1
|
Thomas RK, Penfold J. Biosurfactant/surfactant mixing properties at the air-water interface: comparing rhamnolipids and sophorolipids mixed with the anionic surfactant sodium dodecyl benzene sulfonate. SOFT MATTER 2025; 21:3534-3546. [PMID: 40207449 DOI: 10.1039/d5sm00147a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
There is an increasing interest in the use of biosurfactants in the development of more biocompatible and biosustainable surfactant-based products. To optimise performance and mitigate production costs, biosurfactants are commonly mixed with different synthetic surfactants. Understanding in detail their mixing properties at interfaces and in solution is key to the development of optimal formulations. Reported here is a detailed thermodynamic analysis, using the latest developments in the pseudo phase approximation, PPA, of the mixing behaviour at the air-water interface of two glycolipid biosurfactants, rhamnolipids, RL, containing the mono and di-rhamnose isomers R1 and R2, and the sophorolipids, SL, containing the lactonic and acidic isomers LS and AS, with the anionic surfactant sodium dodecyl benzene sulfonate, LAS. The analysis uses the previously reported adsorption data, from neutron reflectivity measurements, NR, for the associated binary and ternary mixtures. The different rhamnolipid and sophorolipid biosurfactant structures and their relative surface activities have a profound effect on their mixing properties at the air-water interface with the anionic surfactant LAS, due predominantly to the steric constraints of the different molecular structures. This results in different synergistic excess free energies of mixing and different optimal compositions.
Collapse
Affiliation(s)
- R K Thomas
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| | - J Penfold
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Didcot, UK
| |
Collapse
|
2
|
Wei Z, Zhang F, Zhang Q, Cai Z, He L, Du G. N-Heterocyclic carbene-catalyzed SuFEx reactions of fluoroalkylated secondary benzylic alcohols. Org Biomol Chem 2025; 23:3465-3469. [PMID: 40091808 DOI: 10.1039/d5ob00113g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
An organocatalytic sulfur(VI)-fluoride exchange (SuFEx) reaction of secondary benzylic alcohols is reported. Under the catalysis of 10 mol% NHC, trifluoromethyl, difluoromethyl, bromodifluoromethyl, iododifluoromethyl, and pentafluoroethyl substituted secondary benzylic alcohols reacted with aryl sulfonyl fluorides or fluorosulfates to produce the corresponding sulfonates and sulfates in 62-99% yields. In these reactions, 4 Å molecular sieves were used as highly efficient HF scavengers, avoiding the use of stoichiometric amounts of silicon reagents and excess amounts of bases.
Collapse
Affiliation(s)
- Zhihang Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Fang Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Qichao Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Lin He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Guangfen Du
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| |
Collapse
|
3
|
Kobayashi T, Kotsi K, Dong T, McRobbie I, Moriarty A, Angeli P, Striolo A. The solvation of Na + ions by ethoxylate moieties enhances adsorption of sulfonate surfactants at the air-water interface. J Colloid Interface Sci 2025; 682:924-933. [PMID: 39657414 DOI: 10.1016/j.jcis.2024.11.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
HYPOTHESIS Experiments show pronounced synergy in the reduction of surface tension when the nonionic surfactant Poly(oxy-1,2-ethanediyl), .alpha.-tris(1-phenylethyl)phenyl-.omega.-hydroxy- (Ethoxylated tristyrylphenol, EOT) is mixed with the anionic surfactant Sodium 4-dodecylbenzenesulfonate (NaDDBS). We hypothesize that the synergism is due to counterion (cation) effects. This would be unusual as one of the surfactants is nonionic. To test this hypothesis, the molecular mechanisms responsible need to be probed using experiments and simulations. APPROACH The interfacial properties of mixtures comprising EOT and NaDDBS are investigated using equilibrium molecular dynamics (MD) simulations. Free energy calculations using thermodynamic integration and umbrella sampling methods are employed to analyze the molecular interactions at surface and reveal the role of counterion solvation on the results observed. Simulation snapshots and trajectories are interrogated to confirm the findings. FINDINGS Simulation results indicate that the ethoxylate moieties solvate Na+ ions, forming long-lasting cation-EOT complexes. Free energy calculations suggest that these complexes are more stable at the interface than in the bulk, likely because of changes in the dielectric properties of water. The cation-EOT complexes, in turn, cause a stronger affinity between the interface and NaDDBS when EOT is present. Similar studies conducted for mixtures of EOT and cationic surfactant Dodecylammonium chloride (DAC) do not show evidence of Cl- ions solvation via the ethoxylate moieties, while the DAC headgroup was found to form hydrogen bonds with the EOT headgroup. This suggests that the mechanisms observed are likely ion specific.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Chemical Engineering, University College London, Torrington Place WC1E 7JE, London, United Kingdom
| | - Kristo Kotsi
- Department of Chemical Engineering, University College London, Torrington Place WC1E 7JE, London, United Kingdom
| | - Teng Dong
- Department of Chemical Engineering, University College London, Torrington Place WC1E 7JE, London, United Kingdom
| | - Ian McRobbie
- Innospec Ltd, Oil Sites Road, Ellesmere Port, Cheshire CH65 4EY, United Kingdom
| | - Alexander Moriarty
- Department of Chemical Engineering, University College London, Torrington Place WC1E 7JE, London, United Kingdom
| | - Panagiota Angeli
- Department of Chemical Engineering, University College London, Torrington Place WC1E 7JE, London, United Kingdom
| | - Alberto Striolo
- Department of Chemical Engineering, University College London, Torrington Place WC1E 7JE, London, United Kingdom; School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK 73019, United States.
| |
Collapse
|
4
|
Woden B, Su Y, Skoda MWA, Milsom A, Pfrang C. Oxidation by ozone of linoleic acid monolayers at the air-water interface in multi-component films at 21 °C and 3 °C. Faraday Discuss 2025. [PMID: 40029211 DOI: 10.1039/d4fd00167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Aqueous aerosols are often covered in thin films of surface-active species, such as fatty acids which are prominent components of both sea spray and cooking emissions. The focus of our study is one-molecule thin layers of linoleic acid (LOA) and their behaviours when exposed to ozone in multi-component films at the air-water interface. LOA's two double bonds allow for ozone-initiated autoxidation, a radical self-oxidation process, as well as traditional ozonolysis. Neutron reflectometry was employed as a highly sensitive technique to follow the kinetics of these films in real time in a temperature-controlled environment. We oxidised deuterated LOA (d-LOA) as a monolayer, and in mixed two-component films with either oleic acid (h-OA) or its methyl ester, methyl oleate (h-MO), at room temperature and atmospherically more realistic temperatures of 3 ± 1 °C. We found that the temperature change did not notably affect the reaction rate (ranging from 1.9 to 2.5 × 10-10 cm2 s-1) which was similar to that of pure OA. We also measured the rate coefficient for d-OA/h-LOA to be 2.0 ± 0.4 × 10-10 cm2 s-1. Kinetic multi-layer modelling using our Multilayer-Py package was subsequently carried out for further insight. Neither the change in temperature nor the introduction of co-deposited film components alongside d-LOA consistently affected the oxidation rates, but the deviation from a single process decay behaviour (indicative of autoxidation) at 98 ppb is clearest for pure d-LOA, weaker for h-MO mixtures and weakest for h-OA mixtures. As atmospheric surfactants will be present in complex, multi-component mixtures, it is important to understand the reasons for these different behaviours even in two-component mixtures of closely related species. The rates we found were fast compared to those reported earlier. Our work demonstrates clearly that it is essential to employ atmospherically realistic ozone levels as well as multi-component mixtures especially to understand LOA behaviour at low O3 in the atmosphere. While the temperature change did not play a crucial role for the kinetics, residue formation may be affected, potentially impacting on the persistence of the organic character at the surface of aqueous droplets with a wide range of atmospheric implications.
Collapse
Affiliation(s)
- Ben Woden
- Department of Chemistry, University of Reading, Reading, UK
| | - Yizhou Su
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | | | - Adam Milsom
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Christian Pfrang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
- Department of Meteorology, University of Reading, Reading, UK
| |
Collapse
|
5
|
Kugaji M, Ray SK, Parvatikar P, Raghu AV. Biosurfactants: A review of different strategies for economical production, their applications and recent advancements. Adv Colloid Interface Sci 2025; 337:103389. [PMID: 39765093 DOI: 10.1016/j.cis.2024.103389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
Biosurfactants are biodegradable, non-toxic, and environmentally beneficial substances that are produced by microorganisms. Due to their chemical characteristics and stability in various environmental circumstances, biosurfactants are low-molecular-weight, surface-active molecules of great industrial importance. The choice of the producer microbe, kind of substrate, and purification technique determine the chemistry of a biosurfactant and its production cost. Biosurfactants' amphiphilic nature has proven to be quite advantageous, allowing them to disperse onto two immiscible surfaces while lowering the interfacial surface tension and boosting the solubility of hydrophobic substances. Microbial surfactants are replacing their chemical counterparts in research and usage because of their low or non-toxic nature, durability at higher temperatures, capacity to endure wide range of pH variations and degrade naturally. Biosurfactants are often used as anti-adhesives, emulsifying/de-emulsifying agents, spreading agents, foaming agents, and detergents that have significance in a range of industries such as agriculture, biomedical, bioremediation, the manufacturing industry, and cosmetic. Recent advancements in biosurfactant production have enhanced its usefulness and research interest in a circular economy framework. These advancements include the use of alternative substrates, including various forms of organic waste and solid-state fermentation. Here, we attempted a comprehensive review of biosurfactants, their usage, latest research, limitations, and future aspects.
Collapse
Affiliation(s)
- Manohar Kugaji
- Central Research Laboratory, Maratha Mandal's NGH Institute of Dental Sciences & Research Centre, Bauxite Road, Belgaum 590010, India.
| | - Suman Kumar Ray
- Central Research Laboratory, Maratha Mandal's NGH Institute of Dental Sciences & Research Centre, Bauxite Road, Belgaum 590010, India
| | - Prachi Parvatikar
- Department of Biotechnology, School of Applied Sciences and Technology, BLDE (Deemed to be University), Bangaramma Sajjan Campus, Vijayapura 586103, India
| | - Anjanapura V Raghu
- Department of Biotechnology, School of Applied Sciences and Technology, BLDE (Deemed to be University), Bangaramma Sajjan Campus, Vijayapura 586103, India; Department of Basic Sciences, Faculty of Engineering and Technology, CMR University, Bangalore 562149, India.
| |
Collapse
|
6
|
Wang K, Wang Y, Pera-Titus M. Liquid-liquid and gas-liquid dispersions in electrochemistry: concepts, applications and perspectives. Chem Soc Rev 2024; 53:11701-11724. [PMID: 39495483 PMCID: PMC11562458 DOI: 10.1039/d3cs00535f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Indexed: 11/05/2024]
Abstract
Electrochemistry plays a pivotal role in a vast number of domains spanning from sensing and manufacturing to energy storage, environmental conservation, and healthcare. Electrochemical applications encompassing gaseous or organic substrates encounter shortcomings ascribed to high mass transfer/internal resistances and low solubility in aqueous electrolytes, resulting in high overpotentials. In practice, strong acids and expensive organic electrolytes are required to promote charge transfer in electrochemical cells, resulting in a high carbon footprint. Liquid-liquid (L-L) and gas-liquid (G-L) dispersions involve the dispersion of a nano/micro gas or liquid into a continuous liquid phase such as micelles, (macro)emulsions, microemulsions, and microfoams stabilised by surface-active agents such as surfactants and colloidal particles. These dispersions hold promise in addressing the drawbacks of electrochemical reactions by fostering the interfacial surface area between immiscible reagents and mass transfer of electroactive organic and gas reactants and products from/to the bulk to/from the electrode surface. This tutorial review provides a taxonomy of liquid-liquid and gas-liquid dispersions for applications in electrochemistry, with emphasis on their assets and challenges in industrially relevant reactions for fine chemistry and depollution.
Collapse
Affiliation(s)
- Kang Wang
- Cardiff Catalysis Institute, Cardiff University, Cardiff CF10 3AT, UK.
| | - Yucheng Wang
- Cardiff Catalysis Institute, Cardiff University, Cardiff CF10 3AT, UK.
| | - Marc Pera-Titus
- Cardiff Catalysis Institute, Cardiff University, Cardiff CF10 3AT, UK.
| |
Collapse
|
7
|
Schneck E, Reed J, Seki T, Nagata Y, Kanduč M. Experimental and simulation-based characterization of surfactant adsorption layers at fluid interfaces. Adv Colloid Interface Sci 2024; 331:103237. [PMID: 38959812 DOI: 10.1016/j.cis.2024.103237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Adsorption of surfactants to fluid interfaces occurs in numerous technological and daily-life contexts. The coverage at the interface and other properties of the formed adsorption layers determine the performance of a surfactant with regard to the desired application. Given the importance of these applications, there is a great demand for the comprehensive characterization and understanding of surfactant adsorption layers. In this review, we provide an overview of suitable experimental and simulation-based techniques and review the literature in which they were used for the investigation of surfactant adsorption layers. We come to the conclusion that, while these techniques have been successfully applied to investigate Langmuir monolayers of water-insoluble surfactants, their application to the study of Gibbs adsorption layers of water-soluble surfactants has not been fully exploited. Finally, we emphasize the great potential of these methods in providing a deeper understanding of the behavior of soluble surfactants at interfaces, which is crucial for optimizing their performance in various applications.
Collapse
Affiliation(s)
- Emanuel Schneck
- Department of Physics, Technische Universität Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| | - Joshua Reed
- Department of Physics, Technische Universität Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany
| | - Takakazu Seki
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561 Aomori, Japan
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Matej Kanduč
- Department of Theoretical Physics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
8
|
Dommer AC, Rogers MM, Carter-Fenk KA, Wauer NA, Rubio P, Davasam A, Allen HC, Amaro RE. Interfacial Enrichment of Lauric Acid Assisted by Long-Chain Fatty Acids, Acidity and Salinity at Sea Spray Aerosol Surfaces. J Phys Chem A 2024; 128:7195-7207. [PMID: 39106367 PMCID: PMC11372753 DOI: 10.1021/acs.jpca.4c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Surfactant monolayers at sea spray aerosol (SSA) surfaces regulate various atmospheric processes including gas transfer, cloud interactions, and radiative properties. Most experimental studies of SSA employ a simplified surfactant mixture of long-chain fatty acids (LCFAs) as a proxy for the sea surface microlayer or SSA surface. However, medium-chain fatty acids (MCFAs) make up nearly 30% of the FA fraction in nascent SSA. Given that LCFA monolayers are easily disrupted upon the introduction of chemical heterogeneity (such as mixed chain lengths), simple FA proxies are unlikely to represent realistic SSA interfaces. Integrating experimental and computational techniques, we characterize the impact that partially soluble MCFAs have on the properties of atmospherically relevant LCFA mixtures. We explore the extent to which the MCFA lauric acid (LA) is surface stabilized by varying acidity, salinity, and monolayer composition. We also discuss the impacts of pH on LCFA-assisted LA retention, where the presence of LCFAs may shift the surface-adsorption equilibria of laurate─the conjugate base─toward higher surface activities. Molecular dynamic simulations suggest a mechanism for the enhanced surface retention of laurate. We conclude that increased FA heterogeneity at SSA surfaces promotes surface activity of soluble FA species, altering monolayer phase behavior and impacting climate-relevant atmospheric processes.
Collapse
Affiliation(s)
- Abigail C Dommer
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, United States
| | - Mickey M Rogers
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kimberly A Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas A Wauer
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Patiemma Rubio
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Aakash Davasam
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Heather C Allen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rommie E Amaro
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Gao XF, Hood DJ, Bertram TH, Nathanson GM. Probing the interfacial structure of aqueous surfactants through helium atom evaporation. Faraday Discuss 2024; 251:342-360. [PMID: 38757506 DOI: 10.1039/d3fd00177f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Dissolved helium atoms evaporate from liquids in super-Maxwellian speed distributions because their interactions are too weak to enforce full thermal equilibration at the surface as they are "squeezed" out of solution. The excess speeds of these He atoms reflect their final interactions with solvent and solute molecules at the surfaces of water and other liquids. We extend this observation by monitoring He atom evaporation from salty water solutions coated with surfactants. These surface-active molecules span neutral, anionic, and cationic amphiphiles: butanol, 3-methyl-1-butanol, pentanol, pentanoic acid, pentanoate, tetrabutylammonium, benzyltrimethylammonium, hexyltrimethylammonium, and dodecyltrimethylammonium, each characterized by surface tension measurements. The helium energy distributions, recorded in vacuum using a salty water microjet, reveal a sharp distinction between neutral and ionic surfactant films. Helium atoms evaporate through neutral surfactant monolayers in speed distributions that are similar to a pure hydrocarbon, reflecting the common alkyl chains of both. In contrast, He atoms appear to evaporate through ionic surfactant layers in distributions that are closer to pure salty water. We speculate that the ionic surfactants distribute themselves more loosely and deeply through the top layers of the aqueous solution than do neutral surfactants, with gaps between the surfactants that may be filled with salty water. This difference is supported by prior molecular dynamics simulations and ion scattering measurements of surfactant solutions.
Collapse
Affiliation(s)
- Xiao-Fei Gao
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, USA.
| | - David J Hood
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, USA.
| | - Timothy H Bertram
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, USA.
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, USA.
| |
Collapse
|
10
|
Gochev GG, Campbell RA, Schneck E, Zawala J, Warszynski P. Exploring proteins at soft interfaces and in thin liquid films - From classical methods to advanced applications of reflectometry. Adv Colloid Interface Sci 2024; 329:103187. [PMID: 38788307 DOI: 10.1016/j.cis.2024.103187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
The history of the topic of proteins at soft interfaces dates back to the 19th century, and until the present day, it has continuously attracted great scientific interest. A multitude of experimental methods and theoretical approaches have been developed to serve the research progress in this large domain of colloid and interface science, including the area of soft colloids such as foams and emulsions. From classical methods like surface tension adsorption isotherms, surface pressure-area measurements for spread layers, and surface rheology probing the dynamics of adsorption, nowadays, advanced surface-sensitive techniques based on spectroscopy, microscopy, and the reflection of light, X-rays and neutrons at liquid/fluid interfaces offers important complementary sources of information. Apart from the fundamental characteristics of protein adsorption layers, i.e., surface tension and surface excess, the nanoscale structure of such layers and the interfacial protein conformations and morphologies are of pivotal importance for extending the depth of understanding on the topic. In this review article, we provide an extensive overview of the application of three methods, namely, ellipsometry, X-ray reflectometry and neutron reflectometry, for adsorption and structural studies on proteins at water/air and water/oil interfaces. The main attention is placed on the development of experimental approaches and on a discussion of the relevant achievements in terms of notable experimental results. We have attempted to cover the whole history of protein studies with these techniques, and thus, we believe the review should serve as a valuable reference to fuel ideas for a wide spectrum of researchers in different scientific fields where proteins at soft interface may be of relevance.
Collapse
Affiliation(s)
- Georgi G Gochev
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30239 Krakow, Poland; Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Richard A Campbell
- Division of Pharmacy and Optometry, University of Manchester, M13 9PT Manchester, UK
| | - Emanuel Schneck
- Physics Department, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - Jan Zawala
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30239 Krakow, Poland
| | - Piotr Warszynski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30239 Krakow, Poland
| |
Collapse
|
11
|
Chen Y, Petkov JT, Ma K, Li P, R P Webster J, Penfold J, Thomas RK, Allgaier J, Dalgliesh R, Smith G. Manipulating the hydrophilic / hydrophobic balance in novel cationic surfactants by ethoxylation: The impact on adsorption and self-assembly. J Colloid Interface Sci 2024; 674:405-415. [PMID: 38941934 DOI: 10.1016/j.jcis.2024.06.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
HYPOTHESIS Cationic surfactants have a wide range of applications, often associated with their affinity for a range of solid surfaces and their anti-microbial properties. Manipulating their adsorption and self-assembly properties is key to most applications, and this is commonly achieved through surfactant mixtures or manipulating their headgroup or alkyl chain structure. Achieving this through adjustments to their headgroup structure is less common in cationic surfactants than in anionic surfactants. Ethoxylation provides the ability to adjust the hydrophilic / hydrophobic balance, as extensively demonstrated in a range of anionic surfactants. EXPERIMENTS This same approach has been applied here to a range of ethoxylated cationic surfactants in the form of the quaternary ammonium salts, and their tertiary nonionic equivalents before quaternisation. Their adsorption and self-assembly properties are investigated using predominantly the neutron scattering techniques of neutron reflectivity, NR, and small angle neutron scattering, SANS. FINDINGS The trends in the adsorption at the air-water interface and the self-assembly in aqueous solution demonstrate how the hydrophilic / hydrophobic balance can be adjusted by varying the degree of ethoxylation and the alkyl chain length, and illustrate the degree of interdependence of the different structural changes. The variation in the adsorption and the micelle structure shows how the surfactant conformation / packing changes as the degree of ethoxylation and alkyl chain length increases and how the introduction of charge induces further changes.
Collapse
Affiliation(s)
- Y Chen
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK
| | - J T Petkov
- Arxada, Muenchensteinerstrasse 38, CH-4002 Basel, Switzerland
| | - K Ma
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK
| | - P Li
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK.
| | - J R P Webster
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK
| | - J Penfold
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK; Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OXON, UK.
| | - R K Thomas
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OXON, UK
| | - J Allgaier
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - R Dalgliesh
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK
| | - G Smith
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK
| |
Collapse
|
12
|
Caselli L, Nylander T, Malmsten M. Neutron reflectometry as a powerful tool to elucidate membrane interactions of drug delivery systems. Adv Colloid Interface Sci 2024; 325:103120. [PMID: 38428362 DOI: 10.1016/j.cis.2024.103120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
The last couple of decades have seen an explosion of novel colloidal drug delivery systems, which have been demonstrated to increase drug efficacy, reduce side-effects, and provide various other advantages for both small-molecule and biomacromolecular drugs. The interactions of delivery systems with biomembranes are increasingly recognized to play a key role for efficient eradication of pathogens and cancer cells, as well as for intracellular delivery of protein and nucleic acid drugs. In parallel, there has been a broadening of methodologies for investigating such systems. For example, advanced microscopy, mass-spectroscopic "omic"-techniques, as well as small-angle X-ray and neutron scattering techniques, which only a few years ago were largely restricted to rather specialized areas within basic research, are currently seeing increased interest from researchers within wide application fields. In the present discussion, focus is placed on the use of neutron reflectometry to investigate membrane interactions of colloidal drug delivery systems. Although the technique is still less extensively employed for investigations of drug delivery systems than, e.g., X-ray scattering, such studies may provide key mechanistic information regarding membrane binding, re-modelling, translocation, and permeation, of key importance for efficacy and toxicity of antimicrobial, cancer, and other therapeutics. In the following, examples of this are discussed and gaps/opportunities in the research field identified.
Collapse
Affiliation(s)
| | - Tommy Nylander
- Physical Chemistry 1, Lund University, S-221 00 Lund, Sweden
| | - Martin Malmsten
- Physical Chemistry 1, Lund University, S-221 00 Lund, Sweden; Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
13
|
Hu X, Liao M, Ding K, Wang J, Xu H, Tao K, Zhou F, Lu JR. Neutron reflection and scattering in characterising peptide assemblies. Adv Colloid Interface Sci 2023; 322:103033. [PMID: 37931380 DOI: 10.1016/j.cis.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Self-assemblies of de novo designed short peptides at interface and in bulk solution provide potential platforms for developing applications in many medical and technological areas. However, characterising how bioinspired supramolecular nanostructures evolve with dynamic self-assembling processes and respond to different stimuli remains challenging. Neutron scattering technologies including small angle neutron scattering (SANS) and neutron reflection (NR) can be advantageous and complementary to other state-of-the-art techniques in tracing structural changes under different conditions. With more neutron sources now available, SANS and NR are becoming increasingly popular in studying self-assembling processes of diverse peptide and protein systems, but the difficulty in experimental manipulation and data analysis can deter beginners. This review will introduce the basic theory, general experimental setup and data analysis of SANS and NR, followed by provision of their applications in characterising interfacial and solution self-assemblies of representative peptides and proteins. SANS and NR are remarkably effective in determining the morphological features self-assembled short peptides, especially size and shape transitions as a result of either sequence changes or in response to environmental stimuli, demonstrating the unique capability of NR and SANS in unravelling the interactive processes. These examples highlight the potential of NR and SANS in supporting the development of novel short peptides and proteins as biopharmaceutical candidates in the fight against many diseases and infections that share common features of membrane interactive processes.
Collapse
Affiliation(s)
- Xuzhi Hu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.; Lanzhou Institute of Chemical Physics, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Mingrui Liao
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ke Ding
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
| | - Feng Zhou
- Lanzhou Institute of Chemical Physics, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK..
| |
Collapse
|
14
|
Jones SH, King MD, Rennie AR, Ward AD, Campbell RA, Hughes AV. Aqueous Radical Initiated Oxidation of an Organic Monolayer at the Air-Water Interface as a Proxy for Thin Films on Atmospheric Aerosol Studied with Neutron Reflectometry. J Phys Chem A 2023; 127:8922-8934. [PMID: 37830513 PMCID: PMC10614302 DOI: 10.1021/acs.jpca.3c03846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Neutron reflectometry has been used to study the radical initiated oxidation of a monolayer of the lipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) at the air-solution interface by aqueous-phase hydroxyl, sulfate, and nitrate radicals. The oxidation of organic films at the surface of atmospheric aqueous aerosols can influence the optical properties of the aerosol and consequently can impact Earth's radiative balance and contribute to modern climate change. The amount of material at the air-solution interface was found to decrease on exposure to aqueous-phase radicals which was consistent with a multistep degradation mechanism, i.e., the products of reaction of the DSPC film with aqueous radicals were also surface active. The multistep degradation mechanism suggests that lipid molecules in the thin film degrade to form progressively shorter chain surface active products and several reactive steps are required to remove the film from the air-solution interface. Bimolecular rate constants for oxidation via the aqueous phase OH radical cluster around 1010 dm3 mol-1 s-1. Calculations to determine the film lifetime indicate that it will take ∼4-5 days for the film to degrade to 50% of its initial amount in the atmosphere, and therefore attack by aqueous radicals on organic films could be atmospherically important relative to typical atmospheric aerosol lifetimes.
Collapse
Affiliation(s)
- Stephanie H. Jones
- Centre
of Climate, Ocean and Atmosphere, Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, U.K.
- STFC,
Central Laser Facility, Research Complex
at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Martin D. King
- Centre
of Climate, Ocean and Atmosphere, Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, U.K.
| | - Adrian R. Rennie
- Department
of Chemistry, Angström Laboratory, Uppsala University, 75121 Uppsala, Sweden
| | - Andrew D. Ward
- STFC,
Central Laser Facility, Research Complex
at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Richard A. Campbell
- Institut
Laue-Langevin, BP 156, 6, 71 avenue des Martyrs, CS 20156, F-38042
Cedex 9 Grenoble, France
| | - Arwel V. Hughes
- ISIS
Pulsed Neutron and Muon source, Rutherford
Appleton Laboratory, Harwell Oxford, Oxfordshire OX11 0QX, U.K.
| |
Collapse
|
15
|
Tucker IM, Burley A, Petkova RE, Hosking SL, Webster JRP, Li PX, Ma K, Penfold J, Thomas RK. Promoting the adsorption of saponins at the hydrophilic solid-aqueous solution interface by the coadsorption with cationic surfactants. J Colloid Interface Sci 2023; 654:1031-1039. [PMID: 39491061 DOI: 10.1016/j.jcis.2023.10.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
HYPOTHESIS Saponins are highly surface active glycosides, and are extensively used to stabilise emulsions and foams in beverages, foods, and cosmetics. Derived from a variety of plant species these naturally occurring biosurfactants have wider potential for inclusion in many low carbon and or sustainably sourced products. Although their adsorption at the air-solution and liquid-liquid interfaces has been extensively studied, the nature of their adsorption at solid surfaces is much less clear. The aim of this study was to establish the criteria for and nature of the adsorption of saponins at both hydrophilic and hydrophobic solid surfaces. EXPERIMENTS Adsorption at the hydrophilic and hydrophobic solid surfaces was investigated using neutron reflectivity. Measurements were made for the saponins escin, quillaja and glycyrrhizic acid. At the hydrophilic surface measurements were also made for escin / cetyltrimethyl ammonium bromide, C16TAB, mixtures; using deuterium labelling to determine the surface structure and composition. FINDINGS At a range of solution concentrations, from below to well in excess of the critical micelle concentration, cmc, there was no saponin adsorption evident at either the hydrophilic or hydrophobic surface. This implies an inherent incompatibility between the surface OH- groups at the hydrophilic surface and the saponin sugar groups, and a reluctance for the hydrophobic triterpenoid group of the saponin to interact with the octadecyltrichlorosilane, OTS, hydrophobic solid surface. Above a critical composition or concentration escin / C16TAB mixtures adsorb at the hydrophilic solid surface; with a surface composition which is dominated by the escin, and a structure which reflects the disparity in the molecular arrangement of the two surfactant components. The results provide an important insight into how cooperative adsorption can be utilised to promote adsorption of saponins at the solid- solution interface.
Collapse
Affiliation(s)
- I M Tucker
- Unilever Research and Development, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral, UK
| | - A Burley
- Unilever Research and Development, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral, UK
| | - R E Petkova
- Unilever Research and Development, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral, UK
| | - S L Hosking
- Unilever Research and Development, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral, UK
| | - J R P Webster
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OXON, UK
| | - P X Li
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OXON, UK
| | - K Ma
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OXON, UK
| | - J Penfold
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OXON, UK; Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, UK.
| | - R K Thomas
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, UK
| |
Collapse
|
16
|
Nguyen TTP, Raji F, Nguyen CV, Nguyen NN, Nguyen AV. Effects of Charged Surfactants on Interfacial Water Structure and Macroscopic Properties of the Air-Water Interface. Chemphyschem 2023:e202300062. [PMID: 37679310 DOI: 10.1002/cphc.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Surfactants are used to control the macroscopic properties of the air-water interface. However, the link between the surfactant molecular structure and the macroscopic properties remains unclear. Using sum-frequency generation spectroscopy and molecular dynamics simulations, two ionic surfactants (dodecyl trimethylammonium bromide, DTAB, and sodium dodecyl sulphate, SDS) with the same carbon chain lengths and charge magnitude (but different signs) of head groups interact and reorient interfacial water molecules differently. DTAB forms a thicker but sparser interfacial layer than SDS. It is due to the deep penetration into the adsorption zone of Br- counterions compared to smaller Na+ ones, and also due to the flip-flop orientation of water molecules. SDS alters two distinctive interfacial water layers into a layer where H+ points to the air, forming strong hydrogen bonding with the sulphate headgroup. In contrast, only weaker dipole-dipole interactions with the DTAB headgroup are formed as they reorient water molecules with H+ point down to the aqueous phase. Hence, with more molecules adsorbed at the interface, SDS builds up a higher interfacial pressure than DTAB, producing lower surface tension and higher foam stability at a similar bulk concentration. Our findings offer improved knowledge for understanding various processes in the industry and nature.
Collapse
Affiliation(s)
- Thao T P Nguyen
- School of Chemical Engineering and UQ Node of the ARC Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Foad Raji
- School of Chemical Engineering and UQ Node of the ARC Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cuong V Nguyen
- School of Chemical Engineering and UQ Node of the ARC Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ngoc N Nguyen
- School of Chemical Engineering and UQ Node of the ARC Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering and UQ Node of the ARC Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
17
|
Chen C, Zhang H, Zhang X. Synergism of Surfactant Mixture in Lowering Vapor-Liquid Interfacial Tension. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11828-11838. [PMID: 37556484 DOI: 10.1021/acs.langmuir.3c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Through employing molecular dynamics, in this work, we study how a two-component surfactant mixture cooperatively reduces the interfacial tension of a flat vapor-liquid interface. Our simulation results show that in the presence of a given insoluble surfactant, adding a secondary surfactant would either further reduce interfacial tension, indicating a positive synergistic effect, or increase the interfacial tension instead, indicating a negative synergistic effect. The synergism of the surfactant mixture in lowering surface tension is found to depend strongly on the structure complementary effect between different surfactant components. The synergistic mechanisms are then interpreted with minimization of the bending free energy of the composite surfactant monolayer via cooperatively changing the monolayer spontaneous curvature. By roughly describing the monolayer spontaneous curvature with the balanced distribution of surfactant heads and tails, we confirm that the positive synergistic effect in lowering surface tension is featured with the increasingly symmetric head-tail distributions, while the negative synergistic effect is featured with the increasingly asymmetric head-tail distributions. Furthermore, our simulation results indicate that minimal interfacial tension can only be observed when the spontaneous curvature is nearly zero.
Collapse
Affiliation(s)
- Changsheng Chen
- State Key Laboratory of Organic-inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongguang Zhang
- State Key Laboratory of Organic-inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianren Zhang
- State Key Laboratory of Organic-inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
18
|
Carpenter AP, White JN, Hasbrook A, Reierson M, Baio JE. Comparative Thermodynamic and Structural Analysis of Polyfluorinated Dodecylphosphonic Acid Adsorption to Distilled and River Water Interfaces. J Phys Chem A 2023. [PMID: 37450685 DOI: 10.1021/acs.jpca.3c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
As concerns rise about the health risks posed by per- and polyfluoroalkyl substances (PFAS) in the environment, there is a need to understand how these pollutants accumulate at environmental interfaces. Untangling the details of molecular adsorption, particularly when there are potential interactions with other molecules in environmental systems, can obscure the ability to focus on a particular contaminant with molecular specificity. Often adsorption studies of environmental interfaces require a reductionist approach, where laboratory experiments may not be fully tractable to environmental systems. In this work, we study polyfluorinated dodecylphosphonic acid (F21-DDPA) at the aqueous surfaces of distilled water (the most reduced "environmental" surface) and river water to explore the use of vibrational sum-frequency (VSF) spectroscopy as an experimental probe of fluorinated contaminants at natural environmental surfaces. We demonstrate how VSF spectroscopy offers advantages over nonspecific surface tension measurements when measuring PFAS adsorption isotherms at river water surfaces. VSF spectra of the C-F stretching region selectively probe the presence of F21-DDPA and can be used to extract meaningful structural insights and calculate surface concentrations, even at the complex river water surface. This study highlights the potential for VSF spectroscopy to be developed as a probe of fluorinated contaminants at natural environmental interfaces.
Collapse
Affiliation(s)
- Andrew P Carpenter
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jade N White
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Annemarie Hasbrook
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Makenna Reierson
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Joe E Baio
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
19
|
Gao XF, Hood DJ, Zhao X, Nathanson GM. Creation and Reaction of Solvated Electrons at and near the Surface of Water. J Am Chem Soc 2023; 145:10987-10990. [PMID: 37191478 DOI: 10.1021/jacs.3c03370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Solvated electrons (es-) are among nature's most powerful reactants, with over 2600 reactions investigated in bulk water. These electrons can also be created at and near the surface of water by exposing an aqueous microjet in vacuum to gas-phase sodium atoms, which ionize into es- and Na+ within the top few layers. When a reactive surfactant is added to the jet, the surfactant and es- become coreactants localized in the interfacial region. We report the reaction of es- with the surfactant benzyltrimethylammonium in a 6.7 M LiBr/water microjet at 235 K and pH = 2. The reaction intermediates trimethylamine (TMA) and benzyl radical are identified by mass spectrometry after they evaporate from solution into the gas phase. Their detection demonstrates that TMA can escape before it is protonated and benzyl before it combines with itself or a H atom. Diffusion-reaction calculations indicate that es- reacts on average within 20 Å of the surface and perhaps within the surfactant monolayer itself, while unprotonated TMA evaporates from the top 40 Å. The escape depth exceeds 1300 Å for the more slowly reacting benzyl radical. These proof-of-principle experiments establish an approach for exploring the near-interfacial analogues of aqueous bulk-phase radical chemistry through the evaporation of reaction intermediates into the gas phase.
Collapse
Affiliation(s)
- Xiao-Fei Gao
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David J Hood
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Xianyuan Zhao
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
20
|
Shen K, Nguyen M, Sherck N, Yoo B, Köhler S, Speros J, Delaney KT, Shell MS, Fredrickson GH. Predicting surfactant phase behavior with a molecularly informed field theory. J Colloid Interface Sci 2023; 638:84-98. [PMID: 36736121 DOI: 10.1016/j.jcis.2023.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
HYPOTHESIS The computational study of surfactants and self-assembly is challenging because 1) models need to reflect chemistry-specific interactions, and 2) self-assembled structures are difficult to equilibrate with conventional molecular dynamics. We propose to overcome these challenges with a multiscale simulation approach where relative entropy minimization transfers chemically-detailed information from all-atom (AA) simulations to coarse-grained (CG) models that can be simulated using field-theoretic methods. Field-theoretic simulations are not limited by intrinsic physical time scales like diffusion and allow for rigorous equilibration via free energy minimization. This approach should enable the study of properties that are difficult to obtain by particle-based simulations. SIMULATION WORK We apply this workflow to sodium dodecylsulfate. To ensure chemical fidelity we present an AA force field calibrated against interfacial tension experiments. We generate CG models from AA simulation trajectories and show that particle-based and field-theoretic simulations of the CG model reproduce AA simulations and experimental measurements. FINDINGS The workflow captures the complex balance of interactions in a multicomponent system ultimately described by an atomistic model. The resulting CG models can study complex 3D phases like double or alternating gyroids, and reproduce salt effects on properties like aggregation number and shape transitions.
Collapse
Affiliation(s)
- Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| | - My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - Brian Yoo
- BASF Corporation, Tarrytown 10591, NY, United States
| | | | - Joshua Speros
- California Research Alliance (CARA) by BASF, Berkeley 94720, CA, United States
| | - Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| | - Glenn H Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Department of Materials Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| |
Collapse
|
21
|
Kovalchuk VI, Aksenenko EV, Schneck E, Miller R. Surfactant Adsorption Layers: Experiments and Modeling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3537-3545. [PMID: 36853274 DOI: 10.1021/acs.langmuir.2c03511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
During recent years, great progress has been made in understanding the adsorption of surfactants at liquid interfaces. In addition to tensiometry, new efficient methodologies have been developed, in particular interfacial selective optical methods which allow direct access to the adsorbed amounts and interfacial layer compositions. In addition to these new experimental tools, the thermodynamic description by equations of state now allows one to provide a quantitative picture of surfactant interfacial layers. This is most notable for surfactant layers at water/oil interfaces. Additional knowledge about the structure of interfacial layers was gained through different types of molecular modeling. Improved interrelationships between these three aspects are the challenges for current and future work. Particular attention must be paid to dilational interfacial rheology studies, as these mechanical quantities are much more sensitive to small changes in the interfacial composition and structure.
Collapse
Affiliation(s)
- V I Kovalchuk
- Institute of Biocolloid Chemistry, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| | - E V Aksenenko
- Institute of Colloid Chemistry and Chemistry of Water, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| | - E Schneck
- Institute of Condensed Matter Physics, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - R Miller
- Institute of Condensed Matter Physics, Technical University Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
22
|
Xia W, Cao X, Xu Y, Bian J. Quantitative Study of Gas–Liquid Interface Adsorption Based on Theoretical Modeling and Molecular Dynamics Simulation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Wenzhu Xia
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xuewen Cao
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yongqi Xu
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Jiang Bian
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
23
|
Ma X, Li M, Xu X, Sun C. Coupling Effects of Ionic Surfactants and Electrolytes on the Stability of Bulk Nanobubbles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193450. [PMID: 36234578 PMCID: PMC9565236 DOI: 10.3390/nano12193450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 05/14/2023]
Abstract
As interest in the extensive application of bulk nanobubbles increases, it is becoming progressively important to understand the key factors affecting their anomalous stability. The scientific intrigue over nanobubbles originates from the discrepancy between the Epstein-Plesset prediction and experimental observations. Herein, the coupling effects of ionic surfactants and electrolytes on the stability of bulk nanobubbles is studied. Experimental results show that ionic surfactants not only reduce the surface tension but also promote the accumulation of net charges, which facilitate the nucleation and stabilization of bulk nanobubbles. The addition of an electrolyte in a surfactant solution further results in a decrease in the zeta potential and the number concentration of nanobubbles due to the ion shielding effect, essentially colloidal stability. An adsorption model for the coexistence of ionic surfactants and electrolytes in solution, that specifically considers the effect of the adsorption layer thickness within the framework of the modified Poisson-Boltzmann equation, is developed. A quantitative agreement between the predicted and experimental surface tension is found in a wide range of bulk concentrations. The spatial distribution of the surface potential, surfactant ions and counterions in the vicinity of the interface of bulk nanobubbles are described. Our study intrinsically paves a route to investigate the stability of bulk nanobubbles.
Collapse
|
24
|
Hemming JM, Szyroka J, Shokano G, Arnold T, Skoda MWA, Rennie AR, Thompson KC. Changes to lung surfactant monolayers upon exposure to gas phase ozone observed using X-ray and neutron reflectivity. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:753-760. [PMID: 35923664 PMCID: PMC9281625 DOI: 10.1039/d2ea00032f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Exposure to the secondary pollutant ozone in ambient air is associated with adverse health effects when inhaled. In this work we use surface pressure measurements, combined with X-ray and neutron reflection, to observe changes in a layer of lung surfactant at the air water interface when exposed to gas phase ozone. The results demonstrate that the layer reacts with ozone changing its physical characteristics. A slight loss of material, a significant thinning of the layer and increased hydration of the surfactant material is observed. The results support the hypothesis that unsaturated lipids present in lung surfactant are still susceptible to rapid reaction with ozone and the reaction changes the properties of the interfacial layer.
Collapse
Affiliation(s)
- Joanna M Hemming
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London Malet Street London WC1E 7HX UK
| | - Justyna Szyroka
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London Malet Street London WC1E 7HX UK
| | - Gracia Shokano
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London Malet Street London WC1E 7HX UK
| | - Thomas Arnold
- European Spallation Source The ESS Campus Lund Sweden SE-221 00
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory Harwell, Didcot Oxford OX11 0QX UK
- Department of Chemistry, University of Bath Claverton Down Bath Avon BA2 7AY UK
| | - Maximilian W A Skoda
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory Harwell, Didcot Oxford OX11 0QX UK
| | - Adrian R Rennie
- Department of Chemistry - Ångström and Centre for Neutron Scattering, Uppsala University Box 538 75121 Uppsala Sweden
| | - Katherine C Thompson
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London Malet Street London WC1E 7HX UK
| |
Collapse
|
25
|
Enhanced oil recovery: QM/MM based descriptors for anionic surfactant salt-resistance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Strong synergistic interactions in zwitterionic-anionic surfactant mixtures at the air-water interface and in micelles: The role of steric and electrostatic interactions. J Colloid Interface Sci 2022; 613:297-310. [PMID: 35042030 DOI: 10.1016/j.jcis.2022.01.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
HYPOTHESIS The milder interaction with biosystems makes the zwitterionic surfactants an important class of surfactants, and they are widely used in biological applications and in personal care formulations. An important aspect of those applications is their strong synergistic interaction with anionic surfactants. It is anticipated that the strong interaction will significantly affect the adsorption and self-assembly properties. EXPERIMENTS Surface tension, ST, neutron reflectivity, NR, and small angle neutron scattering, SANS, have been used here to explore the synergistic mixing in micelles and at the air-water interface for the zwitterionic surfactant, dodecyldimethylammonium propanesulfonate, C12SB, and the anionic surfactants, alkyl ester sulfonate, AES, in the absence and presence of electrolyte, 0.1 M NaCl. FINDINGS At the air-water interface the asymmetry of composition in the strong synergistic interaction and the changes with added electrolyte and anionic surfactant structure reflect the relative contributions of the electrostatic and steric interactions to the excess free energy of mixing. In the mixed micelles the synergy is less pronounced and indicates less severe packing constraints. The micelle structure is predominantly globular to elongated, and shows a pronounced micellar growth with composition which depends strongly upon the nature of the anionic surfactant and the addition of electrolyte.
Collapse
|
27
|
Penfold J, Thomas RK. Neutron reflection and the thermodynamics of the air-water interface. Phys Chem Chem Phys 2022; 24:8553-8577. [PMID: 35352746 DOI: 10.1039/d2cp00053a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By means of isotopic substitution, measurements of the neutron reflectivity (NR) from a flat water surface generally give model independent measurements of the amount of a chosen solute at the surface irrespective of whether the layer is a mixture or whether there is any aggregation in the bulk solution. Previously, adsorption at air-water interfaces has been determined by applying the Gibbs equation to surface tension (ST) measurements, which requires assumptions about the composition of the surface and about the activity of the solute in the bulk, which, in turn, means that in practice the surface is assumed to consist of the pure solute or of a mixture of pure solutes, and that the activity of the solute in the bulk solution is known. The use of NR in combination with ST-Gibbs measurements makes it possible to (i) avoid these assumptions and hence understand several patterns of ST behaviour previously considered to be anomalous and (ii) to start to analyse quantitatively the behaviour of mixed surfactants both below and above the critical micelle concentration. These two developments in our understanding of the thermodynamics of the air-water interface are described with recent examples.
Collapse
Affiliation(s)
- Jeffrey Penfold
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon, UK. .,Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, UK
| | - Robert K Thomas
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
28
|
Paracini N, Schneck E, Imberty A, Micciulla S. Lipopolysaccharides at Solid and Liquid Interfaces: Models for Biophysical Studies of the Gram-negative Bacterial Outer Membrane. Adv Colloid Interface Sci 2022; 301:102603. [PMID: 35093846 DOI: 10.1016/j.cis.2022.102603] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
Abstract
Lipopolysaccharides (LPSs) are a constitutive element of the cell envelope of Gram-negative bacteria, representing the main lipid in the external leaflet of their outer membrane (OM) lipid bilayer. These unique surface-exposed glycolipids play a central role in the interactions of Gram-negative organisms with their surrounding environment and represent a key element for protection against antimicrobials and the development of antibiotic resistance. The biophysical investigation of a wide range of different types of in vitro model membranes containing reconstituted LPS has revealed functional and structural properties of these peculiar membrane lipids, providing molecular-level details of their interaction with antimicrobial compounds. LPS assemblies reconstituted at interfaces represent a versatile tool to study the properties of the Gram-negative OM by exploiting several surface-sensitive techniques, in particular X-ray and neutron scattering, which can probe the structure of thin films with sub-nanometer resolution. This review provides an overview of different approaches employed to investigate structural and biophysical properties of LPS, focusing on studies on Langmuir monolayers of LPS at the air/liquid interface and a range of supported LPS-containing model membranes reconstituted at solid/liquid interfaces.
Collapse
Affiliation(s)
| | - Emanuel Schneck
- Physics Departent, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | | |
Collapse
|
29
|
Petkov JT, Penfold J, Thomas RK. Surfactant self-assembly structures and multilayer formation at the solid-solution interface induces by electrolyte, polymers and proteins. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2021.101541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Self-assembly in saponin/surfactant mixtures: Escin and sodium dodecylsulfate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Gera R, Bakker HJ, Franklin-Mergarejo R, Morzan UN, Falciani G, Bergamasco L, Versluis J, Sen I, Dante S, Chiavazzo E, Hassanali AA. Emergence of Electric Fields at the Water-C12E6 Surfactant Interface. J Am Chem Soc 2021; 143:15103-15112. [PMID: 34498857 DOI: 10.1021/jacs.1c05112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We study the properties of the interface of water and the surfactant hexaethylene glycol monododecyl ether (C12E6) with a combination of heterodyne-detected vibrational sum frequency generation (HD-VSFG), Kelvin-probe measurements, and molecular dynamics (MD) simulations. We observe that the addition of the hydrogen-bonding surfactant C12E6, close to the critical micelle concentration (CMC), induces a drastic enhancement in the hydrogen bond strength of the water molecules close to the interface, as well as a flip in their net orientation. The mutual orientation of the water and C12E6 molecules leads to the emergence of a broad (∼3 nm) interface with a large electric field of ∼1 V/nm, as evidenced by the Kelvin-probe measurements and MD simulations. Our findings may open the door for the design of novel electric-field-tuned catalytic and light-harvesting systems anchored at the water-surfactant-air interface.
Collapse
Affiliation(s)
- Rahul Gera
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Huib J Bakker
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | - Uriel N Morzan
- International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Gabriele Falciani
- Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Luca Bergamasco
- Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Jan Versluis
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Indraneel Sen
- Uppsala University, Laegerhyddsvaegen 1, 751 20 Uppsala, Sweden
| | - Silvia Dante
- Materials Characterization Facility, Italian Institute of Technology, 16163 Genoa, Italy
| | - Eliodoro Chiavazzo
- Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Ali A Hassanali
- International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
32
|
Špadina M, Dufrêche JF, Pellet-Rostaing S, Marčelja S, Zemb T. Molecular Forces in Liquid-Liquid Extraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10637-10656. [PMID: 34251218 DOI: 10.1021/acs.langmuir.1c00673] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phase transfer of ions is driven by gradients of chemical potentials rather than concentrations alone (i.e., by both the molecular forces and entropy). Extraction is a combination of high-energy interactions that correspond to short-range forces in the first solvation shell such as ion pairing or complexation forces, with supramolecular and nanoscale organization. While the latter are similar to the long-range solvent-averaged interactions in the colloidal world, in solvent extraction they are associated with lower characteristic lengths of the nanometric domain. Modeling of such complex systems is especially complicated because the two domains are coupled, whereas the resulting free energy of extraction is around kBT to guarantee the reversibility of the practical process. Nevertheless, quantification is possible by considering a partitioning of space among the polar cores, interfacial film, and solvent. The resulting free energy of transfer can be rationalized by utilizing a combination of terms which represent strong complexation energies, counterbalanced by various entropic effects and the confinement of polar solutes in nanodomains dispersed in the diluent, together with interfacial extractant terms. We describe here this ienaics approach in the context of solvent extraction systems; it can also be applied to further complex ionic systems, such as membranes and biological interfaces.
Collapse
Affiliation(s)
- Mario Špadina
- Group for Computational Life Sciences, Rud̵er Bošković Institute, Division of Physical Chemistry, 10000 Zagreb, Croatia
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | | | - Stjepan Marčelja
- Research School of Physics, The Australian National University, Canberra, Australia
| | - Thomas Zemb
- ICSM, CEA, CNRS, ENSCM, Université Montpellier, Marcoule, France
| |
Collapse
|
33
|
Hantal G, Sega M, Horvai G, Jedlovszky P. Contribution of Different Molecules and Moieties to the Surface Tension in Aqueous Surfactant Solutions. II: Role of the Size and Charge Sign of the Counterions. J Phys Chem B 2021; 125:9005-9018. [PMID: 34319728 DOI: 10.1021/acs.jpcb.1c04216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the role of the counterion species in surfactant solutions is a complicated task, made harder by the fact that, experimentally, it is not possible to vary independently bulk and surface quantities. Here, we perform molecular dynamics simulations at constant surface coverage of the liquid/vapor interface of lithium, sodium, potassium, rubidium, and cesium dodecyl sulfate aqueous solutions. We investigate the effect of counterion type and charge sign on the surface tension of the solution, analyzing the contribution of different species and moieties to the lateral pressure profile. The observed trends are qualitatively compatible with the Hofmeister series, with the notable exception of sodium. We point out a possible shortcoming of what is at the moment, in our experience, the most realistic nonpolarizable force field (CHARMM36) that includes the parametrization for the whole series of alkali counterions. In the artificial system where the counterion and surfactant charges are inverted in sign, the counterions become considerably harder. This charge inversion changes considerably the surface tension contributions of the counterions, surfactant headgroups, and water molecules, stressing the key role of the hardness of the counterions in this respect. However, the hydration free energy gain of the counterions, occurring upon charge inversion, is compensated by the concomitant free energy loss of the headgroups and water molecules, leading to a negligible change in the surface tension of the entire system.
Collapse
Affiliation(s)
- György Hantal
- Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Straße 82, A-1190 Vienna, Austria.,Department of Chemistry, Eszterházy Károly University, Leányka utca 6, H-3300 Eger, Hungary
| | - Marcello Sega
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11),Fürther Straße 248, D-90429 Nürnberg, Germany
| | - George Horvai
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Leányka utca 6, H-3300 Eger, Hungary
| |
Collapse
|
34
|
Reeve JR, Thomas RK, Penfold J. Surface Activity of Ethoxylate Surfactants with Different Hydrophobic Architectures: The Effect of Layer Substructure on Surface Tension and Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9269-9280. [PMID: 34308653 DOI: 10.1021/acs.langmuir.1c01588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A series of nonionic ethoxylate surfactants containing different combinations of alkyl, phenyl, and adamantyl units in nine different arrangements, each combined with penta- and hexa-ethylene glycol groups, were synthesized and purified. The surface properties of all of the surfactants were investigated at the air-water (A-W) interface using surface tension (ST) to determine the limiting surface excess (Γlim), the limiting surface tension (σlim), and the critical micelle concentration (CMC). A smaller selection was investigated at the hydrophilic silica-water interface by neutron reflectometry to obtain the thickness of the adsorbed layer and the total adsorption at the CMC. An unusual and largely unrecognized feature of the ethoxylate group is that it is both hydrophilic and hydrophobic. It was found possible to account for the variation of σlim and Γlim of all of the adsorbed layers in terms of a balance of the estimated STs of the sublayers forming the overall adsorbed layer, including that of the underlying ethoxylate layer. The values of σlim were found to be highest for phenyl- and adamantyl-capped surfactants and lowest mainly when there was more than one methyl group at the surface. However, in terms of the concentration required to reach a given low ST, increasing the number of attached methyl groups was found to be less effective than using a smaller number of better-placed methyl groups. At the solid-liquid interface, adsorption at or above the CMC was in all cases in the form of a fragmented bilayer whose coverage varied approximately linearly with the packing parameter. However, results on the phenyl-capped surfactants showed that the high ST exhibited by these surfactants at the A-W interface becomes a high cohesion energy in the interior of the bilayer and they exhibited significantly higher adsorption than expected from simple packing arguments.
Collapse
Affiliation(s)
- James R Reeve
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K
| | - Robert K Thomas
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jeffrey Penfold
- Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, U.K
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
35
|
Liu X, Counil C, Shi D, Mendoza-Ortega EE, Vela-Gonzalez AV, Maestro A, Campbell RA, Krafft MP. First quantitative assessment of the adsorption of a fluorocarbon gas on phospholipid monolayers at the air/water interface. J Colloid Interface Sci 2021; 593:1-10. [DOI: 10.1016/j.jcis.2021.02.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
|
36
|
In situ determination of the structure and composition of Langmuir monolayers at the air/water interface by neutron and X-ray reflectivity and ellipsometry. Adv Colloid Interface Sci 2021; 293:102434. [PMID: 34022749 DOI: 10.1016/j.cis.2021.102434] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
This review focuses on the description of the structure and composition of a variety of Langmuir monolayers (LMs) deposited at the air/water interface by using ellipsometry, Brewster Angle microscopy and scattering techniques, mainly neutron and X-ray reflectometry. Since the first experiment done by Angels Pockels with a homemade trough in her home kitchen until today, LMs of different materials have been extensively studied providing not only relevant model systems in biology, physics and chemistry but also precursors of novel materials via their deposition on solid substrates. There is a vast amount of surface-active materials that can form LMs and, therefore, far from a revision of the state-of-the-art, we will emphasize here: (i) some fundamental aspects to understand the physics behind the molecular deposition at the air/water interface; (ii) the advantages in using in situ techniques, such as reflectometry or ellipsometry, to resolve the interfacial architecture and conformation of molecular films; and, finally, (iii) a summary of several systems that have certain interest from the experimental or conceptual point of view. Concretely, we will report here advances in polymers confined to interfaces and surfactants, from fatty acids and phospholipids monolayers to more unconventional ones such as graphene oxide.
Collapse
|
37
|
Wang Z, Li P, Ma K, Chen Y, Webster JRP, Campana M, Yan Z, Penfold J, Thomas RK. Multivalent counterion induced multilayer adsorption at the air-water interface in dilute Aerosol-OT solutions. J Colloid Interface Sci 2021; 597:223-232. [PMID: 33872879 DOI: 10.1016/j.jcis.2021.03.183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/28/2022]
Abstract
The formation of surface multilayer structures, induced by the addition of multivalent counterions in dilute surfactant solutions, has been widely observed in a range of anionic surfactants. The phenomenon is associated with the ability to manipulate surface properties, especially in the promotion of enhanced surface wetting, and in the presence of an extensive near surface reservoir for rapid surface delivery of surfactant and other active components. HYPOTHESIS In the single alkyl chain anionic surfactants, such as sodium dodecysulfate, SDS, sodium alkylethoxylsulfate, SAES, and alkylestersulfonate, AES, surface multilayer formation is promoted by trivalent counterions such as Al3+, and is generally not observed with divalent counterions, such as Ca2+ or with monovalent counterions. In the di-alkyl chain anionic surfactant, dodecylbenzenesulfonate, LAS, surface multilayer formation now occurs in the presence of divalent counterions. It is attributed to the closer proximity of a bulk lamellar phase, resulting in a greater tendency for surface multilayer formation, and hence should occur in other di-alkyl chain anionic surfactants. EXPERIMENTS Aerosol-OT, AOT, is one of the most commonly used di-alkyl chain anionic surfactants, and is extensively used as an emulsifying, wetting and dispersing agent. This paper reports on predominantly neutron reflectivity, NR, measurements which explore the nature of surface multilayer formation of the sodium salt of AOT at the air-solution interface with the separate addition of Ca2+ and Al3+ counterions. FINDINGS In the AOT concentration range 0.5 to 2.0 mM surface multilayer formation occurs at the air-solution interface with the addition of Ca2+ or Al3+ counterions. Although the evolution in the surface structure with surfactant and counterion concentration is broadly similar to those reported for SDS, SAES and AES, some notable differences occur. In particular the surfactant and counterion concentration thresholds for surface multilayer formation are higher for Ca2+ than for Al3+. The differences encountered reflect the greater affinity of the di-alkyl chain structure for lamellar formation, and how the surface packing is controlled in part by the headgroup structure and the associated counterion binding affinity.
Collapse
Affiliation(s)
- Zi Wang
- School of Science, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China; ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Peixun Li
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Kun Ma
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Yao Chen
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - John R P Webster
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Mario Campana
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Zifeng Yan
- School of Science, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China.
| | - Jeff Penfold
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK; Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| | - Robert K Thomas
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
38
|
Adsorption and self-assembly properties of the plant based biosurfactant, Glycyrrhizic acid. J Colloid Interface Sci 2021; 598:444-454. [PMID: 33930748 DOI: 10.1016/j.jcis.2021.03.101] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/23/2022]
Abstract
There is an increased interest in the use of natural surfactant as replacements for synthetic surfactants due to their biosustainable and biocompatible properties. A category of natural surfactants which are attracting much current interest is the triterpenoid saponins; surface active components found extensively in a wide range of plant species. A wide range of different saponin structures exist, depending upon the plant species they are extracted from; but regardless of the variation in structural details they are all highly surface active glycosides. Greater exploitation and application requires a characterisation and understanding of their basic adsorption and self-assembly properties. HYPOTHESIS Glycyrrhizic acid, extracted from Licorice root, is a monodesmosidic triterpenoid saponin. It is widely used in cosmetic and pharmaceutical applications due to its anti-inflammatory properties, and is an ingredient in foods as a sweetener additive. It has an additional attraction due to its gel forming properties at relatively low concentrations. Although it has attracted much recent attention, many of its basic surface active characteristics, adsorption and self-assembly, remain relatively unexplored. How the structure of the Glycyrrhizic acid saponin affects its surface active properties and the impact of gelation on these properties are important considerations, and to investigate these are the focus of the study. EXPERIMENTS In this paper the adsorption properties at the air-water interface and the self-assembly in solution have been investigated using by neutron reflectivity and small angle neutron scattering; in non-gelling and gelling conditions. FINDINGS The adsorption isotherm is determined in water and in the presence of gelling additives, and compared with the adsorption behaviour of other saponins. Gelation has minimal impact on the adsorption; apart from producing a rougher surface with a surface texture on a macroscopic length scale. Globular micelles are formed in aqueous solution with modest anisotropy, and are compared with the structure of other saponin micelles. The addition of gelling agents results in only minimal micelle growth, and the solutions remain isotropic under applied shear flow.
Collapse
|
39
|
Wang Z, Li P, Ma K, Chen Y, Yan Z, Penfold J, Thomas RK, Campana M, Webster JR, Li Z, Neil JH, Xu H, Petkov J, Roberts DW. α-Sulfo alkyl ester surfactants: Impact of changing the alkyl chain length on the adsorption, mixing properties and response to electrolytes of the tetradecanoate. J Colloid Interface Sci 2021; 586:876-890. [DOI: 10.1016/j.jcis.2020.10.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
|
40
|
Fan T, Chen L, Xia X, Wu Y, Zhang J, Yin K, Liu F, Yan Z. Dissipative Particle Dynamics Quantitative Simulation of the Formation Mechanism and Emulsification Driving Force of Deep Eutectic Solvent-Based Surfactant-Free and Water-Free Microemulsion. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Taotao Fan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Li Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaomeng Xia
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuehang Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jianwei Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - KangLing Yin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zongcheng Yan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
41
|
Peng M, Duignan TT, Nguyen CV, Nguyen AV. From Surface Tension to Molecular Distribution: Modeling Surfactant Adsorption at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2237-2255. [PMID: 33559472 DOI: 10.1021/acs.langmuir.0c03162] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surfactants are centrally important in many scientific and engineering fields and are used for many purposes such as foaming agents and detergents. However, many challenges remain in providing a comprehensive understanding of their behavior. Here, we provide a brief historical overview of the study of surfactant adsorption at the air-water interface, followed by a discussion of some recent advances in this area from our group. The main focus is on incorporating an accurate description of the adsorption layer thickness of surfactant at the air-water interface. Surfactants have a wide distribution at the air-water interface, which can have a significant effect on important properties such as the surface excess, surface tension, and surface potential. We have developed a modified Poisson-Boltzmann (MPB) model to describe this effect, which we outline here. We also address the remaining challenges and future research directions in this area. We believe that experimental techniques, modeling, and simulation should be combined to form a holistic picture of surfactant adsorption at the air-water interface.
Collapse
Affiliation(s)
- Mengsu Peng
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy T Duignan
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cuong V Nguyen
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
42
|
King MD, Jones SH, Lucas COM, Thompson KC, Rennie AR, Ward AD, Marks AA, Fisher FN, Pfrang C, Hughes AV, Campbell RA. The reaction of oleic acid monolayers with gas-phase ozone at the air water interface: the effect of sub-phase viscosity, and inert secondary components. Phys Chem Chem Phys 2020; 22:28032-28044. [PMID: 33367378 DOI: 10.1039/d0cp03934a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic films that form on atmospheric particulate matter change the optical and cloud condensation nucleation properties of the particulate matter and consequently have implications for modern climate and climate models. The organic films are subject to attack from gas-phase oxidants present in ambient air. Here we revisit in greater detail the oxidation of a monolayer of oleic acid by gas-phase ozone at the air-water interface as this provides a model system for the oxidation reactions that occur at the air-water interface of aqueous atmospheric aerosol. Experiments were performed on monolayers of oleic acid at the air-liquid interface at atmospherically relevant ozone concentrations to investigate if the viscosity of the sub-phase influences the rate of the reaction and to determine the effect of the presence of a second component within the monolayer, stearic acid, which is generally considered to be non-reactive towards ozone, on the reaction kinetics as determined by neutron reflectometry measurements. Atmospheric aerosol can be extremely viscous. The kinetics of the reaction were found to be independent of the viscosity of the sub-phase below the monolayer over a range of moderate viscosities, , demonstrating no involvement of aqueous sub-phase oxidants in the rate determining step. The kinetics of oxidation of monolayers of pure oleic acid were found to depend on the surface coverage with different behaviour observed above and below a surface coverage of oleic acid of ∼1 × 1018 molecule m-2. Atmospheric aerosol are typically complex mixtures, and the presence of an additional compound in the monolayer that is inert to direct ozone oxidation, stearic acid, did not significantly change the reaction kinetics. It is demonstrated that oleic acid monolayers at the air-water interface do not leave any detectable material at the air-water interface, contradicting the previous work published in this journal which the authors now believe to be erroneous. The combined results presented here indicate that the kinetics, and thus the atmospheric chemical lifetime for unsaturated surface active materials at the air-water interface to loss by reaction with gas-phase ozone, can be considered to be independent of other materials present at either the air-water interface or in the aqueous sub-phase.
Collapse
Affiliation(s)
- Martin D King
- Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Peng M, Duignan TT, Nguyen AV. Quantifying the Counterion-Specific Effect on Surfactant Adsorption Using Modeling, Simulation, and Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13012-13022. [PMID: 33084333 DOI: 10.1021/acs.langmuir.0c02403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ionic surfactants behave differently in the presence of various counterions, which plays an important role in many scientific and engineering processes. Previous work has shown that the counterion-specific surface tension can be reproduced with classical adsorption models, but the underlying origin of this effect has not been explained. In this paper, we extend our previously developed adsorption model to account for the specific counterion adsorption. This model can accurately predict the surface tension of surfactant solutions like sodium dodecyl sulfate (SDS) in the presence of the monovalent salts LiCl, NaCl, KCl, and CsCl. The predicted surface excess and surface potential are validated by corresponding sum-frequency generation (SFG) spectroscopy experiments. We also used molecular dynamic (MD) simulation to explain the origin of the counterion-specific effect for surfactant behavior. Our study shows that for SDS, binding of the counterion to both the headgroup and a few CH2 fragments close to the surfactant head contributes to the counterion-specific effect. In general, SDS behaves like a large ion, and it prefers to bind with large counterions such as Cs+, which is consistent with Collins's law of matching water affinity. Therefore, large counterions enhance the surface adsorption and lower the surface tension the most.
Collapse
Affiliation(s)
- Mengsu Peng
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy T Duignan
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
44
|
Zhang J, Thomas RK, Penfold J. Collapsed Structure of Hydrophobically Modified Polyacrylamide Adsorbed at the Air-Water Interface: The Polymer Surface Excess and the Gibbs Equation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11661-11675. [PMID: 32926632 DOI: 10.1021/acs.langmuir.0c02534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Neutron reflectometry has been used to measure the surface excesses and structures of hydrophobically modified polyacrylamide polymers (HMPAMs) at the air-water (A-W) interface. The HMPAMs were based on a range of commercially available PAM, which were modified by the N-alkylation of the amide group to give an N-CnD2n+1 hydrophobic group with n = 8, 12, and 16 at levels of 0.5, 1, 2, 4, and 6 mol %. A further HMPAM was synthesized in two isotopic forms with either N-CnD2n+1 or N-CnH2n+1 as hydrophobes. For moderate- and high MW species the near surface structure at the A-W interface consists of two layers. All the hydrophobic units are in these two layers as well as a large fraction of backbone units, often amounting to a total volume comparable to that of the hydrophobes. The outer layer next to air contains no water, but the residual volume in the inner layer is filled with water. A further large fraction of the backbone units also form a diffuse third layer extending a substantial distance into the solution. In a low MW HMPAMs there was preferential adsorption of species with higher mol % of hydrophobe and a tendency to form apparently nonequilibrium structures, which in some cases resulted in more complex structures than the simple one characteristic of the large MW polymers. With the exception of this polymer, the variation of the patterns of surface excess and structure with solution concentration suggested that systems containing hydrophobic units at a level of 0.5, 1, and 2 mol % formed equilibrium or near-equilibrium surface layers at bulk concentrations of 0.01-0.35 wt % for C8 to C16 units. However, higher levels of 4 and 6 mol % of the C12 hydrophobe led to much less regular patterns of adsorption, indicating that equilibration is more difficult once the molar fraction of hydrophobe exceeds 2 mol %. The behavior of the surface tension (ST) over the same concentration range as the NR experiments could be accounted for by the Gibbs equation using the directly measured surface excesses and the incorporation of a low charge on the polymers (about 1 charge per 100 backbone units). The presence of such a charge in PAM can arise from hydrolysis of some amide to carboxylate and was known to be present for one of the polymers. The extra structural information obtained by NR on these HMPAMs combined with more recent measurements of the state of ionization in polyacrylates (PAA) allowed us to reinterpret earlier ST and X-ray reflection results on hydrophobically modified HMPAANa containing a similar level of 1 and 2 mol % C12H25 hydrophobes. The Gibbs equation again accounted quantitatively for the ST behavior by using the correct state of ionization of the polymer. Although the adsorption of hydrophobic groups in HMPAANa is about one-tenth of that for the corresponding HMPAM, the ST drops more quickly to lower values for HMPAANa because of its higher level of dissociation, which increases the magnitude of the slope in the Gibbs plot.
Collapse
Affiliation(s)
- Jin Zhang
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K
| | - Robert K Thomas
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jeffrey Penfold
- Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire, U.K
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
45
|
Effect of Triton X-100 surfactant on the interfacial activity of ionic surfactants SDS, CTAB and SDBS at the air/water interface: A study using molecular dynamic simulations. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Tucker I, Burley A, Petkova R, Hosking S, Thomas R, Penfold J, Li P, Ma K, Webster J, Welbourn R. Surfactant/biosurfactant mixing: Adsorption of saponin/nonionic surfactant mixtures at the air-water interface. J Colloid Interface Sci 2020; 574:385-392. [DOI: 10.1016/j.jcis.2020.04.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
|
47
|
Bhatthula BKG, Kanchani JR, Arava VR, Marata Chenna Subbarao S. A simple method for the synthesis of sulfonic esters. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1794657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Janardhan Reddy Kanchani
- Research and Development Center, Suven Life Sciences Limited, Hyderabad, India
- Department of Chemistry, Sri Krishnadevaraya University, Anantapur, India
| | - Veera Reddy Arava
- Research and Development Center, Suven Life Sciences Limited, Hyderabad, India
| | | |
Collapse
|
48
|
Tein YS, Zhang Z, Wagner NJ. Competitive Surface Activity of Monoclonal Antibodies and Nonionic Surfactants at the Air-Water Interface Determined by Interfacial Rheology and Neutron Reflectometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7814-7823. [PMID: 32551695 DOI: 10.1021/acs.langmuir.0c00797] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Interfacial stresses can destabilize therapeutic formulations containing monoclonal antibodies (mAbs), which is proposed to be a result of adsorption and aggregation at the air-water interface. To increase protein stability, pharmaceutical industries add surfactants, such as Polysorbate 20 (PS20), into protein formulations to minimize mAb adsorption at the interface but rarely quantify this process. We determine that mAb adsorption in surfactant-free solutions creates a monolayer with significant viscoelasticity, which can influence measurements of bulk mAb solution viscosity. In contrast, PS20 absorption leads to an interface with negligible interfacial viscosity that protects the air-water interface from mAb adsorption. These studies were performed through a combined study of surface tensiometry, interfacial rheology, capillary viscometry, and neutron reflectometry to determine the surface activity of a model surfactant, PS20, and mAb system, which can be useful for the successful formulation developments of biotherapeutics.
Collapse
Affiliation(s)
- Y Summer Tein
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Zhenhuan Zhang
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Norman J Wagner
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
49
|
Peng M, Duignan TT, Nguyen AV. Significant Effect of Surfactant Adsorption Layer Thickness in Equilibrium Foam Films. J Phys Chem B 2020; 124:5301-5310. [PMID: 32453955 DOI: 10.1021/acs.jpcb.0c02883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Foam films formed at the air-water interface do not have fixed adsorption sites where adsorbed surfactants can arrange themselves, resulting in the formation of thick adsorption layers. Current theories of equilibrium foam films fail to account for this feature and significantly underestimate the adsorption layer thickness. Here we show that this thickness has a significant effect on the disjoining pressure in foam films. If ignored, the theory predicts unphysical electrostatic potential profiles, which underestimate the disjoining pressure. We apply a previously developed adsorption model that incorporates a realistic thickness for the adsorption layer. This new model reproduces experimental measurements of the disjoining pressure of foam films very well over a wide surfactant concentration range without fitting parameters. Our work shows that a thick adsorption layer is less effectively screened by counterions, resulting in a higher electrostatic potential inside the film and therefore a higher disjoining pressure.
Collapse
Affiliation(s)
- Mengsu Peng
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy T Duignan
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
50
|
López-Dı Az D, Merchán MD, Velázquez MM, Maestro A. Understanding the Role of Oxidative Debris on the Structure of Graphene Oxide Films at the Air-Water Interface: A Neutron Reflectivity Study. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25453-25463. [PMID: 32394699 DOI: 10.1021/acsami.0c05649] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We address here the role of oxidation impurities on the structure of graphene oxide films at the air-water interface by specular neutron reflectivity (SNR). We study films of purified graphene oxide (PGO) and nonpurified graphene oxide in the close-packed state. Nonpurified graphene oxide is constituted by graphene oxide (GO) layers with oxidation impurities adsorbed on the basal plane, while in PGO sheets, impurities are eliminated. SNR measurements show that GO films are formed by well-defined bilayers constituted by 2-3 layers of GO stacked in contact with air and a second layer of impurities submerged in the aqueous subphase. In contrast, PGO films are formed by a single layer in contact with air. We show for the first time that impurities constitute a layer submerged in the aqueous subphase, decrease the elasticity, and favor the collapse of graphene oxide films. Our results allow designing the surface properties of GO trapped at fluid interfaces.
Collapse
Affiliation(s)
- David López-Dı Az
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Quı́micas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - M Dolores Merchán
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Quı́micas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - M Mercedes Velázquez
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Quı́micas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Armando Maestro
- Institut Max von Laue and Paul Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble, cedex 9, France
| |
Collapse
|