1
|
López-Manzaneda S, Mencía Á, Bonafont J, Bassons-Bascuñana A, García M, Nyström A, Duarte B, Llames S, Murillas R, Modamio-Hoybjor S, Morín M, Soletto L, Escamez MJ, Moreno-Pelayo MA, Rio MD, Larcher F. Safe and Efficacious Permanent Removal of Large COL7A1 Exons for Gene Reframing as a Reliable Therapeutic Strategy for Recessive Dystrophic Epidermolysis Bullosa. Hum Gene Ther 2025. [PMID: 40432605 DOI: 10.1089/hum.2024.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025] Open
Abstract
Mutations leading to premature termination codons in COL7A1 are commonly associated with severe generalized recessive dystrophic epidermolysis bullosa (RDEB). Previous research, including our own, has indicated that removing mutated COL7A1 exons along with the consequent reframing of COL7A1 may not pose noticeable impact on protein function, offering a potential therapeutic strategy. However, investigations into the long-term in vivo effects of genome editing-mediated removal of mutant exons have only focused on the small exon 80 thus far. Hence, this study focuses on exons 73 and 105 of COL7A1 to explore whether targeted exon removal, through a CRISPR/Cas9-assisted, Non-homologous end joining (NHEJ)-mediated approach, could be extended to other larger exons. Introducing ribonucleoprotein complexes carrying Cas9 and optimized sgRNA guide pairs for each exon (73 and 105) through electroporation efficiently led to their removal, consequently restoring type VII collagen (C7) synthesis in RDEB primary patient cells carrying frameshift mutations in these exons. In vitro tests indicated the normal stability of the resulting C7 variants expressed at physiological levels, while in vivo analyses of regenerated skin grafted onto immunodeficient mice using E73 or E105 RDEB edited cells demonstrated the proper deposition of C7 at the basement membrane zone, thereby restoring normal dermo-epidermal adherence. This study enhances the broader potential of the exon deletion approach in the treatment of RDEB.
Collapse
Affiliation(s)
- Sergio López-Manzaneda
- Department of Biomedical Innovation CIEMAT-CIBERER, Madrid, Spain
- Instituto de Investigacion Sanitaria. Fundación Jimenez Díaz, Madrid, Spain
| | - Ángeles Mencía
- Department of Biomedical Innovation CIEMAT-CIBERER, Madrid, Spain
- Instituto de Investigacion Sanitaria. Fundación Jimenez Díaz, Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - José Bonafont
- Department of Biomedical Innovation CIEMAT-CIBERER, Madrid, Spain
- Instituto de Investigacion Sanitaria. Fundación Jimenez Díaz, Madrid, Spain
| | - Alex Bassons-Bascuñana
- Instituto de Investigacion Sanitaria. Fundación Jimenez Díaz, Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Bioengineering, University Carlos III Madrid (UC3M), Madrid, Spain
| | - Marta García
- Instituto de Investigacion Sanitaria. Fundación Jimenez Díaz, Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Bioengineering, University Carlos III Madrid (UC3M), Madrid, Spain
| | - Alexander Nyström
- Department of Dermatology, Medical Center-University Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Blanca Duarte
- Department of Biomedical Innovation CIEMAT-CIBERER, Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Bioengineering, University Carlos III Madrid (UC3M), Madrid, Spain
| | - Sara Llames
- Instituto de Investigacion Sanitaria. Fundación Jimenez Díaz, Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Rodolfo Murillas
- Department of Biomedical Innovation CIEMAT-CIBERER, Madrid, Spain
- Instituto de Investigacion Sanitaria. Fundación Jimenez Díaz, Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Silvia Modamio-Hoybjor
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Matías Morín
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- Genetics Department, Ramon y Cajal Hospital, Madrid, Spain
| | - Lucía Soletto
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- Genetics Department, Ramon y Cajal Hospital, Madrid, Spain
| | - María J Escamez
- Instituto de Investigacion Sanitaria. Fundación Jimenez Díaz, Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Miguel A Moreno-Pelayo
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- Genetics Department, Ramon y Cajal Hospital, Madrid, Spain
| | - Marcela Del Rio
- Instituto de Investigacion Sanitaria. Fundación Jimenez Díaz, Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Bioengineering, University Carlos III Madrid (UC3M), Madrid, Spain
| | - Fernando Larcher
- Department of Biomedical Innovation CIEMAT-CIBERER, Madrid, Spain
- Instituto de Investigacion Sanitaria. Fundación Jimenez Díaz, Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Bioengineering, University Carlos III Madrid (UC3M), Madrid, Spain
| |
Collapse
|
2
|
Osborn MJ, Panda S, Reineke TM, Tolar J, Nyström A. Progress in skin gene therapy: From the inside and out. Mol Ther 2025; 33:2065-2081. [PMID: 40077969 DOI: 10.1016/j.ymthe.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
The skin is the largest organ of the body and forms and serves as the barrier for preventing external material from accessing and damaging internal organs. As the outward interface to the environment, it is accessible for the application of therapeutic agents and cellular and gene therapy represent attractive and promising options to treat severe genetic conditions for which palliation has long been the main stay. However, because of its barrier function, transit across and to the subdermal compartment can be challenging. This commentary examines the current approaches of cell and gene therapies for genetic skin disorders. We write this from a local and systemic "outside and inside." perspective. Delivery from the outside encompasses topical, intradermal, and transdermal strategies for cell and vector delivery and ex vivo cell expansion and grafting. The inside approach details systemic delivery via infusion of cells or agents toward providing benefit to the skin. We use recessive dystrophic epidermolysis bullosa (RDEB) as a representative and paradigmatic disease to showcase these approaches as a means to highlight potential broader applicability to other conditions.
Collapse
Affiliation(s)
- Mark J Osborn
- Medical School, Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular and Gene Therapy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Sidharth Panda
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jakub Tolar
- Medical School, Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular and Gene Therapy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
3
|
Kardeh S, Mazloomrezaei M, Hosseini A. Scaling Autologous Epidermal Cell Therapies: iPSC-Derived Keratinocytes and In Vivo Chimerism for Skin Regeneration. Exp Dermatol 2025; 34:e70107. [PMID: 40289411 DOI: 10.1111/exd.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Severe skin injuries and genetic disorders such as epidermolysis bullosa present significant clinical challenges due to limitations in current epidermal replacement therapies. While promising, cultured epithelial autografts (CEAs) suffer from prolonged culture times, cellular senescence, and low-quality clinical outcomes, limiting their widespread application. Recent advancements in iPSC-derived keratinocytes (iKeratinocytes) and in vivo chimerism offer transformative potential for scalable and personalised skin regeneration. Advances in understanding transcriptional networks, mRNA delivery, CRISPR-based genome editing, and automated biomanufacturing processes can enable improved and efficient protocols for generating iKeratinocytes. Despite these advances, there are still challenges for scaling iKeratinocytes, including optimising xeno-free culture systems and developing reproducible methods for generating multilayered skin with appendages. Interspecies chimerism utilising lineage-specific ablation systems and targeted in utero delivery of organ progenitor cells can enable human epidermal tissue development within animal hosts, offering an alternative novel platform for scaling epidermal cell and skin generation. This method, however, requires further refinements for complete ablation and detachment of target cells in the animal hosts and improved human cell integration in chimeric models. Together, iKeratinocytes and in vivo chimerism hold great promise for advancing autologous epidermal cell therapies and enabling broader clinical adoption and improved outcomes for patients with severe skin injuries and genetic disorders.
Collapse
Affiliation(s)
- Sina Kardeh
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Mohsen Mazloomrezaei
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Ahmad Hosseini
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Li M, Lin Y, Cheng Q, Wei T. Prime Editing: A Revolutionary Technology for Precise Treatment of Genetic Disorders. Cell Prolif 2025; 58:e13808. [PMID: 40014809 PMCID: PMC11969253 DOI: 10.1111/cpr.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/06/2024] [Accepted: 01/03/2025] [Indexed: 03/01/2025] Open
Abstract
Genetic diseases have long posed significant challenges, with limited breakthroughs in treatment. Recent advances in gene editing technologies offer new possibilities in gene therapy for the treatment of inherited disorders. However, traditional gene editing methods have limitations that hinder their potential for clinical use, such as limited editing capabilities and the production of unintended byproducts. To overcome these limitations, prime editing (PE) has been developed as a powerful tool for precise and efficient genome modification. In this review, we provide an overview of the latest advancements in PE and its potential applications in the treatment of inherited disorders. Furthermore, we examine the current delivery vehicles employed for delivering PE systems in vitro and in vivo, and analyze their respective benefits and limitations. Ultimately, we discuss the challenges that need to be addressed to fully unlock the potential of PE for the remission or cure of genetic diseases.
Collapse
Affiliation(s)
- Mengyao Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi Lin
- Department of Biomedical Engineering, College of Future TechnologyPeking UniversityBeijingChina
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future TechnologyPeking UniversityBeijingChina
- Beijing Advanced Center of RNA BiologyPeking UniversityBeijingChina
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Mustfa SA, Dimitrievska M, Wang C, Gu C, Sun N, Romańczuk K, Karpinski P, Łaczmański Ł, McGrath JA, Jacków‐Malinowska J, Chiappini C. Porous Silicon Nanoneedles Efficiently Deliver Adenine Base Editor to Correct a Recurrent Pathogenic COL7A1 Variant in Recessive Dystrophic Epidermolysis Bullosa. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414728. [PMID: 40072288 PMCID: PMC12038538 DOI: 10.1002/adma.202414728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/26/2025] [Indexed: 04/30/2025]
Abstract
Base editing, a CRISPR-based genome editing technology, enables precise correction of single-nucleotide variants, promising resolutive treatment for monogenic genetic disorders like recessive dystrophic epidermolysis bullosa (RDEB). However, the application of base editors in cell manufacturing is hindered by inconsistent efficiency and high costs, contributed by suboptimal delivery methods. Nanoneedles have emerged as an effective delivery approach, enabling highly efficient, non-perturbing gene therapies both in vitro and in vivo. Here we demonstrate that nanoneedle delivery of an adenine base editor corrects a heterozygous single-nucleotide pathogenic variant in COL7A1 in primary RDEB fibroblasts in vitro with 96.5% efficiency, without inducing off-target variants. The nanoneedle delivery maintains cell viability and displays modest phenotypical alterations unlike conventional cationic lipid transfection. The nanoneedle-mediated editing significantly increases the production and secretion of full-length type VII collagen protein, contributing to restore functional fibroblasts phenotype by improving cell adhesion. These findings underscore the suitability and safety of nanoneedles for gene editing in a clinically relevant context of cell manufacturing, establishing a foundation for their use in cell therapies.
Collapse
Affiliation(s)
- Salman Ahmad Mustfa
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 1ULUK
| | - Marija Dimitrievska
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 1ULUK
- St John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonLondonSE1 1ULUK
| | - Cong Wang
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 1ULUK
- London Centre for NanotechnologyKing's College LondonLondonSE1 1ULUK
| | - Chenlei Gu
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 1ULUK
- London Centre for NanotechnologyKing's College LondonLondonSE1 1ULUK
| | - Ningjia Sun
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 1ULUK
| | - Katarzyna Romańczuk
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclaw53‐114Poland
| | - Pawel Karpinski
- Department of GeneticsWroclaw Medical UniversityWroclaw50‐367Poland
| | - Łukasz Łaczmański
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclaw53‐114Poland
| | - John A. McGrath
- St John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonLondonSE1 1ULUK
| | - Joanna Jacków‐Malinowska
- St John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonLondonSE1 1ULUK
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 1ULUK
- London Centre for NanotechnologyKing's College LondonLondonSE1 1ULUK
| |
Collapse
|
6
|
Chai AC, Siegwart DJ, Wang RC. Nucleic Acid Therapy for the Skin. J Invest Dermatol 2025; 145:780-789. [PMID: 39269387 PMCID: PMC11903366 DOI: 10.1016/j.jid.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 09/15/2024]
Abstract
Advances in sequencing technologies have facilitated the identification of the genes and mechanisms for many inherited skin diseases. Although targeted nucleic acid therapeutics for diseases in other organs have begun to be deployed in patients, the goal of precise therapeutics for skin diseases has not yet been realized. First, we review the current and emerging nucleic acid-based gene-editing and delivery modalities. Next, current and emerging viral and nanoparticle vehicles for the delivery of gene therapies are reviewed. Finally, specific skin diseases that could benefit optimally from nucleic acid therapies are highlighted. By adopting the latest technologies and addressing specific barriers related to skin biology, nucleic acid therapeutics have the potential to revolutionize treatments for patients with skin disease.
Collapse
Affiliation(s)
- Andreas C Chai
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Medical Scientist Training Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Harmon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Daniel J Siegwart
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Richard C Wang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Liu D, Cao D, Han R. Recent advances in therapeutic gene-editing technologies. Mol Ther 2025:S1525-0016(25)00200-X. [PMID: 40119516 DOI: 10.1016/j.ymthe.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
The advent of gene-editing technologies, particularly CRISPR-based systems, has revolutionized the landscape of biomedical research and gene therapy. Ongoing research in gene editing has led to the rapid iteration of CRISPR technologies, such as base and prime editors, enabling precise nucleotide changes without the need for generating harmful double-strand breaks (DSBs). Furthermore, innovations such as CRISPR fusion systems with DNA recombinases, DNA polymerases, and DNA ligases have expanded the size limitations for edited sequences, opening new avenues for therapeutic development. Beyond the CRISPR system, mobile genetic elements (MGEs) and epigenetic editors are emerging as efficient alternatives for precise large insertions or stable gene manipulation in mammalian cells. These advances collectively set the stage for next-generation gene therapy development. This review highlights recent developments of genetic and epigenetic editing tools and explores preclinical innovations poised to advance the field.
Collapse
Affiliation(s)
- Dongqi Liu
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Di Cao
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Renzhi Han
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
8
|
Koller U, Bauer JW. Emerging DNA & RNA editing strategies for the treatment of epidermolysis bullosa. J DERMATOL TREAT 2024; 35:2391452. [PMID: 39155053 DOI: 10.1080/09546634.2024.2391452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Background: Epidermolysis bullosa (EB) is a clinically-heterogeneous genodermatosis with severe manifestations in the skin and other organs. The significant burden this condition places on patients justifies the development of gene therapeutic strategies targeting the genetic cause of the disease. Methods: Emerging RNA and DNA editing tools have shown remarkable advances in efficiency and safety. Applicable both in ex vivo- and in vivo settings, these gene therapeutics based on gene replacement or editing are either at the pre-clinical or clinical stage. Results: The recent landmark FDA approvals for gene editing based on CRISPR/Cas9, along with the first FDA-approved redosable in vivo gene replacement therapy for EB, will invigorate ongoing research efforts, increasing the likelihood of achieving local cure via CRISPR-based technologies in the near future. Conclusions: This review discusses the status quo of current gene therapeutics that act at the level of RNA or DNA, all with the common aim of improving the quality of life for EB patients.
Collapse
Affiliation(s)
- Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Johann W Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
9
|
Steinbeck BJ, Gao XD, McElroy AN, Pandey S, Doman JL, Riddle MJ, Xia L, Chen W, Eide CR, Lengert AH, Han SW, Blazar BR, Wandall HH, Dabelsteen S, Liu DR, Tolar J, Osborn MJ. Twin Prime Editing Mediated Exon Skipping/Reinsertion for Restored Collagen VII Expression in Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2024; 144:2764-2777.e9. [PMID: 38763174 PMCID: PMC12050016 DOI: 10.1016/j.jid.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Gene editing nucleases, base editors, and prime editors are potential locus-specific genetic treatment strategies for recessive dystrophic epidermolysis bullosa; however, many recessive dystrophic epidermolysis bullosa COL7A1 pathogenic nucleotide variations (PNVs) are unique, making the development of personalized editing reagents challenging. A total of 270 of the ∼320 COL7A1 epidermolysis bullosa PNVs reside in exons that can be skipped, and antisense oligonucleotides and gene editing nucleases have been used to create in-frame deletions. Antisense oligonucleotides are transient, and nucleases generate deleterious double-stranded DNA breaks and uncontrolled mixtures of allele products. We developed a twin prime editing strategy using the PEmax and recently evolved PE6 prime editors and dual prime editing guide RNAs flanking COL7A1 exon 5. Prime editing-mediated deletion of exon 5 with a homozygous premature stop codon was achieved in recessive dystrophic epidermolysis bullosa fibroblasts, keratinocytes, and induced pluripotent stem cells with minimal double-stranded DNA breaks, and collagen type VII protein was restored. Twin prime editing can replace the target exon with recombinase attachment sequences, and we exploited this to reinsert a normal copy of exon 5 using the Bxb1 recombinase. These findings demonstrate that twin prime editing can facilitate locus-specific, predictable, in-frame deletions and sequence replacement with few double-stranded DNA breaks as a strategy that may enable a single therapeutic agent to treat multiple recessive dystrophic epidermolysis bullosa patient cohorts.
Collapse
Affiliation(s)
- Benjamin J Steinbeck
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xin D Gao
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Amber N McElroy
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Smriti Pandey
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jordan L Doman
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Megan J Riddle
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lily Xia
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Weili Chen
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cindy R Eide
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andre H Lengert
- Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Sang Won Han
- Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Bruce R Blazar
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jakub Tolar
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark J Osborn
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
10
|
Matsuo M, Zang X, Miyauchi T, Mizutani Y, Niwa H, Tanaka K, Iwata H. A case of revertant mosaic-like normal-looking spots in a patient with erythroderma with IL36RN and CARD14 heterozygous mutations. J Dermatol 2024; 51:1669-1673. [PMID: 39373130 PMCID: PMC11624151 DOI: 10.1111/1346-8138.17498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/08/2024]
Abstract
An 89-year-old Japanese woman presented with erythroderma associated with significant scaling. A histological examination showed acanthosis with hyperkeratosis and hyperkeratinization of the hair follicles. Genetic analyses using DNA from the peripheral blood revealed heterozygous mutations in IL36RN (c.115+6T>C) and CARD14 c.2648G>A (p.Arg883His). Based on these findings, we diagnosed her with erythroderma attributable to autoinflammatory keratinization disease. She then developed more than 30 small, round, well-defined, spots on her back and extremities that appeared histologically normal. We suspected that these spots might be revertant mosaicism. Immunohistochemical staining with p65, which is a component of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), revealed nuclear staining in epidermal keratinocytes in erythematous lesions, but not in the normal-looking spots. However, mutations in IL36RN and CARD14 unexpectedly persisted in the epidermis and dermis of the normal-looking spots.
Collapse
Affiliation(s)
- Maho Matsuo
- Department of DermatologyGifu University Graduate School of MedicineGifuJapan
| | - Xiaoyu Zang
- Department of DermatologyGifu University Graduate School of MedicineGifuJapan
| | - Toshinari Miyauchi
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoHokkaidoJapan
| | - Yoko Mizutani
- Department of DermatologyGifu University Graduate School of MedicineGifuJapan
| | - Hirofumi Niwa
- Department of DermatologyGifu University Graduate School of MedicineGifuJapan
| | - Kayoko Tanaka
- Department of DermatologyGifu University Graduate School of MedicineGifuJapan
| | - Hiroaki Iwata
- Department of DermatologyGifu University Graduate School of MedicineGifuJapan
| |
Collapse
|
11
|
Liu Z, Guo D, Wang D, Zhou J, Chen Q, Lai J. Prime editing: A gene precision editing tool from inception to present. FASEB J 2024; 38:e70148. [PMID: 39530600 DOI: 10.1096/fj.202401692r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Genetic mutations significantly contribute to the onset of diseases, with over half of the cases caused by single-nucleotide mutations. Advances in gene editing technologies have enabled precise editing and correction of mutated genes, offering effective treatment methods for genetic disorders. CRISPR/Cas9, despite its power, poses risks of inducing gene mutations due to DNA double-strand breaks (DSB). The advent of base editing (BE) and prime editing (PE) has mitigated these risks by eliminating the hazards associated with DNA DSBs, allowing for more precise gene editing. This breakthrough lays a solid foundation for the clinical application of gene editing technologies. This review discusses the principles, development, and applications of PE gene editing technology in various genetic mutation-induced diseases.
Collapse
Affiliation(s)
- Zhihao Liu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Dong Guo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Dawei Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Jinglin Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Junzhong Lai
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, PR China
| |
Collapse
|
12
|
Inen J, Han CM, Farrel DM, Bilousova G, Kogut I. CIRCLE-Seq for Interrogation of Off-Target Gene Editing. J Vis Exp 2024. [PMID: 39555799 PMCID: PMC11912817 DOI: 10.3791/67069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Circularization for In Vitro Reporting of Cleavage Effects by Sequencing (CIRCLE-seq) is a novel technique developed for the impartial identification of unintended cleavage sites of CRISPR-Cas9 through targeted sequencing of CRISPR-Cas9 cleaved DNA. The protocol involves circularizing genomic DNA (gDNA), which is subsequently treated with the Cas9 protein and a guide RNA (gRNA) of interest. Following treatment, the cleaved DNA is purified and prepared as a library for Illumina sequencing. The sequencing process generates paired-end reads, offering comprehensive data on each cleavage site. CIRCLE-seq provides several advantages over other in vitro methods, including minimal sequencing depth requirements, low background, and high enrichment for Cas9-cleaved gDNA. These advantages enhance sensitivity in identifying both intended and unintended cleavage events. This study provides a comprehensive, step-by-step procedure for examining the off-target activity of CRISPR-Cas9 using CIRCLE-seq. As an example, this protocol is validated by mapping genome-wide unintended cleavage sites of CRISPR-Cas9 during the modification of the AAVS1 locus. The entire CIRCLE-seq process can be completed in two weeks, allowing sufficient time for cell growth, DNA purification, library preparation, and Illumina sequencing. The input of sequencing data into the CIRCLE-seq pipeline facilitates streamlined interpretation and analysis of cleavage sites.
Collapse
Affiliation(s)
- Jeffrey Inen
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus; Gates Institute, University of Colorado School of Medicine, Anschutz Medical Campus
| | - Chann Makara Han
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus; Gates Institute, University of Colorado School of Medicine, Anschutz Medical Campus
| | - David M Farrel
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Anschutz Medical Campus
| | - Ganna Bilousova
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus; Gates Institute, University of Colorado School of Medicine, Anschutz Medical Campus
| | - Igor Kogut
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus; Gates Institute, University of Colorado School of Medicine, Anschutz Medical Campus;
| |
Collapse
|
13
|
Guri-Lamce I, Alrokh Y, Graham C, Maeshima R, Rognoni E, Caley M, Łaczmański Ł, Hart SL, McGrath JA, Jacków-Malinowska J. Lipid Nanoparticles Efficiently Deliver the Base Editor ABE8e for COL7A1 Correction in Dystrophic Epidermolysis Bullosa Fibroblasts In Vitro. J Invest Dermatol 2024; 144:2314-2317.e3. [PMID: 38583743 DOI: 10.1016/j.jid.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Affiliation(s)
- Ina Guri-Lamce
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Yara Alrokh
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Carina Graham
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Emanuel Rognoni
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Matthew Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Łukasz Łaczmański
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Stephen L Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Joanna Jacków-Malinowska
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom.
| |
Collapse
|
14
|
Song A, Hwang GH, Kim SE, Roh MR, Hong SA, Bae S, Lee SE. Revertant Mosaic Skin Punch Grafting in Recessive Dystrophic Epidermolysis Bullosa. JAMA Dermatol 2024; 160:1132-1135. [PMID: 39230899 DOI: 10.1001/jamadermatol.2024.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
This case report describes a patient with severe generalized recessive dystrophic epidermolysis bullosa who presented with an unhealed ulcer that had persisted for the past 3 years.
Collapse
Affiliation(s)
- Ahreum Song
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gue-Ho Hwang
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Song-Ee Kim
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Ryung Roh
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Ah Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sangsu Bae
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Eun Lee
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Bouchard C, Godbout K, Tremblay JP. [Correcting pathogenic mutations using prime editing: an overview]. Med Sci (Paris) 2024; 40:748-756. [PMID: 39450960 DOI: 10.1051/medsci/2024109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Gene editing is an ever-evolving field and Prime editing technology is among the latest ones. It makes it possible to modify a gene using a Cas9 nickase that cuts a single strand of DNA. This Cas9 nickase is fused with a reverse transcriptase that copies a single guide RNA synthetized by the researcher. This technique is used on one hand to create pathogenic mutations to obtain cell or animal models with a specific mutation. On the other hand, Prime editing is also used in research to treat hereditary diseases by correcting mutations associated with a pathogenic effect. The mode of delivery of the treatment to the affected cells in living organisms constitutes a main challenge. Different methods are studied to reach the organs specific to each disease. This review article presents the latest results in the field as well as the challenges to solve to optimize the possible uses of Prime editing.
Collapse
Affiliation(s)
- Camille Bouchard
- Département de médecine moléculaire, Université Laval, Québec, Canada - Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Kelly Godbout
- Département de médecine moléculaire, Université Laval, Québec, Canada - Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Jacques P Tremblay
- Département de médecine moléculaire, Université Laval, Québec, Canada - Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| |
Collapse
|
16
|
Popp C, Miller W, Eide C, Tolar J, McGrath JA, Ebens CL. Beyond the Surface: A Narrative Review Examining the Systemic Impacts of Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2024; 144:1943-1953. [PMID: 38613531 DOI: 10.1016/j.jid.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/09/2024] [Accepted: 03/02/2024] [Indexed: 04/15/2024]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic disease resulting from inadequate type VII collagen (C7). Although recurrent skin blisters and wounds are the most apparent disease features, the impact of C7 loss is not confined to the skin and mucous membranes. RDEB is a systemic disease marred by chronic inflammation, fibrotic changes, pain, itch, and anemia, significantly impacting QOL and survival. In this narrative review, we summarize these systemic features of RDEB and promising research avenues to address them.
Collapse
Affiliation(s)
- Courtney Popp
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - William Miller
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cindy Eide
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA; MHealth Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - John A McGrath
- St. John's Institute of Dermatology, Guy's Hospital, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Christen L Ebens
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA; MHealth Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA.
| |
Collapse
|
17
|
du Rand A, Hunt J, Samson C, Loef E, Malhi C, Meidinger S, Chen CJ, Nutsford A, Taylor J, Dunbar R, Purvis D, Feisst V, Sheppard H. Highly efficient CRISPR/Cas9-mediated exon skipping for recessive dystrophic epidermolysis bullosa. Bioeng Transl Med 2024; 9:e10640. [PMID: 39036091 PMCID: PMC11256143 DOI: 10.1002/btm2.10640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 07/23/2024] Open
Abstract
Gene therapy based on the CRISPR/Cas9 system has emerged as a promising strategy for treating the monogenic fragile skin disorder recessive dystrophic epidermolysis bullosa (RDEB). With this approach problematic wounds could be grafted with gene edited, patient-specific skin equivalents. Precise gene editing using homology-directed repair (HDR) is the ultimate goal, however low efficiencies have hindered progress. Reframing strategies based on highly efficient non-homologous end joining (NHEJ) repair aimed at excising dispensable, mutation-harboring exons offer a promising alternative approach for restoring the COL7A1 open reading frame. To this end, we employed an exon skipping strategy using dual single guide RNA (sgRNA)/Cas9 ribonucleoproteins (RNPs) targeted at three novel COL7A1 exons (31, 68, and 109) containing pathogenic heterozygous mutations, and achieved exon deletion rates of up to 95%. Deletion of exon 31 in both primary human RDEB keratinocytes and fibroblasts resulted in the restoration of type VII collagen (C7), leading to increased cellular adhesion in vitro and accurate C7 deposition at the dermal-epidermal junction in a 3D skin model. Taken together, we extend the list of COL7A1 exons amenable to therapeutic deletion. As an incidental finding, we find that long-read Nanopore sequencing detected large on-target structural variants comprised of deletions up to >5 kb at a frequency of ~10%. Although this frequency may be acceptable given the high rates of intended editing outcomes, our data demonstrate that standard short-read sequencing may underestimate the full range of unexpected Cas9-mediated editing events.
Collapse
Affiliation(s)
- Alex du Rand
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - John Hunt
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - Christopher Samson
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - Evert Loef
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - Chloe Malhi
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - Sarah Meidinger
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | | | - Ashley Nutsford
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - John Taylor
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - Rod Dunbar
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - Diana Purvis
- Te Whatu Ora Health New ZealandTe Toka TumaiAucklandNew Zealand
| | - Vaughan Feisst
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - Hilary Sheppard
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| |
Collapse
|
18
|
Revert-Ros F, Ventura I, Prieto-Ruiz JA, Hernández-Andreu JM, Revert F. The Versatility of Collagen in Pharmacology: Targeting Collagen, Targeting with Collagen. Int J Mol Sci 2024; 25:6523. [PMID: 38928229 PMCID: PMC11203716 DOI: 10.3390/ijms25126523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Collagen, a versatile family of proteins with 28 members and 44 genes, is pivotal in maintaining tissue integrity and function. It plays a crucial role in physiological processes like wound healing, hemostasis, and pathological conditions such as fibrosis and cancer. Collagen is a target in these processes. Direct methods for collagen modulation include enzymatic breakdown and molecular binding approaches. For instance, Clostridium histolyticum collagenase is effective in treating localized fibrosis. Polypeptides like collagen-binding domains offer promising avenues for tumor-specific immunotherapy and drug delivery. Indirect targeting of collagen involves regulating cellular processes essential for its synthesis and maturation, such as translation regulation and microRNA activity. Enzymes involved in collagen modification, such as prolyl-hydroxylases or lysyl-oxidases, are also indirect therapeutic targets. From another perspective, collagen is also a natural source of drugs. Enzymatic degradation of collagen generates bioactive fragments known as matrikines and matricryptins, which exhibit diverse pharmacological activities. Overall, collagen-derived peptides present significant therapeutic potential beyond tissue repair, offering various strategies for treating fibrosis, cancer, and genetic disorders. Continued research into specific collagen targeting and the application of collagen and its derivatives may lead to the development of novel treatments for a range of pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Revert
- Mitochondrial and Molecular Medicine Research Group, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (F.R.-R.); (I.V.); (J.A.P.-R.); (J.M.H.-A.)
| |
Collapse
|
19
|
Park JC, Kim YJ, Hwang GH, Kang CY, Bae S, Cha HJ. Enhancing genome editing in hPSCs through dual inhibition of DNA damage response and repair pathways. Nat Commun 2024; 15:4002. [PMID: 38734692 PMCID: PMC11088699 DOI: 10.1038/s41467-024-48111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Precise genome editing is crucial for establishing isogenic human disease models and ex vivo stem cell therapy from the patient-derived hPSCs. Unlike Cas9-mediated knock-in, cytosine base editor and prime editor achieve the desirable gene correction without inducing DNA double strand breaks. However, hPSCs possess highly active DNA repair pathways and are particularly susceptible to p53-dependent cell death. These unique characteristics impede the efficiency of gene editing in hPSCs. Here, we demonstrate that dual inhibition of p53-mediated cell death and distinct activation of the DNA damage repair system upon DNA damage by cytosine base editor or prime editor additively enhanced editing efficiency in hPSCs. The BE4stem system comprised of p53DD, a dominant negative p53, and three UNG inhibitor, engineered to specifically diminish base excision repair, improves cytosine base editor efficiency in hPSCs. Addition of dominant negative MLH1 to inhibit mismatch repair activity and p53DD in the conventional prime editor system also significantly enhances prime editor efficiency in hPSCs. Thus, combined inhibition of the distinct cellular cascades engaged in hPSCs upon gene editing could significantly enhance precise genome editing in these cells.
Collapse
Affiliation(s)
- Ju-Chan Park
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yun-Jeong Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gue-Ho Hwang
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chan Young Kang
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sangsu Bae
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Piñón Hofbauer J, Guttmann-Gruber C, Wally V, Sharma A, Gratz IK, Koller U. Challenges and progress related to gene editing in rare skin diseases. Adv Drug Deliv Rev 2024; 208:115294. [PMID: 38527624 DOI: 10.1016/j.addr.2024.115294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Genodermatoses represent a large group of inherited skin disorders encompassing clinically-heterogeneous conditions that manifest in the skin and other organs. Depending on disease variant, associated clinical manifestations and secondary complications can severely impact patients' quality of life and currently available treatments are transient and not curative. Multiple emerging approaches using CRISPR-based technologies offer promising prospects for therapy. Here, we explore current advances and challenges related to gene editing in rare skin diseases, including different strategies tailored to mutation type and structural organization of the affected gene, considerations for in vivo and ex vivo applications, the critical issue of delivery into the skin, and immune aspects of therapy. Against the backdrop of a landmark FDA approval for the first re-dosable gene replacement therapy for a rare genetic skin disorder, gene editing approaches are inching closer to the clinics and the possibility of a local permanent cure for patients affected by these disorders.
Collapse
Affiliation(s)
- Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anshu Sharma
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Iris K Gratz
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; Center for Tumor Biology and Immunology, University of Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
21
|
Guri-Lamce I, AlRokh Y, Kim Y, Maeshima R, Graham C, Hart SL, McGrath JA, Jacków-Malinowska J. Topical gene editing therapeutics using lipid nanoparticles: 'gene creams' for genetic skin diseases? Br J Dermatol 2024; 190:617-627. [PMID: 38149939 DOI: 10.1093/bjd/ljad528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
Patients living with inherited skin diseases have benefited from recent advances in DNA sequencing technologies that provide new or improved diagnostics. However, developing and delivering new treatments for the 'genodermatoses' remains challenging. The goal of creating topical preparations that can recover the inherent gene pathology remains largely aspirational. However, recent progress in two fields - the chemistry of topical delivery formulations (lipid nanoparticles) and the molecular biology of gene repair (CRISPR-Cas9, base and prime editing) - presents new opportunities to address this unmet need. In this review, we discuss how lipid nanoparticle delivery vehicles could be used to deliver gene-editing tools to formulate topical 'gene creams' suitable for the treatment of genodermatoses. We summarize the historical landscape of topical therapeutics and advances in gene editing that may herald an era of new therapies for patients with inherited skin disorders.
Collapse
Affiliation(s)
- Ina Guri-Lamce
- St John's Institute of Dermatology, King's College London, London, UK
| | - Yara AlRokh
- St John's Institute of Dermatology, King's College London, London, UK
| | - Youngah Kim
- St John's Institute of Dermatology, King's College London, London, UK
| | - Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Carina Graham
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Stephen L Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, UK
| | | |
Collapse
|
22
|
Bischof J, Hierl M, Koller U. Emerging Gene Therapeutics for Epidermolysis Bullosa under Development. Int J Mol Sci 2024; 25:2243. [PMID: 38396920 PMCID: PMC10889532 DOI: 10.3390/ijms25042243] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenetic disease epidermolysis bullosa (EB) is characterised by the formation of extended blisters and lesions on the patient's skin upon minimal mechanical stress. Causal for this severe condition are genetic mutations in genes, leading to the functional impairment, reduction, or absence of the encoded protein within the skin's basement membrane zone connecting the epidermis to the underlying dermis. The major burden of affected families justifies the development of long-lasting and curative therapies operating at the genomic level. The landscape of causal therapies for EB is steadily expanding due to recent breakthroughs in the gene therapy field, providing promising outcomes for patients suffering from this severe disease. Currently, two gene therapeutic approaches show promise for EB. The clinically more advanced gene replacement strategy was successfully applied in severe EB forms, leading to a ground-breaking in vivo gene therapy product named beremagene geperpavec (B-VEC) recently approved from the US Food and Drug Administration (FDA). In addition, the continuous innovations in both designer nucleases and gene editing technologies enable the efficient and potentially safe repair of mutations in EB in a potentially permanent manner, inspiring researchers in the field to define and reach new milestones in the therapy of EB.
Collapse
Affiliation(s)
- Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
| | - Markus Hierl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
| |
Collapse
|
23
|
Park CS, Habib O, Lee Y, Hur JK. Applications of CRISPR technologies to the development of gene and cell therapy. BMB Rep 2024; 57:2-11. [PMID: 38178651 PMCID: PMC10828430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
Advancements in gene and cell therapy have resulted in novel therapeutics for diseases previously considered incurable or challenging to treat. Among the various contributing technologies, genome editing stands out as one of the most crucial for the progress in gene and cell therapy. The discovery of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and the subsequent evolution of genetic engineering technology have markedly expanded the field of target-specific gene editing. Originally studied in the immune systems of bacteria and archaea, the CRISPR system has demonstrated wide applicability to effective genome editing of various biological systems including human cells. The development of CRISPR-based base editing has enabled directional cytosine-tothymine and adenine-to-guanine substitutions of select DNA bases at the target locus. Subsequent advances in prime editing further elevated the flexibility of the edit multiple consecutive bases to desired sequences. The recent CRISPR technologies also have been actively utilized for the development of in vivo and ex vivo gene and cell therapies. We anticipate that the medical applications of CRISPR will rapidly progress to provide unprecedented possibilities to develop novel therapeutics towards various diseases. [BMB Reports 2024; 57(1): 2-11].
Collapse
Affiliation(s)
- Chul-Sung Park
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Omer Habib
- Division of R&D, RedGene Inc., Seoul 08790, Korea
| | - Younsu Lee
- Division of R&D, RedGene Inc., Seoul 08790, Korea
| | - Junho K. Hur
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Genetics, College of Medicine, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
24
|
Fu Y, He X, Gao XD, Li F, Ge S, Yang Z, Fan X. Prime editing: current advances and therapeutic opportunities in human diseases. Sci Bull (Beijing) 2023; 68:3278-3291. [PMID: 37973465 DOI: 10.1016/j.scib.2023.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
Gene editing ushers in a new era of disease treatment since many genetic diseases are caused by base-pair mutations in genomic DNA. With the rapid development of genome editing technology, novel editing tools such as base editing and prime editing (PE) have attracted public attention, heralding a great leap forward in this field. PE, in particular, is characterized by no need for double-strand breaks (DSBs) or homology sequence templates with variable application scenarios, including point mutations as well as insertions or deletions. With higher editing efficiency and fewer byproducts than traditional editing tools, PE holds great promise as a therapeutic strategy for human diseases. Subsequently, a growing demand for the standard construction of PE system has spawned numerous easy-to-access internet resources and tools for personalized prime editing guide RNA (pegRNA) design and off-target site prediction. In this review, we mainly introduce the innovation and evolutionary strategy of PE systems and the auxiliary tools for PE design and analysis. Additionally, its application and future potential in the clinical field have been summarized and envisaged.
Collapse
Affiliation(s)
- Yidian Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xiaoyu He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xin D Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge MA 02141, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge MA 02138, USA
| | - Fang Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Zhi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| |
Collapse
|
25
|
Godbout K, Rousseau J, Tremblay JP. Successful Correction by Prime Editing of a Mutation in the RYR1 Gene Responsible for a Myopathy. Cells 2023; 13:31. [PMID: 38201236 PMCID: PMC10777931 DOI: 10.3390/cells13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
We report the first correction from prime editing a mutation in the RYR1 gene, paving the way to gene therapies for RYR1-related myopathies. The RYR1 gene codes for a calcium channel named Ryanodine receptor 1, which is expressed in skeletal muscle fibers. The failure of this channel causes muscle weakness in patients, which leads to motor disabilities. Currently, there are no effective treatments for these diseases, which are mainly caused by point mutations. Prime editing allows for the modification of precise nucleotides in the DNA. Our results showed a 59% correction rate of the T4709M mutation in the RYR1 gene in human myoblasts by RNA delivery of the prime editing components. It is to be noted that T4709M is recessive and, thus, persons having a heterozygous mutation are healthy. These results are the first demonstration that correcting mutations in the RYR1 gene is possible.
Collapse
Affiliation(s)
- Kelly Godbout
- Molecular Biology Department, Laval University, Quebec, QC G1V 0A6, Canada;
- CHU de Québec Research Center, Laval University, Quebec, QC G1V 4G2, Canada;
| | - Joël Rousseau
- CHU de Québec Research Center, Laval University, Quebec, QC G1V 4G2, Canada;
| | - Jacques P. Tremblay
- Molecular Biology Department, Laval University, Quebec, QC G1V 0A6, Canada;
- CHU de Québec Research Center, Laval University, Quebec, QC G1V 4G2, Canada;
| |
Collapse
|
26
|
Wang X, Wang X, Li Y, A S, Qiu B, Bushmalyova A, He Z, Wang W, Lara-Sáez I. CRISPR-Cas9-based non-viral gene editing therapy for topical treatment of recessive dystrophic epidermolysis bullosa. Mol Ther Methods Clin Dev 2023; 31:101134. [PMID: 38027067 PMCID: PMC10630779 DOI: 10.1016/j.omtm.2023.101134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is an autosomal monogenic skin disease caused by mutations in COL7A1 gene and lack of functional type VII collagen (C7). Currently, there is no cure for RDEB, and most of the gene therapies under development have been designed as ex vivo strategies because of the shortage of efficient and safe carriers for gene delivery. Herein, we designed, synthesized, and screened a new group of highly branched poly(β amino ester)s (HPAEs) as non-viral carriers for the delivery of plasmids encoding dual single-guide RNA (sgRNA)-guided CRISPR-Cas9 machinery to delete COL7A1 exon 80 containing the c.6527dupC mutation. The selected HPAEs (named PTTA-DATOD) showed robust transfection efficiency, comparable with or surpassing that of leading commercial gene transfection reagents such as Lipofectamine 3000, Xfect, and jetPEI, while maintaining negligible cytotoxicity. Furthermore, CRISPR-Cas9 plasmids delivered by PTTA-DATOD achieved efficient targeted deletion and restored bulk C7 production in RDEB patient keratinocyte polyclones. The non-viral CRISPR-Cas9-based COL7A1 exon deletion approach developed here has great potential to be used as a topical treatment for RDEB patients with mutations in COL7A1 exon 80. Besides, this therapeutic strategy can easily be adapted for mutations in other COL7A1 exons, other epidermolysis bullosa subtypes, and other genetic diseases.
Collapse
Affiliation(s)
- Xianqing Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Xi Wang
- Research and Clinical Translation Center of Gene Medicine and Tissue Engineering, School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Yinghao Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Sigen A
- Research and Clinical Translation Center of Gene Medicine and Tissue Engineering, School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Bei Qiu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Albina Bushmalyova
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Zhonglei He
- Research and Clinical Translation Center of Gene Medicine and Tissue Engineering, School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Research and Clinical Translation Center of Gene Medicine and Tissue Engineering, School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
27
|
Malta MD, Cerqueira MT, Marques AP. Extracellular matrix in skin diseases: The road to new therapies. J Adv Res 2023; 51:149-160. [PMID: 36481476 PMCID: PMC10491993 DOI: 10.1016/j.jare.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The extracellular matrix (ECM) is a vital structure with a dynamic and complex organization that plays an essential role in tissue homeostasis. In the skin, the ECM is arranged into two types of compartments: interstitial dermal matrix and basement membrane (BM). All evidence in the literature supports the notion that direct dysregulation of the composition, abundance or structure of one of these types of ECM, or indirect modifications in proteins that interact with them is linked to a wide range of human skin pathologies, including hereditary, autoimmune, and neoplastic diseases. Even though the ECM's key role in these pathologies has been widely documented, its potential as a therapeutic target has been overlooked. AIM OF REVIEW This review discusses the molecular mechanisms involved in three groups of skin ECM-related diseases - genetic, autoimmune, and neoplastic - and the recent therapeutic progress and opportunities targeting ECM. KEY SCIENTIFIC CONCEPTS OF REVIEW This article describes the implications of alterations in ECM components and in BM-associated molecules that are determinant for guaranteeing its function in different skin disorders. Also, ongoing clinical trials on ECM-targeted therapies are discussed together with future opportunities that may open new avenues for treating ECM-associated skin diseases.
Collapse
Affiliation(s)
- M D Malta
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - M T Cerqueira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - A P Marques
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017 Guimarães, Portugal.
| |
Collapse
|
28
|
Lu X, Jin H. A Review of CRISPR-Based Advances in Dermatological Diseases. Mol Diagn Ther 2023; 27:445-456. [PMID: 37041404 DOI: 10.1007/s40291-023-00642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 04/13/2023]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) has revolutionized biomedical research by offering novel approaches to genetic and epigenetic manipulation. In dermatology, it has significantly promoted our understanding of complex diseases, and shown great potential in therapeutic applications. In this review, we introduce the adoption of CRISPR technology as a tool to study different types of skin disorders, including monogenic genodermatoses, inflammatory disorders, and cutaneous infections. We highlight the promising preclinical results of CRISPR-mediated treatment and important mechanic discoveries in investigative studies. Future opportunities and remaining challenges are also discussed. We predict that CRISPR will be more extensively used for dermatological research and even be accessible to patients in the future.
Collapse
Affiliation(s)
- Xinyi Lu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Hongzhong Jin
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China.
| |
Collapse
|
29
|
Roshandel D, Semnani F, Rayati Damavandi A, Masoudi A, Baradaran-Rafii A, Watson SL, Morgan WH, McLenachan S. Genetic predisposition to ocular surface disorders and opportunities for gene-based therapies. Ocul Surf 2023; 29:150-165. [PMID: 37192706 DOI: 10.1016/j.jtos.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
The ocular surface, comprised of the corneal and conjunctival epithelium, innervation system, immune components, and tear-film apparatus, plays a key role in ocular integrity as well as comfort and vision. Gene defects may result in congenital ocular or systemic disorders with prominent ocular surface involvement. Examples include epithelial corneal dystrophies, aniridia, ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome, xeroderma pigmentosum (XP), and hereditary sensory and autonomic neuropathy. In addition, genetic factors may interact with environmental risk factors in the development of several multifactorial ocular surface disorders (OSDs) such as autoimmune disorders, allergies, neoplasms, and dry eye disease. Advanced gene-based technologies have already been introduced in disease modelling and proof-of-concept gene therapies for monogenic OSDs. For instance, patient-derived induced pluripotent stem cells have been used for modelling aniridia-associated keratopathy (AAK), XP, and EEC syndrome. Moreover, CRISPR/Cas9 genome editing has been used for disease modelling and/or gene therapy for AAK and Meesmann's epithelial corneal dystrophy. A better understanding of the role of genetic factors in OSDs may be helpful in designing personalized disease models and treatment approaches. Gene-based approaches in monogenic OSDs and genetic predisposition to multifactorial OSDs such as immune-mediated disorders and neoplasms with known or possible genetic risk factors has been seldom reviewed. In this narrative review, we discuss the role of genetic factors in monogenic and multifactorial OSDs and potential opportunities for gene therapy.
Collapse
Affiliation(s)
- Danial Roshandel
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
| | - Farbod Semnani
- School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Masoudi
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Alireza Baradaran-Rafii
- Department of Ophthalmology, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Stephanie L Watson
- The University of Sydney, Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia
| | - William H Morgan
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
| | - Samuel McLenachan
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
30
|
Hou PC, del Agua N, Lwin SM, Hsu CK, McGrath JA. Innovations in the Treatment of Dystrophic Epidermolysis Bullosa (DEB): Current Landscape and Prospects. Ther Clin Risk Manag 2023; 19:455-473. [PMID: 37337559 PMCID: PMC10277004 DOI: 10.2147/tcrm.s386923] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Dystrophic epidermolysis bullosa (DEB) is one of the major types of EB, a rare hereditary group of trauma-induced blistering skin disorders. DEB is caused by inherited pathogenic variants in the COL7A1 gene, which encodes type VII collagen, the major component of anchoring fibrils which maintain adhesion between the outer epidermis and underlying dermis. DEB can be subclassified into dominant (DDEB) and recessive (RDEB) forms. Generally, DDEB has a milder phenotype, while RDEB patients often have more extensive blistering, chronic inflammation, skin fibrosis, and a propensity for squamous cell carcinoma development, collectively impacting on daily activities and life expectancy. At present, best practice treatments are mostly supportive, and thus there is a considerable burden of disease with unmet therapeutic need. Over the last 20 years, considerable translational research efforts have focused on either trying to cure DEB by direct correction of the COL7A1 gene pathology, or by modifying secondary inflammation to lessen phenotypic severity and improve patient symptoms such as poor wound healing, itch, and pain. In this review, we provide an overview and update on various therapeutic innovations for DEB, including gene therapy, cell-based therapy, protein therapy, and disease-modifying and symptomatic control agents. We outline the progress and challenges for each treatment modality and identify likely prospects for future clinical impact.
Collapse
Affiliation(s)
- Ping-Chen Hou
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nathalie del Agua
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Su M Lwin
- St John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London, UK
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - John A McGrath
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
- St John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London, UK
| |
Collapse
|
31
|
Wolff JH, Mikkelsen JG. Prime editing in hematopoietic stem cells—From ex vivo to in vivo CRISPR-based treatment of blood disorders. Front Genome Ed 2023; 5:1148650. [PMID: 36969373 PMCID: PMC10036844 DOI: 10.3389/fgeed.2023.1148650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Prime editing of human hematopoietic stem cells has the potential to become a safe and efficient way of treating diseases of the blood directly in patients. By allowing site-targeted gene intervention without homology-directed repair donor templates and DNA double-stranded breaks, the invention of prime editing fuels the exploration of alternatives to conventional recombination-based ex vivo genome editing of hematopoietic stem cells. Prime editing is as close as we get today to a true genome editing drug that does not require a separate DNA donor. However, to adapt the technology to perform in vivo gene correction, key challenges remain to be solved, such as identifying effective prime editing guide RNAs for clinical targets as well as developing efficient vehicles to deliver prime editors to stem cells in vivo. In this review, we summarize the current progress in delivery of prime editors both in vitro and in vivo and discuss future challenges that need to be adressed to allow in vivo prime editing as a cure for blood disorders.
Collapse
|
32
|
Godbout K, Tremblay JP. Prime Editing for Human Gene Therapy: Where Are We Now? Cells 2023; 12:536. [PMID: 36831203 PMCID: PMC9954691 DOI: 10.3390/cells12040536] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Gene therapy holds tremendous potential in the treatment of inherited diseases. Unlike traditional medicines, which only treat the symptoms, gene therapy has the potential to cure the disease by addressing the root of the problem: genetic mutations. The discovery of CRISPR/Cas9 in 2012 paved the way for the development of those therapies. Improvement of this system led to the recent development of an outstanding technology called prime editing. This system can introduce targeted insertions, deletions, and all 12 possible base-to-base conversions in the human genome. Since the first publication on prime editing in 2019, groups all around the world have worked on this promising technology to develop a treatment for genetic diseases. To date, prime editing has been attempted in preclinical studies for liver, eye, skin, muscular, and neurodegenerative hereditary diseases, in addition to cystic fibrosis, beta-thalassemia, X-linked severe combined immunodeficiency, and cancer. In this review, we portrayed where we are now on prime editing for human gene therapy and outlined the best strategies for correcting pathogenic mutations by prime editing.
Collapse
Affiliation(s)
- Kelly Godbout
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Jacques P. Tremblay
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
33
|
Brooks IR, Sheriff A, Moran D, Wang J, Jacków J. Challenges of Gene Editing Therapies for Genodermatoses. Int J Mol Sci 2023; 24:2298. [PMID: 36768619 PMCID: PMC9916788 DOI: 10.3390/ijms24032298] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Genodermatoses encompass a wide range of inherited skin diseases, many of which are monogenic. Genodermatoses range in severity and result in early-onset cancers or life-threatening damage to the skin, and there are few curative options. As such, there is a clinical need for single-intervention treatments with curative potential. Here, we discuss the nascent field of gene editing for the treatment of genodermatoses, exploring CRISPR-Cas9 and homology-directed repair, base editing, and prime editing tools for correcting pathogenic mutations. We specifically focus on the optimisation of editing efficiency, the minimisation off-targets edits, and the tools for delivery for potential future therapies. Honing each of these factors is essential for translating gene editing therapies into the clinical setting. Therefore, the aim of this review article is to raise important considerations for investigators aiming to develop gene editing approaches for genodermatoses.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Jacków
- St John’s Institute of Dermatology, King’s College London, London SE1 9RT, UK
| |
Collapse
|
34
|
Wang D, Fan X, Li M, Liu T, Lu P, Wang G, Li Y, Han J, Zhao J. Prime Editing in Mammals: The Next Generation of Precision Genome Editing. CRISPR J 2022; 5:746-768. [PMID: 36512351 DOI: 10.1089/crispr.2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The recently established prime editor (PE) system is regarded as next-generation gene-editing technology. This methodology can install any base-to-base change as well as insertions and deletions without the requirement for double-stranded break formation or donor DNA templates; thus, it offers more targeting flexibility and greater editing precision than conventional CRISPR-Cas systems or base editors. In this study, we introduce the basic principles of PE and then review its most recent progress in terms of editing versatility, specificity, and efficiency in mammals. Next, we summarize key considerations regarding the selection of PE variants, prime editing guide RNA (pegRNA) design rules, and the efficiency and accuracy evaluation of PE. Finally, we highlight and discuss how PE can assist in a wide range of biological studies and how it can be applied to make precise genomic corrections in animal models, which paves the way for curing human diseases.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mengzhu Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianbo Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Lu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guangxin Wang
- Shandong Innovation Center of Intelligent Diagnosis, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - JunMing Han
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - JiaJun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
35
|
Wang Y, Song Z, Zhang L, Li N, Zhao J, Yang R, Ji S, Sun P. Genetic analysis and prenatal diagnosis of recessive dystrophic epidermolysis bullosa caused by compound heterozygous variants of the COL7A1 gene in a Chinese family. Front Pediatr 2022; 10:941201. [PMID: 36419915 PMCID: PMC9676484 DOI: 10.3389/fped.2022.941201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Dystrophic epidermolysis bullosa (DEB) is an incurable and inherited skin disorder mainly caused by mutations in the gene encoding type VII collagen (COL7A1). The purpose of this study was to identify the causative genetic variants and further perform genetic diagnosis in a Chinese family affected by DEB. METHODS High-throughput sequencing was performed to analyze the genetic skin disorder-related genes of parents of the proband, and the variants were further confirmed in the other members by Sanger sequencing. Sanger sequencing, karyotype analysis, and chromosomal microarray analysis (CMA) were used together for prenatal diagnosis after the second pregnancy. The phenotype of the fetus was tracked after the diagnosis and induction of labor. Moreover, skin and muscle pathological examination and whole-exome sequencing (WES) of the skin and muscle tissue of the induced fetus were performed. RESULTS Here, we determined two heterozygous variants of the COL7A1 gene that contributed to the autosomal recessive DEB (RDEB) in the family, i.e., a novel pathogenic variant (c.8335G > T, p.E2779*) and a likely pathogenic variant (c.7957G > A, p.G2653R). Sanger sequencing of amniotic fluid cells showed that the fetus carried the above two compound heterozygous variants, and the karyotype analysis and CMA results showed no abnormality. The clinical phenotype and pathological results of the induced fetus were consistent with the characteristics of DEB. Further, WES analysis also confirmed a novel compound heterozygous variation in COL7A1, consisting of two variants, namely, c.8335G > T and c.7957G > A in the fetus. CONCLUSION This study expands the spectrum of disease-causing variants of COL7A1 and provides a theoretical basis for diagnosis, genetic counseling, and prognosis of families affected by RDEB.
Collapse
Affiliation(s)
- Yu Wang
- Prenatal Diagnostic Center of Obstetrics and Gynecology Department, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen Song
- Prenatal Diagnostic Center of Obstetrics and Gynecology Department, Qilu Hospital of Shandong University, Jinan, China
| | - Lihua Zhang
- Prenatal Diagnostic Center of Obstetrics and Gynecology Department, Qilu Hospital of Shandong University, Jinan, China
| | - Na Li
- Prenatal Diagnostic Center of Obstetrics and Gynecology Department, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Zhao
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| | - Ruifang Yang
- Prenatal Diagnostic Center of Obstetrics and Gynecology Department, Qilu Hospital of Shandong University, Jinan, China
| | - Shuhua Ji
- Yinfeng Gene Technology Co. Ltd., Jinan, China
| | - Ping Sun
- Prenatal Diagnostic Center of Obstetrics and Gynecology Department, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|