1
|
Della Valle F, Reddy P, Aguirre Vazquez A, Izpisua Belmonte JC. Reactivation of retrotransposable elements is associated with environmental stress and ageing. Nat Rev Genet 2025:10.1038/s41576-025-00829-y. [PMID: 40175591 DOI: 10.1038/s41576-025-00829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Retrotransposable elements (RTEs) are interspersed repetitive sequences that represent a large portion of eukaryotic genomes. Ancestral expansions of RTEs directly contributed to the shaping of these genomes and to the evolution of different species, particularly mammals. RTE activity is tightly regulated by different epigenetic mechanisms but this control becomes compromised as cells age and RTEs are reactivated. This dysregulation of RTEs leads to perturbation of cell function and organ and organismal homeostasis, which drives ageing and age-related disease. Environmental stress is associated with both ageing-related characteristics and the epigenetic mechanisms that control RTE activity, with accumulating evidence indicating that RTE reactivation mediates the effects of environmental stressors on ageing onset and progression. A better understanding of how RTEs are reactivated and their subsequent biological roles may help the development of therapies against ageing-related phenotypes and diseases.
Collapse
Affiliation(s)
| | - Pradeep Reddy
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | | | | |
Collapse
|
2
|
Al-Gailani L, Al-Kaleel A. The Relationship Between Prenatal, Perinatal, and Postnatal Factors and ADHD: The Role of Nutrition, Diet, and Stress. Dev Psychobiol 2024; 66:e70004. [PMID: 39508433 DOI: 10.1002/dev.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Attention-Deficit Hyperactive Disorder (ADHD) is a neurobehavioral syndrome affecting children aged 6-17 with symptoms manifesting before age 12. ADHD presents heterogeneously and is associated with various psychiatric disorders. The cause remains elusive, but genetic and environmental factors, brain region maturation delays, and neurotransmitter dysregulation are implicated. Effective treatment requires a multi-disciplinary approach, primarily involving pharmacological and behavioral intervention. Stimulants like methylphenidate and amphetamines are first-line medications, but non-stimulants may be considered for some patients. However, stimulants face challenges related to misuse, dependence, and long-term tolerability issues. The etiology of ADHD involved genetic predisposition, environmental influences, and prenatal, perinatal, and postnatal factors. Prenatal causes encompass maternal diet, alcohol consumption, viral infections, and stress. Postnatal factors include head trauma, meningitis, toxin, nutritional deficiencies, as well as iodine deficiency and hypothyroidism. The gut microbiome's role in ADHD is emerging, influencing neurodevelopment through microbiota-gut-brain axis. Understanding these diverse etiological factors is essential for comprehensive ADHD management.
Collapse
Affiliation(s)
- Lubna Al-Gailani
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Ali Al-Kaleel
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| |
Collapse
|
3
|
Saeliw T, Kanlayaprasit S, Thongkorn S, Songsritaya K, Sanannam B, Jindatip D, Hu VW, Sarachana T. Investigation of chimeric transcripts derived from LINE-1 and Alu retrotransposons in cerebellar tissues of individuals with autism spectrum disorder (ASD). Sci Rep 2024; 14:21889. [PMID: 39300110 DOI: 10.1038/s41598-024-72334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
LINE-1 and Alu retrotransposons are components of the human genome and have been implicated in many human diseases. These elements can influence human transcriptome plasticity in various mechanisms. Chimeric transcripts derived from LINE-1 and Alu can also impact the human transcriptome, such as exonization and post-transcriptional modification. However, its specific role in ASD neuropathology remains unclear, particularly in the cerebellum tissues. We performed RNA-sequencing of post-mortem cerebellum tissues from ASD and unaffected individuals for transposable elements profiling and chimeric transcript identification. The majority of free transcripts of transposable elements were not changed in the cerebellum tissues of ASD compared with unaffected individuals. Nevertheless, we observed that chimeric transcripts derived from LINE-1 and Alu were embedded in the transcripts of differentially expressed genes in the cerebellum of ASD, and these genes were related to developments and abnormalities of the cerebellum. In addition, the expression levels of these genes were correlated with the significantly decreased thickness of the molecular layer in the cerebellum of ASD. We also found that global methylation and expression of LINE-1 and Alu elements were not changed in ASD, but observed in the ASD sub-phenotypes. Our findings showed associations between transposable elements and cerebellar abnormalities in ASD, particularly in distinct phenotypic subgroups. Further investigations using appropriate models are warranted to elucidate the structural and functional implications of LINE-1 and Alu elements in ASD neuropathology.
Collapse
Affiliation(s)
- Thanit Saeliw
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Songphon Kanlayaprasit
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Surangrat Thongkorn
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Kwanjira Songsritaya
- The M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Bumpenporn Sanannam
- Division of Anatomy, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Depicha Jindatip
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Tewarit Sarachana
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Cendra-Duarte E, Canals J, Becerra-Tomás N, Jardí C, Martín-Luján F, Arija V. Maternal dietary patterns and offspring behavioral problems. Pediatr Res 2024:10.1038/s41390-024-03462-3. [PMID: 39266631 DOI: 10.1038/s41390-024-03462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Mental health problems often begin in early childhood and could predict psychiatric and behavioral outcomes. Prenatal factors such as maternal nutrition have an impact on neurodevelopment. This study aims to investigate the association between maternal dietary patterns and emotional and behavioral problems in 4-year-old children. METHODS Within a cohort of 205 mother-child pairs, three maternal dietary patterns were identified: 'Sweet and Superfluous', 'Fish and Vegetables' and 'Meat and Cereals'. Child behavior was evaluated by means of the Child Behavior Checklist 1.5-5 (CBCL 1.5-5), the Teacher's Report Form 1.5-5 (TRF 1.5-5), and the Behavior Rating Inventory of Executive Function - Preschool Version (BRIEF-P). Multivariable analysis determined associations between maternal dietary patterns and their children's behavior. RESULTS Maternal adherence to the 'Sweet and Superfluous' pattern was positively associated with externalizing and depressive problems in children. The 'Meat and Cereals' pattern was linked to a higher risk for attention, hyperactivity and depressive problems as somatic complaints. Conversely, the 'Fish and Vegetables' pattern was associated with a reduced risk of hyperactivity problems. All these associations were more pronounced in girls than in boys. CONCLUSIONS Maternal diet during pregnancy is associated with the emotional and behavioral development of children at 4 years of age. IMPACT Previous research on prenatal dietary patterns and children's behavior is inconclusive. In our study, children of mothers who had higher intakes of sugar and processed foods during pregnancy were more likely to have emotional and behavioral problems at age 4, especially girls. A high-quality diet characterized by fish and vegetable consumption during pregnancy was associated with reduced anxiety and hyperactivity problems in girls. Our findings highlight the importance of prenatal nutrition for child neurodevelopment.
Collapse
Affiliation(s)
- Esther Cendra-Duarte
- Universitat Rovira i Virgili, Nutrition and Mental Health (NUTRISAM) Research Group, Reus, Spain
- Institut Català de la Salut (ICS), Collaborative Group on Lifestyles, Nutrition, and Tobacco (CENIT), Institut d´Investigació en Atenció Primària IDIAP Jordi Gol, Reus, Spain
| | - Josefa Canals
- Universitat Rovira i Virgili, Nutrition and Mental Health (NUTRISAM) Research Group, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Universitat Rovira i Virgili, Department of Psychology, Centre de Recerca en Avaluació i Mesura de la Conducta (CRAMC), Tarragona, Spain
| | - Nerea Becerra-Tomás
- Universitat Rovira i Virgili, Nutrition and Mental Health (NUTRISAM) Research Group, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Cristina Jardí
- Universitat Rovira i Virgili, Nutrition and Mental Health (NUTRISAM) Research Group, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Francisco Martín-Luján
- Institut Català de la Salut (ICS), Collaborative Group on Lifestyles, Nutrition, and Tobacco (CENIT), Institut d´Investigació en Atenció Primària IDIAP Jordi Gol, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Institut Català de la Salut (ICS), Institut d'Investigació en Atenció Primària IDIAP Jordi Gol, Barcelona, Spain
| | - Victoria Arija
- Universitat Rovira i Virgili, Nutrition and Mental Health (NUTRISAM) Research Group, Reus, Spain.
- Institut Català de la Salut (ICS), Collaborative Group on Lifestyles, Nutrition, and Tobacco (CENIT), Institut d´Investigació en Atenció Primària IDIAP Jordi Gol, Reus, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.
- Institut Català de la Salut (ICS), Institut d'Investigació en Atenció Primària IDIAP Jordi Gol, Barcelona, Spain.
| |
Collapse
|
5
|
Ma L, Wang F, Li Y, Wang J, Chang Q, Du Y, Sadan J, Zhao Z, Fan G, Yao B, Chen JF. Brain methylome remodeling selectively regulates neuronal activity genes linking to emotional behaviors in mice exposed to maternal immune activation. Nat Commun 2023; 14:7829. [PMID: 38030616 PMCID: PMC10687003 DOI: 10.1038/s41467-023-43497-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
How early life experience is translated into storable epigenetic information leading to behavioral changes remains poorly understood. Here we found that Zika virus (ZIKV) induced-maternal immune activation (MIA) imparts offspring with anxiety- and depression-like behavior. By integrating bulk and single-nucleus RNA sequencing (snRNA-seq) with genome-wide 5hmC (5-hydroxymethylcytosine) profiling and 5mC (5-methylcytosine) profiling in prefrontal cortex (PFC) of ZIKV-affected male offspring mice, we revealed an overall loss of 5hmC and an increase of 5mC levels in intragenic regions, associated with transcriptional changes in neuropsychiatric disorder-related genes. In contrast to their rapid initiation and inactivation in normal conditions, immediate-early genes (IEGs) remain a sustained upregulation with enriched expression in excitatory neurons, which is coupled with increased 5hmC and decreased 5mC levels of IEGs in ZIKV-affected male offspring. Thus, MIA induces maladaptive methylome remodeling in brain and selectively regulates neuronal activity gene methylation linking to emotional behavioral abnormalities in offspring.
Collapse
Affiliation(s)
- Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Feng Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jing Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Qing Chang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yuanning Du
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jotham Sadan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
6
|
DeRosa H, Smith A, Geist L, Cheng A, Hunter RG, Kentner AC. Maternal immune activation alters placental histone-3 lysine-9 tri-methylation, offspring sensorimotor processing, and hypothalamic transposable element expression in a sex-specific manner. Neurobiol Stress 2023; 24:100538. [PMID: 37139465 PMCID: PMC10149420 DOI: 10.1016/j.ynstr.2023.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Animal models of maternal immune activation (MIA) are central to identifying the biological mechanisms that underly the association between prenatal infection and neuropsychiatric disorder susceptibility. Many studies, however, have limited their scope to protein coding genes and their role in mediating this inherent risk, while much less attention has been directed towards exploring the roles of the epigenome and transposable elements (TEs). In Experiment 1, we demonstrate the ability of MIA to alter the chromatin landscape of the placenta. We induced MIA by injecting 200 μg/kg (i.p.) of lipopolysaccharide (LPS) on gestational day 15 in Sprague-Dawley rats. We found a sex-specific rearrangement of heterochromatin 24-h after exposure to MIA, as evidenced by an increase in histone-3 lysine-9 trimethylation (H3K9me3). In Experiment 2, MIA was associated with long-term sensorimotor processing deficits as indicated by reduced prepulse inhibition (PPI) of the acoustic startle reflex in adult male and female offspring and an increased mechanical allodynia threshold in males. Analyses of gene expression within the hypothalamus-chosen for its involvement in the sex-specific pathogenesis of schizophrenia and the stress response-revealed significantly higher levels of the stress-sensitive genes Gr and Fkbp5. Deleterious TE expression is often a hallmark of neuropsychiatric disease and we found sex-specific increases in the expression of several TEs including IAP, B2 SINE, and LINE-1 ORF1. The data from this study warrant the future consideration of chromatin stability and TEs as part of the mechanism that drives MIA-associated changes in the brain and behavior.
Collapse
Affiliation(s)
- Holly DeRosa
- University of Massachusetts Boston, Department of Psychology, Developmental and Brain Sciences Program, Boston, Massachusetts, USA
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Arianna Smith
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Laurel Geist
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Ada Cheng
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Richard G. Hunter
- University of Massachusetts Boston, Department of Psychology, Developmental and Brain Sciences Program, Boston, Massachusetts, USA
| | - Amanda C. Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| |
Collapse
|
7
|
Saeliw T, Kanlayaprasit S, Thongkorn S, Songsritaya K, Sanannam B, Sae-Lee C, Jindatip D, Hu VW, Sarachana T. Epigenetic Gene-Regulatory Loci in Alu Elements Associated with Autism Susceptibility in the Prefrontal Cortex of ASD. Int J Mol Sci 2023; 24:ijms24087518. [PMID: 37108679 PMCID: PMC10139202 DOI: 10.3390/ijms24087518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Alu elements are transposable elements that can influence gene regulation through several mechanisms; nevertheless, it remains unclear whether dysregulation of Alu elements contributes to the neuropathology of autism spectrum disorder (ASD). In this study, we characterized transposable element expression profiles and their sequence characteristics in the prefrontal cortex tissues of ASD and unaffected individuals using RNA-sequencing data. Our results showed that most of the differentially expressed transposable elements belong to the Alu family, with 659 loci of Alu elements corresponding to 456 differentially expressed genes in the prefrontal cortex of ASD individuals. We predicted cis- and trans-regulation of Alu elements to host/distant genes by conducting correlation analyses. The expression level of Alu elements correlated significantly with 133 host genes (cis-regulation, adjusted p < 0.05) associated with ASD as well as the cell survival and cell death of neuronal cells. Transcription factor binding sites in the promoter regions of differentially expressed Alu elements are conserved and associated with autism candidate genes, including RORA. COBRA analyses of postmortem brain tissues showed significant hypomethylation in global methylation analyses of Alu elements in ASD subphenotypes as well as DNA methylation of Alu elements located near the RNF-135 gene (p < 0.05). In addition, we found that neuronal cell density, which was significantly increased (p = 0.042), correlated with the expression of genes associated with Alu elements in the prefrontal cortex of ASD. Finally, we determined a relationship between these findings and the ASD severity (i.e., ADI-R scores) of individuals with ASD. Our findings provide a better understanding of the impact of Alu elements on gene regulation and molecular neuropathology in the brain tissues of ASD individuals, which deserves further investigation.
Collapse
Affiliation(s)
- Thanit Saeliw
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Songphon Kanlayaprasit
- Systems Neuroscience of Autism and Psychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Surangrat Thongkorn
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Kwanjira Songsritaya
- The M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bumpenporn Sanannam
- Division of Anatomy, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Chanachai Sae-Lee
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Depicha Jindatip
- Systems Neuroscience of Autism and Psychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Tewarit Sarachana
- Systems Neuroscience of Autism and Psychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Richter TA, Aiken AA, Puracchio MJ, Maganga-Bakita I, Hunter RG. Maternal Immune Activation and Enriched Environments Impact B2 SINE Expression in Stress Sensitive Brain Regions of Rodent Offspring. Genes (Basel) 2023; 14:858. [PMID: 37107616 PMCID: PMC10137338 DOI: 10.3390/genes14040858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Early life stress (ELS) can have wide-spread neurodevelopmental effects with support accumulating for the idea that genomic mechanisms may induce lasting physiological and behavioral changes following stress exposure. Previous work found that a sub-family of transposable elements, SINEs, are repressed epigenetically after acute stress. This gives support to the concept that the mammalian genome may be regulating retrotransposon RNA expression allowing for adaptation in response to environmental challenges, such as maternal immune activation (MIA). Transposon (TE) RNAs are now thought to work at the epigenetic level and to have an adaptive response to environmental stressors. Abnormal expression of TEs has been linked to neuropsychiatric disorders like schizophrenia, which is also linked to maternal immune activation. Environmental enrichment (EE), a clinically utilized intervention, is understood to protect the brain, enhance cognitive performance, and attenuate responses to stress. This study examines the effects of MIA on offspring B2 SINE expression and further, the impact that EE, experienced throughout gestation and early life, may have in conjunction with MIA during development. Utilizing RT-PCR to quantify the expression of B2 SINE RNA in the juvenile brain of MIA exposed rat offspring, we found dysregulation of B2 SINE expression associated with MIA in the prefrontal cortex. For offspring experiencing EE, the prefrontal cortex exhibited an attenuation of the MIA response observed in standard housed animals. Here, the adaptive nature of B2 is observed and thought to be aiding in the animal's adaptation to stress. The present changes indicate a wide-spread stress-response system adaptation that impacts not only changes at the genomic level but potentially observable behavioral impacts throughout the lifespan, with possible translational relevance to psychotic disorders.
Collapse
Affiliation(s)
- Troy A. Richter
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Ariel A. Aiken
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Madeline J. Puracchio
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02125, USA
| | - Ismael Maganga-Bakita
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Richard G. Hunter
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
9
|
Apsley AT, Etzel L, Hastings WJ, Heim CC, Noll JG, O'Donnell KJ, Schreier HMC, Shenk CE, Ye Q, Shalev I. Investigating the effects of maltreatment and acute stress on the concordance of blood and DNA methylation methods of estimating immune cell proportions. Clin Epigenetics 2023; 15:33. [PMID: 36855187 PMCID: PMC9976543 DOI: 10.1186/s13148-023-01437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/05/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Immune cell proportions can be used to detect pathophysiological states and are also critical covariates in genomic analyses. The complete blood count (CBC) is the most common method of immune cell proportion estimation, but immune cell proportions can also be estimated using whole-genome DNA methylation (DNAm). Although the concordance of CBC and DNAm estimations has been validated in various adult and clinical populations, less is known about the concordance of existing estimators among stress-exposed individuals. As early life adversity and acute psychosocial stress have both been associated with unique DNAm alterations, the concordance of CBC and DNAm immune cell proportion needs to be validated in various states of stress. RESULTS We report the correlation and concordance between CBC and DNAm estimates of immune cell proportions using the Illumina EPIC DNAm array within two unique studies: Study 1, a high-risk pediatric cohort of children oversampled for exposure to maltreatment (N = 365, age 8 to 14 years), and Study 2, a sample of young adults who have participated in an acute laboratory stressor with four pre- and post-stress measurements (N = 28, number of observations = 100). Comparing CBC and DNAm proportions across both studies, estimates of neutrophils (r = 0.948, p < 0.001), lymphocytes (r = 0.916, p < 0.001), and eosinophils (r = 0.933, p < 0.001) were highly correlated, while monocyte estimates were moderately correlated (r = 0.766, p < 0.001) and basophil estimates were weakly correlated (r = 0.189, p < 0.001). In Study 1, we observed significant deviations in raw values between the two approaches for some immune cell subtypes; however, the observed differences were not significantly predicted by exposure to child maltreatment. In Study 2, while significant changes in immune cell proportions were observed in response to acute psychosocial stress for both CBC and DNAm estimates, the observed changes were similar for both approaches. CONCLUSIONS Although significant differences in immune cell proportion estimates between CBC and DNAm exist, as well as stress-induced changes in immune cell proportions, neither child maltreatment nor acute psychosocial stress alters the concordance of CBC and DNAm estimation methods. These results suggest that the agreement between CBC and DNAm estimators of immune cell proportions is robust to exposure to child maltreatment and acute psychosocial stress.
Collapse
Affiliation(s)
- Abner T Apsley
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
- Department of Molecular, Cellular, and Integrated Biosciences, The Pennsylvania State University, University Park, PA, USA
| | - Laura Etzel
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
| | - Waylon J Hastings
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
| | - Christine C Heim
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
- Corporate Member of Freie Universität Berlin, and Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jennie G Noll
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, USA
| | - Kieran J O'Donnell
- Yale Child Study Center, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Obstetrics Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Hannah M C Schreier
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
| | - Chad E Shenk
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, USA
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Qiaofeng Ye
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
| | - Idan Shalev
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA.
| |
Collapse
|
10
|
Structural Racism, Social Determinants of Health, and Provider Bias: Impact on Brain Development in Critical Congenital Heart Disease. Can J Cardiol 2023; 39:133-143. [PMID: 36368561 DOI: 10.1016/j.cjca.2022.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Critical congenital heart disease (cCHD) has neurodevelopmental sequelae that can carry into adulthood, which may be due to aberrant brain development or brain injury in the prenatal and perinatal/neonatal periods and beyond. Health disparities based on the intersection of sex, geography, race, and ethnicity have been identified for poorer pre- and postnatal outcomes in the general population, as well as those with cCHD. These disparities are likely driven by structural racism, disparities in social determinants of health, and provider bias, which further compound negative brain development outcomes. This review discusses how aberrant brain development in cCHD early in life is affected by reduced access to quality care (ie, prenatal care and testing, postnatal care) due to divestment in non-White neighbourhoods (eg, redlining) and food insecurity, differences in insurance status, location of residence, and perceived interpersonal racism and bias that disproportionately affects pregnant people of colour who have fewer economic resources. Suggestions are discussed for moving forward with implementing strategies in medical education, clinical care, research, and gaining insight into the communities served to combat disparities and bias while promoting cultural humility.
Collapse
|
11
|
Zhang Y, Dong Y, Zhu Y, Sun D, Wang S, Weng J, Zhu Y, Peng W, Yu B, Jiang Y. Microglia-specific transcriptional repression of interferon-regulated genes after prolonged stress in mice. Neurobiol Stress 2022; 21:100495. [DOI: 10.1016/j.ynstr.2022.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
|
12
|
Chiang VSC, DeRosa H, Park JH, Hunter RG. The Role of Transposable Elements in Sexual Development. Front Behav Neurosci 2022; 16:923732. [PMID: 35874645 PMCID: PMC9301316 DOI: 10.3389/fnbeh.2022.923732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Up to 50% of most mammalian genomes are made up of transposable elements (TEs) that have the potential to mobilize around the genome. Despite this prevalence, research on TEs is only beginning to gain traction within the field of neuroscience. While TEs have long been regarded as "junk" or parasitic DNA, it has become evident that they are adaptive DNA and RNA regulatory elements. In addition to their vital role in normal development, TEs can also interact with steroid receptors, which are key elements to sexual development. In this review, we provide an overview of the involvement of TEs in processes related to sexual development- from TE activity in the germline to TE accumulation in sex chromosomes. Moreover, we highlight sex differences in TE activity and their regulation of genes related to sexual development. Finally, we speculate on the epigenetic mechanisms that may govern TEs' role in sexual development. In this context, we emphasize the need to further the understanding of sexual development through the lens of TEs including in a variety of organs at different developmental stages, their molecular networks, and evolution.
Collapse
Affiliation(s)
| | | | | | - Richard G. Hunter
- College of Liberal Arts, Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
13
|
DeRosa H, Richter T, Wilkinson C, Hunter RG. Bridging the Gap Between Environmental Adversity and Neuropsychiatric Disorders: The Role of Transposable Elements. Front Genet 2022; 13:813510. [PMID: 35711940 PMCID: PMC9196244 DOI: 10.3389/fgene.2022.813510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/13/2022] [Indexed: 12/21/2022] Open
Abstract
Long regarded as “junk DNA,” transposable elements (TEs) have recently garnered much attention for their role in promoting genetic diversity and plasticity. While many processes involved in mammalian development require TE activity, deleterious TE insertions are a hallmark of several psychiatric disorders. Moreover, stressful events including exposure to gestational infection and trauma, are major risk factors for developing psychiatric illnesses. Here, we will provide evidence demonstrating the intersection of stressful events, atypical TE expression, and their epigenetic regulation, which may explain how neuropsychiatric phenotypes manifest. In this way, TEs may be the “bridge” between environmental perturbations and psychopathology.
Collapse
Affiliation(s)
- Holly DeRosa
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Troy Richter
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Cooper Wilkinson
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Richard G Hunter
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
14
|
Pinto A, Cunha C, Chaves R, Butchbach MER, Adega F. Comprehensive In Silico Analysis of Retrotransposon Insertions within the Survival Motor Neuron Genes Involved in Spinal Muscular Atrophy. BIOLOGY 2022; 11:824. [PMID: 35741345 PMCID: PMC9219815 DOI: 10.3390/biology11060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are interspersed repetitive and mobile DNA sequences within the genome. Better tools for evaluating TE-derived sequences have provided insights into the contribution of TEs to human development and disease. Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease that is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene but retention of its nearly perfect orthologue SMN2. Both genes are highly enriched in TEs. To establish a link between TEs and SMA, we conducted a comprehensive, in silico analysis of TE insertions within the SMN1/2 loci of SMA, carrier and healthy genomes. We found an Alu insertion in the promoter region and one L1 element in the 3'UTR that may play an important role in alternative promoter as well as in alternative transcriptional termination. Additionally, several intronic Alu repeats may influence alternative splicing via RNA circularization and causes the presence of new alternative exons. These Alu repeats present throughout the genes are also prone to recombination events that could lead to SMN1 exons deletions and, ultimately, SMA. TE characterization of the SMA genomic region could provide for a better understanding of the implications of TEs on human disease and genomic evolution.
Collapse
Affiliation(s)
- Albano Pinto
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Catarina Cunha
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Matthew E. R. Butchbach
- Division of Neurology, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA;
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
15
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
16
|
Somatic Mobilization: High Somatic Insertion Rate of mariner Transposable Element in Drosophila simulans. INSECTS 2022; 13:insects13050454. [PMID: 35621789 PMCID: PMC9144738 DOI: 10.3390/insects13050454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Although transposable elements (TEs) are usually silent in somatic tissues, they are sometimes mobilized in the soma and can potentially have biological consequences. The mariner element is one of the TEs involved in somatic mobilization (SM) in Drosophila and has a high rate of somatic excision. It is also known that temperature is an important factor in the increase of the mariner element SM in the fly. However, it is important to emphasize that excision is only one step of TE transposition, and the final step in this process is insertion. In the present study, we used an assay based on sequencing of the mariner flanking region and developed a pipeline to identify novel mariner insertions in Drosophila simulans at 20 and 28 °C. We found that flies carrying two mariner copies (one autonomous and one non-autonomous) had an average of 236.4 (±99.3) to 279 (±107.7) new somatic insertions at 20 °C and an average of 172.7 (±95.3) to 252.6 (±67.3) at 28 °C. In addition, we detected fragments containing mariner and others without mariner in the same regions with low-coverage long-read sequencing, indicating the process of excision and insertion. In conclusion, a low number of autonomous copies of the mariner transposon can promote a high rate of new somatic insertions during the developmental stages of Drosophila. Additionally, the developed method seems to be sensitive and adequate for the verification and estimation of somatic insertion.
Collapse
|
17
|
Shapiro JA. What we have learned about evolutionary genome change in the past 7 decades. Biosystems 2022; 215-216:104669. [DOI: 10.1016/j.biosystems.2022.104669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
|
18
|
Transposable Elements and Human Diseases: Mechanisms and Implication in the Response to Environmental Pollutants. Int J Mol Sci 2022; 23:ijms23052551. [PMID: 35269693 PMCID: PMC8910135 DOI: 10.3390/ijms23052551] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Transposable elements (TEs) are recognized as major players in genome plasticity and evolution. The high abundance of TEs in the human genome, especially the Alu and Long Interspersed Nuclear Element-1 (LINE-1) repeats, makes them responsible for the molecular origin of several diseases. This involves several molecular mechanisms that are presented in this review: insertional mutation, DNA recombination and chromosomal rearrangements, modification of gene expression, as well as alteration of epigenetic regulations. This literature review also presents some of the more recent and/or more classical examples of human diseases in which TEs are involved. Whether through insertion of LINE-1 or Alu elements that cause chromosomal rearrangements, or through epigenetic modifications, TEs are widely implicated in the origin of human cancers. Many other human diseases can have a molecular origin in TE-mediated chromosomal recombination or alteration of gene structure and/or expression. These diseases are very diverse and include hemoglobinopathies, metabolic and neurological diseases, and common diseases. Moreover, TEs can also have an impact on aging. Finally, the exposure of individuals to stresses and environmental contaminants seems to have a non-negligible impact on the epigenetic derepression and mobility of TEs, which can lead to the development of diseases. Thus, improving our knowledge of TEs may lead to new potential diagnostic markers of diseases.
Collapse
|
19
|
Mariani Wigley ILC, Mascheroni E, Fontana C, Giorda R, Morandi F, Bonichini S, McGlone F, Fumagalli M, Montirosso R. The role of maternal touch in the association between SLC6A4 methylation and stress response in very preterm infants. Dev Psychobiol 2021; 63 Suppl 1:e22218. [PMID: 34964498 DOI: 10.1002/dev.22218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022]
Abstract
Very preterm (VPT) infants requiring hospitalization in the Neonatal Intensive Care Unit (NICU) are exposed to several stressful procedural experiences. One consequence of NICU-related stress is a birth-to-discharge increased serotonin transporter gene (SLC6A4) methylation that has been associated with poorer stress regulation at 3 months of age. Maternal touch is thought to support infants' stress response, but its role in moderating the effects of SLC6A4 methylation changes is unknown. The aim of this study was to assess the role of maternal touch in moderating the association between increased SLC6A4 methylation and stress response in 3-month-old VPT infants. Twenty-nine dyads were enrolled and at 3 months (age corrected for prematurity), participated in the Face-to-Face Still-Face paradigm to measure infants' stress response (i.e., negative emotionality) and the amount of maternal touch (i.e., dynamic and static). Results showed that low level of maternal touch is associated with high level of negative emotionality during social stress. Furthermore, during NICU stay SLC6A4 methylation in VPT exposed to low level of maternal touch at 3 months was associated with increased negative emotionality. Thus, low levels of maternal static touch can intensify the negative effects of SLC6A4 epigenetic changes on stress response in 3-month-old VPT infants.
Collapse
Affiliation(s)
| | - Eleonora Mascheroni
- 0-3 Center for the at-Risk Infant, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini, Lecco, Italy
| | - Camilla Fontana
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute IRCCS "Eugenio Medea", Lecco, Italy
| | | | - Sabrina Bonichini
- Department of Developmental and Social Psychology, University of Padua, Padua, Italy
| | - Francis McGlone
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK.,Institute of Psychology Health & Society, University of Liverpool, Liverpool, UK
| | - Monica Fumagalli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosario Montirosso
- 0-3 Center for the at-Risk Infant, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini, Lecco, Italy
| |
Collapse
|
20
|
Cortés-Albornoz MC, García-Guáqueta DP, Velez-van-Meerbeke A, Talero-Gutiérrez C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients 2021; 13:3530. [PMID: 34684531 PMCID: PMC8538181 DOI: 10.3390/nu13103530] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 01/31/2023] Open
Abstract
In this scoping review, we examined the association between maternal nutrition during pregnancy and neurodevelopment in offspring. We searched the Pubmed and ScienceDirect databases for articles published from 2000 to 2020 on inadequate intake of vitamins (B12, folate, vitamin D, vitamin A, vitamin E, vitamin K), micronutrients (cooper, iron, creatine, choline, zinc, iodine), macronutrients (fatty acids, proteins), high fat diets, ketogenic diets, hypercaloric diets, and maternal undernutrition. Some older relevant articles were included. The search produced a total of 3590 articles, and 84 studies were included in the qualitative synthesis. Data were extracted and analyzed using charts and the frequency of terms used. We concluded that inadequate nutrient intake during pregnancy was associated with brain defects (diminished cerebral volume, spina bifida, alteration of hypothalamic and hippocampal pathways), an increased risk of abnormal behavior, neuropsychiatric disorders (ASD, ADHD, schizophrenia, anxiety, depression), altered cognition, visual impairment, and motor deficits. Future studies should establish and quantify the benefits of maternal nutrition during pregnancy on neurodevelopment and recommend adequate supplementation.
Collapse
Affiliation(s)
| | | | | | - Claudia Talero-Gutiérrez
- Neuroscience Research Group (NEUROS), Centro Neurovitae, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (M.C.C.-A.); (D.P.G.-G.); (A.V.-v.-M.)
| |
Collapse
|
21
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|
22
|
Hsu PS, Yu SH, Tsai YT, Chang JY, Tsai LK, Ye CH, Song NY, Yau LC, Lin SP. More than causing (epi)genomic instability: emerging physiological implications of transposable element modulation. J Biomed Sci 2021; 28:58. [PMID: 34364371 PMCID: PMC8349491 DOI: 10.1186/s12929-021-00754-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) initially attracted attention because they comprise a major portion of the genomic sequences in plants and animals. TEs may jump around the genome and disrupt both coding genes as well as regulatory sequences to cause disease. Host cells have therefore evolved various epigenetic and functional RNA-mediated mechanisms to mitigate the disruption of genomic integrity by TEs. TE associated sequences therefore acquire the tendencies of attracting various epigenetic modifiers to induce epigenetic alterations that may spread to the neighboring genes. In addition to posting threats for (epi)genome integrity, emerging evidence suggested the physiological importance of endogenous TEs either as cis-acting control elements for controlling gene regulation or as TE-containing functional transcripts that modulate the transcriptome of the host cells. Recent advances in long-reads sequence analysis technologies, bioinformatics and genetic editing tools have enabled the profiling, precise annotation and functional characterization of TEs despite their challenging repetitive nature. The importance of specific TEs in preimplantation embryonic development, germ cell differentiation and meiosis, cell fate determination and in driving species specific differences in mammals will be discussed.
Collapse
Affiliation(s)
- Pu-Sheng Hsu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Jen-Yun Chang
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Li-Kuang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ning-Yu Song
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Lih-Chiao Yau
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan. .,Center of Systems Biology, National Taiwan University, Taipei, Taiwan. .,The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
23
|
Pappalardo XG, Barra V. Losing DNA methylation at repetitive elements and breaking bad. Epigenetics Chromatin 2021; 14:25. [PMID: 34082816 PMCID: PMC8173753 DOI: 10.1186/s13072-021-00400-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
Background DNA methylation is an epigenetic chromatin mark that allows heterochromatin formation and gene silencing. It has a fundamental role in preserving genome stability (including chromosome stability) by controlling both gene expression and chromatin structure. Therefore, the onset of an incorrect pattern of DNA methylation is potentially dangerous for the cells. This is particularly important with respect to repetitive elements, which constitute the third of the human genome. Main body Repetitive sequences are involved in several cell processes, however, due to their intrinsic nature, they can be a source of genome instability. Thus, most repetitive elements are usually methylated to maintain a heterochromatic, repressed state. Notably, there is increasing evidence showing that repetitive elements (satellites, long interspersed nuclear elements (LINEs), Alus) are frequently hypomethylated in various of human pathologies, from cancer to psychiatric disorders. Repetitive sequences’ hypomethylation correlates with chromatin relaxation and unscheduled transcription. If these alterations are directly involved in human diseases aetiology and how, is still under investigation. Conclusions Hypomethylation of different families of repetitive sequences is recurrent in many different human diseases, suggesting that the methylation status of these elements can be involved in preservation of human health. This provides a promising point of view towards the research of therapeutic strategies focused on specifically tuning DNA methylation of DNA repeats.
Collapse
Affiliation(s)
- Xena Giada Pappalardo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125, Catania, Italy.,National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, 95125, Catania, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| |
Collapse
|
24
|
Yi LT, Zhang MM, Cheng J, Wan HQ, Li CF, Zhu JX, Zhang QP, Liu Q, Xu GH. Antidepressant-like Effects of Degraded Porphyran Isolated from Porphyra haitanensis. Mol Nutr Food Res 2021; 65:e2000869. [PMID: 33783973 DOI: 10.1002/mnfr.202000869] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 03/17/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Degraded porphyran is a bioactive polysaccharide extracted from Porphyra haitanensis (P. haitanensis). According to the previous studies, it produced anti-inflammatory activity, but little is known about its effects on depression. METHODS AND RESULTS As inflammation is one of the critical factors involved in the development of depression, this study aims to elucidate the potential antidepressant-like effects of degraded porphyran. The results show that acute porphyran treatment decreased the immobility time in despair tests. In addition, subchronic porphyran administration reverses depressive-like behaviors in lipopolysaccharide (LPS)-treated mice. Meanwhile, porphyran inhibits NF-κB/NLRP3 signaling, proinflammatory cytokine release, and microglial activation in the hippocampus. Moreover, chronic porphyran treatment activates hippocampal brain derived neurotrophic factor (BDNF)/TrkB/ERK/CREB signaling pathway in chronic unpredictable mild stress (CUMS) in mice. As a result, neurogenesis and spinogenesis are maintained. CONCLUSIONS The findings of the present study indicate that degraded porphyran intake provides a potential strategy for depression treatment, which is mediated by the inhibition of neuroinflammation and the enhancement of neurogenesis and spinogenesis in the central nervous systems.
Collapse
Affiliation(s)
- Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, PR China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian Province, 361021, PR China
| | - Man-Man Zhang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, PR China
| | - Jie Cheng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, PR China
| | - Hui-Qi Wan
- Xiamen Medicine Research Institute, Xiamen, Fujian Province, 361008, PR China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, 361009, PR China
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, 330004, PR China
| | - Qiu-Ping Zhang
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, 361009, PR China
| | - Qing Liu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, PR China
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Xiamen, Fujian Province, 361008, PR China
| |
Collapse
|
25
|
Fontana C, Marasca F, Provitera L, Mancinelli S, Pesenti N, Sinha S, Passera S, Abrignani S, Mosca F, Lodato S, Bodega B, Fumagalli M. Early maternal care restores LINE-1 methylation and enhances neurodevelopment in preterm infants. BMC Med 2021; 19:42. [PMID: 33541338 PMCID: PMC7863536 DOI: 10.1186/s12916-020-01896-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Preterm birth affects almost 9-11% of newborns and is one of the leading causes of childhood neurodevelopmental disabilities; the underlying molecular networks are poorly defined. In neurons, retrotransposons LINE-1 (L1) are an active source of genomic mosaicism that is deregulated in several neurological disorders; early life experience has been shown to regulate L1 activity in mice. METHODS Very preterm infants were randomized to receive standard care or early intervention. L1 methylation was measured at birth and at hospital discharge. At 12 and 36 months, infants' neurodevelopment was evaluated with the Griffiths Scales. L1 methylation and CNVs were measured in mouse brain areas at embryonic and postnatal stages. RESULTS Here we report that L1 promoter is hypomethylated in preterm infants at birth and that an early intervention program, based on enhanced maternal care and positive multisensory stimulation, restores L1 methylation levels comparable to healthy newborns and ameliorates neurodevelopment in childhood. We further show that L1 activity is fine-tuned in the perinatal mouse brain, suggesting a sensitive and vulnerable window for the L1 epigenetic setting. CONCLUSIONS Our results open the field on the inspection of L1 activity as a novel molecular and predictive approach to infants' prematurity-related neurodevelopmental outcomes. TRIAL REGISTRATION ClinicalTrial.gov ( NCT02983513 ). Registered on 6 December 2016, retrospectively registered.
Collapse
Affiliation(s)
- Camilla Fontana
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Marasca
- Istituto Nazionale di Genetica Molecolare "Enrica e Romeo Invernizzi" (INGM), Milan, Italy
| | - Livia Provitera
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Sara Mancinelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Nicola Pesenti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy.,Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology and Public Health, University of Milano-Bicocca, Milan, Italy
| | - Shruti Sinha
- Istituto Nazionale di Genetica Molecolare "Enrica e Romeo Invernizzi" (INGM), Milan, Italy
| | - Sofia Passera
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Sergio Abrignani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Enrica e Romeo Invernizzi" (INGM), Milan, Italy
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Beatrice Bodega
- Istituto Nazionale di Genetica Molecolare "Enrica e Romeo Invernizzi" (INGM), Milan, Italy.
| | - Monica Fumagalli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy. .,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy.
| |
Collapse
|
26
|
Moussa-Tooks AB, Hetrick WP, Green JT. Differential effects of two early life stress paradigms on cerebellar-dependent delay eyeblink conditioning. Neurobiol Stress 2020; 13:100242. [PMID: 33344698 PMCID: PMC7739029 DOI: 10.1016/j.ynstr.2020.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/23/2020] [Accepted: 07/14/2020] [Indexed: 11/11/2022] Open
Abstract
Early life stress paradigms have become prominent in the animal literature to model atypical development. Currently, two models have prevailed within the literature: (1) limited bedding or nesting and (2) maternal separation or deprivation. Both models have produced aberrations spanning behavior and neural circuitry. Surprisingly, these two models have yet to be directly compared. The current study utilized delay eyeblink conditioning, an associative learning task with a well-defined cerebellar circuit, to compare the behavioral effects of standard limited bedding (postnatal day 2–9, n = 15) and maternal separation (60 min per day during postnatal day 2–14, n = 13) early life stress paradigms. Animals in all groups exhibited robust learning curves. Surprisingly, facilitated conditioning was observed in the maternal separation group. Rats that underwent limited bedding did not differ from the control or maternal separation groups on any conditioning measures. This study contributes to a clearer understanding of early life stress paradigms and the claims made about their mechanisms, which if better clarified can be properly leveraged to increase translational value.
Collapse
Affiliation(s)
- Alexandra B Moussa-Tooks
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States.,Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - William P Hetrick
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States.,Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - John T Green
- Department of Psychological Science, University of Vermont, Burlington, VT, United States
| |
Collapse
|
27
|
Petersen CL, Chen JQ, Salas LA, Christensen BC. Altered immune phenotype and DNA methylation in panic disorder. Clin Epigenetics 2020; 12:177. [PMID: 33208194 PMCID: PMC7672933 DOI: 10.1186/s13148-020-00972-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022] Open
Abstract
Background Multiple studies have related psychiatric disorders and immune alterations. Panic disorder (PD) has been linked with changes in leukocytes distributions in several small studies using different methods for immune characterization. Additionally, alterations in the methylation of repetitive DNA elements, such as LINE-1, have been associated with mental disorders. Here, we use peripheral blood DNA methylation data from two studies and an updated DNA methylation deconvolution library to investigate the relation of leukocyte proportions and methylation status of repetitive elements in 133 patients with panic disorder compared with 118 controls. Methods and results We used DNA methylation data to deconvolute leukocyte cell-type proportions and to infer LINE-1 element methylation comparing PD cases and controls. We also identified differentially methylated CpGs associated with PD using an epigenome-wide association study approach (EWAS), with models adjusting for sex, age, and cell-type proportions. Individuals with PD had a lower proportion of CD8T cells (OR: 0.86, 95% CI: 0.78–0.96, P-adj = 0.030) when adjusting for age, sex, and study compared with controls. Also, PD cases had significantly lower LINE-1 repetitive element methylation than controls (P < 0.001). The EWAS identified 61 differentially methylated CpGs (58 hypo- and 3 hypermethylated) in PD (Bonferroni adjusted P < 1.33 × 10–7). Conclusions These results suggest that those with panic disorder have changes to their immune system and dysregulation of repeat elements relative to controls.
Collapse
Affiliation(s)
- Curtis L Petersen
- The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH, 03766, USA.,Quantitative Biomedical Science Program, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03766, USA
| | - Ji-Qing Chen
- Program for Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03766, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03766, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03766, USA. .,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03766, USA. .,Dartmouth Hitchcock Medical Center, 1 Medical Center Dr, 660 Williamson Translation Research Building, Lebanon, NH, 03756, USA.
| |
Collapse
|
28
|
Dierssen M. Top ten discoveries of the year: Neurodevelopmental disorders. FREE NEUROPATHOLOGY 2020; 1:13. [PMID: 37283674 PMCID: PMC10209851 DOI: 10.17879/freeneuropathology-2020-2672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/12/2020] [Indexed: 06/08/2023]
Abstract
Developmental brain disorders, a highly heterogeneous group of disorders with a prevalence of around 3% of worldwide population, represent a growing medical challenge. They are characterized by impaired neurodevelopmental processes leading to deficits in cognition, social interaction, behavior and motor functioning as a result of abnormal development of brain. This can include developmental brain dysfunction, which can manifest as neuropsychiatric problems or impaired motor function, learning, language or non-verbal communication. Several of these phenotypes can often co-exist in the same patient and characterize the same disorder. Here I discuss some contributions in 2019 that are shaking our basic understanding of the pathogenesis of neurodevelopmental disorders. Recent developments in sophisticated in-utero imaging diagnostic tools have raised the possibility of imaging the fetal human brain growth, providing insights into the developing anatomy and improving diagnostics but also allowing a better understanding of antenatal pathology. On the other hand, advances in our understanding of the pathogenetic mechanisms reveal a remarkably complex molecular neuropathology involving a myriad of genetic architectures and regulatory elements that will help establish more rigorous genotype-phenotype correlations.
Collapse
Affiliation(s)
- Mara Dierssen
- Centre for Genomic Regulation (CRG); The Barcelona Institute of Science and Technology, and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|