but only the hydrophobic residues in this sequence are required, not the positively charged residues necessary for obscurin binding. Circular dichroism analysis of sAnk1(29-155) indicates that most mutants show significant structural changes, with the exception of those containing alanines in place of K38, H39 and H41. Although the cytoplasmic domain of sAnk1 does not inhibit SERCA1's Ca2+-ATPase activity, with or without mutations in the juxtamembrane sequence, the inhibitory activity of full-length sAnk1 requires the WT juxtamembrane sequence. We used these data to model sAnk1 and the sAnk1-SERCA1 complex. Our results suggest that, in addition to its transmembrane domain, sAnk1 uses its juxtamembrane sequence and perhaps part of its obscurin binding site to bind to SERCA1, and that this binding contributes to their robust association in situ, as well as regulation of SERCA1's activity.
Collapse
Affiliation(s)
- Yi Li
- Program in Biochemistry and Molecular Biology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Robert J Bloch
- Department of Physiology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Konieczny P. Systemic Treatment of Body-Wide Duchenne Muscular Dystrophy Symptoms. Clin Pharmacol Ther 2024; 116:1472-1484. [PMID: 38965715 DOI: 10.1002/cpt.3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked disease that leads to premature death due to the loss of dystrophin. Current strategies predominantly focus on the therapeutic treatment of affected skeletal muscle tissue. However, certain results point to the fact that with successful treatment of skeletal muscle, DMD-exposed latent phenotypes in tissues, such as cardiac and smooth muscle, might lead to adverse effects and even death. Likewise, it is now clear that the absence of dystrophin affects the function of the nervous system, and that this phenotype is more pronounced when shorter dystrophins are absent, in addition to the full-length dystrophin that is present predominantly in the muscle. Here, I focus on the systemic aspects of DMD, highlighting the ubiquitous expression of the dystrophin gene in human tissues. Furthermore, I describe therapeutic strategies that have been tested in the clinic and point to unresolved questions regarding the function of distinct dystrophin isoforms, and the possibility of current therapeutic strategies to tackle phenotypes that relate to their absence.
Collapse
Affiliation(s)
- Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
3
|
Delafenêtre A, Chapotte-Baldacci CA, Dorémus L, Massouridès E, Bernard M, Régnacq M, Piquereau J, Chatelier A, Cognard C, Pinset C, Sebille S. Duchenne muscular dystrophy skeletal muscle cells derived from human induced pluripotent stem cells recapitulate various calcium dysregulation pathways. Cell Calcium 2024; 123:102943. [PMID: 39154623 DOI: 10.1016/j.ceca.2024.102943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle degenerative disease, caused by mutations in the dystrophin gene and resulting in premature death. As a major secondary event, an abnormal elevation of the intracellular calcium concentration in the dystrophin-deficient muscle contributes to disease progression in DMD. In this study, we investigated the specific functional features of induced pluripotent stem cell-derived muscle cells (hiPSC-skMCs) generated from DMD patients to regulate intracellular calcium concentration. As compared to healthy hiPSC-skMCs, DMD hiPSC-skMCs displayed specific spontaneous calcium signatures with high levels of intracellular calcium concentration. Furthermore, stimulations with electrical field or with acetylcholine perfusion induced higher calcium response in DMD hiPSC-skMCs as compared to healthy cells. Finally, Mn2+ quenching experiments demonstrated high levels of constitutive calcium entries in DMD hiPSC-skMCs as compared to healthy cells. Our findings converge on the fact that DMD hiPSC-skMCs display intracellular calcium dysregulation as demonstrated in several other models. Observed calcium disorders associated with RNAseq analysis on these DMD cells highlighted some mechanisms, such as spontaneous and activated sarcoplasmic reticulum (SR) releases or constitutive calcium entries, known to be disturbed in other dystrophin-deficient models. However, store operated calcium entries (SOCEs) were not found to be dysregulated in our DMD hiPSC-skMCs model. These results suggest that all the mechanisms of calcium impairment observed in other animal models may not be as pronounced in humans and could point to a preference for certain mechanisms that could correspond to major molecular targets for DMD therapies.
Collapse
Affiliation(s)
| | | | - Léa Dorémus
- PRETI laboratory, University of Poitiers, France
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Earl CC, Javier AJ, Richards AM, Markham LW, Goergen CJ, Welc SS. Functional cardiac consequences of β-adrenergic stress-induced injury in a model of Duchenne muscular dystrophy. Dis Model Mech 2024; 17:dmm050852. [PMID: 39268580 PMCID: PMC11488649 DOI: 10.1242/dmm.050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024] Open
Abstract
Cardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD); however, in the mdx mouse model of DMD, the cardiac phenotype differs from that seen in DMD-associated cardiomyopathy. Although some have used pharmacologic stress to stimulate injury and enhance cardiac pathology in the mdx model, many methods lead to high mortality with variable cardiac outcomes, and do not recapitulate the structural and functional cardiac changes seen in human disease. Here, we describe a simple and effective method to enhance the cardiac phenotype model in mdx mice using advanced 2D and 4D high-frequency ultrasound to monitor cardiac dysfunction progression in vivo. mdx and wild-type mice received daily low-dose (2 mg/kg/day) isoproterenol injections for 10 days. Histopathological assessment showed that isoproterenol treatment increased myocyte injury, elevated serum cardiac troponin I levels and enhanced fibrosis in mdx mice. Ultrasound revealed reduced ventricular function, decreased wall thickness, increased volumes and diminished cardiac reserve in mdx compared to wild-type mice. Our findings highlight the utility of challenging mdx mice with low-dose isoproterenol as a valuable model for exploring therapies targeting DMD-associated cardiac pathologies.
Collapse
MESH Headings
- Animals
- Muscular Dystrophy, Duchenne/complications
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Mice, Inbred mdx
- Isoproterenol/pharmacology
- Disease Models, Animal
- Fibrosis
- Stress, Physiological/drug effects
- Receptors, Adrenergic, beta/metabolism
- Myocardium/pathology
- Myocardium/metabolism
- Heart/drug effects
- Heart/physiopathology
- Mice
- Male
- Mice, Inbred C57BL
- Troponin I/metabolism
- Troponin I/blood
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/metabolism
- Adrenergic beta-Agonists/pharmacology
Collapse
Affiliation(s)
- Conner C. Earl
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Areli J. Javier
- Musculoskeletal Health Sciences Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alyssa M. Richards
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Larry W. Markham
- Division of Pediatric Cardiology, Riley Children's Hospital at Indiana University Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Steven S. Welc
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Weber DK, Reddy UV, Robia SL, Veglia G. Pathological mutations in the phospholamban cytoplasmic region affect its topology and dynamics modulating the extent of SERCA inhibition. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184370. [PMID: 38986894 PMCID: PMC11457527 DOI: 10.1016/j.bbamem.2024.184370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Phospholamban (PLN) is a 52 amino acid regulin that allosterically modulates the activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) in the heart muscle. In its unphosphorylated form, PLN binds SERCA within its transmembrane (TM) domains, approximately 20 Å away from the Ca2+ binding site, reducing SERCA's apparent Ca2+ affinity (pKCa) and decreasing cardiac contractility. During the enzymatic cycle, the inhibitory TM domain of PLN remains anchored to SERCA, whereas its cytoplasmic region transiently binds the ATPase's headpiece. Phosphorylation of PLN at Ser16 by protein kinase A increases the affinity of its cytoplasmic domain to SERCA, weakening the TM interactions with the ATPase, reversing its inhibitory function, and augmenting muscle contractility. How the structural changes caused by pathological mutations in the PLN cytoplasmic region are transmitted to its inhibitory TM domain is still unclear. Using solid-state NMR spectroscopy and activity assays, we analyzed the structural and functional effects of a series of mutations and their phosphorylated forms located in the PLN cytoplasmic region and linked to dilated cardiomyopathy. We found that these missense mutations affect the overall topology and dynamics of PLN and ultimately modulate its inhibitory potency. Also, the changes in the TM tilt angle and cytoplasmic dynamics of PLN caused by these mutations correlate well with the extent of SERCA inhibition. Our study unveils new molecular determinants for designing variants of PLN that outcompete endogenous PLN to regulate SERCA in a tunable manner.
Collapse
Affiliation(s)
- Daniel K Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - U Venkateswara Reddy
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Gandhi S, Sweeney HL, Hart CC, Han R, Perry CGR. Cardiomyopathy in Duchenne Muscular Dystrophy and the Potential for Mitochondrial Therapeutics to Improve Treatment Response. Cells 2024; 13:1168. [PMID: 39056750 PMCID: PMC11274633 DOI: 10.3390/cells13141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by mutations to the dystrophin gene, resulting in deficiency of dystrophin protein, loss of myofiber integrity in skeletal and cardiac muscle, and eventual cell death and replacement with fibrotic tissue. Pathologic cardiac manifestations occur in nearly every DMD patient, with the development of cardiomyopathy-the leading cause of death-inevitable by adulthood. As early cardiac abnormalities are difficult to detect, timely diagnosis and appropriate treatment modalities remain a challenge. There is no cure for DMD; treatment is aimed at delaying disease progression and alleviating symptoms. A comprehensive understanding of the pathophysiological mechanisms is crucial to the development of targeted treatments. While established hypotheses of underlying mechanisms include sarcolemmal weakening, upregulation of pro-inflammatory cytokines, and perturbed ion homeostasis, mitochondrial dysfunction is thought to be a potential key contributor. Several experimental compounds targeting the skeletal muscle pathology of DMD are in development, but the effects of such agents on cardiac function remain unclear. The synergistic integration of small molecule- and gene-target-based drugs with metabolic-, immune-, or ion balance-enhancing compounds into a combinatorial therapy offers potential for treating dystrophin deficiency-induced cardiomyopathy, making it crucial to understand the underlying mechanisms driving the disorder.
Collapse
Affiliation(s)
- Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; (H.L.S.); (C.C.H.)
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Cora C. Hart
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; (H.L.S.); (C.C.H.)
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Renzhi Han
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Christopher G. R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
7
|
Kodippili K, Hakim CH, Burke MJ, Yue Y, Teixeira JA, Zhang K, Yao G, Babu GJ, Herzog RW, Duan D. SERCA2a overexpression improves muscle function in a canine Duchenne muscular dystrophy model. Mol Ther Methods Clin Dev 2024; 32:101268. [PMID: 38911286 PMCID: PMC11190715 DOI: 10.1016/j.omtm.2024.101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024]
Abstract
Excessive cytosolic calcium accumulation contributes to muscle degeneration in Duchenne muscular dystrophy (DMD). Sarco/endoplasmic reticulum calcium ATPase (SERCA) is a sarcoplasmic reticulum (SR) calcium pump that actively transports calcium from the cytosol into the SR. We previously showed that adeno-associated virus (AAV)-mediated SERCA2a therapy reduced cytosolic calcium overload and improved muscle and heart function in the murine DMD model. Here, we tested whether AAV SERCA2a therapy could ameliorate muscle disease in the canine DMD model. 7.83 × 1013 vector genome particles of the AAV vector were injected into the extensor carpi ulnaris (ECU) muscles of four juvenile affected dogs. Contralateral ECU muscles received excipient. Three months later, we observed widespread transgene expression and significantly increased SERCA2a levels in the AAV-injected muscles. Treatment improved SR calcium uptake, significantly reduced calpain activity, significantly improved contractile kinetics, and significantly enhanced resistance to eccentric contraction-induced force loss. Nonetheless, muscle histology was not improved. To evaluate the safety of AAV SERCA2a therapy, we delivered the vector to the ECU muscle of adult normal dogs. We achieved strong transgene expression without altering muscle histology and function. Our results suggest that AAV SERCA2a therapy has the potential to improve muscle performance in a dystrophic large mammal.
Collapse
Affiliation(s)
- Kasun Kodippili
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
| | - Chady H. Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
| | - Matthew J. Burke
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
| | - James A. Teixeira
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
| | - Gang Yao
- Department of Chemical and Biomedical Engineering, College of Engineering, The University of Missouri, Columbia, MO 65212, USA
| | - Gopal J. Babu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
- Department of Chemical and Biomedical Engineering, College of Engineering, The University of Missouri, Columbia, MO 65212, USA
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
8
|
Kepreotis SV, Oh JG, Park M, Yoo J, Lee C, Mercola M, Hajjar RJ, Jeong D. Inhibition of miR-25 ameliorates cardiac and skeletal muscle dysfunction in aged mdx/utrn haploinsufficient (+/-) mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102174. [PMID: 38584818 PMCID: PMC10998245 DOI: 10.1016/j.omtn.2024.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Dystrophic cardiomyopathy is a significant feature of Duchenne muscular dystrophy (DMD). Increased cardiomyocyte cytosolic calcium (Ca2+) and interstitial fibrosis are major pathophysiological hallmarks that ultimately result in cardiac dysfunction. MicroRNA-25 (miR-25) has been identified as a suppressor of both sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) and mothers against decapentaplegic homolog-7 (Smad7) proteins. In this study, we created a gene transfer using an miR-25 tough decoy (TuD) RNA inhibitor delivered via recombinant adeno-associated virus serotype 9 (AAV9) to evaluate the effect of miR-25 inhibition on cardiac and skeletal muscle function in aged dystrophin/utrophin haploinsufficient mice mdx/utrn (+/-), a validated transgenic murine model of DMD. We found that the intravenous delivery of AAV9 miR-25 TuD resulted in strong and stable inhibition of cardiac miR-25 levels, together with the restoration of SERCA2a and Smad7 expression. This was associated with the amelioration of cardiomyocyte interstitial fibrosis as well as recovered cardiac function. Furthermore, the direct quadricep intramuscular injection of AAV9 miR-25 TuD significantly restored skeletal muscle Smad7 expression, reduced tissue fibrosis, and enhanced skeletal muscle performance in mdx/utrn (+/-) mice. These results imply that miR-25 TuD gene transfer may be a novel therapeutic approach to restore cardiomyocyte Ca2+ homeostasis and abrogate tissue fibrosis in DMD.
Collapse
Affiliation(s)
- Sacha V. Kepreotis
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Jae Gyun Oh
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Mina Park
- Department of Medicinal and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea
| | - Jimeen Yoo
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Cholong Lee
- Department of Medicinal and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Roger J. Hajjar
- Mass General Brigham Gene and Cell Therapy Institute, Boston, MA, USA
| | - Dongtak Jeong
- Department of Medicinal and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| |
Collapse
|
9
|
Mostosi D, Molinaro M, Saccone S, Torrente Y, Villa C, Farini A. Exploring the Gut Microbiota-Muscle Axis in Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:5589. [PMID: 38891777 PMCID: PMC11171690 DOI: 10.3390/ijms25115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The gut microbiota plays a pivotal role in maintaining the dynamic balance of intestinal epithelial and immune cells, crucial for overall organ homeostasis. Dysfunctions in these intricate relationships can lead to inflammation and contribute to the pathogenesis of various diseases. Recent findings uncovered the existence of a gut-muscle axis, revealing how alterations in the gut microbiota can disrupt regulatory mechanisms in muscular and adipose tissues, triggering immune-mediated inflammation. In the context of Duchenne muscular dystrophy (DMD), alterations in intestinal permeability stand as a potential origin of molecules that could trigger muscle degeneration via various pathways. Metabolites produced by gut bacteria, or fragments of bacteria themselves, may have the ability to migrate from the gut into the bloodstream and ultimately infiltrate distant muscle tissues, exacerbating localized pathologies. These insights highlight alternative pathological pathways in DMD beyond the musculoskeletal system, paving the way for nutraceutical supplementation as a potential adjuvant therapy. Understanding the complex interplay between the gut microbiota, immune system, and muscular health offers new perspectives for therapeutic interventions beyond conventional approaches to efficiently counteract the multifaceted nature of DMD.
Collapse
Affiliation(s)
- Debora Mostosi
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (D.M.); (Y.T.); (C.V.)
| | - Monica Molinaro
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.M.); (S.S.)
| | - Sabrina Saccone
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.M.); (S.S.)
| | - Yvan Torrente
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (D.M.); (Y.T.); (C.V.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.M.); (S.S.)
| | - Chiara Villa
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (D.M.); (Y.T.); (C.V.)
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.M.); (S.S.)
| |
Collapse
|
10
|
Earl CC, Javier AJ, Richards AM, Markham LW, Goergen CJ, Welc SS. Functional cardiac consequences of β-adrenergic stress-induced injury in the mdx mouse model of Duchenne muscular dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589650. [PMID: 38659739 PMCID: PMC11042272 DOI: 10.1101/2024.04.15.589650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD), however, in the mdx mouse model of DMD, the cardiac phenotype differs from that seen in DMD-associated cardiomyopathy. Although some have used pharmacologic stress to enhance the cardiac phenotype in the mdx model, many methods lead to high mortality, variable cardiac outcomes, and do not recapitulate the structural and functional cardiac changes seen in human disease. Here, we describe a simple and effective method to enhance the cardiac phenotype model in mdx mice using advanced 2D and 4D high-frequency ultrasound to monitor cardiac dysfunction progression in vivo. For our study, mdx and wild-type (WT) mice received daily low-dose (2 mg/kg/day) isoproterenol injections for 10 days. Histopathologic assessment showed that isoproterenol treatment increased myocyte injury, elevated serum cardiac troponin I levels, and enhanced fibrosis in mdx mice. Ultrasound revealed reduced ventricular function, decreased wall thickness, increased volumes, and diminished cardiac reserve in mdx mice compared to wild-type. Our findings highlight the utility of low-dose isoproterenol in mdx mice as a valuable model for exploring therapies targeting DMD-associated cardiac complications.
Collapse
Affiliation(s)
- Conner C. Earl
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN, USA
- Indiana University School of Medicine, IN, USA
| | - Areli J. Javier
- Musculoskeletal Health Sciences Program, Indiana University School of Medicine, Indianapolis, IN USA
| | - Alyssa M. Richards
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN, USA
| | - Larry W. Markham
- Division of Pediatric Cardiology, Riley Children’s Hospital at Indiana University Health, Indiana University School of Medicine, Indianapolis, IN
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN, USA
- Indiana University School of Medicine, IN, USA
| | - Steven S. Welc
- Division of Pediatric Cardiology, Riley Children’s Hospital at Indiana University Health, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis IN, USA
| |
Collapse
|
11
|
Elasbali AM, Al-Soud WA, Anwar S, Alhassan HH, Adnan M, Hassan MI. A review on mechanistic insights into structure and function of dystrophin protein in pathophysiology and therapeutic targeting of Duchenne muscular dystrophy. Int J Biol Macromol 2024; 264:130544. [PMID: 38428778 DOI: 10.1016/j.ijbiomac.2024.130544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive genetic disorder characterized by progressive and severe muscle weakening and degeneration. Among the various forms of muscular dystrophy, it stands out as one of the most common and impactful, predominantly affecting boys. The condition arises due to mutations in the dystrophin gene, a key player in maintaining the structure and function of muscle fibers. The manuscript explores the structural features of dystrophin protein and their pivotal roles in DMD. We present an in-depth analysis of promising therapeutic approaches targeting dystrophin and their implications for the therapeutic management of DMD. Several therapies aiming to restore dystrophin protein or address secondary pathology have obtained regulatory approval, and many others are ongoing clinical development. Notably, recent advancements in genetic approaches have demonstrated the potential to restore partially functional dystrophin forms. The review also provides a comprehensive overview of the status of clinical trials for major therapeutic genetic approaches for DMD. In addition, we have summarized the ongoing therapeutic approaches and advanced mechanisms of action for dystrophin restoration and the challenges associated with DMD therapeutics.
Collapse
Affiliation(s)
- Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Science, College of Applied Sciences-Sakaka, Jouf University, Sakaka, Saudi Arabia; Molekylärbiologi, Klinisk Mikrobiologi och vårdhygien, Region Skåne, Sölvegatan 23B, 221 85 Lund, Sweden
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Hassan H Alhassan
- Department of Clinical Laboratory Science, College of Applied Sciences-Sakaka, Jouf University, Sakaka, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
12
|
Lairez O, Fournier P, Itier R, Bachelet B, Huart A, Cariou E. Towards etiological treatments in cardiomyopathies. Presse Med 2024; 53:104223. [PMID: 38309622 DOI: 10.1016/j.lpm.2024.104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
This review proposes to look at the evolution of cardiomyopathy treatments in the light of advances in diagnostic techniques, which have enabled to move from a mechanistic to a phenotypic and then etiological approach. The article goes beyond the ejection fraction approach, and look at new therapies that target the pathophysiological pathways of cardiomyopathies, either by targeting the phenotype, or by targeting the etiology. The evolution of HCM treatments is detailed, culminating in the latest etiological treatments such as mavacamten in sarcomeric HCM, tafamidis in transthyretin cardiac amyloidosis and migalastat in Fabry disease. Myosin stimulators are reviewed in the treatment of DCM, before opening perspectives for gene therapy, which proposes direct treatment of the culprit mutation.
Collapse
Affiliation(s)
- Olivier Lairez
- Department of Cardiology, Toulouse University Hospital, Toulouse, France; Cardiac Imaging Center, Toulouse University Hospital, Toulouse, France; Department of Nuclear Medicine, Toulouse University Hospital, France; Medical School, Toulouse III Paul Sabatier University, Toulouse, France.
| | - Pauline Fournier
- Department of Cardiology, Toulouse University Hospital, Toulouse, France; Cardiac Imaging Center, Toulouse University Hospital, Toulouse, France
| | - Romain Itier
- Department of Cardiology, Toulouse University Hospital, Toulouse, France; Cardiac Imaging Center, Toulouse University Hospital, Toulouse, France
| | - Bérengère Bachelet
- Department of Cardiology, Toulouse University Hospital, Toulouse, France
| | - Antoine Huart
- Department of Nephrology and Organ Transplantation, Toulouse University Hospital, Toulouse, France
| | - Eve Cariou
- Department of Cardiology, Toulouse University Hospital, Toulouse, France; Cardiac Imaging Center, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
13
|
Rawls A, Diviak BK, Smith CI, Severson GW, Acosta SA, Wilson-Rawls J. Pharmacotherapeutic Approaches to Treatment of Muscular Dystrophies. Biomolecules 2023; 13:1536. [PMID: 37892218 PMCID: PMC10605463 DOI: 10.3390/biom13101536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Muscular dystrophies are a heterogeneous group of genetic muscle-wasting disorders that are subdivided based on the region of the body impacted by muscle weakness as well as the functional activity of the underlying genetic mutations. A common feature of the pathophysiology of muscular dystrophies is chronic inflammation associated with the replacement of muscle mass with fibrotic scarring. With the progression of these disorders, many patients suffer cardiomyopathies with fibrosis of the cardiac tissue. Anti-inflammatory glucocorticoids represent the standard of care for Duchenne muscular dystrophy, the most common muscular dystrophy worldwide; however, long-term exposure to glucocorticoids results in highly adverse side effects, limiting their use. Thus, it is important to develop new pharmacotherapeutic approaches to limit inflammation and fibrosis to reduce muscle damage and promote repair. Here, we examine the pathophysiology, genetic background, and emerging therapeutic strategies for muscular dystrophies.
Collapse
Affiliation(s)
- Alan Rawls
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
| | - Bridget K. Diviak
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Cameron I. Smith
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Grant W. Severson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Sofia A. Acosta
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
| |
Collapse
|
14
|
Shah MNA, Yokota T. Cardiac therapies for Duchenne muscular dystrophy. Ther Adv Neurol Disord 2023; 16:17562864231182934. [PMID: 37425427 PMCID: PMC10328182 DOI: 10.1177/17562864231182934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disease that results in life-limiting complications such as loss of skeletal muscle function as well as respiratory and cardiac complications. Advanced therapeutics in pulmonary care have significantly reduced respiratory complication-related mortality, making cardiomyopathy the main determinant factor of survival. While there are multiple therapies such as the use of anti-inflammatory drugs, physical therapy, and ventilatory assistance targeted toward delaying the disease progression in DMD, a cure remains elusive. In the last decade, several therapeutic approaches have been developed to improve patient survival. These include small molecule-based therapy, micro-dystrophin gene delivery, CRISPR-mediated gene editing, nonsense readthrough, exon skipping, and cardiosphere-derived cell therapy. Associated with the specific benefits of each of these approaches are their individual risks and limitations. The variability in the genetic aberrations leading to DMD also limits the widespread use of these therapies. While numerous approaches have been explored to treat DMD pathophysiology, only a handful have successfully advanced through the preclinical stages. In this review, we summarize the currently approved as well as the most promising therapeutics undergoing clinical trials aimed toward treating DMD with a focus on its cardiac manifestations.
Collapse
Affiliation(s)
- Md Nur Ahad Shah
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
15
|
Hassel KR, Brito-Estrada O, Makarewich CA. Microproteins: Overlooked regulators of physiology and disease. iScience 2023; 26:106781. [PMID: 37213226 PMCID: PMC10199267 DOI: 10.1016/j.isci.2023.106781] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Ongoing efforts to generate a complete and accurate annotation of the genome have revealed a significant blind spot for small proteins (<100 amino acids) originating from short open reading frames (sORFs). The recent discovery of numerous sORF-encoded proteins, termed microproteins, that play diverse roles in critical cellular processes has ignited the field of microprotein biology. Large-scale efforts are currently underway to identify sORF-encoded microproteins in diverse cell-types and tissues and specialized methods and tools have been developed to aid in their discovery, validation, and functional characterization. Microproteins that have been identified thus far play important roles in fundamental processes including ion transport, oxidative phosphorylation, and stress signaling. In this review, we discuss the optimized tools available for microprotein discovery and validation, summarize the biological functions of numerous microproteins, outline the promise for developing microproteins as therapeutic targets, and look forward to the future of the field of microprotein biology.
Collapse
Affiliation(s)
- Keira R. Hassel
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Omar Brito-Estrada
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Catherine A. Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
16
|
Marcadet L, Juracic ES, Khan N, Bouredji Z, Yagita H, Ward LM, Tupling AR, Argaw A, Frenette J. RANKL Inhibition Reduces Cardiac Hypertrophy in mdx Mice and Possibly in Children with Duchenne Muscular Dystrophy. Cells 2023; 12:1538. [PMID: 37296659 PMCID: PMC10253225 DOI: 10.3390/cells12111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Cardiomyopathy has become one of the leading causes of death in patients with Duchenne muscular dystrophy (DMD). We recently reported that the inhibition of the interaction between the receptor activator of nuclear factor κB ligand (RANKL) and receptor activator of nuclear factor κB (RANK) significantly improves muscle and bone functions in dystrophin-deficient mdx mice. RANKL and RANK are also expressed in cardiac muscle. Here, we investigate whether anti-RANKL treatment prevents cardiac hypertrophy and dysfunction in dystrophic mdx mice. Anti-RANKL treatment significantly reduced LV hypertrophy and heart mass, and maintained cardiac function in mdx mice. Anti-RANKL treatment also inhibited NFκB and PI3K, two mediators implicated in cardiac hypertrophy. Furthermore, anti-RANKL treatment increased SERCA activity and the expression of RyR, FKBP12, and SERCA2a, leading possibly to an improved Ca2+ homeostasis in dystrophic hearts. Interestingly, preliminary post hoc analyses suggest that denosumab, a human anti-RANKL, reduced left ventricular hypertrophy in two patients with DMD. Taken together, our results indicate that anti-RANKL treatment prevents the worsening of cardiac hypertrophy in mdx mice and could potentially maintain cardiac function in teenage or adult patients with DMD.
Collapse
Affiliation(s)
- Laetitia Marcadet
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada; (L.M.); (Z.B.); (A.A.)
| | - Emma Sara Juracic
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (E.S.J.); (A.R.T.)
| | - Nasrin Khan
- The Ottawa Pediatric Bone Health Research Group, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (N.K.); (L.M.W.)
| | - Zineb Bouredji
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada; (L.M.); (Z.B.); (A.A.)
| | - Hideo Yagita
- Department of Immunology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Leanne M. Ward
- The Ottawa Pediatric Bone Health Research Group, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (N.K.); (L.M.W.)
- The Department of Pediatrics, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - A. Russell Tupling
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (E.S.J.); (A.R.T.)
| | - Anteneh Argaw
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada; (L.M.); (Z.B.); (A.A.)
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada; (L.M.); (Z.B.); (A.A.)
- Department of Rehabilitation, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
17
|
Chang M, Cai Y, Gao Z, Chen X, Liu B, Zhang C, Yu W, Cao Q, Shen Y, Yao X, Chen X, Sun H. Duchenne muscular dystrophy: pathogenesis and promising therapies. J Neurol 2023:10.1007/s00415-023-11796-x. [PMID: 37258941 DOI: 10.1007/s00415-023-11796-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, muscle-wasting disease, characterized by progressive deterioration of skeletal muscle that causes rapid loss of mobility. The failure in respiratory and cardiac muscles is the underlying cause of premature death in most patients with DMD. Mutations in the gene encoding dystrophin result in dystrophin deficiency, which is the underlying pathogenesis of DMD. Dystrophin-deficient myocytes are dysfunctional and vulnerable to injury, triggering a series of subsequent pathological changes. In this review, we detail the molecular mechanism of DMD, dystrophin deficiency-induced muscle cell damage (oxidative stress injury, dysregulated calcium homeostasis, and sarcolemma instability) and other cell damage and dysfunction (neuromuscular junction impairment and abnormal differentiation of muscle satellite). We also describe aberrant function of other cells and impaired muscle regeneration due to deterioration of the muscle microenvironment, and dystrophin deficiency-induced multiple organ dysfunction, while summarizing the recent advances in the treatment of DMD.
Collapse
Affiliation(s)
- Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yong Cai
- Department of Neurology, Binhai County People's Hospital, Yancheng, 224500, Jiangsu, People's Republic of China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Cheng Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Weiran Yu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Qianqian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Xiaoyang Chen
- Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
- Research and Development Center for E-Learning, Ministry of Education, Beijing, 100816, People's Republic of China.
| |
Collapse
|
18
|
Abstract
Duchenne muscular dystrophy (DMD) was named more than 150 years ago. About four decades ago, the DMD gene was discovered, and the reading frame shift was determined as the genetic underpinning. These pivotal findings significantly changed the landscape of DMD therapy development. Restoration of dystrophin expression with gene therapy became a primary focus. Investment in gene therapy has led to the approval of exon skipping by regulatory agencies, multiple clinical trials of systemic microdystrophin therapy using adeno-associated virus vectors, and revolutionary genome editing therapy using the CRISPR technology. However, many important issues surfaced during the clinical translation of DMD gene therapy (such as low efficiency of exon skipping, immune toxicity-induced serious adverse events, and patient death). In this issue of Human Gene Therapy, several research articles highlighted some of the latest developments in DMD gene therapy. Importantly, a collection of articles from experts in the field reviewed the progress, major challenges, and future directions of DMD gene therapy. These insightful discussions have significant implications for gene therapy of other neuromuscular diseases.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Chemical and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
19
|
Morales ED, Yue Y, Watkins TB, Han J, Pan X, Gibson AM, Hu B, Brito‐Estrada O, Yao G, Makarewich CA, Babu GJ, Duan D. Dwarf Open Reading Frame (DWORF) Gene Therapy Ameliorated Duchenne Muscular Dystrophy Cardiomyopathy in Aged mdx Mice. J Am Heart Assoc 2023; 12:e027480. [PMID: 36695318 PMCID: PMC9973626 DOI: 10.1161/jaha.122.027480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023]
Abstract
Background Cardiomyopathy is a leading health threat in Duchenne muscular dystrophy (DMD). Cytosolic calcium upregulation is implicated in DMD cardiomyopathy. Calcium is primarily removed from the cytosol by the sarcoendoplasmic reticulum calcium ATPase (SERCA). SERCA activity is reduced in DMD. Improving SERCA function may treat DMD cardiomyopathy. Dwarf open reading frame (DWORF) is a recently discovered positive regulator for SERCA, hence, a potential therapeutic target. Methods and Results To study DWORF's involvement in DMD cardiomyopathy, we quantified DWORF expression in the heart of wild-type mice and the mdx model of DMD. To test DWORF gene therapy, we engineered and characterized an adeno-associated virus serotype 9-DWORF vector. To determine if this vector can mitigate DMD cardiomyopathy, we delivered it to 6-week-old mdx mice (6×1012 vector genome particles/mouse) via the tail vein. Exercise capacity, heart histology, and cardiac function were examined at 18 months of age. We found DWORF expression was significantly reduced at the transcript and protein levels in mdx mice. Adeno-associated virus serotype 9-DWORF vector significantly enhanced SERCA activity. Systemic adeno-associated virus serotype 9-DWORF therapy reduced myocardial fibrosis and improved treadmill running, electrocardiography, and heart hemodynamics. Conclusions Our data suggest that DWORF deficiency contributes to SERCA dysfunction in mdx mice and that DWORF gene therapy holds promise to treat DMD cardiomyopathy.
Collapse
Affiliation(s)
- Emily D. Morales
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Thais B. Watkins
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Jin Han
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Aaron M. Gibson
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical CenterThe Heart InstituteCincinnatiOH
| | - Bryan Hu
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Omar Brito‐Estrada
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical CenterThe Heart InstituteCincinnatiOH
| | - Gang Yao
- Department of Biomedical, Biological & Chemical Engineering, College of EngineeringThe University of MissouriColumbiaMO
| | - Catherine A. Makarewich
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical CenterThe Heart InstituteCincinnatiOH
- Department of PediatricsThe University of Cincinnati College of MedicineCincinnatiOH
| | - Gopal J. Babu
- Department of Cell Biology and Molecular MedicineRutgers, New Jersey Medical SchoolNewarkNJ
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
- Department of Biomedical, Biological & Chemical Engineering, College of EngineeringThe University of MissouriColumbiaMO
- Department of Neurology, School of MedicineThe University of MissouriColumbiaMO
- Department of Biomedical Sciences, College of Veterinary MedicineThe University of MissouriColumbiaMO
| |
Collapse
|
20
|
Ion Channels of the Sarcolemma and Intracellular Organelles in Duchenne Muscular Dystrophy: A Role in the Dysregulation of Ion Homeostasis and a Possible Target for Therapy. Int J Mol Sci 2023; 24:ijms24032229. [PMID: 36768550 PMCID: PMC9917149 DOI: 10.3390/ijms24032229] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the absence of the dystrophin protein and a properly functioning dystrophin-associated protein complex (DAPC) in muscle cells. DAPC components act as molecular scaffolds coordinating the assembly of various signaling molecules including ion channels. DMD shows a significant change in the functioning of the ion channels of the sarcolemma and intracellular organelles and, above all, the sarcoplasmic reticulum and mitochondria regulating ion homeostasis, which is necessary for the correct excitation and relaxation of muscles. This review is devoted to the analysis of current data on changes in the structure, functioning, and regulation of the activity of ion channels in striated muscles in DMD and their contribution to the disruption of muscle function and the development of pathology. We note the prospects of therapy based on targeting the channels of the sarcolemma and organelles for the correction and alleviation of pathology, and the problems that arise in the interpretation of data obtained on model dystrophin-deficient objects.
Collapse
|
21
|
Morera C, Kim J, Paredes-Redondo A, Nobles M, Rybin D, Moccia R, Kowala A, Meng J, Garren S, Liu P, Morgan JE, Muntoni F, Christoforou N, Owens J, Tinker A, Lin YY. CRISPR-mediated correction of skeletal muscle Ca 2+ handling in a novel DMD patient-derived pluripotent stem cell model. Neuromuscul Disord 2022; 32:908-922. [PMID: 36418198 DOI: 10.1016/j.nmd.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Mutations in the dystrophin gene cause the most common and currently incurable Duchenne muscular dystrophy (DMD) characterized by progressive muscle wasting. Although abnormal Ca2+ handling is a pathological feature of DMD, mechanisms underlying defective Ca2+ homeostasis remain unclear. Here we generate a novel DMD patient-derived pluripotent stem cell (PSC) model of skeletal muscle with an isogenic control using clustered regularly interspaced short palindromic repeat (CRISPR)-mediated precise gene correction. Transcriptome analysis identifies dysregulated gene sets in the absence of dystrophin, including genes involved in Ca2+ handling, excitation-contraction coupling and muscle contraction. Specifically, analysis of intracellular Ca2+ transients and mathematical modeling of Ca2+ dynamics reveal significantly reduced cytosolic Ca2+ clearance rates in DMD-PSC derived myotubes. Pharmacological assays demonstrate Ca2+ flux in myotubes is determined by both intracellular and extracellular sources. DMD-PSC derived myotubes display significantly reduced velocity of contractility. Compared with a non-isogenic wildtype PSC line, these pathophysiological defects could be rescued by CRISPR-mediated precise gene correction. Our study provides new insights into abnormal Ca2+ homeostasis in DMD and suggests that Ca2+ signaling pathways amenable to pharmacological modulation are potential therapeutic targets. Importantly, we have established a human physiology-relevant in vitro model enabling rapid pre-clinical testing of potential therapies for DMD.
Collapse
Affiliation(s)
- Cristina Morera
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, United Kingdom
| | - Jihee Kim
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, United Kingdom
| | - Amaia Paredes-Redondo
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, United Kingdom; Centre for Predictive in vitro Model, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Muriel Nobles
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Denis Rybin
- Rare Disease Research Unit, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Robert Moccia
- Rare Disease Research Unit, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Anna Kowala
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, United Kingdom; Centre for Predictive in vitro Model, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Jinhong Meng
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Seth Garren
- Rare Disease Research Unit, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Pentao Liu
- School of Biomedical Sciences, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Jennifer E Morgan
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; NIHR Biomedical Research Centre at Great Ormond Street Hospital, Great Ormond Street, London, United Kingdom
| | - Francesco Muntoni
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; NIHR Biomedical Research Centre at Great Ormond Street Hospital, Great Ormond Street, London, United Kingdom
| | | | - Jane Owens
- Rare Disease Research Unit, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Andrew Tinker
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Yung-Yao Lin
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, United Kingdom; Centre for Predictive in vitro Model, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| |
Collapse
|
22
|
Abstract
Muscular dystrophies are a group of genetic disorders characterized by varying degrees of progressive muscle weakness and degeneration. They are clinically and genetically heterogeneous but share the common histological features of dystrophic muscle. There is currently no cure for muscular dystrophies, which is of particular concern for the more disabling and/or lethal forms of the disease. Through the years, several therapies have encouragingly been developed for muscular dystrophies and include genetic, cellular, and pharmacological approaches. In this chapter, we undertake a comprehensive exploration of muscular dystrophy therapeutics under current development. Our review includes antisense therapy, CRISPR, gene replacement, cell therapy, nonsense suppression, and disease-modifying small molecule compounds.
Collapse
|
23
|
Cleverdon RE, Braun JL, Geromella MS, Whitley KC, Marko DM, Hamstra SI, Roy BD, MacPherson RE, Fajardo VA. Sarco(endo)plasmic reticulum Ca2+-ATPase function is impaired in skeletal and cardiac muscles from young DBA/2J mdx mice. iScience 2022; 25:104972. [PMID: 36093052 PMCID: PMC9459692 DOI: 10.1016/j.isci.2022.104972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
The DBA/2J (D2) mdx mouse is a more severe model of Duchenne muscular dystrophy when compared to the traditional C57BL/10 (C57) mdx mouse. Here, we questioned whether sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) function would differ in muscles from young D2 and C57 mdx mice. Both D2 and C57 mdx mice exhibited signs of impaired Ca2+ uptake in the gastrocnemius, diaphragm, and left ventricle; however, the level of impairment was more severe in D2 mdx mice. Reductions in maximal SERCA activity were also more prominent in the D2 mdx gastrocnemius and diaphragm when compared to those from C57 mdx mice; however, there were no differences detected in the left ventricle. Across all muscles, D2 mdx mice had the highest levels of oxidative stress as indicated by protein nitrosylation and/or nitration. In conclusion, our study shows that SERCA function is more impaired in young D2 mdx mice compared with age-matched C57 mdx mice. Ca2+ uptake is severely impaired in muscles from young DBA/2J (D2) mdx mice Maximal SERCA activity is lowered to a greater degree in muscles from D2 mdx mice Muscles from young D2 mdx mice have higher levels of oxidative/nitrosative stress Worsened SERCA function may contribute to worsened muscle pathology in D2 mdx mice
Collapse
|
24
|
MicroRNAs in Dystrophinopathy. Int J Mol Sci 2022; 23:ijms23147785. [PMID: 35887128 PMCID: PMC9318410 DOI: 10.3390/ijms23147785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which represent the range of dystrophinopathies, account for nearly 80% of muscle dystrophy. DMD and BMD result from the loss of a functional dystrophin protein, and the leading cause of death in these patients is cardiac remodeling and heart failure. The pathogenesis and progression of the more severe form of DMD have been extensively studied and are controlled by many determinants, including microRNAs (miRNAs). The regulatory role of miRNAs in muscle function and the differential miRNA expression in muscular dystrophy indicate the clinical significance of miRNAs. This review discusses the relevant microRNAs as potential biomarkers and therapeutic targets for DMD and DMD cardiomyopathy as examples of dystrophinopathies.
Collapse
|
25
|
Sarcoplasmic Reticulum Ca2+ Dysregulation in the Pathophysiology of Inherited Arrhythmia: An Update. Biochem Pharmacol 2022; 200:115059. [DOI: 10.1016/j.bcp.2022.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022]
|
26
|
Yan Y, Long T, Su Q, Wang Y, Chen K, Yang T, Zhao G, Ma Q, Hu X, Liu C, Liao X, Min W, Li S, Zhang D, Yang Y, Pu WT, Dong Y, Wang DZ, Chen Y, Huang ZP. Cardiac ISL1-Interacting Protein, a Cardioprotective Factor, Inhibits the Transition From Cardiac Hypertrophy to Heart Failure. Front Cardiovasc Med 2022; 9:857049. [PMID: 35369338 PMCID: PMC8970336 DOI: 10.3389/fcvm.2022.857049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure is characterized by the inability of the heart to pump effectively and generate proper blood circulation to meet the body’s needs; it is a devastating condition that affects more than 100 million people globally. In spite of this, little is known about the mechanisms regulating the transition from cardiac hypertrophy to heart failure. Previously, we identified a cardiomyocyte-enriched gene, CIP, which regulates cardiac homeostasis under pathological stimulation. Here, we show that the cardiac transcriptional factor GATA4 binds the promotor of CIP gene and regulates its expression. We further determined that both CIP mRNA and protein decrease in diseased human hearts. In a mouse model, induced cardiac-specific overexpression of CIP after the establishment of cardiac hypertrophy protects the heart by inhibiting disease progression toward heart failure. Transcriptome analyses revealed that the IGF, mTORC2 and TGFβ signaling pathways mediate the inhibitory function of CIP on pathologic cardiac remodeling. Our study demonstrates GATA4 as an upstream regulator of CIP gene expression in cardiomyocytes, as well as the clinical significance of CIP expression in human heart disease. More importantly, our investigation suggests CIP is a key regulator of the transition from cardiac hypertrophy to heart failure. The ability of CIP to intervene in the onset of heart failure suggests a novel therapeutic avenue of investigation for the prevention of heart disease progression.
Collapse
Affiliation(s)
- Youchen Yan
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Long
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Qiao Su
- Laboratory Animal Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ken Chen
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Tiqun Yang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Guangyin Zhao
- Laboratory Animal Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Ma
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaoyun Hu
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Chen Liu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Xinxue Liao
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Wang Min
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shujuan Li
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Dihua Zhang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuedong Yang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Yugang Dong
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Da-Zhi Wang,
| | - Yili Chen
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Yili Chen,
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Zhan-Peng Huang,
| |
Collapse
|
27
|
He X, Liu J, Gu F, Chen J, Lu YW, Ding J, Guo H, Nie M, Kataoka M, Lin Z, Hu X, Chen H, Liao X, Dong Y, Min W, Deng ZL, Pu WT, Huang ZP, Wang DZ. Cardiac CIP protein regulates dystrophic cardiomyopathy. Mol Ther 2022; 30:898-914. [PMID: 34400329 PMCID: PMC8822131 DOI: 10.1016/j.ymthe.2021.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/24/2021] [Accepted: 08/08/2021] [Indexed: 02/04/2023] Open
Abstract
Heart failure is a leading cause of fatality in Duchenne muscular dystrophy (DMD) patients. Previously, we discovered that cardiac and skeletal-muscle-enriched CIP proteins play important roles in cardiac function. Here, we report that CIP, a striated muscle-specific protein, participates in the regulation of dystrophic cardiomyopathy. Using a mouse model of human DMD, we found that deletion of CIP leads to dilated cardiomyopathy and heart failure in young, non-syndromic mdx mice. Conversely, transgenic overexpression of CIP reduces pathological dystrophic cardiomyopathy in old, syndromic mdx mice. Genome-wide transcriptome analyses reveal that molecular pathways involving fibrogenesis and oxidative stress are affected in CIP-mediated dystrophic cardiomyopathy. Mechanistically, we found that CIP interacts with dystrophin and calcineurin (CnA) to suppress the CnA-Nuclear Factor of Activated T cells (NFAT) pathway, which results in decreased expression of Nox4, a key component of the oxidative stress pathway. Overexpression of Nox4 accelerates the development of dystrophic cardiomyopathy in mdx mice. Our study indicates CIP is a modifier of dystrophic cardiomyopathy and a potential therapeutic target for this devastating disease.
Collapse
Affiliation(s)
- Xin He
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Jianming Liu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Fei Gu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Jinghai Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yao Wei Lu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Jian Ding
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Haipeng Guo
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Critical Care and Emergency Medicine, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mao Nie
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Masaharu Kataoka
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Zhiqiang Lin
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Xiaoyun Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Huaqun Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Biology, Nanjing Normal University, Nanjing, China
| | - Xinxue Liao
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Wang Min
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhong-Liang Deng
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China.
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
28
|
Angelini G, Mura G, Messina G. Therapeutic approaches to preserve the musculature in Duchenne Muscular Dystrophy: The importance of the secondary therapies. Exp Cell Res 2022; 410:112968. [PMID: 34883113 DOI: 10.1016/j.yexcr.2021.112968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/15/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
Muscular dystrophies (MDs) are heterogeneous diseases, characterized by primary wasting of skeletal muscle, which in severe cases, such as Duchenne Muscular Dystrophy (DMD), leads to wheelchair dependency, respiratory failure, and premature death. Research is ongoing to develop efficacious therapies, particularly for DMD. Most of the efforts, currently focusing on correcting or restoring the primary defect of MDs, are based on gene-addition, exon-skipping, stop codon read-through, and genome-editing. Although promising, most of them revealed several practical limitations. Shared knowledge in the field is that, in order to be really successful, any therapeutic approach has to rely on spared functional muscle tissue, restricting the number of patients eligible for clinical trials to the youngest and less compromised individuals. In line with this, many therapeutic strategies aim to preserve muscle tissue and function. This Review outlines the most interesting and recent studies addressing the secondary outcomes of DMD and how to better deliver the therapeutic agents. In the future, the effective treatment of DMD will likely require combinations of therapies addressing both the primary genetic defect and its consequences.
Collapse
Affiliation(s)
- Giuseppe Angelini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Giada Mura
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Graziella Messina
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
29
|
Valverde CA, Mattiazzi A. Increasing SR Ca uptake: A double-edge sword. J Physiol 2022; 600:1533-1534. [PMID: 35001395 DOI: 10.1113/jp282659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Carlos A Valverde
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, 60 y 120, La Plata, 1900, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, 60 y 120, La Plata, 1900, Argentina
| |
Collapse
|
30
|
Himič V, Davies KE. Evaluating the potential of novel genetic approaches for the treatment of Duchenne muscular dystrophy. Eur J Hum Genet 2021; 29:1369-1376. [PMID: 33564172 PMCID: PMC8440545 DOI: 10.1038/s41431-021-00811-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle-wasting disorder that is caused by a lack of functional dystrophin, a cytoplasmic protein necessary for the structural integrity of muscle. As variants in the dystrophin gene lead to a disruption of the reading frame, pharmacological treatments have only limited efficacy; there is currently no effective therapy and consequently, a significant unmet clinical need for DMD. Recently, novel genetic approaches have shown real promise in treating DMD, with advancements in the efficacy and tropism of exon skipping and surrogate gene therapy. CRISPR-Cas9 has the potential to be a 'one-hit' curative treatment in the coming decade. The current limitations of gene editing, such as off-target effects and immunogenicity, are in fact partly constraints of the delivery method itself, and thus research focus has shifted to improving the viral vector. In order to halt the loss of ambulation, early diagnosis and treatment will be pivotal. In an era where genetic sequencing is increasingly utilised in the clinic, genetic therapies will play a progressively central role in DMD therapy. This review delineates the relative merits of cutting-edge genetic approaches, as well as the challenges that still need to be overcome before they become clinically viable.
Collapse
Affiliation(s)
- Vratko Himič
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
31
|
Mareedu S, Million ED, Duan D, Babu GJ. Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies. Front Physiol 2021; 12:647010. [PMID: 33897454 PMCID: PMC8063049 DOI: 10.3389/fphys.2021.647010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disease caused by the loss of dystrophin. DMD is associated with muscle degeneration, necrosis, inflammation, fatty replacement, and fibrosis, resulting in muscle weakness, respiratory and cardiac failure, and premature death. There is no curative treatment. Investigations on disease-causing mechanisms offer an opportunity to identify new therapeutic targets to treat DMD. An abnormal elevation of the intracellular calcium (Cai2+) concentration in the dystrophin-deficient muscle is a major secondary event, which contributes to disease progression in DMD. Emerging studies have suggested that targeting Ca2+-handling proteins and/or mechanisms could be a promising therapeutic strategy for DMD. Here, we provide an updated overview of the mechanistic roles the sarcolemma, sarcoplasmic/endoplasmic reticulum, and mitochondria play in the abnormal and sustained elevation of Cai2+ levels and their involvement in DMD pathogenesis. We also discuss current approaches aimed at restoring Ca2+ homeostasis as potential therapies for DMD.
Collapse
Affiliation(s)
- Satvik Mareedu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Emily D Million
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, United States
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, United States.,Department of Biomedical, Biological & Chemical Engineering, The University of Missouri, Columbia, MO, United States
| | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
32
|
Yan Y, Tang R, Li B, Cheng L, Ye S, Yang T, Han YC, Liu C, Dong Y, Qu LH, Lui KO, Yang JH, Huang ZP. The cardiac translational landscape reveals that micropeptides are new players involved in cardiomyocyte hypertrophy. Mol Ther 2021; 29:2253-2267. [PMID: 33677093 PMCID: PMC8261087 DOI: 10.1016/j.ymthe.2021.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/11/2020] [Accepted: 03/02/2021] [Indexed: 11/27/2022] Open
Abstract
Hypertrophic growth of cardiomyocytes is one of the major compensatory responses in the heart after physiological or pathological stimulation. Protein synthesis enhancement, which is mediated by the translation of messenger RNAs, is one of the main features of cardiomyocyte hypertrophy. Although the transcriptome shift caused by cardiac hypertrophy induced by different stimuli has been extensively investigated, translatome dynamics in this cellular process has been less studied. Here, we generated a nucleotide-resolution translatome as well as transcriptome data from isolated primary cardiomyocytes undergoing hypertrophy. More than 10,000 open reading frames (ORFs) were detected from the deep sequencing of ribosome-protected fragments (Ribo-seq), which orchestrated the shift of the translatome in hypertrophied cardiomyocytes. Our data suggest that rather than increase the translational rate of ribosomes, the increased efficiency of protein synthesis in cardiomyocyte hypertrophy was attributable to an increased quantity of ribosomes. In addition, more than 100 uncharacterized short ORFs (sORFs) were detected in long noncoding RNA genes from Ribo-seq with potential of micropeptide coding. In a random test of 15 candidates, the coding potential of 11 sORFs was experimentally supported. Three micropeptides were identified to regulate cardiomyocyte hypertrophy by modulating the activities of oxidative phosphorylation, the calcium signaling pathway, and the mitogen-activated protein kinase (MAPK) pathway. Our study provides a genome-wide overview of the translational controls behind cardiomyocyte hypertrophy and demonstrates an unrecognized role of micropeptides in cardiomyocyte biology.
Collapse
Affiliation(s)
- Youchen Yan
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou 510080, China
| | - Rong Tang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Liangping Cheng
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou 510080, China
| | - Shangmei Ye
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou 510080, China
| | - Tiqun Yang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan-Chuang Han
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou 510080, China
| | - Chen Liu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou 510080, China
| | - Yugang Dong
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou 510080, China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Kathy O Lui
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR 999077, China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China.
| |
Collapse
|
33
|
Szabó PL, Ebner J, Koenig X, Hamza O, Watzinger S, Trojanek S, Abraham D, Todt H, Kubista H, Schicker K, Remy S, Anegon I, Kiss A, Podesser BK, Hilber K. Cardiovascular phenotype of the Dmdmdx rat - a suitable animal model for Duchenne muscular dystrophy. Dis Model Mech 2021; 14:14/2/dmm047704. [PMID: 33619211 PMCID: PMC7927653 DOI: 10.1242/dmm.047704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Besides skeletal muscle abnormalities, Duchenne muscular dystrophy (DMD) patients present with dilated cardiomyopathy development, which considerably contributes to morbidity and mortality. Because the mechanisms responsible for the cardiac complications in the context of DMD are largely unknown, evidence-based therapy approaches are still lacking. This has increased the need for basic research efforts into animal models for DMD. Here, we characterized in detail the cardiovascular abnormalities of Dmdmdx rats, with the aim of determining the suitability of this recently established dystrophin-deficient small animal as a model for DMD. Various methods were applied to compare cardiovascular properties between wild-type and Dmdmdx rats, and to characterize the Dmdmdx cardiomyopathy. These methods comprised echocardiography, invasive assessment of left ventricular hemodynamics, examination of adverse remodeling and endothelial cell inflammation, and evaluation of vascular function, employing wire myography. Finally, intracellular Ca2+ transient measurements, and recordings of currents through L-type Ca2+ channels were performed in isolated single ventricular cardiomyocytes. We found that, similar to respective observations in DMD patients, the hearts of Dmdmdx rats show significantly impaired cardiac function, fibrosis and inflammation, consistent with the development of a dilated cardiomyopathy. Moreover, in Dmdmdx rats, vascular endothelial function is impaired, which may relate to inflammation and oxidative stress, and Ca2+ handling in Dmdmdx cardiomyocytes is abnormal. These findings indicate that Dmdmdx rats represent a promising small-animal model to elucidate mechanisms of cardiomyopathy development in the dystrophic heart, and to test mechanism-based therapies aiming to combat cardiovascular complications in DMD. Summary: We characterized the cardiovascular abnormalities of Dmdmdx rats, demonstrating that Dmdmdx rats show similar cardiac and vascular endothelial function impairments to Duchenne muscular dystrophy patients, representing a model of the dystrophic heart.
Collapse
Affiliation(s)
- Petra Lujza Szabó
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna 1090, Austria
| | - Janine Ebner
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Ouafa Hamza
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna 1090, Austria
| | - Simon Watzinger
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna 1090, Austria
| | - Sandra Trojanek
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna 1090, Austria
| | - Dietmar Abraham
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna 1090, Austria
| | - Hannes Todt
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Klaus Schicker
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Séverine Remy
- INSERM, Center for Research in Transplantation and Immunology, UMR 1064, Nantes Université, F-44000 Nantes, France
| | - Ignacio Anegon
- INSERM, Center for Research in Transplantation and Immunology, UMR 1064, Nantes Université, F-44000 Nantes, France
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna 1090, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna 1090, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
34
|
Abstract
Duchenne muscular dystrophy is a severe, progressive, muscle-wasting disease that leads to difficulties with movement and, eventually, to the need for assisted ventilation and premature death. The disease is caused by mutations in DMD (encoding dystrophin) that abolish the production of dystrophin in muscle. Muscles without dystrophin are more sensitive to damage, resulting in progressive loss of muscle tissue and function, in addition to cardiomyopathy. Recent studies have greatly deepened our understanding of the primary and secondary pathogenetic mechanisms. Guidelines for the multidisciplinary care for Duchenne muscular dystrophy that address obtaining a genetic diagnosis and managing the various aspects of the disease have been established. In addition, a number of therapies that aim to restore the missing dystrophin protein or address secondary pathology have received regulatory approval and many others are in clinical development.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology and Department of Neurology, School of Medicine; Department of Biomedical Sciences, College of Veterinary Medicine; Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, USA
| | - Nathalie Goemans
- Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Eugenio Mercuri
- Centro Clinico Nemo, Policlinico Gemelli, Rome, Italy
- Peadiatric Neurology, Catholic University, Rome, Italy
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
35
|
Mareedu S, Pachon R, Thilagavathi J, Fefelova N, Balakrishnan R, Niranjan N, Xie LH, Babu GJ. Sarcolipin haploinsufficiency prevents dystrophic cardiomyopathy in mdx mice. Am J Physiol Heart Circ Physiol 2021; 320:H200-H210. [PMID: 33216625 PMCID: PMC7847070 DOI: 10.1152/ajpheart.00601.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
Sarcolipin (SLN) is an inhibitor of sarco/endoplasmic reticulum (SR) Ca2+-ATPase (SERCA) and expressed at high levels in the ventricles of animal models for and patients with Duchenne muscular dystrophy (DMD). The goal of this study was to determine whether the germline ablation of SLN expression improves cardiac SERCA function and intracellular Ca2+ (Ca2+i) handling and prevents cardiomyopathy in the mdx mouse model of DMD. Wild-type, mdx, SLN-haploinsufficient mdx (mdx:sln+/-), and SLN-deficient mdx (mdx:sln-/-) mice were used for this study. SERCA function and Ca2+i handling were determined by Ca2+ uptake assays and by measuring single-cell Ca2+ transients, respectively. Age-dependent disease progression was determined by histopathological examinations and by echocardiography in 6-, 12-, and 20-mo-old mice. Gene expression changes in the ventricles of mdx:sln+/- mice were determined by RNA-Seq analysis. SERCA function and Ca2+i cycling were improved in the ventricles of mdx:sln+/- mice. Fibrosis and necrosis were significantly decreased, and cardiac function was enhanced in the mdx:sln+/- mice until the study endpoint. The mdx:sln-/- mice also exhibited similar beneficial effects. RNA-Seq analysis identified distinct gene expression changes including the activation of the apelin pathway in the ventricles of mdx:sln+/- mice. Our findings suggest that reducing SLN expression is sufficient to improve cardiac SERCA function and Ca2+i cycling and prevent cardiomyopathy in mdx mice.NEW & NOTEWORTHY First, reducing sarcopolin (SLN) expression improves sarco/endoplasmic reticulum Ca2+ uptake and intracellular Ca2+ handling and prevents cardiomyopathy in mdx mice. Second, reducing SLN expression prevents diastolic dysfunction and improves cardiac contractility in mdx mice Third, reducing SLN expression activates apelin-mediated cardioprotective signaling pathways in mdx heart.
Collapse
Affiliation(s)
- Satvik Mareedu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Ronald Pachon
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Jayapalraj Thilagavathi
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Rekha Balakrishnan
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Nandita Niranjan
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
36
|
Łoboda A, Dulak J. Muscle and cardiac therapeutic strategies for Duchenne muscular dystrophy: past, present, and future. Pharmacol Rep 2020; 72:1227-1263. [PMID: 32691346 PMCID: PMC7550322 DOI: 10.1007/s43440-020-00134-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a severe X-linked neuromuscular childhood disorder that causes progressive muscle weakness and degeneration and results in functional decline, loss of ambulation and early death of young men due to cardiac or respiratory failure. Although the major cause of the disease has been known for many years-namely mutation in the DMD gene encoding dystrophin, one of the largest human genes-DMD is still incurable, and its treatment is challenging. METHODS A comprehensive and systematic review of literature on the gene, cell, and pharmacological experimental therapies aimed at restoring functional dystrophin or to counteract the associated processes contributing to disease progression like inflammation, fibrosis, calcium signaling or angiogenesis was carried out. RESULTS Although some therapies lead to satisfying effects in skeletal muscle, they are highly ineffective in the heart; therefore, targeting defective cardiac and respiratory systems is vital in DMD patients. Unfortunately, most of the pharmacological compounds treat only the symptoms of the disease. Some drugs addressing the underlying cause, like eteplirsen, golodirsen, and ataluren, have recently been conditionally approved; however, they can correct only specific mutations in the DMD gene and are therefore suitable for small sub-populations of affected individuals. CONCLUSION In this review, we summarize the possible therapeutic options and describe the current status of various, still imperfect, strategies used for attenuating the disease progression.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|