1
|
Tarazona JV, Fernandez-Agudo A, Adamovsky O, Baccaro M, Burden N, Campos B, Hidding B, Jenner K, John D, Lacasse K, Lillicrap A, Lyon D, Maynard SK, Ott A, Poulsen V, Rasenberg M, Schutte K, Sobanska M, Wheeler JR. Use of alternatives to animal testing for Environmental Safety Assessment (ESA): Report from the 2023 EPAA partners' forum. Regul Toxicol Pharmacol 2025; 156:105774. [PMID: 39855421 DOI: 10.1016/j.yrtph.2025.105774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Environmental Safety Assessments (ESA) are mandatory for several regulatory purposes and are an important component of stewardship/sustainability initiatives. Fish testing is used for assessing chemical toxicity and bioaccumulation potential; amphibians are included in some jurisdictions and their use is increasing to assess endocrine disruption. Alternative methods are becoming more available, covering the principles of the 3Rs (i.e., replacing, reducing and refining animal tests), but their regulatory incorporation is still limited. A cross-sector review by the European Partnership for Alternative Approaches to Animal Testing (EPAA), discussed the status and priorities for accelerating the adoption of non-animal approaches in ESA. The lack of an internationally agreed definition for "animal testing" was recognized as a challenge. For example, testing with vertebrate embryos up to specific developmental stages is a suitable refinement alternative only in some jurisdictions. Invertebrate testing offers refinement alternatives to develop tiered approaches using vertebrate testing as a last resort. Aquatic ESA was identified as a common need by all sectors and regulatory areas, while terrestrial ESA is particularly relevant for agrochemicals. The standardization and validation of some alternative methods as OECD test guidelines (TGs) for fish acute toxicity and fish bioaccumulation have not yet triggered the expected replacement in regulatory settings. Priority actions in these areas are needed to generate confidence in the regulatory use of the available OECD TGs designed as alternatives, including the identification of applicability domains and guidance/decision-trees for integrating different lines of evidence. Case studies under the OECD Integrated Approaches to Testing and Assessment (IATA) program could facilitate further global regulatory uptake. Replacement of fish chronic toxicity testing is more complex and less advanced. A dual approach was suggested, in the short-term, exploring lines of evidence that, alone or in combination, could identify when further fish testing is not needed. The second phase should focus on the application of the 3Rs in those cases where chronic information is needed. Another area of increasing interest is endocrine disruption. It represents a challenge but also an opportunity for implementing mechanistic non-animal methods, in addition to integrate human and ESA. This requires a step-by-step approach with continuous dialogue to ensure that technical developments will address regulatory needs. The review also agreed that the long-term aspiration is a new ESA paradigm, mapping the protection goals and providing connectivity between the chemical legislation and environmental protection policies.
Collapse
Affiliation(s)
- Jose V Tarazona
- Spanish National Environmental Health Centre, Instituto de Salud Carlos III, Madrid, Spain.
| | - Ana Fernandez-Agudo
- Spanish National Environmental Health Centre, Instituto de Salud Carlos III, Madrid, Spain
| | - Ondrej Adamovsky
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Marta Baccaro
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Natalie Burden
- NC3Rs, National Centre for the Replacement, Refinement, and Reduction of Animals in Research, United Kingdom
| | - Bruno Campos
- Safety and Environmental Safety Assessment, Unilever, Colworth Science Park, Sharnbrook, United Kingdom
| | - Björn Hidding
- BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | | | - David John
- AnimalhealthEurope, 9-13 Rue d'Idalie, Box 5, Brussels, Belgium
| | | | - Adam Lillicrap
- Norwegian Institute for Water Research, Økernveien 94, Oslo, Norway
| | | | - Samuel K Maynard
- AstraZeneca, Global Sustainability, Eastbrook House, Cambridge, United Kingdom
| | - Amelie Ott
- International Collaboration on Cosmetics Safety (ICCS), New York, USA
| | - Veronique Poulsen
- L'Oréal Research and Innovation, Environmental Safety Department, Clichy, France
| | - Mike Rasenberg
- European Chemicals Agency, P.O. Box 400, FI-00121, Helsinki, Finland
| | | | - Marta Sobanska
- European Chemicals Agency, P.O. Box 400, FI-00121, Helsinki, Finland
| | - James R Wheeler
- Corteva Agriscience, Zuid-Oostsingel 24D, Bergen op Zoom, 4611 BB, the Netherlands
| |
Collapse
|
2
|
Marumure J, Simbanegavi TT, Makuvara Z, Karidzagundi R, Alufasi R, Goredema M, Gufe C, Chaukura N, Halabowski D, Gwenzi W. Emerging organic contaminants in drinking water systems: Human intake, emerging health risks, and future research directions. CHEMOSPHERE 2024; 356:141699. [PMID: 38554874 DOI: 10.1016/j.chemosphere.2024.141699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Few earlier reviews on emerging organic contaminants (EOCs) in drinking water systems (DWS) focused on their detection, behaviour, removal and fate. Reviews on multiple exposure pathways, human intake estimates, and health risks including toxicokinetics, and toxicodynamics of EOCs in DWS are scarce. This review presents recent advances in human intake and health risks of EOCs in DWS. First, an overview of the evidence showing that DWS harbours a wide range of EOCs is presented. Multiple human exposure to EOCs occurs via ingestion of drinking water and beverages, inhalation and dermal pathways are discussed. A potential novel exposure may occur via the intravenous route in dialysis fluids. Analysis of global data on pharmaceutical pollution in rivers showed that the cumulative concentrations (μg L-1) of pharmaceuticals (mean ± standard error of the mean) were statistically more than two times significantly higher (p = 0.011) in South America (11.68 ± 5.29), Asia (9.97 ± 3.33), Africa (9.48 ± 2.81) and East Europe (8.09 ± 4.35) than in high-income regions (2.58 ± 0.48). Maximum cumulative concentrations of pharmaceuticals (μg L-1) decreased in the order; Asia (70.7) had the highest value followed by South America (68.8), Africa (51.3), East Europe (32.0) and high-income regions (17.1) had the least concentration. The corresponding human intake via ingestion of untreated river water was also significantly higher in low- and middle-income regions than in their high-income counterparts. For each region, the daily intake of pharmaceuticals was highest in infants, followed by children and then adults. A critique of the human health hazards, including toxicokinetics and toxicodynamics of EOCs is presented. Emerging health hazards of EOCs in DWS include; (1) long-term latent and intergenerational effects, (2) the interactive health effects of EOC mixtures, (3) the challenges of multifinality and equifinality, and (4) the Developmental Origins of Health and Disease hypothesis. Finally, research needs on human health hazards of EOCs in DWS are presented.
Collapse
Affiliation(s)
- Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, P. O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Rangarirayi Karidzagundi
- Materials Development Unit, Zimbabwe Open University, P.O. Box MP1119 Mount Pleasant, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Marvelous Goredema
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, Box CY55, 18A Borrowdale Road, Harare, Zimbabwe
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| | - Willis Gwenzi
- Currently: Biosystems and Environmental Engineering Research Group, 380, New Adylin, Westgate, Harare, Zimbabwe; Formerly: Alexander von Humboldt Fellow & Guest/Visiting Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213, Witzenhausen, Germany; Formerly: Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| |
Collapse
|
3
|
Langan LM, Paparella M, Burden N, Constantine L, Margiotta-Casaluci L, Miller TH, Moe SJ, Owen SF, Schaffert A, Sikanen T. Big Question to Developing Solutions: A Decade of Progress in the Development of Aquatic New Approach Methodologies from 2012 to 2022. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:559-574. [PMID: 36722131 PMCID: PMC10390655 DOI: 10.1002/etc.5578] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In 2012, 20 key questions related to hazard and exposure assessment and environmental and health risks of pharmaceuticals and personal care products in the natural environment were identified. A decade later, this article examines the current level of knowledge around one of the lowest-ranking questions at that time, number 19: "Can nonanimal testing methods be developed that will provide equivalent or better hazard data compared with current in vivo methods?" The inclusion of alternative methods that replace, reduce, or refine animal testing within the regulatory context of risk and hazard assessment of chemicals generally faces many hurdles, although this varies both by organism (human-centric vs. other), sector, and geographical region or country. Focusing on the past 10 years, only works that might reasonably be considered to contribute to advancements in the field of aquatic environmental risk assessment are highlighted. Particular attention is paid to methods of contemporary interest and importance, representing progress in (1) the development of methods which provide equivalent or better data compared with current in vivo methods such as bioaccumulation, (2) weight of evidence, or (3) -omic-based applications. Evolution and convergence of these risk assessment areas offer the basis for fundamental frameshifts in how data are collated and used for the protection of taxa across the breadth of the aquatic environment. Looking to the future, we are at a tipping point, with a need for a global and inclusive approach to establish consensus. Bringing together these methods (both new and old) for regulatory assessment and decision-making will require a concerted effort and orchestration. Environ Toxicol Chem 2024;43:559-574. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Laura M Langan
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798, USA
| | - Martin Paparella
- Department of Medical Biochemistry, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Natalie Burden
- National Centre for the 3Rs (NC3Rs), Gibbs Building, 215 Euston Road, London NW1 2BE, UK
| | | | - Luigi Margiotta-Casaluci
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NQ, UK
| | - Thomas H. Miller
- Centre for Pollution Research & Policy, Environmental Sciences, Brunel University London, London, UK
| | - S. Jannicke Moe
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Stewart F. Owen
- AstraZeneca, Global Sustainability, Macclesfield, Cheshire SK10 2NA, UK
| | - Alexandra Schaffert
- Department of Medical Biochemistry, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Tiina Sikanen
- Faculty of Pharmacy and Helsinki Institute of Sustainability Science, University of Helsinki, Yliopistonkatu 3, Helsinki, 00100, Finland
| |
Collapse
|
4
|
Reale E, Zare Jeddi M, Paini A, Connolly A, Duca R, Cubadda F, Benfenati E, Bessems J, S Galea K, Dirven H, Santonen T, M Koch H, Jones K, Sams C, Viegas S, Kyriaki M, Campisi L, David A, Antignac JP, B Hopf N. Human biomonitoring and toxicokinetics as key building blocks for next generation risk assessment. ENVIRONMENT INTERNATIONAL 2024; 184:108474. [PMID: 38350256 DOI: 10.1016/j.envint.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Human health risk assessment is historically built upon animal testing, often following Organisation for Economic Co-operation and Development (OECD) test guidelines and exposure assessments. Using combinations of human relevant in vitro models, chemical analysis and computational (in silico) approaches bring advantages compared to animal studies. These include a greater focus on the human species and on molecular mechanisms and kinetics, identification of Adverse Outcome Pathways and downstream Key Events as well as the possibility of addressing susceptible populations and additional endpoints. Much of the advancement and progress made in the Next Generation Risk Assessment (NGRA) have been primarily focused on new approach methodologies (NAMs) and physiologically based kinetic (PBK) modelling without incorporating human biomonitoring (HBM). The integration of toxicokinetics (TK) and PBK modelling is an essential component of NGRA. PBK models are essential for describing in quantitative terms the TK processes with a focus on the effective dose at the expected target site. Furthermore, the need for PBK models is amplified by the increasing scientific and regulatory interest in aggregate and cumulative exposure as well as interactions of chemicals in mixtures. Since incorporating HBM data strengthens approaches and reduces uncertainties in risk assessment, here we elaborate on the integrated use of TK, PBK modelling and HBM in chemical risk assessment highlighting opportunities as well as challenges and limitations. Examples are provided where HBM and TK/PBK modelling can be used in both exposure assessment and hazard characterization shifting from external exposure and animal dose/response assays to animal-free, internal exposure-based NGRA.
Collapse
Affiliation(s)
- Elena Reale
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), the Netherlands
| | | | - Alison Connolly
- UCD Centre for Safety & Health at Work, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, D04 V1W8, Dublin, Ireland for Climate and Air Pollution Studies, Physics, School of Natural Science and the Ryan Institute, National University of Ireland, University Road, Galway H91 CF50, Ireland
| | - Radu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire national de santé (LNS), 1, Rue Louis Rech, 3555 Dudelange, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Francesco Cubadda
- Istituto Superiore di Sanità - National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Jos Bessems
- VITO HEALTH, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK
| | - Hubert Dirven
- Department of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tiina Santonen
- Finnish Institute of Occupational Health (FIOH), P.O. Box 40, FI-00032 Työterveyslaitos, Finland
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Kate Jones
- HSE - Health and Safety Executive, Harpur Hill, Buxton SK17 9JN, UK
| | - Craig Sams
- HSE - Health and Safety Executive, Harpur Hill, Buxton SK17 9JN, UK
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Machera Kyriaki
- Benaki Phytopathological Institute, 8, Stephanou Delta Street, 14561 Kifissia, Athens, Greece
| | - Luca Campisi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Flashpoint srl, Via Norvegia 56, 56021 Cascina (PI), Italy
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | | | - Nancy B Hopf
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland.
| |
Collapse
|
5
|
Ni M, Deepika D, Li X, Xiong W, Zhang L, Chen J, Kumar V. IVIVE-PBPK based new approach methodology for addressing early life toxicity induced by Bisphenol A. ENVIRONMENTAL RESEARCH 2024; 240:117343. [PMID: 37858691 DOI: 10.1016/j.envres.2023.117343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/01/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Bisphenol A (BPA) is a known endocrine disruptor mimicking natural estrogens with the potential to affect human health, especially during prenatal and postnatal exposure at or below current acceptable daily intake levels. Different adverse effects of BPA are still under investigation, and multiple mechanisms of action remain unexplored. This may be one of the reasons for the continuously changing tolerable daily intake (TDI) of BPA with the emergence of new adverse health effects over time. In addition, translational modelling through in vitro-in vivo extrapolation (IVIVE) can act as prerequisite bridge for translating in-vitro finding into human risk assessment. The objective of this study was to conduct in-vitro experiments and utilize an IVIVE-pregnancy physiologically based pharmacokinetic (P-PBPK) modeling to investigate developmental neurotoxicity and embryotoxicity in humans. The data obtained from human embryonic stem cells-based assays (study conducted between October 2020-2021) were used for the IVIVE-P-PBPK models to obtain the human equivalent doses (HEDs) which were further extrapolated to reference doses (RfDs). The results showed that simulated mean RfDs (μg/kg/day) derived from the HSD3B1 and NFATC2 gene of embryotoxicity and neurodevelopmental toxicity tests, respectively, were 4.94 and 5.18. The simulated RfDs were close to the temporary-tolerable daily intake (t-TDI) recommended by European Food Safety Authority (EFSA) in 2015 (t-TDI: 4 μg/kg·bw) and higher than the TDI of 2023 (0.2 ng/kg·bw). In conclusion, in-vitro toxicogenomics dose-response data combined with PBPK modeling can become a promising alternative new approach methodology (NAM) to support decision-making in chemical risk assessment. Based on the simulated RfDs derived from this NAM, the t-TDI set by EFSA in 2015 may be considered a safe exposure limit for mothers and fetuses at the current BPA intake levels in Chinese mothers. This study provided an animal-free new strategy for NAMs based risk assessment by combining toxicogenomics and computational toxicology.
Collapse
Affiliation(s)
- Mengmei Ni
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Deepika Deepika
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Reus, Spain
| | - Xiaomeng Li
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wei Xiong
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lishi Zhang
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jinyao Chen
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Reus, Spain; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
6
|
Reddy N, Lynch B, Gujral J, Karnik K. Alternatives to animal testing in toxicity testing: Current status and future perspectives in food safety assessments. Food Chem Toxicol 2023; 179:113944. [PMID: 37453475 DOI: 10.1016/j.fct.2023.113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The development of alternative methods to animal testing has gained great momentum since Russel and Burch introduced the "3Rs" concept of Reduction, Refinement, and Replacement of animals in safety testing in 1959. Several alternatives to animal testing have since been introduced, including but not limited to in vitro and in chemico test systems, in silico models, and computational models (e.g., [quantitative] structural activity relationship models, high-throughput screens, organ-on-chip models, and genomics or bioinformatics) to predict chemical toxicity. Furthermore, several agencies have developed robust integrated testing strategies to determine chemical toxicity. The cosmetics sector is pioneering the adoption of alternative methodologies for safety evaluations, and other sectors are aiming to completely abandon animal testing by 2035. However, beyond the use of in vitro genetic testing, agencies regulating the food industry have been slow to implement alternative methodologies into safety evaluations compared with other sectors; setting health-based guidance values for food ingredients requires data from systemic toxicity, and to date, no standalone validated alternative models to assess systemic toxicity exist. The abovementioned models show promise for assessing systemic toxicity with further research. In this paper, we review the current alternatives and their applicability and limitations in food safety evaluations.
Collapse
Affiliation(s)
- Navya Reddy
- Intertek Health Sciences Inc., 2233 Argentia Rd, Suite 201, Mississauga, ON, L5N 2X7, Canada
| | - Barry Lynch
- Intertek Health Sciences Inc., 2233 Argentia Rd, Suite 201, Mississauga, ON, L5N 2X7, Canada.
| | - Jaspreet Gujral
- Tate & Lyle, 5450 Prairie Stone Pkwy, Hoffman Estates, IL, 60192, USA
| | - Kavita Karnik
- Tate & Lyle PLC, 5 Marble Arch, London, W1H 7EJ, United Kingdom
| |
Collapse
|
7
|
Meek B, Bridges JW, Fasey A, Sauer UG. Evidential requirements for the regulatory hazard and risk assessment of respiratory sensitisers: methyl methacrylate as an example. Arch Toxicol 2023; 97:931-946. [PMID: 36797432 PMCID: PMC10025211 DOI: 10.1007/s00204-023-03448-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023]
Abstract
This review addresses the need for a framework to increase the consistency, objectivity and transparency in the regulatory assessment of respiratory sensitisers and associated uncertainties. Principal issues are considered and illustrated through a case study (with methyl methacrylate). In the absence of test methods validated for regulatory use, formal documentation of the weight-of-evidence for hazard classification both at the level of integration of individual studies within lines of evidence and across a broad range of data streams was agreed to be critical for such a framework. An integrated approach is proposed to include not only occupational studies and clinical evidence for the regulatory assessment of respiratory sensitisers, but also information on structure and physical and chemical factors, predictive approaches such as structure activity analysis and in vitro and in vivo mechanistic and toxicokinetic findings. A weight-of-evidence protocol, incorporating integration of these sources of data based on predefined considerations, would contribute to transparency and consistency in the outcome of the assessment. In those cases where a decision may need to be taken on the basis of occupational findings alone, conclusions should be based on transparent weighting of relevant data on the observed prevalence of occupational asthma in various studies taking into account all relevant information including the range and nature of workplace exposures to the substance of interest, co-exposure to other chemicals and study quality.
Collapse
Affiliation(s)
| | - James W Bridges
- Emeritus Professor, University of Surrey, Guildford, Surrey, UK
| | | | - Ursula G Sauer
- Scientific Consultancy-Animal Welfare, Hallstattfeld 16, 85579, Neubiberg, Germany.
| |
Collapse
|
8
|
Wiśniowska B, Linke S, Polak S, Bielecka Z, Luch A, Pirow R. Physiologically based modelling of dermal absorption and kinetics of consumer-relevant chemicals: A case study with exposure to bisphenol A from thermal paper. Toxicol Appl Pharmacol 2023; 459:116357. [PMID: 36572228 DOI: 10.1016/j.taap.2022.116357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Bisphenol A (BPA) is one of the best studied industrial chemicals in terms of exposure, toxicity, and toxicokinetics. This renders it an ideal candidate to exploit the recent advancements in physiologically based pharmacokinetic (PBPK) modelling to support risk assessment of BPA specifically, and of other consumer-relevant hazardous chemicals in general. Using the exposure from thermal paper as a case scenario, this study employed the multi-phase multi-layer mechanistic dermal absorption (MPML MechDermA) model available in the Simcyp® Simulator to simulate the dermal toxicokinetics of BPA at local and systemic levels. Sensitivity analysis helped to identify physicochemical and physiological factors influencing the systemic exposure to BPA. The iterative modelling process was as follows: (i) development of compound files for BPA and its conjugates, (ii) setting-up of a PBPK model for intravenous administration, (iii) extension for oral administration, and (iv) extension for exposure via skin (i.e., hand) contact. A toxicokinetic study involving hand contact to BPA-containing paper was used for model refinement. Cumulative urinary excretion of total BPA had to be employed for dose reconstruction. PBPK model performance was verified using the observed serum BPA concentrations. The predicted distribution across the skin compartments revealed a depot of BPA in the stratum corneum (SC). These findings shed light on the role of the SC to act as temporary reservoir for lipophilic chemicals prior to systemic absorption, which inter alia is relevant for the interpretation of human biomonitoring data and for establishing the relationship between external and internal measures of exposure.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland.
| | - Susanne Linke
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Sebastian Polak
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland; Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK.
| | - Zofia Bielecka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland; Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK.
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Ralph Pirow
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| |
Collapse
|
9
|
Deepika D, Sharma RP, Schuhmacher M, Sakhi AK, Thomsen C, Chatzi L, Vafeiadi M, Quentin J, Slama R, Grazuleviciene R, Andrušaitytė S, Waiblinger D, Wright J, Yang TC, Urquiza J, Vrijheid M, Casas M, Domingo JL, Kumar V. Unravelling sex-specific BPA toxicokinetics in children using a pediatric PBPK model. ENVIRONMENTAL RESEARCH 2022; 215:114074. [PMID: 35995217 DOI: 10.1016/j.envres.2022.114074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is a widely known endocrine disruptor (ED) found in many children's products such as toys, feeding utensils, and teething rings. Recent epidemiology association studies have shown postnatal BPA exposure resulted in developing various diseases such as diabetes, obesity, and neurodegeneration, etc., later in their lives. However, little is known about its sex-specific metabolism and consequently internal exposure. The aim of this study was to develop a sex-specific pediatric physiologically based pharmacokinetic model (PBPK) for BPA to compare their toxicokinetic differences. First, the published adult PBPK model was re-validated, and then this model was extended by interpolation to incorporate pediatric sex specific physiological and biochemical parameters. We used both the classical body weight and ontogeny-based scaling approach to interpolate the metabolic process. Then, the pharmacokinetic attributes of the models using the two-scaling approach mentioned above were compared with adult model. Further, a sex-specific PBPK model with an ontogeny scaling approach was preferred to evaluate the pharmacokinetic differences. Moreover, this model was used to reconstruct the BPA exposure from two cohorts (Helix and PBAT Cohort) from 7 EU countries. The half-life of BPA was found to be almost the same in boys and girls at the same exposure levels. Our model estimated BPA children's exposure to be about 1500 times higher than the tolerable daily intake (TDI) recently set by European Food Safety Authority (EFSA) i.e., 0.04 ng/kg BW/day. The model demonstrated feasibility of extending the adult PBPK to sex-specific pediatric, thus investigate a gender-specific health risk assessment.
Collapse
Affiliation(s)
- Deepika Deepika
- Environmental Engineering Laboratory, Departament D' Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Raju Prasad Sharma
- Environmental Engineering Laboratory, Departament D' Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament D' Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | | | | | - Leda Chatzi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Joane Quentin
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, CNRS, Grenoble, France
| | - Remy Slama
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, CNRS, Grenoble, France
| | | | - Sandra Andrušaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Dagmar Waiblinger
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Jose Urquiza
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira I Virgili, Reus, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament D' Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain.
| |
Collapse
|
10
|
Kumar S, Deepika D, Kumar V. Pharmacophore Modeling Using Machine Learning for Screening the Blood-Brain Barrier Permeation of Xenobiotics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13471. [PMID: 36294053 PMCID: PMC9602466 DOI: 10.3390/ijerph192013471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Daily exposure to xenobiotics affects human health, especially the nervous system, causing neurodegenerative diseases. The nervous system is protected by tight junctions present at the blood-brain barrier (BBB), but only molecules with desirable physicochemical properties can permeate it. This is why permeation is a decisive step in avoiding unwanted brain toxicity and also in developing neuronal drugs. In silico methods are being implemented as an initial step to reduce animal testing and the time complexity of the in vitro screening process. However, most in silico methods are ligand based, and consider only the physiochemical properties of ligands. However, these ligand-based methods have their own limitations and sometimes fail to predict the BBB permeation of xenobiotics. The objective of this work was to investigate the influence of the pharmacophoric features of protein-ligand interactions on BBB permeation. For these purposes, receptor-based pharmacophore and ligand-based pharmacophore fingerprints were developed using docking and Rdkit, respectively. Then, these fingerprints were trained on classical machine-learning models and compared with classical fingerprints. Among the tested footprints, the ligand-based pharmacophore fingerprint achieved slightly better (77% accuracy) performance compared to the classical fingerprint method. In contrast, receptor-based pharmacophores did not lead to much improvement compared to classical descriptors. The performance can be further improved by considering efflux proteins such as BCRP (breast cancer resistance protein), as well as P-gp (P-glycoprotein). However, the limited data availability for other proteins regarding their pharmacophoric interactions is a bottleneck to its improvement. Nonetheless, the developed models and exploratory analysis provide a path to extend the same framework for environmental chemicals, which, like drugs, are also xenobiotics. This research can help in human health risk assessment by a priori screening for neurotoxicity-causing agents.
Collapse
Affiliation(s)
- Saurav Kumar
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Deepika Deepika
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, 43201 Reus, Spain
| |
Collapse
|
11
|
Sweeney LM. Case study on the impact of the source of metabolism parameters in next generation physiologically based pharmacokinetic models: Implications for occupational exposures to trimethylbenzenes. Regul Toxicol Pharmacol 2022; 134:105238. [PMID: 35931234 DOI: 10.1016/j.yrtph.2022.105238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models are a means of making important linkages between exposure assessment and in vitro toxicity. A key constraint on rapid application of PBPK models in risk assessment is traditional reliance on substance-specific in vivo toxicokinetic data to evaluate model quality. Bounding conditions, in silico, in vitro, and chemical read-across approaches have been proposed as alternative sources for metabolic clearance estimates. A case study to test consistency of predictive ability across these approaches was conducted using trimethylbenzenes (TMB) as prototype chemicals. Substantial concordance was found among TMB isomers with respect to accuracy (or inaccuracy) of approaches to estimating metabolism; for example, the bounding conditions never reproduced the human in vivo toxicokinetic data within two-fold. Using only approaches that gave acceptable prediction of in vivo toxicokinetics for the source compound (1,2,4-TMB) substantially narrowed the range of plausible internal doses for a given external dose for occupational, emergency response, and environmental/community health risk assessment scenarios for TMB isomers. Thus, risk assessments developed using the target compound models with a constrained subset of metabolism estimates (determined for source chemical models) can be used with greater confidence that internal dosimetry will be estimated with accuracy sufficient for the purpose at hand.
Collapse
Affiliation(s)
- Lisa M Sweeney
- UES, Inc, 4401 Dayton Xenia Road, Dayton, OH, 45432, USA(contractor assigned to the U.S. Air Force Research Laboratory 711th Human Performance Wing, Wright Patterson AFB, OH USA).
| |
Collapse
|
12
|
Nakagawa S, Hayashi A, Nukada Y, Yamane M. Comparison of toxicological effects and exposure levels between triclosan and its structurally similar chemicals using in vitro tests for read-across case study. Regul Toxicol Pharmacol 2022; 132:105181. [PMID: 35526779 DOI: 10.1016/j.yrtph.2022.105181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022]
Abstract
Read-across based on structural and biological similarities is expected to be a promising alternative method for assessing systemic toxicity. A concrete strategy for quantitative chemical risk assessment would be to stack read-across case studies and extract key considerations from them. Thus, we developed a read-across case study by comparing the toxicological effects based on adverse outcome pathways and exposure levels of different structurally similar chemicals for a target organ. In this study, we selected the hepatotoxicity of triclosan and its structurally similar chemicals including diclosan and 1-chloro-3-(4-chlorophenoxy)benzene. The results of in vitro toxicogenomics showed that disorders of cholesterol synthesis were commonly detected with both triclosan and diclosan. The decrease in hepatocellular cholesterol levels was similar in the cells treated with triclosan and diclosan. Furthermore, the exposure levels of triclosan and diclosan for the liver were similar. Collectively, these results suggest that triclosan and diclosan show similar toxicological effects and severity of hepatotoxicity. Considering the existing repeated dose toxicity data, our prediction results are reasonable regarding the toxicological effect and its severity. Thus, the present study demonstrated the usability of comparing toxicological effects and exposure levels using read-across for quantitative chemical risk assessment.
Collapse
Affiliation(s)
- Shota Nakagawa
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun Tochigi, 321-3497, Japan.
| | - Akane Hayashi
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun Tochigi, 321-3497, Japan
| | - Yuko Nukada
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun Tochigi, 321-3497, Japan
| | - Masayuki Yamane
- Kao Corporation, Safety Science Research, 2606, Akabane, Ichikai-Machi, Haga-Gun Tochigi, 321-3497, Japan
| |
Collapse
|
13
|
Alexander-White C, Bury D, Cronin M, Dent M, Hack E, Hewitt NJ, Kenna G, Naciff J, Ouedraogo G, Schepky A, Mahony C, Europe C. A 10-step framework for use of read-across (RAX) in next generation risk assessment (NGRA) for cosmetics safety assessment. Regul Toxicol Pharmacol 2022; 129:105094. [PMID: 34990780 DOI: 10.1016/j.yrtph.2021.105094] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/12/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
This paper presents a 10-step read-across (RAX) framework for use in cases where a threshold of toxicological concern (TTC) approach to cosmetics safety assessment is not possible. RAX builds on established approaches that have existed for more than two decades using chemical properties and in silico toxicology predictions, by further substantiating hypotheses on toxicological similarity of substances, and integrating new approach methodologies (NAM) in the biological and kinetic domains. NAM include new types of data on biological observations from, for example, in vitro assays, toxicogenomics, metabolomics, receptor binding screens and uses physiologically-based kinetic (PBK) modelling to inform about systemic exposure. NAM data can help to substantiate a mode/mechanism of action (MoA), and if similar chemicals can be shown to work by a similar MoA, a next generation risk assessment (NGRA) may be performed with acceptable confidence for a data-poor target substance with no or inadequate safety data, based on RAX approaches using data-rich analogue(s), and taking account of potency or kinetic/dynamic differences.
Collapse
Affiliation(s)
- Camilla Alexander-White
- MKTox & Co Ltd, 36 Fairford Crescent, Downhead Park, Milton Keynes, Buckinghamshire, MK15 9AQ, UK.
| | - Dagmar Bury
- L'Oreal Research & Innovation, 9 Rue Pierre Dreyfus, 92110, Clichy, France
| | - Mark Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 AF, UK
| | - Matthew Dent
- Unilever, Safety & Environmental Assurance Centre, Colworth House, Sharnbrook, Bedfordshire, MK44 1ET, UK
| | - Eric Hack
- ScitoVation, Research Triangle Park, Durham, NC, USA
| | - Nicola J Hewitt
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160, Brussels, Belgium
| | - Gerry Kenna
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160, Brussels, Belgium
| | - Jorge Naciff
- The Procter & Gamble Company, Cincinnati, OH, 45040, USA
| | - Gladys Ouedraogo
- L'Oreal Research & Innovation, 1 Avenue Eugène Schueller, Aulnay sous bois, France
| | | | | | - Cosmetics Europe
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160, Brussels, Belgium.
| |
Collapse
|
14
|
Felter SP, Bhat VS, Botham PA, Bussard DA, Casey W, Hayes AW, Hilton GM, Magurany KA, Sauer UG, Ohanian EV. Assessing chemical carcinogenicity: hazard identification, classification, and risk assessment. Insight from a Toxicology Forum state-of-the-science workshop. Crit Rev Toxicol 2022; 51:653-694. [DOI: 10.1080/10408444.2021.2003295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - David A. Bussard
- U.S. Environmental Protection Agency, Office of the Science Advisor, Policy and Engagement, Washington, DC, USA
| | - Warren Casey
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - A. Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| | - Gina M. Hilton
- PETA Science Consortium International e.V., Stuttgart, Germany
| | | | | | - Edward V. Ohanian
- United States Environmental Protection Agency, Office of Water, Washington, DC, USA
| |
Collapse
|
15
|
Thompson CV, Firman JW, Goldsmith MR, Grulke CM, Tan YM, Paini A, Penson PE, Sayre RR, Webb S, Madden JC. A Systematic Review of Published Physiologically-based Kinetic Models and an Assessment of their Chemical Space Coverage. Altern Lab Anim 2021; 49:197-208. [PMID: 34836462 DOI: 10.1177/02611929211060264] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Across multiple sectors, including food, cosmetics and pharmaceutical industries, there is a need to predict the potential effects of xenobiotics. These effects are determined by the intrinsic ability of the substance, or its derivatives, to interact with the biological system, and its concentration-time profile at the target site. Physiologically-based kinetic (PBK) models can predict organ-level concentration-time profiles, however, the models are time and resource intensive to generate de novo. Read-across is an approach used to reduce or replace animal testing, wherein information from a data-rich chemical is used to make predictions for a data-poor chemical. The recent increase in published PBK models presents the opportunity to use a read-across approach for PBK modelling, that is, to use PBK model information from one chemical to inform the development or evaluation of a PBK model for a similar chemical. Essential to this process, is identifying the chemicals for which a PBK model already exists. Herein, the results of a systematic review of existing PBK models, compliant with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) format, are presented. Model information, including species, sex, life-stage, route of administration, software platform used and the availability of model equations, was captured for 7541 PBK models. Chemical information (identifiers and physico-chemical properties) has also been recorded for 1150 unique chemicals associated with these models. This PBK model data set has been made readily accessible, as a Microsoft Excel® spreadsheet, providing a valuable resource for those developing, using or evaluating PBK models in industry, academia and the regulatory sectors.
Collapse
Affiliation(s)
- Courtney V Thompson
- School of Pharmacy and Biomolecular Sciences, 4589Liverpool John Moores University, Liverpool, UK
| | - James W Firman
- School of Pharmacy and Biomolecular Sciences, 4589Liverpool John Moores University, Liverpool, UK
| | - Michael R Goldsmith
- Office of Research and Development, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, 427887US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Christopher M Grulke
- Office of Research and Development, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, 427887US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Yu-Mei Tan
- Office of Pesticide Programs, Health Effects Division, 138030US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Alicia Paini
- 99013European Commission Joint Research Centre (JRC), Ispra, Italy
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, 4589Liverpool John Moores University, Liverpool, UK
| | - Risa R Sayre
- Office of Research and Development, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, 427887US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Steven Webb
- Syngenta, Product Safety, Early Stage Research, 101825Jealott's Hill International Research Centre, Bracknell, UK
| | - Judith C Madden
- School of Pharmacy and Biomolecular Sciences, 4589Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
16
|
Tan YM, Barton HA, Boobis A, Brunner R, Clewell H, Cope R, Dawson J, Domoradzki J, Egeghy P, Gulati P, Ingle B, Kleinstreuer N, Lowe K, Lowit A, Mendez E, Miller D, Minucci J, Nguyen J, Paini A, Perron M, Phillips K, Qian H, Ramanarayanan T, Sewell F, Villanueva P, Wambaugh J, Embry M. Opportunities and challenges related to saturation of toxicokinetic processes: Implications for risk assessment. Regul Toxicol Pharmacol 2021; 127:105070. [PMID: 34718074 DOI: 10.1016/j.yrtph.2021.105070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023]
Abstract
Top dose selection for repeated dose animal studies has generally focused on identification of apical endpoints, use of the limit dose, or determination of a maximum tolerated dose (MTD). The intent is to optimize the ability of toxicity tests performed in a small number of animals to detect effects for hazard identification. An alternative approach, the kinetically derived maximum dose (KMD), has been proposed as a mechanism to integrate toxicokinetic (TK) data into the dose selection process. The approach refers to the dose above which the systemic exposures depart from being proportional to external doses. This non-linear external-internal dose relationship arises from saturation or limitation of TK process(es), such as absorption or metabolism. The importance of TK information is widely acknowledged when assessing human health risks arising from exposures to environmental chemicals, as TK determines the amount of chemical at potential sites of toxicological responses. However, there have been differing opinions and interpretations within the scientific and regulatory communities related to the validity and application of the KMD concept. A multi-stakeholder working group, led by the Health and Environmental Sciences Institute (HESI), was formed to provide an opportunity for impacted stakeholders to address commonly raised scientific and technical issues related to this topic and, more specifically, a weight of evidence approach is recommended to inform design and dose selection for repeated dose animal studies. Commonly raised challenges related to the use of TK data for dose selection are discussed, recommendations are provided, and illustrative case examples are provided to address these challenges or refute misconceptions.
Collapse
Affiliation(s)
- Yu-Mei Tan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Durham, NC, USA
| | | | | | - Rachel Brunner
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Durham, NC, USA
| | | | - Rhian Cope
- Australian Pesticides and Veterinary Medicines Authority, Sydney, NSW, Australia
| | - Jeffrey Dawson
- U.S. Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention, Washington, DC, USA
| | | | - Peter Egeghy
- U.S. Environmental Protection Agency, Office of Research & Development, Durham, NC, USA
| | - Pankaj Gulati
- Australian Pesticides and Veterinary Medicines Authority, Sydney, NSW, Australia
| | - Brandall Ingle
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Durham, NC, USA
| | - Nicole Kleinstreuer
- National Toxicology Program, Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, USA
| | - Kelly Lowe
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Anna Lowit
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Elizabeth Mendez
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - David Miller
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Jeffrey Minucci
- U.S. Environmental Protection Agency, Office of Research & Development, Durham, NC, USA
| | - James Nguyen
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Alicia Paini
- European Commission, Joint Research Centre, Ispra, Italy
| | - Monique Perron
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Katherine Phillips
- U.S. Environmental Protection Agency, Office of Research & Development, Durham, NC, USA
| | - Hua Qian
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, USA
| | | | - Fiona Sewell
- National Centre for the Replacement, Refinement, and Reduction of Animals in Research, London, UK
| | - Philip Villanueva
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - John Wambaugh
- U.S. Environmental Protection Agency, Office of Research & Development, Durham, NC, USA
| | - Michelle Embry
- Health and Environmental Sciences Institute, Washington DC, USA.
| |
Collapse
|
17
|
Assessment of the predictive capacity of a physiologically based kinetic model using a read-across approach. ACTA ACUST UNITED AC 2021; 18:100159. [PMID: 34027243 PMCID: PMC8130669 DOI: 10.1016/j.comtox.2021.100159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/26/2022]
Abstract
Potential regulatory application of PBK modelling information to assist read-across. Presents workflow to read across PBK model information from data-rich to data-poor chemicals. Describes appropriate analogue selection based on a set of specific criteria. Uses estragole and safrole as source chemicals for a target chemical - methyleugenol. Example of PBK model validation where in vivo kinetic data are lacking.
With current progress in science, there is growing interest in developing and applying Physiologically Based Kinetic (PBK) models in chemical risk assessment, as knowledge of internal exposure to chemicals is critical to understanding potential effects in vivo. In particular, a new generation of PBK models is being developed in which the model parameters are derived from in silico and in vitro methods. To increase the acceptance and use of these “Next Generation PBK models”, there is a need to demonstrate their validity. However, this is challenging in the case of data-poor chemicals that are lacking in kinetic data and for which predictive capacity cannot, therefore, be assessed. The aim of this work is to lay down the fundamental steps in using a read across framework to inform modellers and risk assessors on how to develop, or evaluate, PBK models for chemicals without in vivo kinetic data. The application of a PBK model that takes into account the absorption, distribution, metabolism and excretion characteristics of the chemical reduces the uncertainties in the biokinetics and biotransformation of the chemical of interest. A strategic flow-charting application, proposed herein, allows users to identify the minimum information to perform a read-across from a data-rich chemical to its data-poor analogue(s). The workflow analysis is illustrated by means of a real case study using the alkenylbenzene class of chemicals, showing the reliability and potential of this approach. It was demonstrated that a consistent quantitative relationship between model simulations could be achieved using models for estragole and safrole (source chemicals) when applied to methyleugenol (target chemical). When the PBK model code for the source chemicals was adapted to utilise input values relevant to the target chemical, simulation was consistent between the models. The resulting PBK model for methyleugenol was further evaluated by comparing the results to an existing, published model for methyleugenol, providing further evidence that the approach was successful. This can be considered as a “read-across” approach, enabling a valid PBK model to be derived to aid the assessment of a data poor chemical.
Collapse
|
18
|
Madden JC, Enoch SJ, Paini A, Cronin MTD. A Review of In Silico Tools as Alternatives to Animal Testing: Principles, Resources and Applications. Altern Lab Anim 2020; 48:146-172. [PMID: 33119417 DOI: 10.1177/0261192920965977] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Across the spectrum of industrial sectors, including pharmaceuticals, chemicals, personal care products, food additives and their associated regulatory agencies, there is a need to develop robust and reliable methods to reduce or replace animal testing. It is generally recognised that no single alternative method will be able to provide a one-to-one replacement for assays based on more complex toxicological endpoints. Hence, information from a combination of techniques is required. A greater understanding of the time and concentration-dependent mechanisms, underlying the interactions between chemicals and biological systems, and the sequence of events that can lead to apical effects, will help to move forward the science of reducing and replacing animal experiments. In silico modelling, in vitro assays, high-throughput screening, organ-on-a-chip technology, omics and mathematical biology, can provide complementary information to develop a complete picture of the potential response of an organism to a chemical stressor. Adverse outcome pathways (AOPs) and systems biology frameworks enable relevant information from diverse sources to be logically integrated. While individual researchers do not need to be experts across all disciplines, it is useful to have a fundamental understanding of what other areas of science have to offer, and how knowledge can be integrated with other disciplines. The purpose of this review is to provide those who are unfamiliar with predictive in silico tools, with a fundamental understanding of the underlying theory. Current applications, software, barriers to acceptance, new developments and the use of integrated approaches are all discussed, with additional resources being signposted for each of the topics.
Collapse
Affiliation(s)
- Judith C Madden
- School of Pharmacy and Biomolecular Sciences, 4589Liverpool John Moores University, Liverpool, UK
| | - Steven J Enoch
- School of Pharmacy and Biomolecular Sciences, 4589Liverpool John Moores University, Liverpool, UK
| | - Alicia Paini
- 99013European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, 4589Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
19
|
Deepika D, Sharma RP, Schuhmacher M, Kumar V. An integrative translational framework for chemical induced neurotoxicity – a systematic review. Crit Rev Toxicol 2020; 50:424-438. [DOI: 10.1080/10408444.2020.1763253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Deepika Deepika
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Raju Prasad Sharma
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
- IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain
| |
Collapse
|
20
|
Ball N, Madden J, Paini A, Mathea M, Palmer AD, Sperber S, Hartung T, van Ravenzwaay B. Key read across framework components and biology based improvements. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 853:503172. [DOI: 10.1016/j.mrgentox.2020.503172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
|
21
|
Jeong SH, Jang JH, Cho HY, Lee YB. Risk assessment for humans using physiologically based pharmacokinetic model of diethyl phthalate and its major metabolite, monoethyl phthalate. Arch Toxicol 2020; 94:2377-2400. [PMID: 32303804 DOI: 10.1007/s00204-020-02748-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/08/2020] [Indexed: 11/24/2022]
Abstract
Diethyl phthalate (DEP) belongs to phthalates with short alkyl chains. It is a substance frequently used to make various products. Thus, humans are widely exposed to DEP from the surrounding environment such as food, soil, air, and water. As previously reported in many studies, DEP is an endocrine disruptor with reproductive toxicity. Monoethyl phthalate (MEP), a major metabolite of DEP in vivo, is a biomarker for DEP exposure assessment. It is also an endocrine disruptor with reproductive toxicity, similar to DEP. However, toxicokinetic studies on both MEP and DEP have not been reported in detail yet. Therefore, the objective of this study was to evaluate and develop physiologically based pharmacokinetic (PBPK) model for both DEP and MEP in rats and extend this to human risk assessment based on human exposure. This study was conducted in vivo after intravenous or oral administration of DEP into female (2 mg/kg dose) and male (0.1-10 mg/kg dose) rats. Biological samples consisted of urine, plasma, and 11 different tissues. These samples were analyzed using UPLC-ESI-MS/MS method. For DEP, the tissue to plasma partition coefficient was the highest in the kidney, followed by that in the liver. For MEP, the tissue to plasma partition coefficient was the highest in the liver. It was less than unity in all other tissues. Plasma, urine, and fecal samples were also obtained after IV administration of MEP (10 mg/kg dose) to male rats. All results were reflected in a model developed in this study, including in vivo conversion from DEP to MEP. Predicted concentrations of DEP and MEP in rat urine, plasma, and tissue samples using the developed PBPK model fitted well with observed values. We then extrapolated the PBPK model in rats to a human PBPK model of DEP and MEP based on human physiological parameters. Reference dose of 0.63 mg/kg/day (or 0.18 mg/kg/day) for DEP and external doses of 0.246 μg/kg/day (pregnant), 0.193 μg/kg/day (fetus), 1.005-1.253 μg/kg/day (adults), 0.356-0.376 μg/kg/day (adolescents), and 0.595-0.603 μg/kg/day (children) for DEP for human risk assessment were estimated using Korean biomonitoring values. Our study provides valuable insight into human health risk assessment regarding DEP exposure.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea.
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
22
|
Felter SP, Boobis AR, Botham PA, Brousse A, Greim H, Hollnagel HM, Sauer UG. Hazard identification, classification, and risk assessment of carcinogens: too much or too little? - Report of an ECETOC workshop. Crit Rev Toxicol 2020; 50:72-95. [PMID: 32133908 DOI: 10.1080/10408444.2020.1727843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) organized a workshop "Hazard Identification, Classification and Risk Assessment of Carcinogens: Too Much or Too Little?" to explore the scientific limitations of the current binary carcinogenicity classification scheme that classifies substances as either carcinogenic or not. Classification is often based upon the rodent 2-year bioassay, which has scientific limitations and is not necessary to predict whether substances are likely human carcinogens. By contrast, tiered testing strategies founded on new approach methodologies (NAMs) followed by subchronic toxicity testing, as necessary, are useful to determine if a substance is likely carcinogenic, by which mode-of-action effects would occur and, for non-genotoxic carcinogens, the dose levels below which the key events leading to carcinogenicity are not affected. Importantly, the objective is not for NAMs to mimic high-dose effects recorded in vivo, as these are not relevant to human risk assessment. Carcinogenicity testing at the "maximum tolerated dose" does not reflect human exposure conditions, but causes major disturbances of homeostasis, which are very unlikely to occur at relevant human exposure levels. The evaluation of findings should consider biological relevance and not just statistical significance. Using this approach, safe exposures to non-genotoxic substances can be established.
Collapse
Affiliation(s)
| | | | | | - Alice Brousse
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), Brussels, Belgium
| | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| |
Collapse
|
23
|
Madden JC, Pawar G, Cronin MT, Webb S, Tan YM, Paini A. In silico resources to assist in the development and evaluation of physiologically-based kinetic models. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Paini A, Leonard J, Joossens E, Bessems J, Desalegn A, Dorne J, Gosling J, Heringa M, Klaric M, Kliment T, Kramer N, Loizou G, Louisse J, Lumen A, Madden J, Patterson E, Proença S, Punt A, Setzer R, Suciu N, Troutman J, Yoon M, Worth A, Tan Y. Next generation physiologically based kinetic (NG-PBK) models in support of regulatory decision making. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 9:61-72. [PMID: 31008414 PMCID: PMC6472623 DOI: 10.1016/j.comtox.2018.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
The fields of toxicology and chemical risk assessment seek to reduce, and eventually replace, the use of animals for the prediction of toxicity in humans. In this context, physiologically based kinetic (PBK) modelling based on in vitro and in silico kinetic data has the potential to a play significant role in reducing animal testing, by providing a methodology capable of incorporating in vitro human data to facilitate the development of in vitro to in vivo extrapolation of hazard information. In the present article, we discuss the challenges in: 1) applying PBK modelling to support regulatory decision making under the toxicology and risk-assessment paradigm shift towards animal replacement; 2) constructing PBK models without in vivo animal kinetic data, while relying solely on in vitro or in silico methods for model parameterization; and 3) assessing the validity and credibility of PBK models built largely using non-animal data. The strengths, uncertainties, and limitations of PBK models developed using in vitro or in silico data are discussed in an effort to establish a higher degree of confidence in the application of such models in a regulatory context. The article summarises the outcome of an expert workshop hosted by the European Commission Joint Research Centre (EC-JRC) - European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), on "Physiologically-Based Kinetic modelling in risk assessment - reaching a whole new level in regulatory decision-making" held in Ispra, Italy, in November 2016, along with results from an international survey conducted in 2017 and recently reported activities occurring within the PBK modelling field. The discussions presented herein highlight the potential applications of next generation (NG)-PBK modelling, based on new data streams.
Collapse
Affiliation(s)
- A. Paini
- European Commission Joint Research Centre, Ispra, Italy
| | - J.A. Leonard
- Oak Ridge Institute for Science and Education, 100 ORAU Way, Oak Ridge, TN 37830, USA
| | - E. Joossens
- European Commission Joint Research Centre, Ispra, Italy
| | - J.G.M. Bessems
- European Commission Joint Research Centre, Ispra, Italy
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - A. Desalegn
- European Commission Joint Research Centre, Ispra, Italy
| | - J.L. Dorne
- European Food Safety Authority, 1a, Via Carlo Magno, 1A, 43126 Parma PR, Italy
| | - J.P. Gosling
- School of Mathematics, University of Leeds, Leeds, UK
| | - M.B. Heringa
- RIVM - The National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - T. Kliment
- European Commission Joint Research Centre, Ispra, Italy
| | - N.I. Kramer
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands
| | - G. Loizou
- Health and Safety Executive, Buxton, UK
| | - J. Louisse
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
- RIKILT Wageningen University and Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - A. Lumen
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - J.C. Madden
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - E.A. Patterson
- School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
| | - S. Proença
- European Commission Joint Research Centre, Ispra, Italy
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands
| | - A. Punt
- RIKILT Wageningen University and Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - R.W. Setzer
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, 109 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - N. Suciu
- DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - J. Troutman
- Central Product Safety, The Procter & Gamble Company, Cincinnati, OH, USA
| | - M. Yoon
- ScitoVation, 6 Davis Drive, PO Box 110566, Research Triangle Park, NC 27709, USA
- ToxStrategies, Research Triangle Park Office, 1249 Kildaire Farm Road 134, Cary, NC 27511, USA
| | - A. Worth
- European Commission Joint Research Centre, Ispra, Italy
| | - Y.M. Tan
- School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
| |
Collapse
|