1
|
Lysandrou M, Kefala D, Vinnakota JM, Savvopoulos N, Zeiser R, Spyridonidis A. Regulatory T cell therapy for Graft-versus-Host Disease. Bone Marrow Transplant 2025:10.1038/s41409-025-02553-x. [PMID: 40240498 DOI: 10.1038/s41409-025-02553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Graft-versus-Host Disease (GvHD) is the main cause of morbidity and mortality of allogeneic hematopoietic cell transplantation (allo-HCT). Conventional immunosuppressive pharmacotherapy remains the backbone of GvHD prevention and treatment with suboptimal outcomes especially for patients with refractory disease. Adoptive immunotherapy with regulatory T-cells (Treg) stands as an alternative approach that aims to restore immune tolerance and circumvent prolonged immunosuppression albeit preserving the beneficial Graft-versus-Leukaemia (GvL) effect. In this review, we summarise recent knowledge on Treg biology, clinical applications of various Tregs subtypes in the setting of GvHD and future endeavours of the field.
Collapse
Affiliation(s)
- Memnon Lysandrou
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Dionysia Kefala
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece
| | - Janaki Manoja Vinnakota
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Nikolaos Savvopoulos
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece
| | - Robert Zeiser
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Alexandros Spyridonidis
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece.
| |
Collapse
|
2
|
Stark H, Ho QY, Cross A, Alessandrini A, Bertaina A, Brennan D, Busque S, Demetris A, Devey L, Fruhwirth G, Fuchs E, Friend P, Geissler E, Guillonneau C, Hester J, Isaacs J, Jaeckel E, Kawai T, Lakkis F, Leventhal J, Levings M, Levitsky J, Lombardi G, Martinez-Llordella M, Mathew J, Moreau A, Reinke P, Riella LV, Sachs D, Fueyo AS, Schreeb K, Sykes M, Tang Q, Thomson A, Tree T, Trzonkowski P, Uchida K, Veale J, Weiner J, Wekerle T, Issa F. Meeting Report: The Sixth International Sam Strober Workshop on Clinical Immune Tolerance. Transplantation 2025; 109:569-579. [PMID: 39800883 DOI: 10.1097/tp.0000000000005311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Affiliation(s)
- Helen Stark
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Quan Yao Ho
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Department of Renal Medicine, Singapore General Hospital, Singapore
| | - Amy Cross
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Daniel Brennan
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stephan Busque
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Palo Alto, CA
| | - Anthony Demetris
- Department of Pathology, Division of Transplantation, University of Pittsburgh, Pittsburgh, PA
| | - Luke Devey
- Quell Therapeutics, Translation and Innovation Hub, London, UK
| | - Gilbert Fruhwirth
- Imaging Therapies and Cancer Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | | | - Peter Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ed Geissler
- Division of Experimental Surgery, Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Carole Guillonneau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - John Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit and NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Elmar Jaeckel
- Ajmera Transplant Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Tatsuo Kawai
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Boston, MA
| | - Fadi Lakkis
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Joseph Leventhal
- Comprehensive Transplant Center at Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Megan Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Josh Levitsky
- Department of Medicine, Northwestern University, Chicago, IL
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London, London, UK
| | | | - James Mathew
- Departments of Surgery and Microbiology-Immunology, Comprehensive Transplant Center, Northwestern University, Chicago, IL
| | - Aurélie Moreau
- INSERM, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Petra Reinke
- Charité - Universitätsmedizin Berlin, Berlin Center for Advanced Therapies (BeCAT), Berlin, Germany
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - David Sachs
- Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, MA
- Medical School, Harvard University, Boston, MA
- Columbia Center of Translational Immunology, Columbia University Medical Center, New York, NY
| | | | | | - Megan Sykes
- Columbia Center for Translational Immunology, Departments of Medicine, Surgery, and Microbiology and Immunology, Columbia University, New York, NY
| | - Qizhi Tang
- Department of Surgery, Diabetes Center, University of California, San Francisco, CA
| | - Angus Thomson
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Timothy Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Piotr Trzonkowski
- Medical University of Gdansk, Department of Medical Immunology, Gdansk, Poland
| | - Koichiro Uchida
- Juntendo University Center for Immunotherapy and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jeffrey Veale
- Department of Urology, University of California, Los Angeles, CA
| | - Josh Weiner
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Fadi Issa
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Heo BY, Koh JS, Choi SY, Pham TTD, Lee SW, Park JH, Jang Y, Lee MW, Lee SB, Seo W, Jo DY, Kwon J, Song IC. Comparison of Regulatory T-Cell Subpopulations in Antithymocytic Globulin Versus Post-Transplant Cyclophosphamide for Preventing Graft-Versus-Host Disease in Allogeneic Hematopoietic Stem Cell Transplantation-A Retrospective Study. Int J Mol Sci 2025; 26:2521. [PMID: 40141165 PMCID: PMC11941908 DOI: 10.3390/ijms26062521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Antithymocytic globulin (ATG) and post-transplant cyclophosphamide (PTCy) are frequently used regimens for graft-versus-host disease (GVHD) prophylaxis. However, there is a lack of data about the difference in regulatory T-cell (Treg) subpopulations between these two regimens. Peripheral blood samples were collected on day +21 following allogeneic hematopoietic stem cell transplantation (Allo-HSCT), and the Treg subpopulations were analyzed using flow cytometry. The Treg populations were categorized into three distinct subgroups: naïve, effector, and non-suppressive. And we compared overall survival (OS), the cumulative incidence of acute and chronic GVHD, and the relapse rate between the ATG and PTCy groups. We enrolled 45 patients (28 in ATG, 17 in PTCy) in total. In the ATG group, 16 and 12 patients underwent human leukocyte antigen (HLA) matched-sibling donor and unrelated donor HSCT, respectively. In the PTCy group, 12 patients underwent haplo-identical HSCT, and 5 patients underwent HLA-matched unrelated donor HSCT. The cumulative incidence of Grade 2-4 acute GVHD was 18.3% in the ATG group compared to 38.1% in the PTCy group (p = 0.13), while severe chronic GVHD occurred in 19.4% of ATG patients and 41.7% of PTCy patients (p = 0.343). And OS and the relapse rate were not statistically different between the two groups. The conventional CD25+FOXP3+Treg count of CD4 + T cells was higher in the PTCy group than in the ATG group (p = 0.0020). The effector Treg subset was significantly higher in the PTCy group than in the ATG group (p = 0.0412). And the effector Treg cell count had an inverse correlation with the severity of acute GVHD (p = 0.0007). Effector Tregs may be used as a biomarker to predict the severity of acute GVHD after allo-HSCT.
Collapse
Affiliation(s)
- Bu-Yeon Heo
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; (B.-Y.H.); (S.-Y.C.); (T.T.D.P.); (S.-W.L.)
- Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jeong Suk Koh
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (J.S.K.); (M.-W.L.); (S.-B.L.); (W.S.); (D.-Y.J.)
| | - Su-Young Choi
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; (B.-Y.H.); (S.-Y.C.); (T.T.D.P.); (S.-W.L.)
- Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Thi Thuy Duong Pham
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; (B.-Y.H.); (S.-Y.C.); (T.T.D.P.); (S.-W.L.)
- Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Sang-Woo Lee
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; (B.-Y.H.); (S.-Y.C.); (T.T.D.P.); (S.-W.L.)
| | - Jung-Hyun Park
- Translational Immunology Institute, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; (J.-H.P.); (Y.J.)
| | - Yunseon Jang
- Translational Immunology Institute, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; (J.-H.P.); (Y.J.)
| | - Myung-Won Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (J.S.K.); (M.-W.L.); (S.-B.L.); (W.S.); (D.-Y.J.)
| | - Seul-Bi Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (J.S.K.); (M.-W.L.); (S.-B.L.); (W.S.); (D.-Y.J.)
| | - Wonhyoung Seo
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (J.S.K.); (M.-W.L.); (S.-B.L.); (W.S.); (D.-Y.J.)
| | - Deog-Yeon Jo
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (J.S.K.); (M.-W.L.); (S.-B.L.); (W.S.); (D.-Y.J.)
| | - Jaeyul Kwon
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; (B.-Y.H.); (S.-Y.C.); (T.T.D.P.); (S.-W.L.)
- Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Translational Immunology Institute, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; (J.-H.P.); (Y.J.)
| | - Ik-Chan Song
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; (B.-Y.H.); (S.-Y.C.); (T.T.D.P.); (S.-W.L.)
- Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (J.S.K.); (M.-W.L.); (S.-B.L.); (W.S.); (D.-Y.J.)
- Translational Immunology Institute, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; (J.-H.P.); (Y.J.)
| |
Collapse
|
4
|
Du W, Noyan F, McCallion O, Drosdek V, Kath J, Glaser V, Fuster-Garcia C, Yang M, Stein M, Franke C, Pu Y, Weber O, Polansky JK, Cathomen T, Jaeckel E, Hester J, Issa F, Volk HD, Schmueck-Henneresse M, Reinke P, Wagner DL. Gene editing of CD3 epsilon to redirect regulatory T cells for adoptive T cell transfer. Mol Ther 2025; 33:997-1013. [PMID: 39905729 PMCID: PMC11897813 DOI: 10.1016/j.ymthe.2025.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/20/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Adoptive transfer of antigen-specific regulatory T cells (Tregs) is a promising strategy to combat immunopathologies in transplantation and autoimmune diseases. However, their low frequency in peripheral blood poses challenges for both manufacturing and clinical application. Chimeric antigen receptors have been used to redirect the specificity of Tregs, using retroviral vectors. However, retroviral gene transfer is costly, time consuming, and raises safety issues. Here, we explored non-viral CRISPR-Cas12a gene editing to redirect Tregs, using human leukocyte antigen (HLA)-A2-specific constructs for proof-of-concept studies in transplantation models. Knock-in of an antigen-binding domain into the N terminus of CD3 epsilon (CD3ε) gene generates Tregs expressing a chimeric CD3ε-T cell receptor fusion construct (TRuC) protein that integrates into the endogenous TCR/CD3 complex. These CD3ε-TRuC Tregs exhibit potent antigen-dependent activation while maintaining responsiveness to TCR/CD3 stimulation. This enables preferential enrichment of TRuC-redirected Tregs over CD3ε knockout Tregs via repetitive CD3/CD28 stimulation in a good manufacturing practice-compatible expansion system. CD3ε-TRuC Tregs retained their phenotypic, epigenetic, and functional identity. In a humanized mouse model, HLA-A2-specific CD3ε-TRuC Tregs demonstrate superior protection of allogeneic HLA-A2+ skin grafts from rejection compared with polyclonal Tregs. This approach provides a pathway for developing clinical-grade CD3ε-TRuC-based Treg cell products for transplantation immunotherapy and other immunopathologies.
Collapse
Affiliation(s)
- Weijie Du
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Fatih Noyan
- Department of Gastroenterology, Infectious Diseases and Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Oliver McCallion
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Science, University of Oxford, Oxford OX3 9DU, UK
| | - Vanessa Drosdek
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Jonas Kath
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Viktor Glaser
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Carla Fuster-Garcia
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Mingxing Yang
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Maik Stein
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Clemens Franke
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Yaolin Pu
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Olaf Weber
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), University of Bonn, Biomedical Center II, Venusberg Campus 1, 53127 Bonn, Germany
| | - Julia K Polansky
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; German Rheumatism Research Centre, Deutsches Rheuma-Forschungszentrum, ein Leibniz Institut, Berlin, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Infectious Diseases and Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany; Department of Liver Transplantation, Multi Organ Transplant Program, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Joanna Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Science, University of Oxford, Oxford OX3 9DU, UK
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Science, University of Oxford, Oxford OX3 9DU, UK
| | - Hans-Dieter Volk
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Dimitrios L Wagner
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany; Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Choi JK, Mbanefo EC, Yadav MK, Alhakeem SA, Nagarajan V, Nunes NS, Kanakry CG, Egwuagu CE. Interleukin 35-producing B cells prolong the survival of GVHD mice by secreting exosomes with membrane-bound IL-35 and upregulating PD-1/LAG-3 checkpoint proteins. Theranostics 2025; 15:3610-3626. [PMID: 40093899 PMCID: PMC11905137 DOI: 10.7150/thno.105069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/18/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for aggressive hematologic malignancies. However, the risk of developing graft-versus-host disease (GVHD) is a significant barrier to allo-HSCT. GVHD is a debilitating condition with high mortality rates and current therapeutic options for GVHD are limited, with corticosteroids being the standard treatment. However, the adverse effects of steroids make prolonged use difficult, necessitating the development of safer therapies. IL-35-producing B-cells (i35-Bregs) have emerged as critical regulators of immunity during autoimmune diseases. In this study, we investigated whether i35-Bregs immunotherapy can suppress and mitigate GVHD. Methods: We administered a single dose of i35-Bregs (1.5×106) to mice undergoing allo-HSCT and monitored disease severity and survival of GVHD mice over 90 days post-transplantation. We discovered that i35-Bregs secrete exosomes containing membrane-bound IL-35 (i35-Exosomes) and investigated whether ex-vivo generated i35-exosomes can be used as stand-alone immunotherapy for GVHD. i35-Breg-induced expression of cytokines or checkpoint proteins (PD-1, LAG-3, CTLA-4) was analyzed by Flow cytometry, ELISA, and RNA-seq analysis. Characterization of membrane-bound IL-35 was by Proximity ligation assay (PLA), immunohistochemistry/Confocal microscopy and Alpha Fold-Multimer modeling. Results: A single dose of 1.5×106 i35-Breg reduced severity of GVHD and prolonged GVHD survival, with more than 70% i35-Breg-treated mice surviving beyond day-90 post-transplantation while observing 100% mortality among untreated mice by day-45. Contrary to the view that IL-35 is secreted cytokine, we show here that i35-Bregs mitigate GVHD via membrane-bound IL-35 and by secreting i35-exosomes. Furthermore, i35-Bregs or ex-vivo generated i35-exosomes induce alloreactive T-cells to upregulate checkpoint proteins associated with T-cell exhaustion and anergy, inhibiting alloreactive responses and propagating infectious-tolerance mechanisms that suppress GVHD. Importantly, i35-Bregs or i35-exosomes suppresses GVHD by increasing bystander lymphocytes coated with immunosuppressive i35-exosomes. Conclusions: This study demonstrates that i35-Bregs and i35-exosomes play a critical role in mitigating GVHD. The combination of i35-Breg and i35-exosome immunotherapy may be an effective strategy for treating GVHD and other inflammatory diseases.
Collapse
Affiliation(s)
- Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Jeonbuk, 54907, Republic of Korea
| | - Evaristus C. Mbanefo
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
| | - Manoj Kumar Yadav
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
| | - Sahar A. Alhakeem
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Vijayaraj Nagarajan
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
| | - Natalia S. Nunes
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20892, United States of America
| | - Christopher G. Kanakry
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20892, United States of America
| | - Charles E. Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
| |
Collapse
|
6
|
Fisher MS, Sennikov SV. T-regulatory cells for the treatment of autoimmune diseases. Front Immunol 2025; 16:1511671. [PMID: 39967659 PMCID: PMC11832489 DOI: 10.3389/fimmu.2025.1511671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Autoimmune diseases result from imbalances in the immune system and disturbances in the mechanisms of immune tolerance. T-regulatory cells (Treg) are key factors in the formation of immune tolerance. Tregs modulate immune responses and repair processes, controlling the innate and adaptive immune system. The use of Tregs in the treatment of autoimmune diseases began with the manipulation of endogenous Tregs using immunomodulatory drugs. Then, a method of adoptive transfer of Tregs grown in vitro was developed. Adoptive transfer of Tregs includes polyclonal Tregs with non-specific effects and antigen-specific Tregs in the form of CAR-Treg and TCR-Treg. This review discusses non-specific and antigen-specific approaches to the use of Tregs, their advantages, disadvantages, gaps in development, and future prospects.
Collapse
Affiliation(s)
- Marina S. Fisher
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University under the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Sergey V. Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University under the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
7
|
Wardell CM, Boardman DA, Levings MK. Harnessing the biology of regulatory T cells to treat disease. Nat Rev Drug Discov 2025; 24:93-111. [PMID: 39681737 DOI: 10.1038/s41573-024-01089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
Regulatory T (Treg) cells are a suppressive subset of CD4+ T cells that maintain immune homeostasis and restrain inflammation. Three decades after their discovery, the promise of strategies to harness Treg cells for therapy has never been stronger. Multiple clinical trials seeking to enhance endogenous Treg cells or deliver them as a cell-based therapy have been performed and hint at signs of success, as well as to important limitations and unanswered questions. Strategies to deplete Treg cells in cancer are also in active clinical testing. Furthermore, multi-dimensional methods to interrogate the biology of Treg cells are leading to a refined understanding of Treg cell biology and new approaches to harness tissue-specific functions for therapy. A new generation of Treg cell clinical trials is now being fuelled by advances in nanomedicine and synthetic biology, seeking more precise ways to tailor Treg cell function. This Review will discuss recent advances in our understanding of human Treg cell biology, with a focus on mechanisms of action and strategies to assess outcomes of Treg cell-targeted therapies. It highlights results from recent clinical trials aiming to enhance or inhibit Treg cell activity in a variety of diseases, including allergy, transplantation, autoimmunity and cancer, and discusses ongoing strategies to refine these approaches.
Collapse
Affiliation(s)
- Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A Boardman
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
8
|
McManus D, Copsel SN, Pffeifer BJ, Wolf D, Barreras H, Ma S, Khodor A, Komai S, Burgos da Silva M, Hazime H, Gallardo M, van den Brink MR, Abreu MT, Hill GR, Perez VL, Levy RB. Pretransplant targeting of TNFRSF25 and CD25 stimulates recipient Tregs in target tissues ameliorating GVHD post-HSCT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633453. [PMID: 39896683 PMCID: PMC11785081 DOI: 10.1101/2025.01.16.633453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The current approach to minimize transplant-associated complications, including graft-versus-host disease (GVHD) includes long-term pharmacological immune suppression frequently accompanied by unwanted side effects. Advances in targeted immunotherapies regulating alloantigen responses in the recipient continue to reduce the need for pan-immunosuppression. Here, in vivo targeting of the TNF superfamily receptor 25 (TNFRSF25) and the high affinity IL-2 receptor with a TL1A-Ig fusion protein and low dose IL-2, respectively, was used to pretreat recipient mice prior to allogeneic-HSCT (aHSCT). Pretreatment induced Treg expansion persisting early post-aHSCT leading to diminished GVHD and improved transplant outcomes. Expansion was accompanied by an increase in frequency of stable and functionally active Tregs as evidenced by in vitro assays using cells from major GVHD target tissues including colon, liver, and eye. Importantly, pretreatment supported epithelial cell function/integrity, a diverse microbiome including reduction of pathologic bacteria overgrowth and promotion of butyrate producing bacteria, while maintaining physiologic levels of obligate/facultative anaerobes. Notably, using a sphingosine 1-phosphate receptor agonist to sequester T cells in lymphoid tissues, we found that the increased tissue Treg frequency included resident CD69 + CD103 + FoxP3 + hepatic Tregs. In contrast to infusion of donor Treg cells, the strategy developed here resulted in the presence of immunosuppressive target tissue environments in the recipient prior to the receipt of donor allo-reactive T cells and successful perseveration of GVL responses. We posit strategies that circumvent the need of producing large numbers of ex-vivo manipulated Tregs, may be accomplished through in vivo recipient Treg expansion, providing translational approaches to improve aHSCT outcomes.
Collapse
|
9
|
Elliott J, Koldej R, Khot A, Ritchie D. Graft-Versus-Host Disease Mouse Models: A Clinical-Translational Perspective. Methods Mol Biol 2025; 2907:1-56. [PMID: 40100591 DOI: 10.1007/978-1-0716-4430-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
A variety of graft-versus-host disease (GVHD) models have been developed in mice for the purpose of allowing laboratory investigation of the pathobiology, prevention, and treatment of GVHD in humans. While such models are crucial in advancing our knowledge in this field, there are some key limitations that need to be considered when translating laboratory discoveries into the clinical context. This chapter will discuss current clinical practices in transplantation and GVHD and the relative strengths and weaknesses of mouse models that attempt to replicate these states.
Collapse
Affiliation(s)
- Jessica Elliott
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia.
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Rachel Koldej
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Amit Khot
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - David Ritchie
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Wendering DJ, Amini L, Schlickeiser S, Farrera-Sal M, Schulenberg S, Peter L, Mai M, Vollmer T, Du W, Stein M, Hamm F, Malard A, Castro C, Yang M, Ranka R, Rückert T, Durek P, Heinrich F, Gasparoni G, Salhab A, Walter J, Wagner DL, Mashreghi MF, Landwehr-Kenzel S, Polansky JK, Reinke P, Volk HD, Schmueck-Henneresse M. Effector memory-type regulatory T cells display phenotypic and functional instability. SCIENCE ADVANCES 2024; 10:eadn3470. [PMID: 39231218 PMCID: PMC11421655 DOI: 10.1126/sciadv.adn3470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Regulatory T cells (Treg cells) hold promise for sustainable therapy of immune disorders. Recent advancements in chimeric antigen receptor development and genome editing aim to enhance the specificity and function of Treg cells. However, impurities and functional instability pose challenges for the development of safe gene-edited Treg cell products. Here, we examined different Treg cell subsets regarding their fate, epigenomic stability, transcriptomes, T cell receptor repertoires, and function ex vivo and after manufacturing. Each Treg cell subset displayed distinct features, including lineage stability, epigenomics, surface markers, T cell receptor diversity, and transcriptomics. Earlier-differentiated memory Treg cell populations, including a hitherto unidentified naïve-like memory Treg cell subset, outperformed late-differentiated effector memory-like Treg cells in regulatory function, proliferative capacity, and epigenomic stability. High yields of stable, functional Treg cell products could be achieved by depleting the small effector memory-like Treg cell subset before manufacturing. Considering Treg cell subset composition appears critical to maintain lineage stability in the final cell product.
Collapse
Affiliation(s)
- Désirée Jacqueline Wendering
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Development of Biomarkers and Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Leila Amini
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Cell Therapy and Personalized Immunosuppression, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Stephan Schlickeiser
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Development of Biomarkers and Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- CheckImmune GmbH, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Martí Farrera-Sal
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sarah Schulenberg
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
- Einstein Center for Regenerative Therapies at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Lena Peter
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
- Einstein Center for Regenerative Therapies at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marco Mai
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tino Vollmer
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Weijie Du
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Gene Editing for Cell Therapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Maik Stein
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Cell Therapy and Personalized Immunosuppression, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Gene Editing for Cell Therapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Frederik Hamm
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Alisier Malard
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Carla Castro
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mingxing Yang
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ramon Ranka
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Timo Rückert
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Gilles Gasparoni
- Saarland University, Institute for Genetics/Epigenetics, Saarbrücken, Germany
| | - Abdulrahman Salhab
- Saarland University, Institute for Genetics/Epigenetics, Saarbrücken, Germany
| | - Jörn Walter
- Saarland University, Institute for Genetics/Epigenetics, Saarbrücken, Germany
| | - Dimitrios Laurin Wagner
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Gene Editing for Cell Therapy, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Transfusion Medicine, Charitéplatz 1, 10117 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Cell Therapy and Personalized Immunosuppression, Augustenburger Platz 1, 13353 Berlin, Germany
- Hannover Medical School, Department of Pediatric Pulmonology, Allergy and Neonatology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Julia K Polansky
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Cell Therapy and Personalized Immunosuppression, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Development of Biomarkers and Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- CheckImmune GmbH, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
11
|
Zhao SJ, Hu XH, Lin XX, Zhang YJ, Wang J, Wang H, Gong GS, Mor G, Liao AH. IL-27/Blimp-1 axis regulates the differentiation and function of Tim-3+ Tregs during early pregnancy. JCI Insight 2024; 9:e179233. [PMID: 39171524 PMCID: PMC11343602 DOI: 10.1172/jci.insight.179233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024] Open
Abstract
Decidual regulatory T cells (Tregs) are essential for successful pregnancy outcome. A subset of Tregs, T cell immunoglobulin and mucin domain-containing protein 3-positive regulatory T cells (TregsTim-3+), plays a central role in the acceptance of the fetus during early stages of normal pregnancy. The molecular mechanism regulating the differentiation and function of TregsTim-3+ is unknown. Here, we investigated the role of the transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1) on decidual TregTim-3+ differentiation. We demonstrated that Blimp-1 enhanced the coexpression of negative costimulatory molecules (Tim-3, T cell immunoreceptor with Ig and ITIM domains, and programmed cell death protein 1) on Tregs and improved their immunosuppressive functions, including increased IL-10 secretion, suppression of effector T cell proliferation, and promotion of macrophage polarization toward the M2 phenotype. Furthermore, we showed that IL-27 regulated the expression of Tim-3 and Blimp-1 through the STAT1 signaling pathway and that transfer of TregsBlimp-1+ into an abortion-prone mouse model effectively reduced embryo absorption rate. We postulated that abnormalities in the IL-27/Blimp-1 axis might be associated with recurrent pregnancy loss (RPL). These findings provided insights for developing more efficient immunotherapies for women with RPL.
Collapse
Affiliation(s)
- Si-Jia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Hui Hu
- Department of Obstetrics and Gynecology, First Clinical College Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang-Shun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Weijler AM, Wekerle T. Combining Treg Therapy With Donor Bone Marrow Transplantation: Experimental Progress and Clinical Perspective. Transplantation 2024; 108:1100-1108. [PMID: 37789519 DOI: 10.1097/tp.0000000000004814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Donor-specific tolerance remains a goal in transplantation because it could improve graft survival and reduce morbidity. Cotransplantation of donor hematopoietic cells to achieve chimerism is a promising approach for tolerance induction, which was successfully tested in clinical trials. However, current protocols are associated with side effects related to the myelosuppressive recipient conditioning, which makes it difficult to introduce them as standard therapy. More recently, adoptive cell therapy with polyclonal or donor-specific regulatory T cells (Treg) proved safe and feasible in several transplant trials, but it is unclear whether it can induce tolerance on its own. The combination of both approaches-Treg therapy and hematopoietic cell transplantation-leads to chimerism and tolerance without myelosuppressive treatment in murine models. Treg therapy promotes engraftment of allogeneic hematopoietic cells, reducing conditioning requirements and enhancing regulatory mechanisms maintaining tolerance. This review discusses possible modes of action of transferred Treg in experimental chimerism models and describes translational efforts investigating the potent synergy of Treg and chimerism.
Collapse
Affiliation(s)
- Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
13
|
Pacini CP, Soares MVD, Lacerda JF. The impact of regulatory T cells on the graft-versus-leukemia effect. Front Immunol 2024; 15:1339318. [PMID: 38711496 PMCID: PMC11070504 DOI: 10.3389/fimmu.2024.1339318] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is the only curative therapy for many hematologic malignancies, whereby the Graft-versus-Leukemia (GVL) effect plays a pivotal role in controlling relapse. However, the success of GVL is hindered by Graft-versus-Host Disease (GVHD), where donor T cells attack healthy tissues in the recipient. The ability of natural regulatory T cells (Treg) to suppress immune responses has been exploited as a therapeutical option against GVHD. Still, it is crucial to evaluate if the ability of Treg to suppress GVHD does not compromise the benefits of GVL. Initial studies in animal models suggest that Treg can attenuate GVHD while preserving GVL, but results vary according to tumor type. Human trials using Treg as GVHD prophylaxis or treatment show promising results, emphasizing the importance of infusion timing and Treg/Tcon ratios. In this review, we discuss strategies that can be used aiming to enhance GVL post-Treg infusion and the proposed mechanisms for the maintenance of the GVL effect upon the adoptive Treg transfer. In order to optimize the therapeutic outcomes of Treg administration in allo-HSCT, future efforts should focus on refining Treg sources for infusion and evaluating their specificity for antigens mediating GVHD while preserving GVL responses.
Collapse
Affiliation(s)
- Carolina P. Pacini
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria V. D. Soares
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João F. Lacerda
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, ULS Santa Maria, Lisbon, Portugal
| |
Collapse
|
14
|
Santosh Nirmala S, Kayani K, Gliwiński M, Hu Y, Iwaszkiewicz-Grześ D, Piotrowska-Mieczkowska M, Sakowska J, Tomaszewicz M, Marín Morales JM, Lakshmi K, Marek-Trzonkowska NM, Trzonkowski P, Oo YH, Fuchs A. Beyond FOXP3: a 20-year journey unravelling human regulatory T-cell heterogeneity. Front Immunol 2024; 14:1321228. [PMID: 38283365 PMCID: PMC10811018 DOI: 10.3389/fimmu.2023.1321228] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Kayani Kayani
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Academic Surgery, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- Department of Renal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yueyuan Hu
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | | | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna Tomaszewicz
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Kavitha Lakshmi
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ye Htun Oo
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network - Rare Liver Centre, Birmingham, United Kingdom
| | - Anke Fuchs
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
15
|
Wagner DL, Ostendorf L. New dawn of cellular therapies in autoimmune diseases. Mol Ther Methods Clin Dev 2023; 31:101141. [PMID: 38027062 PMCID: PMC10661845 DOI: 10.1016/j.omtm.2023.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Affiliation(s)
- Dimitrios Laurin Wagner
- Berlin Center for Advanced Therapies, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute of Transfusion Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lennard Ostendorf
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Buxbaum NP, Socié G, Hill GR, MacDonald KPA, Tkachev V, Teshima T, Lee SJ, Ritz J, Sarantopoulos S, Luznik L, Zeng D, Paczesny S, Martin PJ, Pavletic SZ, Schultz KR, Blazar BR. Chronic GvHD NIH Consensus Project Biology Task Force: evolving path to personalized treatment of chronic GvHD. Blood Adv 2023; 7:4886-4902. [PMID: 36322878 PMCID: PMC10463203 DOI: 10.1182/bloodadvances.2022007611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023] Open
Abstract
Chronic graft-versus-host disease (cGvHD) remains a prominent barrier to allogeneic hematopoietic stem cell transplantion as the leading cause of nonrelapse mortality and significant morbidity. Tremendous progress has been achieved in both the understanding of pathophysiology and the development of new therapies for cGvHD. Although our field has historically approached treatment from an empiric position, research performed at the bedside and bench has elucidated some of the complex pathophysiology of cGvHD. From the clinical perspective, there is significant variability of disease manifestations between individual patients, pointing to diverse biological underpinnings. Capitalizing on progress made to date, the field is now focused on establishing personalized approaches to treatment. The intent of this article is to concisely review recent knowledge gained and formulate a path toward patient-specific cGvHD therapy.
Collapse
Affiliation(s)
- Nataliya P. Buxbaum
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Gerard Socié
- Hematology-Transplantation, Assistance Publique-Hopitaux de Paris & University of Paris – INSERM UMR 676, Hospital Saint Louis, Paris, France
| | - Geoffrey R. Hill
- Division of Medical Oncology, The University of Washington, Seattle, WA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kelli P. A. MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Victor Tkachev
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Stephanie J. Lee
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Duke Cancer Institute, Durham, NC
| | - Leo Luznik
- Division of Hematologic Malignancies, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, Hematologic Maligancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Cancer Immunology Program, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Paul J. Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Steven Z. Pavletic
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kirk R. Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneappolis, MN
| |
Collapse
|
17
|
Haroun E, Agrawal K, Leibovitch J, Kassab J, Zoghbi M, Dutta D, Lim SH. Chronic graft-versus-host disease in pediatric patients: Differences and challenges. Blood Rev 2023; 60:101054. [PMID: 36805299 DOI: 10.1016/j.blre.2023.101054] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Despite the use of high-resolution molecular techniques for tissue typing, chronic graft-versus-host disease (cGVHD) remains a major complication following allogeneic hematopoietic stem cell transplant. cGVHD adversely affects the life-expectancy and quality of life. The latter is particularly important and functionally relevant in pediatric patients who have a longer life-expectancy than adults. Current laboratory evidence suggests that there is not any difference in the pathophysiology of cGVHD between adults and pediatric patients. However, there are some clinical features and complications of the disease that are different in pediatric patients. There are also challenges in the development of new therapeutics for this group of patients. In this review, we will discuss the epidemiology, pathophysiology, clinical features and consequences of the disease, and highlight the differences between pediatric and adult patients. We will examine the current treatment options for pediatric patients with moderate to severe cGVHD and discuss the challenges facing therapeutic development for cGVHD in the pediatric population.
Collapse
Affiliation(s)
- Elio Haroun
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY, United States of America
| | - Kavita Agrawal
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY, United States of America
| | - Jennifer Leibovitch
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY, United States of America
| | - Joseph Kassab
- Department of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Marianne Zoghbi
- Department of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Dibyendu Dutta
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY, United States of America
| | - Seah H Lim
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY, United States of America,; Sanofi Oncology, Cambridge, MA, United States of America.
| |
Collapse
|
18
|
Maurer K, Soiffer RJ. The delicate balance of graft versus leukemia and graft versus host disease after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2023; 16:943-962. [PMID: 37906445 PMCID: PMC11195539 DOI: 10.1080/17474086.2023.2273847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION The curative basis of allogeneic hematopoietic stem cell transplantation (HSCT) relies in part upon the graft versus leukemia (GvL) effect, whereby donor immune cells recognize and eliminate recipient malignant cells. However, alloreactivity of donor cells against recipient tissues may also be deleterious. Chronic graft versus host disease (cGvHD) is an immunologic phenomenon wherein alloreactive donor T cells aberrantly react against host tissues, leading to damaging inflammatory symptoms. AREAS COVERED Here, we discuss biological insights into GvL and cGvHD and strategies to balance the prevention of GvHD with maintenance of GvL in modern HSCT. EXPERT OPINION/COMMENTARY Relapse remains the leading cause of mortality after HSCT with rates as high as 40% for some diseases. GvHD is a major cause of morbidity after HSCT, occurring in up to half of patients and responsible for 15-20% of deaths after HSCT. Intriguingly, the development of chronic GvHD may be linked to lower relapse rates after HSCT, suggesting that GvL and GvHD may be complementary sides of the immunologic foundation of HSCT. The ability to fine tune the balance of GvL and GvHD will lead to improvements in survival, relapse rates, and quality of life for patients undergoing HSCT.
Collapse
Affiliation(s)
- Katie Maurer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Steiner R, Pilat N. The potential for Treg-enhancing therapies in transplantation. Clin Exp Immunol 2023; 211:122-137. [PMID: 36562079 PMCID: PMC10019131 DOI: 10.1093/cei/uxac118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of regulatory T cells (Tregs) as crucial regulators of immune tolerance against self-antigens, these cells have become a promising tool for the induction of donor-specific tolerance in transplantation medicine. The therapeutic potential of increasing in vivoTreg numbers for a favorable Treg to Teff cell ratio has already been demonstrated in several sophisticated pre-clinical models and clinical pilot trials. In addition to improving cell quantity, enhancing Treg function utilizing engineering techniques led to encouraging results in models of autoimmunity and transplantation. Here we aim to discuss the most promising approaches for Treg-enhancing therapies, starting with adoptive transfer approaches and ex vivoexpansion cultures (polyclonal vs. antigen specific), followed by selective in vivostimulation methods. Furthermore, we address next generation concepts for Treg function enhancement (CARs, TRUCKs, BARs) as well as the advantages and caveats inherit to each approach. Finally, this review will discuss the clinical experience with Treg therapy in ongoing and already published clinical trials; however, data on long-term results and efficacy are still very limited and many questions that might complicate clinical translation remain open. Here, we discuss the hurdles for clinical translation and elaborate on current Treg-based therapeutic options as well as their potencies for improving long-term graft survival in transplantation.
Collapse
Affiliation(s)
- Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Correspondence: Nina Pilat, PhD, Department of Cardiac Surgery, Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
20
|
Amini L, Kaeda J, Fritsche E, Roemhild A, Kaiser D, Reinke P. Clinical adoptive regulatory T Cell therapy: State of the art, challenges, and prospective. Front Cell Dev Biol 2023; 10:1081644. [PMID: 36794233 PMCID: PMC9924129 DOI: 10.3389/fcell.2022.1081644] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023] Open
Abstract
Rejection of solid organ transplant and graft versus host disease (GvHD) continue to be challenging in post transplantation management. The introduction of calcineurin inhibitors dramatically improved recipients' short-term prognosis. However, long-term clinical outlook remains poor, moreover, the lifelong dependency on these toxic drugs leads to chronic deterioration of graft function, in particular the renal function, infections and de-novo malignancies. These observations led investigators to identify alternative therapeutic options to promote long-term graft survival, which could be used concomitantly, but preferably, replace pharmacologic immunosuppression as standard of care. Adoptive T cell (ATC) therapy has evolved as one of the most promising approaches in regenerative medicine in the recent years. A range of cell types with disparate immunoregulatory and regenerative properties are actively being investigated as potential therapeutic agents for specific transplant rejection, autoimmunity or injury-related indications. A significant body of data from preclinical models pointed to efficacy of cellular therapies. Significantly, early clinical trial observations have confirmed safety and tolerability, and yielded promising data in support of efficacy of the cellular therapeutics. The first class of these therapeutic agents commonly referred to as advanced therapy medicinal products have been approved and are now available for clinical use. Specifically, clinical trials have supported the utility of CD4+CD25+FOXP3+ regulatory T cells (Tregs) to minimize unwanted or overshooting immune responses and reduce the level of pharmacological immunosuppression in transplant recipients. Tregs are recognized as the principal orchestrators of maintaining peripheral tolerance, thereby blocking excessive immune responses and prevent autoimmunity. Here, we summarize rationale for the adoptive Treg therapy, challenges in manufacturing and clinical experiences with this novel living drug and outline future perspectives of its use in transplantation.
Collapse
Affiliation(s)
- Leila Amini
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health—Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jaspal Kaeda
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Enrico Fritsche
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Kaiser
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health—Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,*Correspondence: Petra Reinke,
| |
Collapse
|
21
|
Luo L, Zheng Q, Chen Z, Huang M, Fu L, Hu J, Shi Q, Chen Y. Hemophilia a patients with inhibitors: Mechanistic insights and novel therapeutic implications. Front Immunol 2022; 13:1019275. [PMID: 36569839 PMCID: PMC9774473 DOI: 10.3389/fimmu.2022.1019275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
The development of coagulation factor VIII (FVIII) inhibitory antibodies is a serious complication in hemophilia A (HA) patients after FVIII replacement therapy. Inhibitors render regular prophylaxis ineffective and increase the risk of morbidity and mortality. Immune tolerance induction (ITI) regimens have become the only clinically proven therapy for eradicating these inhibitors. However, this is a lengthy and costly strategy. For HA patients with high titer inhibitors, bypassing or new hemostatic agents must be used in clinical prophylaxis due to the ineffective ITI regimens. Since multiple genetic and environmental factors are involved in the pathogenesis of inhibitor generation, understanding the mechanisms by which inhibitors develop could help identify critical targets that can be exploited to prevent or eradicate inhibitors. In this review, we provide a comprehensive overview of the recent advances related to mechanistic insights into anti-FVIII antibody development and discuss novel therapeutic approaches for HA patients with inhibitors.
Collapse
Affiliation(s)
- Liping Luo
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qiaoyun Zheng
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zhenyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Medical Technology and Engineering College of Fujian Medical University, Fuzhou, Fujian, China
| | - Meijuan Huang
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti, Milwaukee, WI, United States
- Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI, United States
- Midwest Athletes Against Childhood Cancer (MACC) Fund Research Center, Milwaukee, WI, United States
| | - Yingyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
22
|
Novel and Promising Strategies for Therapy of Post-Transplant Chronic GVHD. Pharmaceuticals (Basel) 2022; 15:ph15091100. [PMID: 36145321 PMCID: PMC9503665 DOI: 10.3390/ph15091100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the achievements that have increased viability after the transplantation of allogeneic hematopoietic stem cells (aHSCT), chronic graft-versus-host disease (cGVHD) remains the main cause of late complications and post-transplant deaths. At the moment, therapy alternatives demonstrate limited effectiveness in steroid-refractory illness; in addition, we have no reliable data on the mechanism of this condition. The lack of drugs of choice for the treatment of GVHD underscores the significance of the design of new therapies. Improved understanding of the mechanism of chronic GVHD has secured new therapy goals, and organized diagnostic recommendations and the development of medical tests have ensured a general language and routes for studies in this field. These factors, combined with the rapid development of pharmacology, have helped speed up the search of medicines and medical studies regarding chronic GVHD. At present, we can hope for success in curing this formidable complication. This review summarizes the latest clinical developments in new treatments for chronic GVHD.
Collapse
|
23
|
Riet T, Chmielewski M. Regulatory CAR-T cells in autoimmune diseases: Progress and current challenges. Front Immunol 2022; 13:934343. [PMID: 36032080 PMCID: PMC9399761 DOI: 10.3389/fimmu.2022.934343] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
CAR (Chimeric Antigen Receptor) T-cell therapy has revolutionized the field of oncology in recent years. This innovative shift in cancer treatment also provides the opportunity to improve therapies for many patients suffering from various autoimmune diseases. Recent studies have confirmed the therapeutic suppressive potential of regulatory T cells (Tregs) to modulate immune response in autoimmune diseases. However, the polyclonal character of regulatory T cells and their unknown TCR specificity impaired their therapeutic potency in clinical implementation. Genetical engineering of these immune modulating cells to express antigen-specific receptors and using them therapeutically is a logical step on the way to overcome present limitations of the Treg strategy for the treatment of autoimmune diseases. Encouraging preclinical studies successfully demonstrated immune modulating properties of CAR Tregs in various mouse models. Still, there are many concerns about targeted Treg therapies relating to CAR target selectivity, suppressive functions, phenotype stability and safety aspects. Here, we summarize recent developments in CAR design, Treg biology and future strategies and perspectives in CAR Treg immunotherapy aiming at clinical translation.
Collapse
|
24
|
Hippen KL, Hefazi M, Larson JH, Blazar BR. Emerging translational strategies and challenges for enhancing regulatory T cell therapy for graft-versus-host disease. Front Immunol 2022; 13:926550. [PMID: 35967386 PMCID: PMC9366169 DOI: 10.3389/fimmu.2022.926550] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 02/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for many types of cancer. Genetic disparities between donor and host can result in immune-mediated attack of host tissues, known as graft versus host disease (GVHD), a major cause of morbidity and mortality following HSCT. Regulatory CD4+ T cells (Tregs) are a rare cell type crucial for immune system homeostasis, limiting the activation and differentiation of effector T cells (Teff) that are self-reactive or stimulated by foreign antigen exposure. Adoptive cell therapy (ACT) with Treg has demonstrated, first in murine models and now in patients, that prophylactic Treg infusion can also suppress GVHD. While clinical trials have demonstrated Treg reduce severe GVHD occurrence, several impediments remain, including Treg variability and practical need for individualized Treg production for each patient. Additionally, there are challenges in the use of in vitro expansion techniques and in achieving in vivo Treg persistence in context of both immune suppressive drugs and in lymphoreplete patients being treated for GVHD. This review will focus on 3 main translational approaches taken to improve the efficacy of tTreg ACT in GVHD prophylaxis and development of treatment options, following HSCT: genetic modification, manipulating TCR and cytokine signaling, and Treg production protocols. In vitro expansion for Treg ACT presents a multitude of approaches for gene modification to improve efficacy, including: antigen specificity, tissue targeting, deletion of negative regulators/exhaustion markers, resistance to immunosuppressive drugs common in GVHD treatment. Such expansion is particularly important in patients without significant lymphopenia that can drive Treg expansion, enabling a favorable Treg:Teff ratio in vivo. Several potential therapeutics have also been identified that enhance tTreg stability or persistence/expansion following ACT that target specific pathways, including: DNA/histone methylation status, TCR/co-stimulation signaling, and IL-2/STAT5 signaling. Finally, this review will discuss improvements in Treg production related to tissue source, Treg subsets, therapeutic approaches to increase Treg suppression and stability during tTreg expansion, and potential for storing large numbers of Treg from a single production run to be used as an off-the-shelf infusion product capable of treating multiple recipients.
Collapse
Affiliation(s)
- Keli L. Hippen
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| | - Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Jemma H. Larson
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| | - Bruce R. Blazar
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| |
Collapse
|