1
|
Kim EH, Teerdhala SV, Padilla MS, Joseph RA, Li JJ, Haley RM, Mitchell MJ. Lipid nanoparticle-mediated RNA delivery for immune cell modulation. Eur J Immunol 2024; 54:e2451008. [PMID: 39279550 PMCID: PMC11628889 DOI: 10.1002/eji.202451008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as the preeminent nonviral drug delivery vehicles for nucleic acid therapeutics, as exemplified by their usage in the mRNA COVID-19 vaccines. As a safe and highly modular delivery platform, LNPs are attractive for a wide range of applications. In addition to vaccines, LNPs are being utilized as platforms for other immunoengineering efforts, especially as cancer immunotherapies by modulating immune cells and their functionality via nucleic acid delivery. In this review, we focus on the methods and applications of LNP-based immunotherapy in five cell types: T cells, NK cells, macrophages, stem cells, and dendritic cells. Each of these cell types has wide-reaching applications in immunotherapy but comes with unique challenges and delivery barriers. By combining knowledge of immunology and nanotechnology, LNPs can be developed for improved immune cell targeting and transfection, ultimately working toward novel clinical therapeutics.
Collapse
Affiliation(s)
- Emily H. Kim
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sridatta V. Teerdhala
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Marshall S. Padilla
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ryann A. Joseph
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jacqueline J. Li
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Rebecca M. Haley
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Michael J. Mitchell
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Abramson Cancer CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Cellular ImmunotherapiesPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Institute for RNA InnovationPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for ImmunologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Cardiovascular InstitutePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Regenerative MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Wu Y, Sun B, Tang Y, Shen A, Lin Y, Zhao X, Li J, Monteiro MJ, Gu W. Bone targeted nano-drug and nano-delivery. Bone Res 2024; 12:51. [PMID: 39231955 PMCID: PMC11375042 DOI: 10.1038/s41413-024-00356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 09/06/2024] Open
Abstract
There are currently no targeted delivery systems to satisfactorily treat bone-related disorders. Many clinical drugs consisting of small organic molecules have a short circulation half-life and do not effectively reach the diseased tissue site. This coupled with repeatedly high dose usage that leads to severe side effects. With the advance in nanotechnology, drugs contained within a nano-delivery device or drugs aggregated into nanoparticles (nano-drugs) have shown promises in targeted drug delivery. The ability to design nanoparticles to target bone has attracted many researchers to develop new systems for treating bone related diseases and even repurposing current drug therapies. In this review, we shall summarise the latest progress in this area and present a perspective for future development in the field. We will focus on calcium-based nanoparticle systems that modulate calcium metabolism and consequently, the bone microenvironment to inhibit disease progression (including cancer). We shall also review the bone affinity drug family, bisphosphonates, as both a nano-drug and nano-delivery system for bone targeted therapy. The ability to target and release the drug in a controlled manner at the disease site represents a promising safe therapy to treat bone diseases in the future.
Collapse
Affiliation(s)
- Yilun Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Ying Tang
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aining Shen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yanlin Lin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
3
|
Wang MC, Yu WL, Ding YC, Huang JJ, Lin CY, Tseng WJ. Persistent Mesodermal Differentiation Capability of Bone Marrow MSCs Isolated from Aging Patients with Low-Energy Traumatic Hip Fracture and Osteoporosis: A Clinical Evidence. Int J Mol Sci 2024; 25:5273. [PMID: 38791313 PMCID: PMC11120803 DOI: 10.3390/ijms25105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
A low-energy hit, such as a slight fall from a bed, results in a bone fracture, especially in the hip, which is a life-threatening risk for the older adult and a heavy burden for the social economy. Patients with low-energy traumatic bone fractures usually suffer a higher level of bony catabolism accompanied by osteoporosis. Bone marrow-derived stem cells (BMSCs) are critical in osteogenesis, leading to metabolic homeostasis in the healthy bony microenvironment. However, whether the BMSCs derived from the patients who suffered osteoporosis and low-energy traumatic hip fractures preserve a sustained mesodermal differentiation capability, especially in osteogenesis, is yet to be explored in a clinical setting. Therefore, we aimed to collect BMSCs from clinical hip fracture patients with osteoporosis, followed by osteogenic differentiation comparison with BMSCs from healthy young donors. The CD markers identification, cytokines examination, and adipogenic differentiation were also evaluated. The data reveal that BMSCs collected from elderly osteoporotic patients secreted approximately 122.8 pg/mL interleukin 6 (IL-6) and 180.6 pg/mL vascular endothelial growth factor (VEGF), but no PDGF-BB, IL-1b, TGF-b1, IGF-1, or TNF-α secretion. The CD markers and osteogenic and adipogenic differentiation capability in BMSCs from these elderly osteoporotic patients and healthy young donors are equivalent and compliant with the standards defined by the International Society of Cell Therapy (ISCT). Collectively, our data suggest that the elderly osteoporotic patients-derived BMSCs hold equivalent differentiation and proliferation capability and intact surface markers identical to BMSCs collected from healthy youth and are available for clinical cell therapy.
Collapse
Affiliation(s)
- Mei-Chih Wang
- Biomedical Technology & Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (M.-C.W.); (W.-L.Y.); (Y.-C.D.); (J.-J.H.)
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 300102, Taiwan
| | - Wei-Lin Yu
- Biomedical Technology & Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (M.-C.W.); (W.-L.Y.); (Y.-C.D.); (J.-J.H.)
| | - Yun-Chiao Ding
- Biomedical Technology & Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (M.-C.W.); (W.-L.Y.); (Y.-C.D.); (J.-J.H.)
| | - Jun-Jae Huang
- Biomedical Technology & Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (M.-C.W.); (W.-L.Y.); (Y.-C.D.); (J.-J.H.)
| | - Chin-Yu Lin
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 97004, Taiwan
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Wo-Jan Tseng
- Department of Orthopedic Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300195, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
4
|
Wen C, Xu X, Zhang Y, Xia J, Liang Y, Xu L. Bone Targeting Nanoparticles for the Treatment of Osteoporosis. Int J Nanomedicine 2024; 19:1363-1383. [PMID: 38371454 PMCID: PMC10871045 DOI: 10.2147/ijn.s444347] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Osteoporosis (OP) affects millions of people worldwide, especially postmenopausal women and the elderly. Although current available anti-OP agents can show promise in slowing down bone resorption, most are not specifically delivered to the hard tissue, causing significant toxicity. A bone-targeted nanodrug delivery system can reduce side effects and precisely deliver drug candidates to the bone. This review focuses on the progress of bone-targeted nanoparticles in OP therapy. We enumerate the existing OP medications, types of bone-targeted nanoparticles and categorize pairs of the most common bone-targeting functional groups. Finally, we summarize the potential use of bone-targeted nanoparticles in OP treatment. Ongoing research into the development of targeted ligands and nanocarriers will continue to expand the possibilities of OP-targeted therapies into clinical application.
Collapse
Affiliation(s)
- Caining Wen
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Xiao Xu
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Yuanmin Zhang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, People’s Republic of China
| | - Yujie Liang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, People’s Republic of China
- Engineering Research Center of Intelligent Rehabilitation, College of Rehabilitation Medicine, Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Limei Xu
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, People’s Republic of China
| |
Collapse
|
5
|
Wu L, Li X, Qian X, Wang S, Liu J, Yan J. Lipid Nanoparticle (LNP) Delivery Carrier-Assisted Targeted Controlled Release mRNA Vaccines in Tumor Immunity. Vaccines (Basel) 2024; 12:186. [PMID: 38400169 PMCID: PMC10891594 DOI: 10.3390/vaccines12020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, lipid nanoparticles (LNPs) have attracted extensive attention in tumor immunotherapy. Targeting immune cells in cancer therapy has become a strategy of great research interest. mRNA vaccines are a potential choice for tumor immunotherapy, due to their ability to directly encode antigen proteins and stimulate a strong immune response. However, the mode of delivery and lack of stability of mRNA are key issues limiting its application. LNPs are an excellent mRNA delivery carrier, and their structural stability and biocompatibility make them an effective means for delivering mRNA to specific targets. This study summarizes the research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity. The role of LNPs in improving mRNA stability, immunogenicity, and targeting is discussed. This review aims to systematically summarize the latest research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity to provide new ideas and strategies for tumor immunotherapy, as well as to provide more effective treatment plans for patients.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| |
Collapse
|
6
|
Qiao F, Zou Y, Bie B, Lv Y. Dual siRNA-Loaded Cell Membrane Functionalized Matrix Facilitates Bone Regeneration with Angiogenesis and Neurogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307062. [PMID: 37824284 DOI: 10.1002/smll.202307062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Vascularization and innervation play irreplaceable roles in bone regeneration and bone defect repair. However, the reconstruction of blood vessels and neural networks is often neglected in material design. This study aims to design a genetically functionalized matrix (GFM) and enable it to regulate angiogenesis and neurogenesis to accelerate the process of bone defect repair. The dual small interfering RNA (siRNA)-polyvinylimide (PEI) (siRP) complexes that locally knocked down soluble vascular endothelial growth factor receptor 1 (sFlt-1) and p75 neurotrophic factor receptor (p75NTR ) are prepared. The hybrid cell membrane (MM) loaded siRP is synthesized as siRNA@MMs to coat on polylactone (PCL) electrospun fibers for mimicking the natural bone matrix. The results indicates that siRNA@MMs could regulate the expression of vascular-related and neuro-related cytokines secreted by mesenchymal stem cells (MSCs). GFMs promote the expression of osteogenic differentiation through paracrine function in vitro. GFMs attenuates inflammation and promotes osseointegration by regulating the coupling of vascularization and innervation in vivo. This study uses the natural hybrid cell membrane to carry genetic material and assist in the vascularization and innervation function of two siRNA. The results present the significance of neuro-vascularized organoid bone and may provide a promising choice for the design of bone tissue engineering scaffold.
Collapse
Affiliation(s)
- Fangyu Qiao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, P. R. China
| | - Yang Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Binglin Bie
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
7
|
Wu EL, Cheng M, Zhang XJ, Wu TG, Zhang L. The role of non-coding RNAs in diabetes-induced osteoporosis. Differentiation 2023; 133:98-108. [PMID: 37643534 DOI: 10.1016/j.diff.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/06/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
Diabetes mellitus (DM) and osteoporosis are two major health care problems worldwide. Emerging evidence suggests that DM poses a risk for osteoporosis and can contribute to the development of diabetes-induced osteoporosis (DOP). Interestingly, some epidemiological studies suggest that DOP may be at least partially distinct from those skeletal abnormalities associated with old age or postmenopausal osteoporosis. The increasing number of DM patients who also have DOP calls for a discussion of the pathogenesis of DOP and the investigation of drugs to treat DOP. Recently, non-coding RNAs (ncRNAs) have received more attention due to their significant role in cellular functions and bone formation. It is worth noting that ncRNAs have also been demonstrated to participate in the progression of DOP. Meanwhile, nano-delivery systems are considered a promising strategy to treat DOP because of their cellular targeting, sustained release, and controlled release characteristics. Additionally, the utilization of novel technologies such as the CRISPR system has expanded the scope of available options for treating DOP. Hence, this paper explores the functions and regulatory mechanisms of ncRNAs in DOP and highlights the advantages of employing nanoparticle-based drug delivery techniques to treat DOP. Finally, this paper also explores the potential of ncRNAs as diagnostic DOP biomarkers.
Collapse
Affiliation(s)
- Er-Li Wu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| | - Ming Cheng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| | - Xin-Jing Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| | - Tian-Gang Wu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| | - Lei Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China; Department of Periodontology, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
8
|
Bao C, Wu T, Zhu S, Wang X, Zhang Y, Wang X, Yang L, He C. Regulation of cholesterol homeostasis in osteoporosis mechanisms and therapeutics. Clin Sci (Lond) 2023; 137:1131-1143. [PMID: 37553962 DOI: 10.1042/cs20220752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023]
Abstract
Osteoporosis is a metabolic bone disease that affects hundreds of millions of people worldwide and is characterized by excessive loss of bone protein and mineral content. The incidence and mortality of osteoporosis increase with age, creating a significant medical and economic burden globally. The importance of cholesterol levels has been reported in the development of diseases including osteoporosis. It is important to note that key enzymes and molecules involved in cholesterol homeostasis are closely related to bone formation. Excessive cholesterol may cause osteoporosis, cholesterol and its metabolites affect bone homeostasis by regulating the proliferation and stimulation of osteoblasts and osteoclasts. Therefore, antagonism of elevated cholesterol levels may be a potential strategy to prevent osteoporosis. There is sufficient evidence to support the use of bisphosphonates and statin drugs for osteoporosis in the clinic. Therefore, in view of the aggravation of the aging problem, we summarize the intracellular mechanism of cholesterol homeostasis and its relationship with osteoporosis (including cholesterol and cholesterol oxidation products (COPs) in osteoporosis). Furthermore, the current clinical cholesterol-lowering drugs for osteoporosis were also summarized, as are new and promising therapies (cell-based therapies (e.g., stem cells) and biomaterial-delivered target drug therapies for osteoporosis as well).
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Tao Wu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Siyi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoyi Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yujia Zhang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiangxiu Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Lin Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
9
|
Chang X, Liu C, Han YM, Li QL, Guo B, Jiang HL. Efficient transfected liposomes co-loaded with pNrf2 and pirfenidone improves safe delivery for enhanced pulmonary fibrosis reversion. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:415-431. [PMID: 37159604 PMCID: PMC10163678 DOI: 10.1016/j.omtn.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/06/2023] [Indexed: 05/11/2023]
Abstract
Pulmonary fibrosis (PF) is an interstitial lung disease with complex pathological mechanism, and there is currently a lack of therapeutics that can heal it completely. Using gene therapy with drugs provides promising therapeutic strategies for synergistically reversing PF. However, improving the intracellular accumulation and transfection efficiency of therapeutic nucleic acids is still a critical issue that urgently needs to be addressed. Herein, we developed lipid nanoparticles (PEDPs) with high transfection efficiency coloaded with pDNA of nuclear factor erythroid 2-related factor 2 (pNrf2) and pirfenidone (PFD) for PF therapy. PEDPs can penetrate biological barriers, accumulate at the target, and exert therapeutic effects, eventually alleviating the oxidative stress imbalance in type II alveolar epithelial cells (AECs II) and inhibiting myofibroblast overactivation through the synergistic effects of Nrf2 combined with PFD, thus reversing PF. In addition, we systematically engineered various liposomes (LNPs), demonstrated that reducing the polyethylene glycol (PEG) proportion could significantly improve the uptake and transfection efficiency of the LNPs, and proposed a possible mechanism for this influence. This study clearly reveals that controlling the composition ratio of PEG in PEDPs can efficiently deliver therapeutics into AECs II, improve pNrf2 transfection, and synergize with PFD in a prospective strategy to reverse PF.
Collapse
Affiliation(s)
- Xin Chang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Key Laboratory of Marine Bioactive Substances, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Technological Innovation Center of Liaoning Pharmaceutical Action and Quality Evaluation, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Chang Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Yu-Mo Han
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Qiu-Ling Li
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Bin Guo
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Key Laboratory of Marine Bioactive Substances, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Technological Innovation Center of Liaoning Pharmaceutical Action and Quality Evaluation, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
10
|
Shi D, Toyonaga S, Anderson DG. In Vivo RNA Delivery to Hematopoietic Stem and Progenitor Cells via Targeted Lipid Nanoparticles. NANO LETTERS 2023; 23:2938-2944. [PMID: 36988645 PMCID: PMC10103292 DOI: 10.1021/acs.nanolett.3c00304] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Indexed: 05/22/2023]
Abstract
Ex vivo autologous hematopoietic stem cell (HSC) gene therapy has provided new therapies for the treatment of hematological disorders. However, these therapies have several limitations owing to the manufacturing complexities and toxicity resulting from required conditioning regimens. Here, we developed a c-kit (CD117) antibody-targeted lipid nanoparticle (LNP) that, following a single intravenous injection, can deliver RNA (both siRNA and mRNA) to HSCs in vivo in rodents. This targeted delivery system does not require stem cell harvest, culture, or mobilization of HSCs to facilitate delivery. We also show that delivery of Cre recombinase mRNA at a dose of 1 mg kg-1 can facilitate gene editing to almost all (∼90%) hematopoietic stem and progenitor cells (HSPCs) in vivo, and edited cells retain their stemness and functionality to generate high levels of edited mature immune cells.
Collapse
Affiliation(s)
- Dennis Shi
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sho Toyonaga
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- FUJIFILM
Pharmaceuticals U.S.A., Inc., Cambridge, Massachusetts 02142, United States
| | - Daniel G. Anderson
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard-Massachusetts
Institute of Technology, Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute
for Medical Engineering and Science, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Seo H, Jeon L, Kwon J, Lee H. High-Precision Synthesis of RNA-Loaded Lipid Nanoparticles for Biomedical Applications. Adv Healthc Mater 2023; 12:e2203033. [PMID: 36737864 DOI: 10.1002/adhm.202203033] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The recent development of RNA-based therapeutics in delivering nucleic acids for gene editing and regulating protein translation has led to the effective treatment of various diseases including cancer, inflammatory and genetic disorder, as well as infectious diseases. Among these, lipid nanoparticles (LNP) have emerged as a promising platform for RNA delivery and have shed light by resolving the inherent instability issues of naked RNA and thereby enhancing the therapeutic potency. These LNP consisting of ionizable lipid, helper lipid, cholesterol, and poly(ethylene glycol)-anchored lipid can stably enclose RNA and help them release into the cells' cytosol. Herein, the significant progress made in LNP research starting from the LNP constituents, formulation, and their diverse applications is summarized first. Moreover, the microfluidic methodologies which allow precise assembly of these newly developed constituents to achieve LNP with controllable composition and size, high encapsulation efficiency as well as scalable production are highlighted. Furthermore, a short discussion on current challenges as well as an outlook will be given on emerging approaches to resolving these issues.
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Leekang Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Jaeyeong Kwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| |
Collapse
|